DSC 201: Data Analysis & Visualization

Exploratory Data Analysis

Dr. David Koop
What is Exploratory Data Analysis?

• "Detective work" to summarize and explore datasets

• Includes:
 - Data acquisition and input
 - Data cleaning and wrangling ("tidying")
 - Data transformation and summarization
 - Data visualization
Exploratory Data Analysis

- John W. Tukey
 - Born in New Bedford
 - 1977: Highly influential book

- Emphasis on value of visualization in discovering trends, relationships

- From a review of the book:
 “Tukey favors analysis of data with little more than pencil and paper. Specifically, there is no need for a calculator, a computer, or a lettering guide to do the analyses he proposes” [R.M. Church, 1979]
“Reflective thought requires the ability to store temporary results, to make inferences from stored knowledge, and to follow chains of reasoning backward and forward, sometimes backtracking when a promising line of thought proves to be unfruitful. The process takes time.”

– Donald A. Norman
Comparison with Older Statistical Methods

• Older method:
 - Take data and a probable model and learn model parameters
 - Good models are useful, help understand phenomena
 - What happens when we pick the wrong model, or don't know which one to pick?

• EDA:
 - Postpone the model assumptions, let the data speak first
 - Usually involves graphical techniques
 - Tukey used pen-and-paper approaches
 - Today, we can do much of this via computer, but insight may still take time
Types of EDA

- Univariate vs. multivariate
- Non-graphical vs. graphical
Univariate Non-graphical EDA

- Categorical Data:
 - Frequency counts, proportions
 - Groupings

- Quantitative Data:
 - Distribution
 - Summary statistics: mean, median, mode, variance, standard deviation, quantiles
Univariate Graphical EDA

• Histograms
 - Aggregation of data
 - Choose number of bins
 - Bin width makes a difference!

• Stem-and-leaf plots:
 - 1|710340
 - 2|06
 - 3|030223459
 - 4|028907
 - 5|00798273487
 - 6|128
 - 7|7897
 - 8|345
 - 9|1

Figure 4.3: Histograms of EDA2.dat with different bin widths.
Univariate Graphical EDA

- **Boxplots**
 - Show distribution
 - Multiple summary statistics can be read from the chart
 - Also provides a general shape of the data
 - Best for **unimodal** data
Multivariate non-graphical EDA

- Crosstabs and Pivot Tables
 - What is in the data? Count

- Correlation and covariance
 - How related are different columns?
 - How do they change together?
Multivariate Graphical EDA

- Scatterplots: look for correlation
 - Usually put outcome on y-axis
 - Can encode other variables
- Side-by-side boxplots
- Parallel coordinates
- Grouped bar charts
Assignment 5

- http://www.cis.umassd.edu/~dkoop/dsc201/assignment5.html
- Aggregation, resampling, and visualization of time series data
- Part 3: Multi-level index and groupbys
Final Exam

- http://www.cis.umassd.edu/~dkoop/dsc201/final.html
- Similar format to midterm: multiple choice and short answer
- Should be familiar with **all** material
- Focuses more on the second half of the course
- Sample questions:
 - Given the following data frame, which columns are categorical, ordinal, and quantitative?
 - Given the following visualization, what are the marks and channels? What is the encoding?
 - Given the following data frame, suggest how a visualization can encode all the given data
 - What colormap would be most appropriate for this data frame?
Final Exam

• Sample Questions (continued)
 - If we do data analysis without considering the source of the data, what problems might occur?
 - Describe the split, apply, and combine steps involved in determining the average number of people who enter each NYC subway station each month.
 - Given the NYC subway data, what methods would you suggest to graphically analyze the relationship between the number of entries and the number of exits?
 - Given the following pandas code, add comments that describe what each block is doing.
 - Why are choropleth maps a poor choice for visualizing election data?
Final Exam

• Sample Questions (continued):
 - How would you set up a pivot table to analyze the tipping data by sex, day of the week, and time of day? Why?
 - How do we know that length is a better channel than area? What does this mean for the effectiveness of a (1D) bubble chart versus a bar chart?
Review

• Python
 - Notebooks
 - Types
 - Variables
 - Functions
 - Lists & Tuples (also mutable vs. immutable)
 - Dictionaries & Sets
 - Classes
Review

- NumPy
 - Arrays
 - Why?
- Pandas
 - Series
 - Index
 - Data Frames
- Data
 - Formats: CSV, TSV, JSON, XML
 - Reading data from files
Review

- Data Wrangling:
 - Cleaning
 - Transforming
 - Reshaping
 - Merging
 - Tidy Data
Review

- Visualization:
 - Why?
 - Tools: matplotlib, Tableau, and more
 - Types of data: categorical, ordinal, quantitative
 - Encoding data: marks & channels
 - Expressiveness and Effectiveness
 - Visual encodings: bar charts, scatterplots, line charts, etc.
 - Color and colormaps
 - Interaction and multiple views
 - Maps
“Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.”

— T. Munzner
Categorial, Ordinal, and Quantitative

Overview
- **Quantitative**: Data that can be measured or counted.
- **Ordinal**: Data that can be ranked or ordered, but the distances between the ranks may not be equal.
- **Categorical**: Data that falls into distinct categories or groups.

Table Example

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>Order ID</td>
<td>Order Date</td>
<td>Order Priority</td>
<td>Product Container</td>
<td>Product Base Margin</td>
<td>Ship Date</td>
</tr>
<tr>
<td>3</td>
<td>10/14/06</td>
<td>5-Low</td>
<td>Large Box</td>
<td>0.8</td>
<td>10/21/06</td>
</tr>
<tr>
<td>6</td>
<td>2/21/08</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.55</td>
<td>2/22/08</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Small Pack</td>
<td>0.79</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Jumbo Box</td>
<td>0.72</td>
<td>7/17/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.6</td>
<td>7/18/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Wrap Bag</td>
<td>0.52</td>
<td>10/24/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.58</td>
<td>10/25/07</td>
</tr>
<tr>
<td>36</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Box</td>
<td>0.55</td>
<td>11/3/07</td>
</tr>
<tr>
<td>32</td>
<td>7/16/07</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.65</td>
<td>7/18/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Wrap Bag</td>
<td>0.52</td>
<td>10/24/07</td>
</tr>
<tr>
<td>35</td>
<td>10/23/07</td>
<td>4-Not Specified</td>
<td>Small Box</td>
<td>0.58</td>
<td>10/25/07</td>
</tr>
<tr>
<td>36</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Box</td>
<td>0.55</td>
<td>11/3/07</td>
</tr>
<tr>
<td>36</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>36</td>
<td>11/3/07</td>
<td>1-Urgent</td>
<td>Small Pack</td>
<td>0.49</td>
<td>3/19/07</td>
</tr>
<tr>
<td>66</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Wrap Bag</td>
<td>0.56</td>
<td>1/20/05</td>
</tr>
<tr>
<td>69</td>
<td>6/4/05</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.44</td>
<td>6/6/05</td>
</tr>
<tr>
<td>69</td>
<td>6/4/05</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.44</td>
<td>6/6/05</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Small Box</td>
<td>0.59</td>
<td>12/23/06</td>
</tr>
<tr>
<td>70</td>
<td>12/18/06</td>
<td>5-Low</td>
<td>Small Box</td>
<td>0.59</td>
<td>12/23/06</td>
</tr>
<tr>
<td>96</td>
<td>4/17/05</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>4/19/05</td>
</tr>
<tr>
<td>97</td>
<td>1/29/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.38</td>
<td>1/30/06</td>
</tr>
<tr>
<td>129</td>
<td>11/19/08</td>
<td>5-Low</td>
<td>Medium Box</td>
<td>0.37</td>
<td>11/28/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.37</td>
<td>5/9/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Medium Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>130</td>
<td>5/8/08</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.38</td>
<td>5/10/08</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.6</td>
<td>6/12/06</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Medium Box</td>
<td>0.6</td>
<td>6/12/06</td>
</tr>
<tr>
<td>132</td>
<td>6/11/06</td>
<td>3-Medium</td>
<td>Jumbo Box</td>
<td>0.69</td>
<td>6/14/06</td>
</tr>
<tr>
<td>134</td>
<td>5/1/08</td>
<td>4-Not Specified</td>
<td>Large Box</td>
<td>0.82</td>
<td>5/3/08</td>
</tr>
<tr>
<td>135</td>
<td>10/21/07</td>
<td>4-Not Specified</td>
<td>Small Pack</td>
<td>0.64</td>
<td>10/23/07</td>
</tr>
<tr>
<td>166</td>
<td>9/12/07</td>
<td>2-High</td>
<td>Small Box</td>
<td>0.55</td>
<td>9/14/07</td>
</tr>
<tr>
<td>193</td>
<td>8/8/06</td>
<td>1-Urgent</td>
<td>Medium Box</td>
<td>0.57</td>
<td>8/10/06</td>
</tr>
<tr>
<td>194</td>
<td>4/5/08</td>
<td>3-Medium</td>
<td>Wrap Bag</td>
<td>0.42</td>
<td>4/7/08</td>
</tr>
</tbody>
</table>
Visual Encoding

• How do we encode data visually?
 - **Marks** are the basic graphical elements in a visualization
 - **Channels** are ways to control the appearance of the marks

• Marks classified by dimensionality:
 - Points
 - Lines
 - Areas
 - Also can have surfaces, volumes
 - Think of marks as a mathematical definition, or if familiar with tools like Adobe Illustrator or Inkscape, the path & point definitions
Visual Channels by Effectiveness

Channels: Expressiveness Types and Effectiveness Ranks

- **Magnitude Channels:** Ordered Attributes
 - Position on common scale
 - Position on unaligned scale
 - Length (1D size)
 - Tilt/angle
 - Area (2D size)
 - Depth (3D position)
 - Color luminance
 - Color saturation
 - Curvature
 - Volume (3D size)

- **Identity Channels:** Categorical Attributes
 - Spatial region
 - Color hue
 - Motion
 - Shape

[Visual Channels by Effectiveness](Munzner (ill. Maguire), 2014)
Test perception of **area** differences

![Diagram of area perception with two shapes A and B](image_url)
Types of Visualizations: Scatterplots

- Data: two **quantitative** values
- Task: find trends, clusters, outliers
- How: marks at spatial position in horizontal and vertical directions
- Correlation: dependence between two attributes
 - Positive and negative correlation
 - Indicated by lines
- Coordinate system (axes) and labels are important!
Color and Colormaps

- A colormap specifies a mapping between colors and data values
- Channels: hue, saturation, and luminance
- Luminance perception is non-linear...
- Issues with rainbow colormaps
- Segmented vs. continuous
- Univariate and bivariate

- **Binary**
 - y
 - n

- **Diverging**
 - -1
 - 0
 - +1

- **Categorical**
 - T
 - F
 - A

- **Sequential**
 - 3
 - 2
 - 1
Choropleth Map

[M. Ericson, New York Times]
Review

• Data Aggregation
 - Why?
 - Split-Apply-Combine
 - Pivot Tables & Crosstabs
 - Visualizations and Aggregation

• Time Series
 - Representing date and time
 - Frequencies and ranges
 - Time zones
 - Resampling: downsampling and up sampling
 - Window functions
Aggregation of time series data, a special use case of `groupby`, is referred to as **resampling** in this book and will receive separate treatment in Chapter 10.

GroupBy Mechanics

Hadley Wickham, an author of many popular packages for the R programming language, coined the term **split-apply-combine** for talking about group operations, and I think that’s a good description of the process. In the first stage of the process, data contained in a pandas object, whether a Series, DataFrame, or otherwise, is **split** into groups based on one or more **keys** that you provide. The splitting is performed on a particular axis of an object. For example, a DataFrame can be grouped on its rows (`axis=0`) or its columns (`axis=1`). Once this is done, a function is **applied** to each group, producing a new value. Finally, the results of all those function applications are **combined** into a result object. The form of the resulting object will usually depend on what’s being done to the data. See Figure 9-1 for a mockup of a simple group aggregation.

Figure 9-1. Illustration of a group aggregation

Each grouping key can take many forms, and the keys do not have to be all of the same type:

- A list or array of values that is the same length as the axis being grouped
- A value indicating a column name in a DataFrame

[W. McKinney, Python for Data Analysis]
Pivot Tables and Crosstabs

- `tips.pivot_table(index=['sex', 'smoker'])`

```
<table>
<thead>
<tr>
<th>sex</th>
<th>smoker</th>
<th>size</th>
<th>tip</th>
<th>tip_pct</th>
<th>total_bill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Female</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>2.592593</td>
<td>2.773519</td>
<td>0.156921</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>2.242424</td>
<td>2.931515</td>
<td>0.182150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>2.711340</td>
<td>3.113402</td>
<td>0.160669</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>2.500000</td>
<td>3.051167</td>
<td>0.152771</td>
</tr>
</tbody>
</table>
```

- `pd.crosstab([tips.time, tips.day], tips.smoker, margins=True)`

```
<table>
<thead>
<tr>
<th>time</th>
<th>smoker</th>
<th>No</th>
<th>Yes</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinner</td>
<td>Fri</td>
<td>3</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Sat</td>
<td>45</td>
<td>42</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Sun</td>
<td>57</td>
<td>19</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Thur</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Lunch</td>
<td>Fri</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Thur</td>
<td>44</td>
<td>17</td>
<td>61</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>151</td>
<td>93</td>
<td>244</td>
</tr>
</tbody>
</table>
```
Visualization and Aggregation: Histograms

- Very similar to bar charts
- Often shown without space between (continuity)
- Choice of number of bins
 - Important!
 - Viewers may infer different trends based on the layout

[Munzner (ill. Maguire), 2014]
Date and Time

• Many different representations: 2016-12-01, 1 Dec 2016, 13:15, 1:15pm
• Time zones: UTC and localizing time
• Time series: data indexed by timestamps
 - Operations: shifting, differences
 - Aggregation
 - Visualizations
 - Window functions
Review

- Exploratory Data Analysis
 - Why?
 - Univariate and multivariate
 - Non-graphical and graphical