
http://exp.telecomitalialab.com

exp - Volume 3 - n. 3 - September 20036

F. Bellifemine, G. Caire, A. Poggi, G. Rimassa

INTRODUCTION

JADE [1,9] is an enabling technology, a mmiiddddllee--
wwaarree for the development and run-time execution

of ppeeeerr--ttoo--ppeeeerr applications which are based on

the aaggeennttss paradigm and which can seamless

work and interoperate both in wired and wireless

environment.

In order to understand this definition, the odd terms

it includes, and the context, Section “Reference

technologies” introduces some reference tech-

nologies. Two major aspects of the conceptual

JADE
A White Paper

ABSTRACT - THIS WHITE PAPER GIVES AN OVERVIEW OF THE JADE PLATFORM, PRESENTS ITS

ARCHITECTURE AND MAIN FUNCTIONALITIES, AND OUTLINES THE CONCEPTUAL MODEL UNDERLYING

JADE. TWO MAJOR ASPECTS OF THE CONCEPTUAL MODEL ARE PRESENTED: DISTRIBUTED SYSTEM

TOPOLOGY WITH PEER-TO-PEER NETWORKING, AND SOFTWARE COMPONENT ARCHITECTURE WITH

AGENT PARADIGM. THE NETWORK TOPOLOGY AFFECTS HOW THE VARIOUS COMPONENTS ARE

LINKED TOGETHER, WHEREAS THE COMPONENT ARCHITECTURE SPECIFIES WHAT THE COMPONENTS

ARE SUPPOSED TO EXPECT FROM ONE ANOTHER. THE RELEVANCE OF STANDARDS FOR SOFTWARE

INTEROPERABILITY, AND IN PARTICULAR THE COMPLIANCE WITH FIPA, IS ALSO HIGHLIGHTED.

THE PAPER TRIES ALSO TO ADDRESS THE VITAL TECHNOLOGY TRANSFER ISSUE, WHICH IS CRUCIAL

FOR A SYSTEM SUCH AS JADE, MOVING RIGHT NOW FROM SOFTWARE RESEARCH TOWARDS

ADVANCED BUSINESS APPLICATIONS. RECOGNIZING THAT TECHNOLOGY TRANSFER IS LARGELY A

PEOPLE CENTERED PROCESS, THE PAPER ADDRESSES THE ORGANIZATION OF THE PEOPLE USING

AND DEVELOPING THE JADE CORE, ITS EXTENSIONS AND APPLICATIONS LEVERAGING JADE

INFRASTRUCTURE. THE TWO MAIN INSTITUTIONS DEALING WITH JADE ARE OUTLINED: THE OPEN

SOURCE COMMUNITY AND THE JADE GOVERNING BOARD.

FINALLY, THE MAIN FEATS OF THE JADE APPROACH ARE SUMMED UP, WITH THE INTENT OF HELP-

ING READERS DECIDING WHETHER JADE CAN FULFILL THEIR NEEDS AND IN WHICH APPLICATION

DOMAINS JADE CAN PROVE MOST USEFUL.

JADE:

Java Agent

DEvelopment

Framework

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 7

model are presented: distributed system topology

with peer-to-peer networking, and software com-

ponent architecture with agent paradigm. The net-

work topology affects how the various components

are linked together, whereas the component archi-

tecture specifies what the components are sup-

posed to expect from one another. The section al-

so provides some information about the concept of

middleware and the advantages in application de-

velopment, and about the profiling structure of the

Java technology, which is the programming lan-

guage of JADE and of the applications using JADE.

Section “What is JADE?” describes the JADE plat-

form, its main functionalities, the architectural mod-

el, and some technical information.

JADE is an Open Source project around which a

community of users and contributors has grown up,

and recently also an International Governing Board

has been formed. Section “The JADE Community”

outlines this community, describes the open source

project and how its organization is evolving through

the creation of the Governing Board.

Finally, Section “Why using JADE?” presents some

considerations to highlight the advantages of JADE

and which application domains it can prove most

useful as enabling technology.

REFERENCE TECHNOLOGIES

The peer-to-peer model
“Client-Server” (C/S) is the reference model, well-

known and widely-diffused, for distributed appli-

Fabio L. Bellifemine is a senior project manager at the De-
partment of Services and Multi-media of TILAB, Torino.
He graduated in Computer Science from the University of
Torino in 1988 and, prior to joining TILAB, until 1994 he
held a researcher position at the Italian National Research
Council. His research interests covered several aspects of
multi-media, including signal processing and video com-
pression, software architecture, system integration, appli-
cations, user modeling and software agents.
Since 1997, he is interested in the multi-agent system re-
search and he is involved in the FIPA standardization

body where he currently chairs the FIPA Architecture
Board. In 1999 and 2002 he received a diploma from FI-
PA for its outstanding contribution to the activity. He par-
ticipated to several research projects, and he leaded the
FACTS Work Package that, in April 2000, received an
award for achieving first place in the FIPA competition for
agent-based applications. He is the leader of the JADE
project and author of over 50 publications in proceedings
of international conferences and journal papers. He is PC
member of several workshops and conferences related
to multi-agent system and user modeling research.

F. Bellifemine

fabio.bellifemine@telecomitalia.it

cations. The model is based on a rigid distinction

of roles between the client nodes (resource re-

quester) and the server nodes (resource providers).

The server nodes provide the services, more in gen-

eral the capabilities of the distributed system, but

they are not capable of taking any initiative as

they are fully reactive and they can just wait for be-

ing invocated by the client nodes. Client nodes, as

opposite, concentrate all the initiative of the sys-

tem: they access and use the services, typically,

but not necessarily, upon user requests, but they

do never provide any capability.

Clients can appear and disappear at any time;

generally, they have dynamic addresses, while

servers must typically provide some guarantees of

stability and generally listen to a well-known and

static address.

Clients communicate with the servers, but they

cannot communicate with other clients. On the

other hand, server cannot communicate with their

clients until the clients have taken the initiative and

decided to activate a communication session with

the server.

The web is a typical example of application based

on the client-server model. The servers are the

sites/portals, which own the entire application log-

ic and information resources. The clients are the

browsers, only a tool to manage the interface with

the user and whose only task is to retrieve, upon ex-

plicit user request, information located on Internet

sites and to present (render) it.

A large family of distributed applications exist,

however, that are not well adapted to this model.

exp - Volume 3 - n. 3 - September 20038

For instance, a simple “chat” application, as well

as a distributed file sharing system (such as Nap-

ster or Gnutella) or a multiplayer game, require

the active nodes on the users terminals to be ca-

pable of communicating each other. Even if im-

plementing such an application by using the

client-server model is still possible (and it is also

quite often done), it will loose advantages of bet-

ter software practices and architectures. In the

case of the “chat” application, for instance, a user

client should send messages to a central server

from which they should be retrieved by the client

of another user: the server is not necessary but it is

there just as an implementation artefact while the

“peer-to-peer” (P2P) model would have been

more appropriate.

In the peer-to-peer model, in fact, there is no more

any distinction of roles and each peer is capable

of a mix of initiative and capability: each node

can initiate the communication, be subject or ob-

ject of a request, be proactive, provide capabili-

ties; the application logics is no more concentrat-

ed on the server but distributed between all the

peers of the network; each node is capable of dis-

cover each other, it can enter, join or leave the net-

work anywhere anytime. The system is fully distrib-

uted as well as the value of the service is distrib-

uted across the network and new business models

might be enabled.

An important consequence of the differences be-

tween the 2 models is the way the nodes can be

discovered. In the C/S systems, clients must know

their servers but they do not need to know other

clients (of course, given that client-to-client com-

munication is never expected to happen). In P2P

systems, who-knows-whom is fully arbitrary and the

system must provide proper services that allow

peers to enter, join, or leave the network at any

time as well as to search and discover other peers.

These services are usually the white and yellow

page mechanisms that allow publishing and dis-

covering the features and the services offered by a

peer. On the basis of the implementation of these

mechanisms, two basic P2P network models can

be identified (see figure 1): pure P2P networks (al-

so called decentralized), and hybrid P2P networks

(also called with central index).

A pure P2P network is fully decentralized and the

peers are fully autonomous. The absence of any

reference node makes more difficult to maintain

the coherence of the network and the discovery of

the peers, with a complexity and bandwidth that

tends to grow exponentially with the number of

nodes. Also security is quite demanding as each

node is entitled to join the network without any

control mechanism.

The hybrid architectures, instead, are based on a

special node that provides a service that simplifies

the look-up and discovery of the active peers, their

list of capabilities, and their list of provided services.

These types of networks, usually, generate less traf-

fic and are more secure as they tend to require al-

a) Client/Server b) Hybrid P2P c) Pure P2P

Figure 1
Client/Server (left), pure P2P (right), hybrid P2P (centre)

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 9

so the registration and authentication of the peers.

On the other hand, their functioning depends on

the availability of the index nodes that might be-

come a central point of failure and attack.

The agents paradigm
The agents paradigm applies concepts from artifi-

cial intelligence and speech act theory to the dis-

tributed object technology. The paradigm is based

on the agent abstraction, a software component

that is autonomous, proactive and social:

• autonomous: agents have a degree of control

on their own actions, they own their thread of

control and, under some circumstances, they

are also able to take decisions;

• proactive: agents do not only react in response

to external events (i.e. a remote method call) but

they also exhibit a goal-directed behaviour and,

where appropriate, are able to take initiative;

• social: agents are able to, and need to, interact

with other agents in order to accomplish their task

and achieve the complete goal of the system.

Agent-based systems are intrinsically peer-to-peer:

each agent is a peer that potentially needs to ini-

tiate a communication with any other agent as

well as it is capable of providing capabilities to the

rest of the agents. The role of the communication

is very important in an agent-based system, and its

model is based on three main features:

1. agents are active entities, they can say ‘no’, and
they are loosely coupled. This set of interrelated

properties is the basis for the choice of message-

based asynchronous communication between

agents instead of remote procedure call: an

agent wishing to communicate has just to send

a message to a certain destination. This modal-

ity of communication, in fact, allows the receiver

to select which messages to serve and which to

discard, as well as which messages to serve first

and which later in time. It also allows the sender

to control its thread of execution and not to be

blocked until the receiver reads and serves the

message. Finally, it also removes any temporal

dependency between the sender and the re-

ceiver: the receiver might not be available at the

time the sender sends the message, or it might

even not exist at that time, or, also, it might even

be not known by the sender that, instead, de-

fines the receiver intensionaly (e.g. all agents in-

terested into ‘football’) or mediates the commu-

nication through a proxy (e.g. propagate this

message to all agents in the domain X).

2. agents perform actions and communication is
just a type of action. Making communication at

the same level of actions allows an agent, for in-

stance, to reason about a plan that includes

both physical actions (e.g. turning on the left)

and communicative actions (e.g. asking to

open the door). In order to make communica-

tion plannable, effects and preconditions of

each possible communication needs to be

clearly defined.

3. communication carries a semantics meaning.

When an agent is the object of a communica-

tive action (i.e. when it receives a message), it

must be able to properly understand the mean-

ing of that action and, in particular, why that ac-

tion has been performed (i.e. the communica-

tive intention of the sender of the message). This

property turns into the needs for a universal se-

mantics and the need for a standard.

Inspired by the vision that “agents will remain just a

dream if end-to-end interoperability across differ-

ent manufacturers and operators is not preserved”

[2], in 1996 TILAB (formerly CSELT) promoted the cre-

ation of FIPA (Foundation for Intelligent Physical

Agents) [3], an international non-profit association

of companies and organizations sharing the goal

and the effort to produce standard specifications

for agent technology. TILAB, and in particular the

JADE team, supported and leaded at several lev-

els this initiative starting from the presidency of

Leonardo Chiariglione, continuing with the editing

of specifications and the leadership of Technical

Committees and of the FIPA Architecture Board.

JADE also participated with success to both FIPA In-

teroperability Tests, in 1999 and in 2001.

Based on the first set of specifications released in

1997, at the end of 2002 FIPA finally released the

standard. The standard targets interoperability

and, as a consequence, it focuses on the external

behaviour of the system components, leaving

exp - Volume 3 - n. 3 - September 200310

open the implementation details and the internal

architectures. In fact, the internal architecture of

JADE is unique even if it fully complies with FIPA. The

FIPA standard fully embraces the agent paradigm

and, in particular, it defines the reference model of

an agent platform and a set of services that should

be provided. The collection of these services, and

their standard interfaces, represents the normative

rules that allow a society of agents to exist, oper-

ate, and be managed.

Being agents social and needing to communi-

cate, the Agent Communication Language is one

of the main assets of the FIPA standard. The FIPA

ACL is based on the speech act theory and on the

assumptions and requirements of the agents par-

adigm described above. FIPA standardized an ex-

tensible library of 22 communicative acts that al-

low representation of different communicative in-

tentions (such as requesting, proposing, informing,

querying, calling for a proposal, refusing,...). FIPA

also defined the structure of a message that allows

to represent and convey information useful to iden-

tify sender and receivers, the content of the mes-

sage and its properties (e.g. the encodings and

the representation language), and, in particular, in-

formation useful to identify and follow threads of

conversation between agents and to represent

timeouts for the communication. Common pat-

terns of conversations have been also defined by

FIPA, the so-called interaction protocols, that pro-

vide agents with a library of patterns to achieve

common tasks, such as delegating an action, call-

ing for a proposal,... Figure 3 represents the model

of communication defined by FIPA and the rela-

tionships between its composing elements. One of

the main assets of these FIPA standards is their

‘standard’ status, defined and accepted by the

agent community.

The middleware
The term middleware is meant to describe all

those higher-level libraries that enable easier and

more effective application development by pro-

viding generic services useful not just for a single

application but rather for a variety of applications,

for instance communication, data access, en-

codings, resource control. These same services

are provided by operative systems, but the idea

behind middleware is to provide better, OS inde-

pendent APIs aggregating native facilities into

Service

provides

Normative Optional

Agent-Software
Integration

Ontology Service

Human Agent
Interaction

Message Transport
service

Yellow page
service

White page
service

Life cycle
Management

Agent Platform

Figure 2
FIPA Standard: Services provided by a Platform

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 11

simple-to-reuse building blocks. On the other

hand, the implementation of these services often

might require considerable time, if not the same,

in respect to the development of the application

logics. The capability of reusability across several

application domains suggest the name of ‘hori-

zontal’ approach as opposed to ‘vertical’ ap-

proach where an ad-hoc solution for a specific

application should be provided. Middleware-

based approaches allows to reduce footprint and

development time of applications.

The Java technology
An overview of the Java technology is out of the

scope of this paper but, in order to better under-

stand some of the features of JADE and its rela-

tionships with the Java world, it is important to re-

member that the Java technology is structured in-

to 4 editions (as named by Sun itself) according to

the target device and the expected supported

functionalities: server-based applications (J2EE),

desktop-type applications (J2SE), portable and

mobile-phone devices (J2ME), SIM/smart-card de-

vices (Java Card). JADE has been implemented

fully in Java language and, at the time of writing

this paper, it can be seamless executed on every

type of Java Virtual Machine with exception of the

Java Card.

1isTransmittedOver

isExpressedIn
1..*

contains

11..*

belongsTo

1

1

isExpressedIn

0..*

contains

1

contains

TransportProtocol

ACL

ContentLanguage

OntologySymbol

Content

Message

Envelope

InteractionProtocol

EnvelopeEncodingScheme

ACLEncodingScheme

CLEncodingScheme

1

1

1
1

1

1

Figure 3
FIPA Standard: components of the communication model

Middleware

Applications

OS / HW

Figure 4
Role of the middleware: “vertical” approach (left) vs. “horizontal” approach (right)

exp - Volume 3 - n. 3 - September 200312

WHAT IS JADE?

JADE [1,9] is the middleware developed by TILAB for

the development of distributed multi-agent appli-

cations based on the peer-to-peer communication

architecture. Both the intelligence, the initiative, the

information, the resources and the control can be

fully distributed on mobile terminals as well as on

computers in the fixed network. The environment

can evolve dynamically with peers, that in JADE are

called agents, that appear and disappear in the

system according to the needs and the require-

ments of the application environment. Communi-

cation between the peers, regardless of whether

they are running in the wireless or wireline network,

is completely symmetric with each peer being able

to play both the initiator and the responder role.

JADE is fully developed in JJaavvaa and is based of the

following driving principles:

• IInntteerrooppeerraabbiilliittyy – JADE is compliant with the FIPA

specifications [3]. As a consequence, JADE

agents can interoperate with other agents, pro-

vided that they comply with the same standard.

• UUnniiffoorrmmiittyy aanndd ppoorrttaabbiilliittyy – JADE provides a ho-

mogeneous set of APIs that are independent from

the underlying network and Java version. More in

details, the JADE run-time provides the same APIs

both for the J2EE, J2SE and J2ME environment. In

theory, application developers could decide the

Java run-time environment at deploy-time.

• EEaassyy ttoo uussee – The complexity of the middleware is

hidden behind a simple and intuitive set of APIs.

• PPaayy--aass--yyoouu--ggoo pphhiilloossoopphhyy – Programmers do not

need to use all the features provided by the mid-

dleware. Features that are not used do not re-

quire programmers to know anything about

them, neither add any computational overhead.

The Architectural model
JADE includes both the libraries (i.e. the Java class-

es) required to develop application agents and

the run-time environment that provides the basic

Figure 5
The Java technology

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 13

services and that must be active on the device be-

fore agents can be executed. Each instance of the

JADE run-time is called container (since it “con-

tains” agents). The set of all containers is called

platform and provides a homogeneous layer that

hides to agents (and to application developers al-

so) the complexity and the diversity of the under-

lying tires (hardware, operating systems, types of

network, JVM).

As depicted in figure 6, JADE is compatible with

the J2ME CLDC/MIDP1.0 environment. It has al-

ready been tested on the fields over the GPRS net-

work with different mobile terminals among

which: Nokia 3650, Motorola Accompli008,

Siemens SX45, PalmVx, Compaq iPaq, Psion5MX,

HP Jornada 560. The JADE run-time memory foot-

print, in a MIDP1.0 environment, is around 100 KB,

but can be further reduced until 50 KB using the

ROMizing technique [4], i.e. compiling JADE to-

gether with the JVM. JADE is extremely versatile

and therefore, not only it fits the constraints of en-

vironments with limited resources, but it has al-

ready been integrated into complex architectures

such as.NET or J2EE [5] where JADE becomes a

service to execute multi-party proactive applica-

tions. The lliimmiitteedd mmeemmoorryy ffoooottpprriinntt allows in-

stalling JADE on all mobile phones provided that

they are Java-enabled.

An analysis and a bbeenncchhmmaarrkk ooff SSccaallaabbiilliittyy aanndd

PPeerrffoorrmmaannccee of the JADE Message Transport Sys-

tem is reported in [10].

The Functional model
From the functional point of view, JADE provides

the basic services necessary to distributed peer-to-

peer applications in the fixed and mobile environ-

ment. JADE allows each agent to ddyynnaammiiccaallllyy ddiiss--

ccoovveerr other agents and to ccoommmmuunniiccaattee with

them according to the peer-to-peer paradigm.

From the application point of view, each agent is

identified by a unique name and provides a set of

services. It can register and modify its services

and/or search for agents providing given services,

it can control its life cycle and, in particular, com-

municate with all other peers.

Agents communicate by exchanging asynchro-

nous messages, a communication model almost

universally accepted for ddiissttrriibbuutteedd aanndd lloooosseellyy--

Internet Wireless environment

JADE

Multi-agent distributed application

JADE LAYER

JAVA VM LAYER

Container Container Container Container

PersonalJava CLDCJ2EEJ2SE

Figure 6
The JADE architecture

exp - Volume 3 - n. 3 - September 200314

ccoouupplleedd ccoommmmuunniiccaattiioonnss1, i.e. between heteroge-

neous entities that do not know anything about

each other. In order to communicate, an agent just

sends a message to a destination. Agents are iden-

tified by a name (no need for the destination ob-

ject reference to send a message) and, as a con-

sequence, there is no temporal dependency be-

tween communicating agents. The sender and the

receiver could not be available at the same time.

The receiver may not even exist (or not yet exist) or

could not be directly known by the sender that can

specify a property (e.g. “all agents interested in

football”) as a destination. Because agents identi-

fies each other by their name, hot change of their

object reference are transparent to applications.

Despite this type of communication, sseeccuurriittyy is pre-

served, since, for applications that require it, JADE

provides proper mechanisms to authenticate and

verify “rights” assigned to agents. When needed,

therefore, an application can verify the identity of

the sender of a message and prevent actions not

allowed to perform (for instance an agent may be

allowed to receive messages from the agent rep-

resenting the boss, but not to send messages to it).

All messages exchanged between agents are car-

ried out within an envelope including only the in-

formation required by the transport layer. That al-

lows, among others, to encrypt the content of a

message separately from the envelope.

The structure of a message complies with the ACL

language defined by FIPA [3] and includes fields,

such as variables indicating the context a message

refers-to and timeout that can be waited before an

answer is received, aimed at supporting complex

interactions and multiple parallel conversations. To

further support the implementation of ccoommpplleexx ccoonn--

vveerrssaattiioonnss, JADE provides a set of skeletons of typi-

cal interaction patterns to perform specific tasks,

such as negotiations, auctions and task delegation.

By using these skeletons (implemented as Java ab-

stract classes), programmers can get rid of the bur-

den of dealing with synchronization issues, timeouts,

error conditions and, in general, all those aspects

that are not strictly related to the application logic.

To facilitate the creation and handling of messages

ccoonntteenntt, JADE provides support for automatically

converting back and forth between the format suit-

able for content exchange, including XML and RDF,

and the format suitable for content manipulation

(i.e. Java objects). This support is integrated with

some ontology creation tools, e.g. Protégé, allowing

programmers to graphically create their ontology.

JADE is opaque to the underlying inference engine

system, if inferences are needed for a specific ap-

plication, and it allows programmers to reuse their

preferred system. It has been already integrated

and tested with JESS and Prolog.

To increase ssccaallaabbiilliittyy or also to meet the con-

straints of environments with limited resources, JADE

provides the opportunity of executing multiple par-

allel tasks within the same Java thread. Several ele-

mentary tasks, such as communication, may then

be combined to form more complex tasks struc-

tured as concurrent Finite States Machines.

In the J2SE and Personal Java environments, JADE

supports mmoobbiilliittyy ooff ccooddee aanndd ooff eexxeeccuuttiioonn ssttaattee.

That is, an agent can stop running on a host, migrate

on a different remote host (without the need to have

the agent code already installed on that host), and

restart its execution from the point it was interrupted

(actually, JADE implements a form of not-so-weak

mobility because the stack and the program

counter cannot be saved in Java). This functionality

allows, for example, distributing computational load

at runtime by moving agents to less loaded ma-

chines without any impact on the application.

The platform also includes a naming service (ensur-

ing each agent has a unique name) and a yyeellllooww

ppaaggeess service that can be distributed across multi-

ple hosts. Federation graphs can be created in or-

der to define structured domains of agent services.

Another very important feature consists in the avail-

ability of a rich suite of graphical tools supporting

both the ddeebbuuggggiinngg and mmaannaaggeemmeenntt//mmoonniittoorr--

iinngg phases of application life cycle. By means of

these tools, it is possible to remotely control agents,

even if already deployed and running: agent con-

versations can be emulated, exchanged mes-

sages can be sniffed, tasks can be monitored,

agent life-cycle can be controlled.

1 A Gartner technical note [8] foresees that MOM (Message-Ori-
ented-Middleware) will be the predominant form of communica-
tion middleware for mobile applications in the business market
by 2004.

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 15

The described pieces of functionality, and particu-

larly the possibility of remotely activating (both

from code and from console), even on mobile ter-

minals, tasks, conversations and new peers, makes

JADE very well suited to support the development

and execution of distributed, machine-to-machine,

multi-party, intelligent and proactive applications.

JADE in the mobile environment
As already mentioned, the JADE run-time can be

executed on a wide class of devices ranging from

servers to cell phones, for the latter the only re-

quirement being Java MIDP1.0 (or higher versions).

In order to properly address the memory and pro-

cessing power limitations of mobile devices and

the characteristics of wireless networks (GPRS in

particular) in terms of bandwidth, latency, intermit-

tent connectivity and IP addresses variability, and

at the same time in order to be efficient when exe-

cuted on fixed network hosts, JADE can be config-

ured to adapt to the characteristics of the deploy-

ment environment. JADE architecture, in facts, is

completely modular and, by activating certain

modules instead of others, it is possible to meet dif-

ferent requirements in terms of connectivity, mem-

ory and processing power.

More in details, a module called LEAP allows opti-

mising all communication mechanisms when

dealing with devices with limited resources and

connected through wireless networks. By activating

this module, a JADE container is “split”, as depict-

ed in figure 7 into a front-end, actually running on

the mobile terminal, and a back-end running in

the fixed network. A proper architectural element,

called mediator, must be already active and is in

charge of instantiating and holding the back-ends

(that basically are entries in the mediator itself). To

face work-load problems it is possible to deploy

several mediators each one holding several back-

ends. Each front-end is linked to its corresponding

back-end by means of a permanent bi-directional

connection. It is important to note that there is no

difference at all for application developers de-

pending on whether an agent is deployed on a

normal container or on the front-end of a split con-

tainer, since both the available functionality and

the APIs to access them are exactly the same.

The approach has a number of advantages:

• Part of the functionality of a container is dele-

gated to the back-end, thus making the front-

end extremely lightweight in terms of required

memory and processing power.

• The back-end masks, to other containers, the actual

IP address assigned to the wireless device and,

among the others, allows hiding to the rest of the

multi-agent system a possible change of IP address.

FrontEnd ContainerBackEnd

JADE APIs

“Split container”

JADE APIs

BackEnd

Mediator

permanent
bi-directional
connectionFrontEnd

Figure 7
JADE architecture in the wireless environment

16

• The front-end is able to detect a loss of connec-

tion with the back-end (for instance due to an out

of coverage condition) and re-establish it as soon

as possible.

• Both the front-end and the back-end implement a

store-and-forward mechanism: messages that can-

not be transmitted due to a temporary disconnection

are buffered and delivered as soon as the connec-

tion is re-established.

• Several information that containers exchange (for in-

stance to retrieve the container where an agent is cur-

rently running) are handled only by the back-end. This

approach, together with a bit-efficient encoding of

communications between the front-end and the back-

end, allows optimising the usage of the wireless link.

Technical details
The following table summarizes the JADE main

characteristics.

THE JADE COMMUNITY

Though TILAB is the originator of the JADE project,

there is an ever-growing community that partici-

pates to the whole development process of the

platform. This community revolves around two ma-

jor gathering points: the open source project and

the government board.

The open source project
The whole JADE source code is distributed under an

open source policy, the Lesser GNU Public License

(LGPL for short) [6]. LGPL enables full exploitation of

JADE, even in a business environment, while en-

forcing the constraint that any modification of JADE

source code and any derivative work be returned

to the community under the LGPL license itself. No

restrictions, instead, are put on applications and

other categories of software that uses JADE.

A large user base, counting

more than a thousand mem-

bers, gathered around this pro-

ject; many among them are

contact points within their com-

pany or university, bridging inter-

nal JADE users with the world-

wide community. Community

subscribers come partly from

academic environments (JADE is

very popular as a teaching sup-

port environment in distributed

AI courses), partly from R&D cen-

ters of world leading companies

such as Motorola, HP, Siemens

and Rockwell Automation, and

partly from small start-ups such

as Mobile Tribe and Acklin, look-

ing at JADE as an enabling tech-

nology for their businesses. Out-

standing contributions of Mo-

torola, Siemens, and Broadcom

have to be acknowledged be-

cause, within the framework of

the LEAP IST project [7], they

strongly contributed to port the

JADE platform to the J2ME/MIDP

environment.

Name

Provider

Web site

Contact point

Language

Availability

Technical/functional
characteristics

Network
environment

Terminals

JADE - Java Agent Development Framework

TILAB

http://jade.tilab.com/

Fabio Bellifemine, email: fabio.bellifemine@tilab.com

Java: J2EE, J2SE, J2ME CLDC/MIDP1.0 platforms

Open Source, LGPL license
If needed, commercial licenses for specific purposes or consultancy
frameworks can be properly negotiated.

Distributed, multi-party application with peer-to-peer communication.

Compliance with the FIPA standard.

Agent life cycle management.

White pages and yellow pages services with the opportunity of creating
federation graphs at run-time.

Graphical tools supporting the debugging, management and monitoring
phases.

Support for agent code and execution state migration.

Support for complex interaction protocols (e.g. contract-net).

Support for messages content creation and management including XML
and RDF.

Support for integration in JSP pages by means of a tag library.

Support for application level security (currently only in J2SE).

Transport protocols selectable at run-time. Currently available: JAVA-RMI,
JICP (JADE proprietary protocol), HTTP and IIOP.

Already tested in the fields over Bluetooth, GPRS, W-LAN and the Internet.

All terminals supporting Java MIDP1.0 or Personal Java or J2SE. Already
tested on Nokia 3650, Motorola Accompli008, Siemens SX45, PalmVx,
Compaq iPaq, Psion5MX, HP Joranda 560.

Table 1
Summary of JADE main characteristics

exp - Volume 3 - n. 3 - September 2003

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 17

The JADE project is supported by a web site [1]

where users can download code and documen-

tation, report possible bugs and browse a col-

lection of useful links maintained by the JADE

team. Moreover, two mailing lists are available to

developers for discussing technical issues or just

for staying tuned about the project, e.g. to be in-

formed about new releases. Due to such an ac-

tive user base, hundreds of JADE downloads were

registered in peak days and the project counts

now more than 40,000 downloads in total.

JADE welcomes contributions of the Open

Source Community that can be given under dif-

ferent forms: simply making publicly known the

usage of JADE, reporting and, better, fixing

bugs and documentation, replying and giving

support to less-experienced users on the mail-

ing list, contributing with new add-ons and soft-

ware modules.

The JADE Governing Board
In May 2003 TILAB and Motorola launched a new

initiative, the JADE Governing Board, a not-for-prof-

it organization, with the intent of promoting the

evolution and the adoption of JADE by the mobile

telecommunications industries as a java-based

de-facto standard middleware for agent-based

applications in the mobile personal communica-

tion sector.

The mission of the JADE Governing Board is the in-

dustrial affirmation of JADE through the estab-

lishment of consensus and the contribution of

key players in the mobile sector in order to ex-

pand consumer options and interest through

new wireless agent applications. The JADE-board

paves the way for mobile VAS services, where

peer-to-peer communication and services on

PCs, PDA’s and phones will enable tailored solu-

tions for the mobile users and mobile teams to

meet the increasing demand for intelligent mo-

bile lifestyles.

The Board intends to leverage, continue and

consolidate the Open-source tradition through

the continuous support and involvement of the

JADE Open-source Community. The Board has

been formed as a contractual consortium

among the Members, it is open and it wel-

comes all those companies and organizations

that have a concrete business interest in the ex-

tension of JADE and that commit to contribute

to its development and promotion. The JADE

Web site provides information on how to join

the Board.

WHY USING JADE?

JADE is a middleware that simplifies the develop-

ment of applications. Several companies are al-

ready using it for very different application sectors

including supply chain management, holonic

manufacturing, rescue management, fleet man-

agement, auctions, tourism, etc. Some papers of

this special issue of the EXP journal already give ev-

idence of the types of usage, while this section tries

to describe which application features best bene-

fit from JADE.

Distributed applications composed of au-
tonomous entities
First of all, JADE simplifies the development of dis-

tributed applications composed of autonomous

entities that need to communicate and collabo-

rate in order to achieve the working of the entire

system. A software framework that hides all com-

plexity of the distributed architecture is made

available to application developers, who can fo-

cus their software development just on the logic

of the application rather than on middleware is-

sues, such as discovering and contacting the en-

tities of the system.

This type of distributed applications enabled by

JADE, in particular when applied to the mobile

environment, ignite a new trend of evolution that

we like to name smart-device smart-interconnec-

tion: the software on each device is equipped

with autonomy, intelligence, and capability of

collaboration and the value of the system is giv-

en by the capabilities of the devices and by their

interaction and collaboration capabilities. This is

quite different from the ubiquitous access trend

where the value of the system is given by the con-

tent and the capability of accessing the content

from anywhere.

exp - Volume 3 - n. 3 - September 200318

Negotiation and Coordination
JADE simplifies the development of applications

that require negotiation and coordination

among a set of agents, where the resources and

the control logics are distributed in the environ-

ment. In fact, easy-to-use software libraries to im-

plement peer-to-peer communication and inter-

action protocols (i.e. patterns of interaction be-

tween autonomous entities) are provided by

JADE to developers.

Pro-activity
JADE agents control their own thread of execution

and, therefore, they can be easily programmed

to initiate the execution of actions without human

intervention just on the basis of a goal and state

changes. This feature, that is usually called pro-

activity, makes JADE a suitable environment for

the realization of machine-to-machine (m2m) ap-

plications, for example, for industrial plant au-

tomation, traffic control and communication net-

work management.

Multi-party applications
Peer-to-peer architectures are more efficient than

client-server architectures for developing multi-par-

ty applications, as the server might become the

bottleneck and the point of failure of the entire sys-

tem. Because JADE agents can both provide and

consume services, they remove any need to distin-

guish between clients and servers. JADE agents al-

low clients to communicate each-other without the

intervention of a central server. Moreover, the fact

that intelligence, information and control are dis-

tributed, allows the realization of applications

where the ownership is distributed among the

peers (agents) given that each peer may be able,

and authorized to perform, just a subset of the ac-

tions of the application.

Interoperability
JADE complies with the FIPA specifications that

enable end-to-end interoperability between

agents of different agent platforms. All appli-

cations where inter-organization communica-

tion is needed can benefit from interoperabili-

ty, including machine-to-machine and holonic

manufacturing.

Openness
JADE is an open-source project that involve the

contributions and collaborations of the user com-

munity. This user-driven approach allows both users

and developers to contribute with suggestions and

new code, which guarantees openness and use-

fulness of the APIs. Of course, anarchy must be

avoided and the JADE Governing Board is the ac-

tor that formally controls the evolution of JADE in

terms of new APIs and functionalities.

Versatility
JADE provides a homogeneous set of APIs that are

independent from the underlying network and Ja-

va version. It in fact provides the same APIs both for

the J2EE, J2SE and J2ME environment. This feature

allows application developers to reuse the same

application code both for a PC, a PDA or a Java-

phone, it allows to postpone this choice as late as

possible, in theory, until the deploy-time.

Easy of use and mobile applications
JADE API’s are easy to learn and use. JADE has

been designed to simplify the management of

communication and message transport by mak-

ing transparent to the developer the manage-

ment of the different communication layers used

to send a message from an agent to another

agent, and so allowing her/him to concentrate

on the logic of the application. Of course, the ef-

fect of this feature is to make faster the develop-

ment of applications. JADE reduces the applica-

tion development time in respect to the time nec-

essary to develop the same application by using

only Java standard packages. In particular when

developing distributed applications for mobile

terminals, JADE APIs and ready-to-use functional-

ities allow to strongly reduce the application de-

velopment time and costs (some estimations

have been given that indicates reduction of de-

velopment time up to 30%).

i n s e a r c h o f i n n o v a t i o n

exp - Volume 3 - n. 3 - September 2003 19

GLOSSARY

ACL Agent Communication Language

AMS Agent Management System

API Application Program Interface

C/S Client-Server

CLDC Connected, Limited Device Configuration

DF Directory Facilitator

FIPA Foundation for Intelligent Physical Agents

GPRS General Packet radio System

HTTP Hyper Text Transfer Protocol

HW Hardware

IIOP Internet Inter-ORB Protocol

IP Internet Protocol

J2EE Java 2 Enterprise Edition

J2ME Java 2 Micro Edition

J2SE Java 2 Standard Edition

JESS Java Expert System Shell

JICP JADE Internal Communication Protocol

JVM Java Virtual Machine

LGPL Lesser GNU Public License

M2M Machine to Machine

MIDP Mobile Internet Device Profile

MOM Message Oriented Middleware

OS Operating System

P2P Peer to Peer

PC Personal Computer

PDA Personal Digital Assistant

R&D Research and Development

RDF Resource Description Framework

RPC Remote Procedure Call

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SSL Secure Socket layer

TCP Transmission Control Protocol

URI Uniform Resource Locator

VAS Value Added Service

W3C World Wide Web Consortium

W-LAN Wireless Local Area Network

WSDL Web Services Description Language

XML eXtensible Markup Language

REFERENCES

[1] JADE Web Site, http://jade.tilab.com/

[2] Leonardo Chiariglione’s Web site,

http://www.chiariglione.org

[3] FIPA Web Site, http://www.fipa.org

[4] Michael Berger, Steffen Rusitschka, Dmitri Toropov,

Michael Watzke, Marc Schlichte, Porting Agents to

Small Mobile Devices –The Development of the

Lightweight Extensible Agent Platform, this number

of EXP

[5] BlueJADE, http://sourceforge.net/projects/bluejade

[6] LGPL license, http://www.opensource.org/licens-

es/lgpl-license.php

[7] LEAP Web Site, http://leap.crm-paris.com/

[8] M. Pezzini - Do MOM, ORBs and Data Access Mid-

dleware Suit Mobile? Gartner Research Note Num-

ber: T-14-3936, 20 September 2001

[9] F. Bellifemine, A. Poggi, G. Rimassa. Developing mul-

ti agent systems with a FIPA-compliant agent frame-

work. in Software - Practice & Experience, John Wi-

ley & Sons, Ltd. vol no. 31, 2001, pagg. 103-128

[10] Pavel Vrba, E.Cortese, F. Quarta, G. Vitaglione, Scal-

ability and Performance of the JADE Message Trans-

port System. Analysis of suitability for Holonic Man-

ufacturing Systems. this number of EXP.

Fabio Bellifemine
Telecom Italia Lab
Tel.: +39 011 228 6175 - Fax +39 011 228 6299
fabio.bellifemine@telecomitalia.it

Giovanni Caire
Telecom Italia Lab
Tel.: +39 011 228 6107 - Fax +39 011 228 6299
giovanni.caire@telecomitalia.it

Agostino Poggi
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Parma
Parco Area delle Scienze, 181A
I-43100 Parma – Italy
Tel.: +39 0521 90 5728 - Fax +39 0521 90 5723
poggi@ce.unipr.it

Giovanni Rimassa
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Parma
Parco Area delle Scienze, 181A
I-43100 Parma – Italy
Tel.: +39 0521 90 5728 - Fax +39 0521 90 5723
rimassa@ce.unipr.it

CONTACTS

