CIS 467/602-01: Data Visualization

Isosurfacing and Volume Rendering

Dr. David Koop
Fields and Grids

- Fields: values come from a **continuous** domain, infinitely many values
 - **Sampled** at certain positions to approximate the entire domain
 - Positions are often aligned in **grids**

- Geometry: the spatial positions of the data (points)
- Topology: how the points are connected (cells)

[© Weiskopf/Machiraju/Möller]
Linear Interpolation

Value at 2.2?
Visualizing Volume (3D) Data

- 2D visualization slice images (or multi-planar reformating MPR)
 - *Indirect* 3D visualization isosurfaces (or surface-shaded display SSD)
 - *Direct* 3D visualization (direct volume rendering DVR)

[© Weiskopf/Machiraju/Möller]
Isosurfacing

(a) An isosurfaced tooth.

(b) Multiple isosurfaces.

[J. Kniss, 2002]
Assignment 5

- http://www.cis.umassd.edu/~dkoop/cis467/assignment5.html
- Isosurfacing, Volume Rendering, Streamlines, and Glyphs (602-01)
- Hurricane Katrina Dataset
- Not D3, use ParaView
 - www.paraview.org
- One visualization
 - Turn in state file (pvsm)
 - Turn in screenshot
Isosurfacing

(a) An isosurfaced tooth.

(b) Multiple isosurfaces.

[J. Kniss, 2002]
Generating Isolines

• Find the isoline for the value 5
Generating Isolines

- Mark grid points that are above (or equal to) or below 5
Generating Isolines

- Midpoints?

![Diagram showing a grid with numbers and lines indicating isolines.](attachment:image.png)

[Figure 2.4.](attachment:image.png) (a) 2D scalar grid. (b) Black vertices are positive. Vertex v with scalar value s_v is positive if $s_v > 5$ and negative if $s_v < 5$. Note that $s_v = 5$ for one grid vertex. (c) Isocontour with vertices at edge midpoints (before linear interpolation). (d) Isocontour with isovalue 5.

The isocontour lookup table, Table κ, contains sixteen entries, one for each configuration. Each entry, Table $\kappa[\kappa]$ is a list of the $E_+/-\kappa$ pairs. In Figure 2.3 the isocontour edges are drawn connecting the midpoints of each square edge. This is for illustration purposes only. The geometric locations of the isocontour vertices are not defined by the lookup table.

The isocontour lookup table is constructed on the unit square with vertices $(0,0), (1,0), (0,1), (1,1)$. To construct the isocontour in grid square (i, j), we have to map pairs of unit square edges to pairs of square (i, j) edges. Each vertex $v = (v_x, v_y)$ of the unit square maps to $v + (i, j) = (v_x + i, v_y + j)$. Each edge e of the unit square with endpoints (v, v') maps to edge $e + (i, j) = (v + (i, j), v' + (i, j))$. Finally, each edge pair (e_1, e_2) maps to $(e_1 + (i, j), e_2 + (i, j))$.

The endpoints of the isocontour edges are the isocontour vertices. To map each isocontour edge to a geometric line segment, we use linear interpolation.

[R. Wenger, 2013]
Generating Isolines

• Use linear interpolation!
Marching Squares

- Based on configurations, we know what type of line(s) we will have
- Just need to move them along based on interpolation

![Diagram of Marching Squares configurations](image)

[Figure 2.10. Red, positive regions and blue, negative regions for each square configuration. The green isocontour is part of the positive region. Black vertices are positive.]

Proof of Properties 1 & 2:

The Marching Squares isocontour consists of a finite set of line segments, so it is piecewise linear. These line segments intersect only at their endpoints and thus form a triangulation of the isocontour. The endpoints of these line segments lie on the grid edges, confirming Property 2.

□

Property 3.

The isocontour intersects every bipolar grid edge at exactly one point.

Property 4.

The isocontour does not intersect any negative or strictly positive grid edges.

Proof of Properties 3 & 4:

Each isocontour edge is contained in a grid square. Since the grid squares are convex, only isocontour edges with endpoints (vertices) on the grid edge intersect the grid edge. If the grid edge has one positive and one negative endpoint, the unique location of the isocontour vertex on the grid edge is determined by linear interpolation. Thus the isocontour intersects a bipolar grid edge at only one point.

If the grid edge is negative or strictly positive, then no isocontour vertex lies on the grid edge. Thus the isocontour does not intersect negative or strictly positive grid edges.

□

Within each grid square the isocontour partitions the grid square into two regions. Let the positive region for a grid square c be the set of points which can be reached by a path ζ from a positive vertex. More precisely, a point p is in the positive region of c if there is some path $\zeta \subset c$ connecting p to a positive vertex of c such that the interior of ζ does not intersect the isocontour. A point p is in the negative region of c if there is some path $\zeta \subset c$ connecting p to a negative vertex of c such that ζ does not intersect the isocontour. Since any path $\zeta \subset c$ from a positive to a negative vertex must intersect the isocontour, the positive and negative regions form a partition of the square c.

[R. Wenger, 2013]
Ambiguous Configurations

- There are some cases for which we cannot tell which way to draw the isolines...

![Diagram of ambiguous square configurations](image)

Figure 2.12. Ambiguous square configurations.

![Diagram of topologically distinct isocontours](image)

Figure 2.13. Topologically distinct isocontours created by using different isocontours for the ambiguous configuration in the central grid square.

While the choice of isocontours for the ambiguous configurations changes the isocontour topology, any of the choices will produce isocontours that are 1-manifolds and strictly separate strictly positive vertices from negative vertices.

As we shall see, this is not true in three dimensions.

2.3 Marching Cubes

2.3.1 Algorithm

The three-dimensional Marching Cubes algorithm follows precisely the steps in the two-dimensional Marching Squares algorithm. Input to the Marching Cubes algorithm includes...

[R. Wenger, 2013]
Ambiguous Configurations

- Either works for marching squares, this isn't the case for 3D
3D: Marching Cubes

- Same idea, more cases [Lorensen and Cline, 1987]

Figure 2.16. Isosurfaces for twenty-two distinct cube configurations.
Incompatible Choices

• If we have ambiguous cases where we choose differently for each cell, the surfaces will not match up correctly — there are holes

• Fix with the asymptotic decider [Nielson and Hamann, 1991]
Marching Cubes Algorithm

- For each cell:
 - Classify each vertex as inside or outside (\geq, $<$) — 0 or 1
 - Take the eight vertex classifications as a bit string
 - Use the bit string as a lookup into a table to get edges
 - Interpolate to get actual edge locations
 - Compute gradients
 - Resolve ambiguities

- Render a bunch of triangles: easy for graphics cards
Multiple Isosurfaces

- Topographical maps have multiple isolines to show elevation trends
- Problem in 3D? **Occlusion**
- Solution? Transparent surfaces
- Issues:
 - Think about color in order to make each surface visible
 - Compositing: how do colors "add up" with multiple surfaces
 - How to determine good isovalues?

[J. Kniss, 2002]
Isosurface Issues

• Must select isovalues, how to determine "good" values
• Hard boundary: any noise or uncertainty leads to jagged boundaries
Visualizing Volume (3D) Data

- 2D visualization slice images (or multi-planar reformating MPR)
- *Indirect* 3D visualization isosurfaces (or surface-shaded display SSD)
- *Direct* 3D visualization (direct volume rendering DVR)

[© Weiskopf/Machiraju/Möller]
Volume Rendering vs. Isosurfacing

(a) Direct volume rendered
(b) Isosurface rendered

[Kindlmann, 1998]
(Direct) Volume Rendering

• Isosurfacing: compute a surface (triangles) and use standard computer graphics to render the triangles
• Volume rendering: compute the pixels shown directly from the volume information
• Why?
 - No need to figure out precise isosurface boundaries
 - Can work better for data with noise or uncertainty
 - Greater control over appearance based on values
Volume Ray Casting

Image Plane

Data Set

Eye

[Levine]
Volume Ray Casting

For each pixel:
- calculate color of the pixel

Eye

Image Plane

Data Set

[Levine]
How?

- Approximate volume rendering integral: light absorption & emission
- Sample at regular intervals along each ray
- Trilinear interpolation: linear interpolation along each axes (x,y,z)

- Not the only possibility, also "object order" techniques like splatting or texture-based and combinations like shear-warp
Compositing

• Need **one pixel** from all of the values along the ray
• Q: How do we "add up" all of those values along the ray?
• A: Compositing!
• Different types of compositing
 - First: like isosurfacing, first intersection at a certain intensity
 - Max intensity: choose highest val
 - Average: mean intensity (density, like x-rays)
 - Accumulate: each voxel has some contribution

[Levine and Weiskopf/Machiraju/Möller]
Types of Compositing

- max intensity
- accumulate
- average
- first

depth

[Levine and Weiskopf/Machiraju/Möller]
Types of Compositing

- **max intensity**
- **accumulate**
- **average**
- **first**

[Levine and Weiskopf/Machiraju/Möller]
Types of Compositing

- max intensity
- accumulate
- average
- first

[intensity vs. depth graph with labels]

[Levine and Weiskopf/Machiraju/Möller]
Types of Compositing

max intensity

accumulate

average

first

depth

[Levine and Weiskopf/Machiraju/Möller]
Accumulation

• If we're not just calculating a single number (max, average) or a position (first), how do we determine the accumulation?

• Assume each value has an associated color (c) and opacity (α)

• Over operator (back-to-front):
 - \(c = \alpha_f \cdot c_f + (1-\alpha_f) \cdot \alpha_b \cdot c_b \)
 - \(\alpha = \alpha_f + (1-\alpha_f) \cdot \alpha_b \)

• Order is important!
Transfer Functions

• Where do the colors and opacities come from?
• Idea is that each voxel emits/absorbs light based on its scalar value
• …but users get to choose how that happens
• x-axis: color region definitions, y-axis: opacity

[Kindlmann]
Transfer Function Design

• Transfer function design is non-trivial!
• Lots of tools to help visualization designers to create good transfer functions
• Histograms, more attributes than just value like gradient magnitude
Multidimensional Transfer Functions
Multidimensional Transfer Functions
ParaView Examples