Data Visualization (CIS 468)

Marks & Channels

Dr. David Koop
Visual Encoding

- How should we visualize this data?

<table>
<thead>
<tr>
<th>Name</th>
<th>Region</th>
<th>Population</th>
<th>Life Expectancy</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>East Asia & Pacific</td>
<td>1335029250</td>
<td>73.28</td>
<td>7226.07</td>
</tr>
<tr>
<td>India</td>
<td>South Asia</td>
<td>1140340245</td>
<td>64.01</td>
<td>2731</td>
</tr>
<tr>
<td>United States</td>
<td>America</td>
<td>306509345</td>
<td>79.43</td>
<td>41256.08</td>
</tr>
<tr>
<td>Indonesia</td>
<td>East Asia & Pacific</td>
<td>228721000</td>
<td>71.17</td>
<td>3818.08</td>
</tr>
<tr>
<td>Brazil</td>
<td>America</td>
<td>193806549</td>
<td>72.68</td>
<td>9569.78</td>
</tr>
<tr>
<td>Pakistan</td>
<td>South Asia</td>
<td>176191165</td>
<td>66.84</td>
<td>2603</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>South Asia</td>
<td>156645463</td>
<td>66.56</td>
<td>1492</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Sub-Saharan Africa</td>
<td>141535316</td>
<td>48.17</td>
<td>2158.98</td>
</tr>
<tr>
<td>Japan</td>
<td>East Asia & Pacific</td>
<td>127383472</td>
<td>82.98</td>
<td>29680.68</td>
</tr>
<tr>
<td>Mexico</td>
<td>America</td>
<td>111209909</td>
<td>76.47</td>
<td>11250.37</td>
</tr>
<tr>
<td>Philippines</td>
<td>East Asia & Pacific</td>
<td>94285619</td>
<td>72.1</td>
<td>3203.97</td>
</tr>
<tr>
<td>Vietnam</td>
<td>East Asia & Pacific</td>
<td>86970762</td>
<td>74.7</td>
<td>2679.34</td>
</tr>
<tr>
<td>Germany</td>
<td>Europe & Central Asia</td>
<td>82338100</td>
<td>80.08</td>
<td>31191.15</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Sub-Saharan Africa</td>
<td>79996293</td>
<td>55.69</td>
<td>812.16</td>
</tr>
<tr>
<td>Turkey</td>
<td>Europe & Central Asia</td>
<td>72626967</td>
<td>72.06</td>
<td>8040.78</td>
</tr>
</tbody>
</table>
Potential Solution

[Gapminder, Wealth & Health of Nations]
Another Solution

Size: Population, total

[Gapminder, Wealth & Health of Nations]
What about change over years?
Another Solution showing trends over time

Income per person (GDP/capita, PPP$ inflation-adjusted)
Assignment 2

• Link

• Use Tableau and D3 to create stacked bar charts of Citibike data

• Due next Friday, Start now!
Visual Encoding

• How do we encode data visually?
 - **Marks** are the basic graphical elements in a visualization
 - **Channels** are ways to control the appearance of the marks

• Marks classified by dimensionality:

 ➔ **Points**

 ➔ **Lines**

 ➔ **Areas**

• Also can have surfaces, volumes

• Think of marks as a mathematical definition, or if familiar with tools like Adobe Illustrator or Inkscape, the path & point definitions
Visual Channels

- **Position**
 - Horizontal
 - Vertical
 - Both

- **Color**

- **Shape**
 - Triangles
 - Stars
 - Lines
 - Rectangles

- **Tilt**

- **Size**
 - Length
 - Area
 - Volume

[Munzner (ill. Maguire), 2014]
Channels

• Usually map an attribute to a single channel
 - Could use multiple channels but…
 - **Limited** number of channels

• Restrictions on size and shape
 - Points are nothing but location so size and shape are ok
 - Lines have a length, cannot easily encode attribute as length
 - Maps with boundaries have area, changing size can be problematic
Cartograms

[Election Results by Population, M. Newman, 2012]
Channel Types

- **Identity** => what or where, **Magnitude** => how much

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

[Munzner (ill. Maguire), 2014]
Mark Types

• Can have marks for items and **links**
 - Connection => pairwise relationship
 - Containment => hierarchical relationship

Marks as Items/Nodes

- Points
- Lines
- Areas

Marks as Links

- Containment
- Connection

[Munzner (ill. Maguire), 2014]
Expressiveness and Effectiveness

- Expressiveness Principle: all data from the dataset and nothing more should be shown
 - Do encode ordered data in an ordered fashion
 - Don’t encode categorical data in a way that implies an ordering

- Effectiveness Principle: the most important attributes should be the most **salient**
 - Saliency: how noticeable something is
 - How do the channels we have discussed measure up?
How do we get these rankings?
Test % difference in **length** between elements

![Bar chart showing percentage difference in length between elements A and B](chart.png)

[Heer & Bostock, 2010]
Test % difference in length between elements

Answer: Left is ~5.6x longer than Right

[Heer & Bostock, 2010]
Test % difference in **length** between elements

[Heer & Bostock, 2010]
Test % difference in length between elements

[Heer & Bostock, 2010]
Test % difference in length between elements

[Modified from Heer & Bostock, 2010]
Test % difference in length between elements

Answer: Right is 4x larger than Left

[Modified from Heer & Bostock, 2010]
Test % difference in area between elements

[Heer & Bostock, 2010]
Test % difference in **area** between elements

Answer: A is ~2.25x larger (in area) than B
Test % difference in area between elements

[Heer & Bostock, 2010]
Test % difference in area between elements

Answer: A is ~6.1x larger (in area) than B
Test % difference in area between elements

![Diagram showing areas A and B with various sub-areas for comparison.]

[Heer & Bostock, 2010]
Test % difference in area between elements

Answer: B is ~2.5 larger (in area) than A

[Heer & Bostock, 2010]
Cleveland & McGill Experiments

Figure 3. Graphs from position–angle experiment.

Figure 4. Graphs from position–length experiment.

[Cleveland & McGill, 1984]
Heer & Bostock Experiments

- Rerun Cleveland & McGill’s experiment using Mechanical Turk
- … with more tests

Figure 2: Area judgment stimuli. Top left: Bubble chart (T7), Bottom left: Center-aligned rectangles (T8), Right: Treemap (T9).

[Heer & Bostock, 2010]
Results Summary

Cleveland & McGill’s Results

Crowdsourced Results

[Munzner (ill. Maguire) based on Heer & Bostock, 2014]
Psychophysics

• How do we perceive changes in stimuli

• The Psychophysical Power Law [Stevens, 1975]: All sensory channels follow a power function based on stimulus intensity ($S = I^n$)

• Length is fairly accurate

• Magnified vs. compressed sensations

![Psychophysical Power Law Graph](Munzner (ill. Maguire), 2014)
Ranking Channels by Effectiveness

Magnitude Channels: Ordered Attributes
- Position on common scale
- Position on unaligned scale
- Length (1D size)
- Tilt/angle
- Area (2D size)
- Depth (3D position)
- Color luminance
- Color saturation
- Curvature
- Volume (3D size)

Identity Channels: Categorical Attributes
- Spatial region
- Color hue
- Motion
- Shape

[Ranking by Effectiveness](Munzner (ill. Maguire), 2014)