Data Visualization (CIS/DSC 468)

Interaction

Dr. David Koop
Good: Data magnitude \Leftrightarrow Mark magnitude

[Flowing Data, 2012]
Tufte's Lie Factor

• Size of effect = (2nd value - 1st value) / (1st value)
• Lie factor = (size of effect in graphic) / (size of effect in data)
• In the graphic:

\[
\text{Lie Factor} = \frac{5.3 - 0.6}{0.6} = \frac{27.5 - 18}{18} = 14.8
\]
Maximize Data-to-Ink Ratio

[Graph showing male and female data distribution across different income brackets]

[Diagram with bars representing different categories and income brackets]

[via A. Lex]
Avoid Chartjunk
Assignment 3

- Soccer data
 - Draw two choropleth maps
 - Use the same function for both!
 - Draw a teammate graph using force-directed layout
 - Use d3.queue to load data, code provided
Map Example

- http://codepen.io/dakoop/pen/ZeRMvr
Interaction Overview

- **Change over Time**

- **Select**

- **Navigate**
 - **Item Reduction**
 - **Zoom**
 - Geometric or Semantic
 - **Pan/Translate**
 - **Constrained**
 - **Attribute Reduction**
 - **Slice**
 - **Cut**
 - **Project**

[Munzner (ill. Maguire), 2014]
Sorting

• Allow user to find patterns by reordering the data
• Do this with tabular data all the time
• Note that ordered attributes don't really need sorting
 - We can compare these attributes no matter what order
 - Instead, sort categorical attribute based on an ordered attribute
Example: LineUp

[Gratzl et al., 2013]
Example: LineUp

[Gratzl et al., 2013]
Animation: Jump Cut vs. Animated Transitions

<table>
<thead>
<tr>
<th>♣️</th>
<th>♠️</th>
<th>♦️</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>A</td>
<td>Q</td>
</tr>
<tr>
<td>K</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td>A</td>
<td>J</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>Q</td>
<td>J</td>
</tr>
<tr>
<td>Q</td>
<td>J</td>
<td>Q</td>
</tr>
<tr>
<td>Q</td>
<td>Q</td>
<td>J</td>
</tr>
<tr>
<td>A</td>
<td>J</td>
<td>A</td>
</tr>
<tr>
<td>K</td>
<td>J</td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>A</td>
<td>K</td>
<td>A</td>
</tr>
<tr>
<td>J</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td>Q</td>
<td>K</td>
<td>Q</td>
</tr>
<tr>
<td>K</td>
<td>A</td>
<td>Q</td>
</tr>
<tr>
<td>J</td>
<td>Q</td>
<td>K</td>
</tr>
<tr>
<td>J</td>
<td>A</td>
<td>K</td>
</tr>
<tr>
<td>J</td>
<td>A</td>
<td>K</td>
</tr>
</tbody>
</table>
Animation: Jump Cut vs. Animated Transitions
Animation: Jump Cut vs. Animated Transitions

Q♣ A♠ Q♠ K♣ A♥ A♠ Q♣ J♠ A♦
Q♥ J♥ Q♠ Q♣ J♥ Q♥ J♥
A♠ J♥ A♥ A♠ K♠ J♠
K♥ J♠ K♥ K♥ Q♥ K♥
A♥ K♠ A♠ A♠ Q♦ K♦
J♦ K♣ J∑ J♠ K♥ J∑
J♣ K♠ J♣ Q♣ K♦ A♣
A♦ K♦
Animation: Jump Cut vs. Animated Transitions

<table>
<thead>
<tr>
<th>♠️</th>
<th>♠️</th>
<th>♠️</th>
</tr>
</thead>
<tbody>
<tr>
<td>♠️</td>
<td>♠️</td>
<td>♠️</td>
</tr>
</tbody>
</table>
Animated Transitions

[http://bl.ocks.org/mbostock/3943967]
Animated Transitions

[http://bl.ocks.org/mbostock/3943967]
Animated Transitions

• "Jump cuts" are hard to follow
• Animations help users maintain sense of context between two states
• Empirical study showed that they work (Heer & Robertson, 2007)
Selection

- Selection is often used to initiate other changes
- User needs to select something to drive the next change
- What can be a selection target?
 - Items, links, attributes, (views)
- How?
 - mouse click, mouse hover, touch
 - keyboard modifiers, right/left mouse click, force
- Selection modes:
 - Single, multiple
 - Contiguous? (all together in one region)
Highlighting

- Selection is the user action
- Feedback is important!
- How? Change selected item's visual encoding
 - Change color: want to achieve visual popout
 - Add outline mark: allows original color to be preserved
 - Change size (line width)
 - Add motion: marching ants
Highlighting

• Selection is the user action
• Feedback is important!
• How? Change selected item's visual encoding
 - Change color: want to achieve visual popout
 - Add outline mark: allows original color to be preserved
 - Change size (line width)
 - Add motion: marching ants
Highlighting

Selection Outcomes

- Selection is usually a part of an action sequence
- Can filter, aggregate, reorder selected items
Responsiveness Required

- Delays are perceived by users
- Visual feedback
 - Show the user they did something (highlighting, etc)
 - Interaction should happen quick!
- Latency: mouse click versus mouse hover
- Popup versus detail displays
Interaction Latency

- The Effects of Interactive Latency on Exploratory Visual Analysis, Z. Liu and J. Heer, 2014
- Brush & link, select, pan, zoom

- 500ms added latency causes significant cost
 - decreases user activity and dataset coverage
 - reduces rate of observations, generalizations, and hypotheses
Interaction Overview

- **Change over Time**
 ![Diagram of change over time]

- **Select**
 ![Diagram of select]

- **Navigate**
 - **Item Reduction**
 - **Zoom**
 - Geometric or Semantic
 ![Diagram of zoom]
 - **Pan/Translate**
 ![Diagram of pan/translate]
 - **Constrained**
 ![Diagram of constrained]
 - **Attribute Reduction**
 - **Slice**
 ![Diagram of slice]
 - **Cut**
 ![Diagram of cut]
 - **Project**
 ![Diagram of project]

[Munzner (ill. Maguire), 2014]
Navigation

- Fix the layout of all visual elements but provide methods for the viewpoint to change
- Camera analogy: only certain features visible in a frame
 - Zooming
 - Panning (aka scrolling)
 - Translating
 - Rotating (rare in 2D, important in 3D)
Navigation

Navigate

Item Reduction

- Zoom
 Geometric or Semantic

- Pan/Translate

- Constrained

Attribute Reduction

- Slice

- Cut

- Project

[Munzner (ill. Maguire), 2014]
Zooming

[http://bl.ocks.org/3680999]
Geometric Zooming

[http://bl.ocks.org/3680999]
Zooming

[http://bl.ocks.org/3680957]
Semantic Zooming

[http://bl.ocks.org/3680957]
Zooming

- Geometric Zooming: just like a camera
- Semantic Zooming: visual appearance of objects can change at different scales
- LiveRAC Example: (focus + context)

[McLachlan et al., 2008]
Navigation Constraints

• **Unconstrained** navigation: walking around in the world or an immersive 3D environment
 - Fairly standard in computer games to go where you want
 - Constrained by walls, objects (collision detection)

• Constrained navigation:
 - 3D: camera must be right-side up
 - Limit pan/zoom to certain areas
 - Comes up often with **multiple views**: want to show an area in one view that corresponds to a selection in another view
van Wijk Smooth Zooming

van Wijk Smooth Zooming