DSC 201: Data Analysis & Visualization

Introduction

Dr. David Koop
About Me

• 5th Year at UMass Dartmouth
• Teaching: Data Science, Data Management, and Visualization
• Research: Visualization, Provenance, Geographical Data Analysis
• Contacting me:
 - Office: Dion 302E
 - Email: dkoop
 - Phone: x6692
About You

• Year?

• Programming Background:
 - DSC 101? CIS 180/181?
 - Python? Scripting languages?
 - Data Analysis?
 - Visualization?

• Why Data Science?
Course Structure

• Balance lectures with concepts and examples
• Try things out, bring a laptop if you have one
• Assignments will focus on real (or at least real-ish) data
• Quizzes and tests will assess both concepts and problem solving
• Concepts include data structures (CIS 360 background)
http://www.cis.umassd.edu/~dkoop/dsc201
Course Material

• Course Website
 - http://www.cis.umassd.edu/~dkoop/dsc201-2018fa
 - All material will be posted there
 - myCourses for turning in assignments

• Textbook: *Python for Data Analysis* by Wes McKinney, 2nd ed., 2017
 - Good reference for data science topics in Python
 - McKinney created the Pandas package
Course Material

• Other references:
 - Python Data Science Handbook, J. VanderPlas
 - learnpython.org
Course Material

- **Software:**
 - Anaconda Python Distribution (https://www.continuum.io/downloads): makes installing python and python packages easier
 - Jupyter Notebook: Web-based interface for interactively writing and executing Python code
 - JupyterLab: An updated web-based interface that includes the notebook and other cool features
 - JupyterHub: Access everything through a server
Course Material

• Pandas:
 - Python library for data analysis
 - Many operations available
 - Efficient

• Tableau:
 - Desktop (or web) application
 - Create visualizations quickly

• Other Visualization Tools:
 - Python libraries: Matplotlib, Altair, Bokeh, folium
 - Don't have to move between applications
Grading

• Assignments (5): 40%
• Quizzes: 2 in-class: 7.5% each
• Midterm: 17.5%
• Final: 22.5%
• Class Participation: 5%
• Late Policy
Important Dates

• Check these now!
• Quiz 1: October 2 (in class)
• Midterm: October 23 in class
• Quiz 2: November 20 (in class)
• Final Exam: December 12, 11:30am-2:30pm
• Quizzes and exams may not be rescheduled and can only be made up in case of a documented emergency.
Accommodation Policy

• Please contact me at the **beginning** of the semester and provide the appropriate paperwork from the Center for Access and Success.
• Please update me if anything changes during the semester.
• Center for Access and Success: Pine Dale Hall Room 7136, x8711, access_success@umassd.edu
Office Hours & Email

- Scheduled office hours are open to all students
 - M: 3-5pm, TuTh: 11am-12pm
- You do not need an appointment to stop in during scheduled office hours
- If you need an appointment outside of those times, please email me with **specific details** about what you wish to discuss
- Many questions can be answered via email so try writing your question as an email first
Academic Honesty

• Do not cheat!

• You will receive a zero for any assignment/exam/etc. where cheating has occurred. Repeat offenders will fail the course.

• You may discuss problems and approaches with other students

• You may not copy or transcribe code from another source
What do you do when faced with a problem?
Suppose your car won't start
Types of Problem Solvers

- The Excuse-maker: makes excuses about things being too difficult
- The Critic: points out flaws—doesn't look for a solution
- The Dreamer: envisions goals but doesn't try to implement a solution
- The Go-Getter: fast and never gives up but does a lot of extra work
- Goal: Mix some of the attributes above but try to structure the solution process

[Problem Solving 101, K. Watanabe]
Problem Solving

- Gather information
- Identify problems (questions)
- Consider various methods and solutions
- Decide on an approach and execute
- [Loop, Mix]
Data Science (aka Modern Problem Solving)

- Information often involves (large) datasets
- Methods and solutions often involve computers
Python

• Don't worry if you don't have any experience with it!
• Programming language to get things done
• Lots of libraries so you don't have to reinvent the wheel
• Syntax is fairly readable
• Indentation (spaces) are very important
Python adoption is increasing

[D. Robinson, StackOverflow blog, 2017]
Python adoption is increasing

[D. Robinson, StackOverflow blog, 2017]
Comparison to smaller, growing technologies

Python compared to smaller, growing technologies
Based on question traffic in World Bank high-income countries

[D. Robinson, StackOverflow blog, 2017]
Chicago Food Inspections

• Data: Information about food facility inspections in Chicago
• Search for data:
 - https://toolbox.google.com/datasetsearch
• Data Source: https://data.cityofchicago.org/Health-Human-Services/Food-Inspections/4ijn-s7e5/data
• Fields: Name, Facility Type, Risk, Violations, Location, etc.
Chicago Food Inspections Exploration

• Based on David Beazley's PyData Chicago talk
• YouTube video: https://www.youtube.com/watch?v=j6VSAAsKAj98
• Our in-class exploration:
 - Don't focus on the syntax
 - Focus on:
 • What is information is available
 • Questions are interesting about this dataset
 • How to decide on good follow-up questions
 • What the computations mean
Homework

• Log in to rps
 - https://rps.cscvr.umassd.edu:8000/
• Try "Hello World" in python
• Install Tableau
 - Students receive a free license
 - https://www.tableau.com/academic/students
• Watch Tableau tutorials:
 - https://www.tableau.com/learn/training
• Chapter 1 of Python for Data Analysis