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Abstract - Due to recent advances in science and technology, computing and engineering systems are 

evolving toward enabling much larger collaboration and handling missions that are more complicated. The 

increasing complexity and scale imply that reliability problems will not only continue to be a challenge but 

also require more accurate models and efficient solutions. In this paper, a new reliability framework called 

dynamic reliability block diagrams will be presented to address the above challenge. The framework uses 

modeling, formal specification, formal verification and validation, and model evaluation for accurate 

reliability analysis of complex computer-based systems. The basics and application of the DRBD approach 

will be illustrated through the analysis of several examples.         

Keywords: dynamic reliability block diagram, Object-Z formalism, formal verification, colored Petri net, 

modular approach 

 
1. Introduction 

With the rapid advances in science and technology, modern computing and engineering systems are designed 

to enable larger collaboration and handle more complicated missions, and thus they exhibit more complex 

dependent and dynamic behaviors. Failure to model these behaviors accurately results in over/understated 

system reliability, which renders reliability analysis less effective in system design and tuning activities. This 

paper presents a new modeling techniques based on reliability block diagrams (RBD) that aims to fully 

capture complex system behaviors, leading to more accurate analysis of complex system reliability than 

existing methods. 

RBDs are currently one of the widely used techniques for system reliability studies due to their 

simplicity [1, 2]. An RBD is a success-oriented network describing the functions of a system. Specifically, 

each RBD model consists of an input point, an output point, and a set of blocks; each block representing a 

physical component that needs to function correctly. The blocks in the RBD are arranged in a way that 

illustrates the proper combinations of working components that keep the entire system operational [2]. 
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Typically, if there is at least one path connecting between the input and output points, the system is 

operational. On the other hand, the failure of a component is indicated by the removal of the corresponding 

block in the RBD model, and the system failure occurs when enough blocks are removed to interrupt the 

connection between the input and output points. 

The main virtues of the RBD model are that it is easy to read, and it is readily understood by customers, 

people who sell systems, engineers who design and test systems, and managers who make decisions on 

systems. With knowledge of the system, design engineers can easily construct and modify the corresponding 

RBD model, and communicate with people from different disciplines [3]. However, the traditional RBD 

model has a distinct disadvantage that it cannot capture the dependent and dynamic behaviors of large and 

complex systems; it can only model the system whose failure criteria are expressed in terms of combinations 

of component fault events. Recently, several commercial reliability modeling software packages [4, 17, 18, 

23] incorporated standby junctions or containers for modeling the standby redundancy and some other 

features such as limited repair personnel, load-sharing blocks or containers, common-spare pools, and 

phased-mission systems. These efforts on extending the traditional RBD for modeling dependent and 

dynamic behaviors are piecemeal. In this paper, we present a new modeling framework called dynamic 

reliability block diagrams (DRBD) that will extend the traditional RBD by fully considering the various 

dependencies and system dynamics. The DRBD framework will consist of new model development, formal 

specification, formal verification and validation, and model evaluation for the reliability analysis of complex 

systems with dependent and dynamic behaviors. Note that reference [3] introduced a set of DRBD constructs 

as an extension to the traditional RBD model for modeling dynamic and dependent behaviors; however, these 

DRBD constructs are complicated and difficult to use. In addition, no formal specification and verification 

has been addressed in [3].    

The remainder of the paper is organized as follows. Section 2 gives an example that will be used to 

illustrate the DRBD approach, in particular, the DRBD modeling and evaluation. Section 3 presents the new 

DRBD components. Section 4 presents the formal specification of DRBD models using Object-Z and 

describes the colored Petri nets based formal verification of DRBD models. Section 5 presents the solution 

for evaluating the DRBD model. In the last section, conclusions as well as directions for future work will be 

given. 

2. An Illustrative Example 

To illustrate the DRBD approach, we consider a hypothetical example computer system (HECS) adapted 

from [5, 6]. As shown in Figure 1, the system is composed of four subsystems: a processor subsystem, a bus 

subsystem, a memory subsystem, and an I/O subsystem. The processor subsystem is further composed of 
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dual redundant processors (P1 and P2) that share a common cold spare (PS), which can replace either of the 

primary processors upon failure. The memory subsystem is further composed of five memory units (M1, M2, 

M3, M4, and M5) accessed through two memory interface units (MIU1 and MIU2). If the MIU fails, the 

memory units connected to it become unusable or inaccessible. M1 and M2 are connected to the bus via 

MIU1. M4 and M5 are connected to the bus via MIU2. M3 is connected to the bus via both interfaces. Thus, 

M3 is accessible as long as either of interface uints is operational. The bus subsystem is composed of two 

buses (B1 and B2). The entire computer system is operational if at least one processor, 3-out-of-5 memory 

units, at least one bus, and the I/O unit are functioning. 
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Fig. 1. An Example Computer System (Adapted From [5, 6]) 

For simplicity, we assume all components in the system fail exponentially. Table 1 gives the constant 

failure rates ‘λ’ for all components. Note that the exponential failure distribution is only required for dynamic 

components and our methodology is applicable to arbitrary component failure distributions for static 

components. The mission time of 1000 hours will be considered in our analysis. 

Table 1: Component Failure Rates for HECS  

Subsystem Processor Memory I/O Bus 

Component P1 P2 Ps Mi, i=1…5 MIUi, i=1,2 I/O B1 B2 

λ (10-6/hr) 1.0 1.0 1.0 2.0 4.0 5.0 1.0 1.0 

 

3. Reliability Modeling using Dynamic Reliability Block Diagrams 

In this section, we identify typical dynamic behaviors of complex systems through the analysis of the HECS 

system and propose new DRBD components to model these behaviors.   

Consider the memory subsystem in the HECS (Figure 1). The state of a memory unit relies on the state 

of the MIU to which it is connected. Specifically, the failure of the MIU causes the connected memory units 

to become unusable. The state dependence abounds in many other real applications. For example, when 

communication is achieved through a network interface card, the failure of the card makes the connected 
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components inaccessible in the computer network [7]. In the clustered wireless sensor network example 

given in [8], for conserving limited energy of sensor nodes, the activation (or wake-up) of one subset of 

sensor nodes in a cluster leads to the deactivation (or sleeping) of the other subset of sensor nodes in the 

same cluster. To model the various state dependencies, a new DRBD component called State Dependency 

(SDEP) block is proposed. Figure 2(a) illustrates the general structure of the SDEP block, where the 

annotation letters A, D, and F represent activation, deactivation, and failure, respectively. Occurrence of the 

trigger event will force all the dependent events to occur. Both the trigger event and the dependent events can 

be the activation, deactivation or failure of a system component. Therefore, the SDEP block can model nine 

different types of dependencies among the system components: (A, A), (A, D), (A, F), (D, A), (D, D), (D, F), 

(F, A), (F, D), and (F, F). Reconsider the three examples described above, (F, D) dependency exists between 

the MIU and its connected memory units; (F, D) dependency exists between the network interface card and 

its connected components; and (D, A) or (A, D) dependency exists between the two subsets of sensor nodes in 

the wireless sensor network. 
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(c) k-out-of-n  (d) Order Dependence (e) Load Sharing 

Fig. 2. Proposed New DRBD Models 

Note that the trigger event in the SDEP block may involve multiple components. When this happens, 

logic AND relationship will apply. For example, in the memory subsystem of the HECS, (the failure of 

MIU1) AND (the failure of MIU2) leads to the deactivation of memory unit M3. This situation can be easily 

modeled using the SDEP block, as we will show in Figure 4 shortly. It is also important to point out that the 

existing dynamic fault trees (DFT) model [7] can only model the (F, F) or (F, D) state dependency using the 

functional dependency (FDEP) gate; it cannot capture the other state dependency behaviors. Hence, as 

compared to the DFT approach, the DRBD is more powerful and flexible in modeling dependent behaviors 

among system components. 
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For modeling the cold standby sparing processor subsystem in the HECS, we propose another new 

DRBD component called SPARE block. Figure 2(b) illustrates the general structure of the SPARE block, 

where A|D|F have the same meaning as in the SDEP block, and C|W|H means cold|warm|hot spare. 

Specifically, a cold spare is unpowered until needed to replace a faulty component; a hot spare operates in 

synchrony with a primary or online component, and is prepared to take over the work at any time [9]. A 

warm spare is a trade-off between the cold and hot spares in terms of reconfiguration time and power 

consumption [7]. In general, the SPARE block can model the behavior that the deactivation or failure of the 

primary component leads to the activation of a spare component, which could be in cold, warm, or hot 

standby state. In other words, using the SPARE block, a reconfiguration can be triggered by either the 

deactivation or the failure of a primary component. All the spare units will be used in the specified order, i.e., 

from left to right. Note that some commercial products on RBD also allow the sparing behavior to be 

modeled using standby junctions and/or blocks; however, they did not differentiate between the case where a 

reconfiguration is triggered by the deactivation of a primary component and the case where the 

reconfiguration is triggered by the failure of a primary component.     

In the traditional RBD model, to represent a k-out-of-n structure, the n components will be firstly 

grouped in a series connection of k components and these series structures will then be connected in parallel. 

The total number of blocks contained in a k-out-of-n structure is the  number of components contained in 

each series structure (i.e., k) multiplied by the number of series structures (i.e., k
nC ): 

])!(!/[! knknkCk k
n −×=× . For example, Figure 3 (a) illustrates the RBD model of a 2-out-of-3 structure that 

consists of 6 blocks. For the 3-out-of-5 structure in the memory subsystem of the HECS, 30 blocks must be 

drawn in the traditional RBD representation. To simplify the representation of a general k-out-of-n structure, 

similar to the k-out-of-n junctions used in some commercial RBD software packages [23], we propose a new 

DRBD component called k-out-of-n block, using which only n blocks are connected as shown in Figure 2(c). 

The simplified representation of 2-out-of-3 structure using the proposed block is shown in Figure 3(b).  
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(a) Traditional RBD (b) DRBD 

Fig. 3. Representation of a 2-out-of-3 Structure 
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Using the proposed SDEP, SPARE, and k-out-of-n blocks as well as the traditional RBD notations, we 

now can construct the DRBD model for the entire HECS system as shown in Figure 4. Since the operation of 

the system requires only one processor to be functional, the three processors (P1, P2, PS) are connected in a 

parallel structure. The cold sparing behavior is modeled through two SPARE blocks. The 3-out-of-5 

operational criteria for the memory subsystem are modeled via a k-out-of-n block connected to the five 

memory units. The state dependencies of the five memory units upon the pair of memory interface units are 

modeled via three SDEP blocks, with the memory interface units (MIU1 and MIU2) as trigger inputs and the 

memory units (M1, M2, M3, M4, and M5) as the dependent events. All the subsystem DRBD models are 

connected in series to form the entire system DRBD model since the system fails when any of the subsystems 

fails.  
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Fig. 4. The DRBD Model of the HECS 

Besides the capability of modeling the various state dependencies and sparing behaviors (as illustrated 

above), the DRBD will also consist of components for modeling other dynamic behaviors such as 

sequence/order dependence and load sharing as well as multistate behavior. Due to the space limitation, we 

only brief the basics of these DRBD components as follows. More case studies involving these behaviors will 

be studied in our future work.   

The order dependence occurs when the order that input events occur is important. For example, consider 

a fault-tolerant system with a primary component and a standby spare connected with a switch controller 

[10]. If the switch controller fails after the primary component fails and thus the standby component is 

switched into active operation, then the system can continue to operate. However, if the switch controller 

fails before the primary component fails, then the standby component cannot be activated, and the system 

fails when the primary component fails even though the spare part is still operational. In summary, the failure 

of the fault-tolerant system depends on the occurrence order of two failure events: the failure of the switch 
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and the failure of the primary component. Figure 2(d) illustrates the general structure of the proposed Order 

Dependence (ODEP) block. Note that it is not necessary to connect the ODEP block in the main structure of 

the system DRBD model. The ODEP block is typically used to detect whether the input events, which are 

connected to the main structure, occur in the specified order (from 1 to n).  

The load sharing represents a condition where multiple components share the same workload. These 

components usually perform the same task and exhibit different failure characteristics when one or more of 

them have failed or been deactivated. Specifically, as individual components fail, the failure behavior of the 

remaining components in the load sharing redundancy will change since they now have to carry a heavier 

load [24]. Some commercial software tools [4] use a load sharing container or block to model the load 

sharing behavior and assumes that the container fails only when all the components in the container have 

failed. As illustrated in Figure 2(e), our proposed Load Sharing (LS) block is more flexible than the container 

defined in the existing tools because the LS block allows defining a threshold for failure. Specifically, the 

annotation “k/n” in the LS block represents that there are n components sharing the same workload, 

corresponding to the n input events of the block; and at least k out of n components must be functioning for 

the load sharing system to work. When fewer than k components are functioning, each component will be 

overloaded and become failed. The entire block is thus regarded as being failed. When k = 1, the function of 

the LS block is the same as the load sharing container used in [4].   

Lastly, each block in the DRBD model may represent a state of a multistate component, instead of 

representing a binary-state component in the traditional RBD model. Specifically, in the traditional RBD 

model, if there is a connection between the two end-points of a block, we say that the component represented 

by the block is functioning. In the multistate DRBD model, if there is a connection between the two end-

points of a block, we say that the component is in a specific state represented by the block. For example, 

consider the multistate computer system in [11, 12]. As shown in Figure 5(a), the system consists of two 

boards B1 and B2. Each board contains a processor and a memory and can be considered as a single 

component with four states: Bi,4 (both P and M are functional), Bi,3 (M is functional, but P is down), Bi,2 (P is 

functional but M is down), and Bi,1 (both P and M are down). The entire system has three states: S3 (at least 

one processor and both memories are functional), S2 (at least one processor and exactly one memory are 

functional), and S1 (no processor or no memory is functional). For illustration purpose, the DRBD model for 

the system being in state S3 is shown in Figure 5(b). According to the DRBD model, it is easy to see that the 

system is in state S3 if the board B1 is in state 3 and B2 is in state 4; or if B1 is in state 4 and B2 is in state 3 or 

4. 
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Fig. 5. Example Multistate System and DRBD Model 

 

4. Formal Specification and Verification of DRBD Models 

To provide the denotational semantics for the development of DRBD models in a precise manner and help 

eliminate ambiguity in a constructed DRBD model, it is necessary to formally specify the DRBD modeling 

constructs. For example, Figure 6 shows the DRBD model of a system with state dependencies and sparing 

relationship among components C1, C2, C3 and C4. Here, C4 is a cold spare for C2. Suppose component C1 

fails at some time. According to the state dependency (F, F) from C1 to C2, and (F, D) from C1 to C3, 

component C2 and C3 will become Failed and Standby, respectively. Since component C4 is a spare unit of 

component C2, the failure of component C2 will lead to the activation of component C4; however, since 

there is a (D, D) state dependency from component C3 to C4, the deactivation of component C3 will lead to 

the deactivation of component C4. To evaluate the system’s reliability, the following question has to be 

answered: when component C1 fails, will C4 be in an Active state or a Standby state? Or will the result be 

nondeterministic? The above question can actually be reduced to the following question: when component 

C1 fails, will the two state dependencies (from C1 to C2, and from C1 to C3) happen immediately and thus 

simultaneously, or with some random time delay? To answer this type of questions, it is vital for us to 

formally define the denotational semantic of the DRBD constructs.  
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SDEP
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FF
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Fig. 6. A DRBD Model with Conflicts 

There is only little work done on formal specification of reliability modeling constructs. Coppit et al. 

once used the Z formalism to provide formal and precise definitions for various dynamic fault trees (DFT) 

gates [7], which were proposed to extend the traditional fault tree analysis for modeling some dynamic 

behaviors [13, 14]. However, in their approach, only state schemas are defined, while the operation schemas 

for modeling dynamic behaviors of gates are missing. Furthermore, no solutions have been provided for the 
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verification of DFT models to ensure a correct design. In this section, we propose to use the Object-Z 

formalism [15] to specify both the state space and operations of a DRBD construct as a class schema. 

Furthermore, in Section 5, we propose a colored Petri net based method to the formal verification and 

validation of DRBD models.  

Object-Z is an extension to the Z formal specification language for modular design of complex systems 

[15, 16]. It has strong data and state modeling capabilities, and thus is suitable for specifying the formal 

semantics of DRBD modeling constructs. For illustration purpose, we show the formal specification of SDEP 

and SPARE blocks in Object-Z in Figures 7 and 8, respectively.  

Event ::= Activation | Deactivation | Failure

SDEP

trigger : Component
targets : P Component
nTargets : N

triggerEvent : Event
targetEvents : Component → Event
sdep : T × Component × Event → P(T × Component × Event)

nTargets = #targets ∧ nTargets > 0 ∧ targets = dom targetEvents
∀ c ∈ targets • c �= trigger

∧probability(c | triggerEvent) �= probability(c)
∧ probability(triggerEvent | c) = probability(triggerEvent)

{(t , trigger , triggerEvent) | t ∈ T} = dom sdep

ActivateTrigger
Δ(trigger , targets)
t? : T

(triggerEvent = Active) ∧ (trigger .state ′ = Active)
∀ c ∈ targets •

(t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)
∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

DeactivateTrigger
Δ(trigger , targets)
t? : T

(triggerEvent = Deactivation) ∧ (trigger .state ′ = Standby)
∀ c ∈ targets •

(t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)
∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

FailTrigger
Δ(trigger , targets)
t? : T

(triggerEvent = Failure) ∧ (trigger .state ′ = Failed)
∀ c ∈ targets •

(t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)
∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

 

Fig. 7. Object-Z Specification of SDEP Block 
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For formally defining the state dependence (SDEP) block, we first define Event occurring on a 

component as an enumerated type with the following values: Activation, Deactivation, and Failure, which 

will lead a component to a state of Active, Standby and Failed, respectively (Figure 7). Then we define a state 

dependency as a block that consists of a trigger component and a set of target/dependent components. The 

relationship between the trigger component and the target components are defined by a function sdep, which 

maps the trigger event happening at time t? (a standard notation in Object-Z for input variable t) to a set of 

target events happening at t?+δc, where c represents a target component. This definition precisely states that 

the target events do not need to happen simultaneously as long as δc is different for different target 

components. The three operations defined on a state dependency are ActivateTrigger, DeactivateTrigger, and 

FailTrigger. According to the definition, the activation of the trigger component may lead to one of three 

different states for each target component, i.e., Active, Standby and Failed, which correspond to three 

different relationships between the trigger and one of the targets, namely (A, A), (A, D), and (A, F) state 

dependency. Similarly, the formal definition of DeactivateTrigger operation specifies how state 

dependencies (D, A), (D, D), and (D, F) are enforced; while the formal definition of FailTrigger specifies 

how state dependencies (F, A), (F, D), and (F, F) are enforced. 

For formally defining the SPARE block in Object-Z, we define a spare part redundancy as a block that 

consists of a primary unit component and a set of alternative (spare) unit components (Figure 8). The 

relationships among them are defined by the function switch, which maps a state change event happened on a 

primary unit or an alternative unit at time t? to a state change event happened on an alternative unit at t?+δc, 

where c represents an alternative unit component. The PrimarySwitch operation defines when the primary 

unit is deactivated or failed, the first alternative unit will be activated; while the AlternativeSwitch operation 

defines when alternative unit i? is deactivated or failed, alternative unit i?+1 will be activated. Note that the 

previous state of an activated alternative unit must be Standby, which can be in one of the three cases: Hot, 

Cold and Warm. 

Formal verification is used to make sure the model constructed is correct, and more specifically, the 

model is an accurate representation of an actual system in terms of its reliability properties. Traditional 

simulation approaches to model testing is not suitable for verifying the DRBD models because it is hard 

(actually almost impossible) to cover all execution paths. A feasible way is to use formal methods to verify 

whether the DRBD model satisfies the specified behavioral properties of the system under investigation. In 

our work, the formal model of Petri nets is adopted because it is supported by powerful verification tools and 

it has a distinct advantage of being easy to understand and use [19]. Petri nets provide an intuitive and 

graphical way to express conditions, events, and their relationships, as well as essential characteristics like 
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nondeterminism and concurrency. Refer to [8] for an example showing how we converted a DRBD model 

into a colored Petri net and then used an existing Petri net tool called CPN Tools [20] to analyze the resulting 

Petri net model for detecting possible errors in the DRBD model. In general, some error exists in the DRBD 

model if the Petri net analysis result shows that some specified behavioral property is not satisfied. For 

example, a dead marking in the reachability graph of the Petri net model implies some design error existing 

in the model. Using the CPN tool, the dead marking state can be traced to find the firing sequence that leads 

to the dead marking. The trace file thus helps designers to detect the errors and improve the design. If the 

Petri net analysis result indicates that all specified properties are satisfied, then the corresponding DRBD 

model is guaranteed to be correct. The evaluation of the DRBD model may then start for finding the 

reliability of the designed system.  

Standby ::= Hot | Cold | Warm

SPARE

primaryUnit : Component
alternativeUnits : P Component
nAlternatives : N

alternative : N → Component
switch : T × Component × Event → T × Component × Event

∀ c ∈ alternativeUnits • c �= primaryUnit
nAlternatives = #alternativeUnits ∧ nAlternatives > 0
{1, 2, ...,nAlternatives} = dom alternative
dom switch = {(t , c, e) | t ∈ T, c ∈ {primaryUnit} ∪

{(alternative(i)) | 1 ≤ i ≤ nAlternatives − 1},
e ∈ {Deactivation,Failure}}

INIT

trigger .state = Active
∀ i ,where 1 ≤ i ≤ nAlternatives • alternative(i).state = Standby

PrimarySwitch
Δ(primaryUnit , alternativeUnits)
t? : T

∀ e ∈ {Deactivation,Failure} •
switch(t?, primaryUnit , e) = (t? + δc , alternative(1),Activation)

(primaryUnit .state = Active) ∧
(primaryUnit .state ′ ∈ {Standby ,Failed})
∧ (alternative(1).state ′ = Active)

AlternativeSwitch
Δ(alternativeUnits)
t? : T, i? : N

∀ e ∈ {Deactivation,Failure}, 1 ≤ i? ≤ nAlternatives − 1 •
switch(t?, alternative(i), e) =
(t? + δc , alternative(i + 1),Activation)
∧ (alternative(i?).state = Active)
∧ (alternative(i?).state ′ ∈ {Standby ,Failed})
∧ (alternative(i? + 1).state = Standby)
∧ (alternative(i? + 1).state ′ = Active)

 

Fig. 8. Object-Z Specification of SPARE Block 
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5. DRBD Model Evaluation 

To obtain a prediction of the system reliability with the consideration of various dependent and dynamic 

behaviors described in Section 3, we propose an integrated approach that adapts the modular approach to 

dynamic fault trees analysis [5, 21] for the DRBD model evaluation. The approach first modularizes the 

entire system DRBD model into multiple independent modules. Each module is a sub-DRBD whose blocks 

do not occur elsewhere in the entire DRBD model. A module involving dependencies and dynamics (i.e., 

proposed new DRBD blocks) will be identified as a dynamic module; otherwise (i.e., containing only 

traditional RBD blocks), it is identified as a static module. The modularization allows the use of Markov 

models for dynamic parts of the system that require them and the use of combinatorial methods for static 

parts of the system to retain the efficiency of combinatorial solutions wherever possible.  

There are two main concepts in the Markov chain solution to dynamic DRBD modules: module states 

and state transitions. The state of a dynamic module generally represents a distinct combination of states of 

components. The state transitions govern the changes of a state that occur within the module. As time passes 

and failures occur, the module goes from one state to another in a recursive fashion, until absorbing states, 

i.e. the module failure states are reached. Solving a Markov model consists of solving a set of differential 

equations: P' (t)=AP(t),  where P is the state probability vector: P(t)=[P1(t), P2(t), …, Pn(t) ]T. Pi(t) is the 

probability of the module being in state i at time t, and A is an n × n transition rate matrix with n being the 

number of states that are presented in the Markov model. Solving the above set of differential equations 

involves the use of the condition of 1)(
1

=∑ =

n

i i tP  [2]. The solution includes the probability of the module 

being in each state.  The unreliability of the module can be obtained by adding the occurrence probability of 

each failure state. The Markov model is a powerful solution method since it can deal with dynamic and 

dependent behaviors easily. However, the Markov-based approach has a major disadvantage that its size 

grows exponentially as the size of the system/module increases, which may lead to intractable models. This 

weakness can be alleviated by integrating the Markov model with combinatorial solutions that are used 

wherever possible in the evaluation of DRBD models.  

It has been shown that the combinatorial methods based on binary decision diagrams (BDD) [7] can 

provide a faster and more efficient analysis of large static binary-state systems than other traditional methods, 

such as cut sets and path sets. Therefore, the modular approach to the DFT analysis adopts the BDD as the 

solution to the analysis of static modules. However, the major problem with the BDD based methods is that 

they can only efficiently model and analyze systems with binary state components. For analyzing systems 

with multistate components, a large number of Boolean variables (one corresponding to each state of the 

component) as well as state dependencies among these variables must be dealt with, which greatly reduces 
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the efficiency of the solution [11, 12]. Recently, an algorithm based on multi-state multi-valued decision 

diagrams (MMDD) has been proposed to the multistate system analysis [12, 22]. An MMDD is a logical 

extension of BDD. Each MMDD is a direct acyclic graph with two and only two sink nodes, representing the 

system being/not being in a specific state, respectively. Each non-sink node, representing a multistate 

component, is associated with a multi-valued state variable and has multiple outgoing edges; one 

corresponding to each state of the component. Our empirical comparison results in [22] have shown that the 

MMDD based method is more computationally efficient than the BDD-based method. Therefore, we adopt 

the MMDD method in our modular approach for DRBD evaluation. The BDD method will be used when 

only binary-state components are involved.  

The MMDD-based DRBD analysis can be viewed as a two-step process: conversion from DRBD to 

MMDD model followed by the evaluation of the model. The conversion process relies on the following 

equation for manipulating two logic expressions in the MMDD generation.  

                             

⎪
⎩

⎪
⎨

⎧

>◊◊
<◊◊
=◊◊

=

◊=◊

)()(    ),...,(
)()(    ),...,(

)()(    ),...,(
         

),...,,(  ),...,(

1

1

11

11

yindexxindexHGHGycase
yindexxindexHGHGxcase

yindexxindexHGHGxcase
HHycaseGGxcaseHG

n

n

nn

nn

                                          (1) 

where case(x,G1, . . .,Gn) and case(y,H1, . . .,Hn) are the case format for logic expressions G and H, 

representing the two sub-MMDDs, respectively [12]. The index represents the order of the variable. The 

symbol ◊ represents any logic operation (AND or OR). Specifically, a logic AND operation will be applied 

when a series structure is encountered in the multistate DRBD module; a logic OR operation will be applied 

for a parallel structure. Note that this is different from the binary systems where the components have only 

two states (operation and failure), and a logic OR operation is applied for a series structure and a logic AND 

operation is applied for a parallel structure. 

To illustrate the conversion from DRBD to MMDD, we consider the example multistate DRBD in 

Figure 5(b).  Since each board in the computer system has four states, it is represented by a node in MMDD 

with four outgoing edges, one corresponding to each state of the component. Assume the order of B1 < B2 is 

used for the MMDD generation. Because B1,3 and B2,4 are in a series structure in the DRBD module, the case 

2 in Equation (1) and an AND operation are applied, as shown in Figure 9(a). B2,3 and B2,4 are in a parallel 

structure, hence the case 1 in Equation (1) and an OR operation are applied, as shown in Figure 9(b). This 

parallel structure and B1,4 forms another series structure, thus the case 3 in Equation (1) and an AND 

operation are applied between the MMDD generated in Figure 9(b) and the MMDD for the basic event B1,4 , 

as illustrated in Figure 9(c). Finally, the MMDDs in Figure 9(a) and (c) are ORed together to generate the 

MMDD for the entire DRBD model shown in Figure 9(d).  



  

 14

  

B2

2 4

0 0 1
3

1

0

AND

4

1

3

0

1

B1

2 4

0 0
3

0

1

B1

2

0 0

0

1

B2

2

0 10

4
3

 

B2

2 4

0 0 1
3

1

0

OR

0

1

B2

2 4

0 01

3

0

1

B2

2 4

0 11

3

 

(a) For series structure of B1,3 and B2,4 (b) For parallel structure of B2,3 and B2,4 

B1

2 4

0 0 1
3

1

0

AND

4

1

3
0

1

B1

2 4

0 0

3

0

1

B2

2

0 1

0

1

B2

2

0 11

4
3

 

0

1

B1

2
4

0

3

0

1

B2

2
0 10

4
3

0

1

B2

2

0 1

4
3

1  

(c) For series structure in the bottom (d) For entire multistate DRBD 

Fig. 9. MMDD Generation from DRBD 

After generating the MMDD from a DRBD model, the probability of system being in the specific state 

can be given by the sum of the probabilities for all the paths from the root to a sink node labeled “1” [12].  

For illustrating the modular approach described above, we consider the evaluation of the DRBD model 

in Figure 4 for computing the reliability of the HECS system. First, the entire system DRBD model is 

modularized into four independent modules: two static modules (the bus module and the I/O module) and 

two dynamic modules (the processor module and the memory module). The two dynamic modules are solved 

using Markov chains. For illustration purpose, the Markov chain model of the processor module in Figure 4 

is shown in Figure 10(a). Each system state is represented by a three-tuple (S1, S2, SS), where S1, S2, and SS 

represent the state of processors P1, P2, and PS, respectively. And each processor can assume three mutually 

exclusive states: active (A), standby (S), and failed (F). The state (F,F,F) in Figure 10(a) represents the 

failure of the processor module and is the absorbing state of the Markov model.  
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Fig. 10. Evaluation of DRBD Modules for the HECS 
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The Markov model of the memory module in Figure 4, which has a total of 87 states and 190 transitions, 

is not shown due to the space limitation. The two static modules are solved using the combinatorial MDD 

method. Since each component in the static modules exhibits only binary states, the BDD is used to solve the 

static modules. Figures 10(b) and (c) show the BDD model of the bus module and the I/O module, 

respectively. After solving these four modules, their results are integrated to obtain the entire system 

unreliability of 5.05178e-3 for the mission time of 1000 hours, which corresponds to the reliability of 

0.99494822 for the HECS system. 

6. Conclusions and Future Work   

In this paper, we presented a new framework based on the extension of traditional RBD model for the 

reliability analysis of complex computer based systems. The framework includes (1) new DRBD models for 

representing various dependent and dynamic behaviors in an intuitive way; (2) formal specification of these 

new models using Object-Z to provide precise semantics and help eliminate ambiguity in development of 

DRBD models; (3) formal verification using colored Petri nets to ensure the correctness of DRBD models; 

and (4) a modular approach that integrates the efficient MMDD method and Markov solution for DRBD 

model evaluation. The DRBD analysis will provide a new and powerful tool for modeling, verification, and 

evaluation of large and complex system reliability.   

In addition to the previously mentioned investigation into more case studies with dynamic features not 

detailed/addressed in this paper, our next research tasks include designing conversion algorithms to support 

automatic translation of DRBD models to colored Petri nets, designing modularization algorithms for 

automatically detecting DRBD modules, and development of an easy-to-use computer software tool to 

implement the entire framework.  
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