Degree of Local Cooperation and its Implication on Global Utility
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Abstract recently have researchers looked at different levels of lo-
cal cooperation and its impact on the global performance.
In a cooperative multi-agent system that is situated in  There are different degrees of local cooperation when an
an evolving environment, agents need to dynamically ad-agent is considering whether to cooperate with other agents
just their negotiation attitudes towards different agents in on an external task or the use of a local resource (Figure
order to achieve optimal system performance. In this pa- 1(a)). An agent isompletely self-directegthen it does not
per, we construct a statistical model for a small cooper- take into consideration how much utility the other agent can
ative multi-linked negotiation system. It presents the rela- potentially gain if it commits to the requested task. In con-
tionship between the environment, the level of local coop-trast, an agent isompletely externally-directeid it sees
eration and the global system performance in a formal and the other agent’s gain as its own when negotiating. In this
clear way that allows us to explain system behavior and pre- paper, we distinguish the notion of “self-interested” ver-
dict system performance. The analysis results in a set of desus “cooperative” from “self-directed” versus “externally-
sign equations that can be used to develop distributed mechdirected”. We call an agerstelf-interestedf its local goal
anisms that optimize the performance of the system dynamis to maximize only its local utility and an agentdsop-
ically. It helps us more concretely understand the important erative if it is intent on maximizing the final social util-
issue of distraction and provides us with the local attitude jty. Self-interestedness and cooperation illustrate the goal
parameter to handle distraction effectively. This research of an agent, while self-directness and externally-directness
demonstrates that sophisticated probabilistic modelling can js the local mechanism used to achieve the goal. In a com-
be used to understand the behaviors of a system with complex distributed system, where the environment is evolving
plex agent interactions, and provide guidelines for the de- gver time, an agent has to dynamically choose the level of
velopment of effective distributed control mechanisms. local cooperation that is optimal for its organizational goals
based on its limited local vision and the information pro-
. vided by other agents. Recent experimental work [8] found
1. Introduction that different degrees of local cooperation have different im-
In Multi-Agent systems, agents negotiate over task allo- pacts on global cooperation level and it is not always bene-
cation, resource allocation and conflict resolution problems. ficial for an agent to be completely externally-directed. Un-
In a cooperative system, agents work together to achieve opderstanding this relationship between local cooperation and
timal global utility. Unfortunately, when the environment is global cooperation formally is very important for designing
evolving over time, it is virtually impossible for the agents appropriate mechanisms to achieve optimal system perfor-
to always obtain and process all the necessary non-locamance.
information in order to achieve the optimal performance. |n this paper, we construct a statistical model to formally
Since Centralized Control iS COSt|y and impractical, most re- analyze the re'ationship between the degree of |Oca| Cooper-
lated research has been focusing on mechanisms that Usgtion, the environment characteristics and the global utility
local cooperation to approximate global cooperation. Only achieved in a simple multi-linked negotiation setting. The

model is verified by simulations and is used to explain and
predict the system performance for the degree of local coop-

*  The first author is a student.



eration and different environment parameters. Furthermore,
Completely Completely

we show that a simple learning mechanism based on this selt directed externally directed
model can be used by each agent so that it can dynamically ¢
adjust its local cooperation level in response to the evolv- “e Importanee of exeml ully | !
ing environment so that optimal performance is achieved. ulty increase
In an environment with uncertainty, the information pro- (a) Attitude parameter as a measure of local cooperation
vided by other agents may be inaccurate and prove a distrac- level. The more weight an agent puts on the utility increase
tion for an agent’s goal [2]. [1] proved that in a market sys- of the other agent, the more externally-directed it is.
tem where agents are self-interested, if the trust an agent has UnRu) =k R,
for the other agent equals its trustworthiness, then the social ?
welfare and the agents’ utility functions are maximized. Our 2

formal study described in this paper shows similar results

in a cooperative system in the sense that the level of uncer-
tainty directly affects the amount of self-directness that an

agent should have in Order to optlmlze the social u'FIlIty. An (b) Different mapping from relational reward to local virtual
agent should put appropriate weight on external informa- utility reflects different degrees of local cooperation.

tion provided by other agents in an uncertain environment Figure 1. Degrees of local cooperation

in order to deal with distraction. When there is more uncer-
tainty related to the external information, an agent should

be more self-directed. It should be more externally-directed \y5rd Rp.a,; does not contribute to aged's actual utility
if the external information has more certainty. - increase, and it is not included in the social utility computa-
Research in Multi-Agent Systems community has been tion. Instead, it is transferred to reflect how important task
largely heuristic and experimental. Most formal work is ¢ s for agent4 and makes it possible for ageBtto con-
done in systems with self-interested agents [6, 7, 5]. [3] an-sjder A’s utility increase when it makes its negotiation de-
alyzes the need for meta level communication in construct- ¢jsion. How Ry 4/, is mapped into agenB’s virtual util-
ing a dynamic organizational structure. Our experience injty depends on agerf’s negotiation attitude towards task
building a formal model for a small cooperative multi-agent ¢+ \ith agentA. Figure 1(b) shows different mapping func-
system demonstrates that sophisticated probabilistic tech+ions for agentB. During its negotiation session with agent
niques are useful in modelling complex interaction among 4 about task, agentB calculates its virtual utility for the
agents. The analytical model is useful in understanding theiggk ad/p(t) = Up(Rp)+Up(Rpas) = Rp+k-Rpay
behavior displayed in simulation results, and can be used agn( used/(t) to compare against conflicting tasks if any.
a base for designing distributed control mechanisms to im- Experimental work showed that it is not always bene-
prove the system performance in a dynamic environment.fi.ial for the agents in a cooperative system to be com-

pletely externally-directed [8]. When the uncertainty asso-

2. Integrative Negotiation ciated with the utility increase is high, it is better for the

[8] introduced an integrative negotiation mechanism agent to be more self-directed. This indicate§ that complete
which enables agents to interact over a spectrum of dif-10cal cooperation does not always lead to optimal global co-
ferent local cooperation degrees. During a negotiation OPeration. Understanding _the relatlonshlp between the local
session, an agent's attitude can vary to reflect how im- Cooperation level and social welfare will help us better Qe—
portant its own utility increase is compared to the other Sign & distributed system where agents can locally adjust
agents’ gains. When the agent only attaches importance tdheir negotiation attitude and optimize the global utility.
its own utility increase and not to the other agents’, its at-
titude toward negotiation is completely self-directed; when 3. General Problem
it attaches the same degree of importance to the utility in- | et us formally define the class of problems we study.
crease of other agents as it does to its own, its attitude is  There are a group of agents , Ao, . .., A, and a set of

completely externally-directed (Figure 1(a)). tasksTy, Ty, . .., T;. Each task has a number of parameters
Let us take task allocation for example. There are tWo h5t observe a distribution:

types of rewards that are transferred from agéno agent

B with the successful accomplishment of tasteal reward e r;: taskT; arrives at an agent at tintewith a probabil-
Rp and relational rewar®; 4 ;. Real reward? ; has pos- ity of 1/r;.

itive benefits to agenB’s utility. The agent collects real re- e ¢;: the difference between the arrival time of a tdsk
ward for its own utility increase and it is calculated into the and its earliest start timest;.

social welfare increase as well. In contrast, the relational re- e dur;: the duration of the task;.



e sl;: the difference between the earliest possible finish
time of a taskl’; and the deadlinél;.
e R;: the reward of a tasK; if it’s finished.

The relationship ot;, est;, dur;, sl; anddl; is illustrated
in Figure 2.

Earliest Deadline

Finish time

Arriving

A est
time

Figure 2. The relationship of different param-
eters of a task

Each taskl;,1 < ¢ < t can be decomposed into a set
of subtasksT;1, Tio, . - ., Tim,, Wherem,; is the number of
subtasks off;. All of the subtasks need to be completed in
order for the agen#; at whomT; arrives to collect the re-

Figure 3. The simplest organization structure
with the necessary inter-agent interactions

compare the utilities of the conflicting tasks and com-
mit to the one with highest utility, and decommit from
the other.

The utility of a subtasl;; for A4, is calculated a#/,(T;;) =
Rij + kii; * Rio, Wherek; ;; is A;'s attitude parameter to-
wards subtasH;;. Here we use the reward;, that will be
received by agentl; as the relational reward fof;.

Each agent4; is inherently cooperative, which means
that its goal is to maximize the expected social utility.

We need to decide the relationship between the attitude
parameter, the environment parameters and the expected
social utility. Furthermore, we need to design a mechanism

ward. The agent can contract out some or all of the subtaskspat allows an agent to adjust its attitude parameters towards

to other agents or it can finish the task on its own. As a spe-

cial case,A, can contract out the entire tagk. Each sub-
taskT;;,1 < i < t,1 < j < m,; has a set of parameters

different agents and tasks in response to the ever changing
environment and achieve optimal social utility.

as well, and they have to observe certain relationships with4. A Statistical Analysis

each other and with the original tagk

® TiilTij = T;.
ei;- the difference between the arrival time of a sub-
taskT;; and its earliest start timest;;.
e dur;;: the duration of the subtask;;.
sl;;: the difference between the earliest possible finish
time of the subtasl{;; and its deadlinell;;.
R;;: the reward of the subtask;; if it is finished.
> ; R;; + Rio = R;, whereR; is the reward4, gets
after handing out the rewards to each subtask if all of
the subtasks are completed.

For each subtasK;; there is a set of agent$S;; who
can performT;;. When a taskl; arrives at agentd,, A,
needs to do the following for each subtagk:

1. Start to negotiate with one of the agent(s)is;;.

2. Transmit the related parametess, dur;;, sl;j, R;j. In
addition, also transmilz;g, i.e., the reward4, itself
will get if T is finished successfully.

When an agentl; receives a request from agest to

do subtask’;, it does the following:

1. Decide whethefl;; can be fit onto its own schedule

or can be contracted out (contracting out a subtask fol-
lows the afore mentioned procedure of a regular task);

if yes, reply committed.
. If there is a conflict betweeh;; and A,'s own sched-
ule andA, cannot subcontradf;; out to other agents,

4.1. An Example

Though relational reward provides agents with the infor-
mation about the importance of the task to the other agent,
this information may be inaccurate when the task requires
cooperation from more than two agents. In this section, we
describe a simple agent organization structure with the nec-
essary inter-agent interactions during the negotiation pro-
cess (shown in Figure 3) that exemplifies the class of prob-
lems and build an analytical model for this structure.

There are three agents in the systetin.has one type of
taskT; coming in, of which there are two different subtasks
suby andsubs that need to be contracted outde and Az
respectively. Suppose at the same time, tdskand73 ar-
rives at agentsl, and A3 and need to be completed. As a
result, there may be conflicts betwe&nand sub,, or be-
tweenT3 and subs, which force the agents to choose one
task between the two. This decision depends on the real re-
ward associated with each task, the relational reward from
Ay, and also how the agent evaluates this relational reward,
i.e., its attitude parameter toward it.

Let us consider the following example. Suppose agent
A, faces the following situation: it receives a taBkwith
15 units of real rewardR, = 15), and at the same time
it receives a task proposakib, with 6 units of real reward
and 10 units of relational reward(> = 6 andRy; = 10).

If As is completely externally-directed towards regard-
ing tasksuby (k = 1), then the utility forsubs is Usyp, =
16 > 15 = Urp,. As aresult A decides to accept taskibs



and reject tasl5. However, A3 rejects taskubs based on are done in parallel, which means that the result of one ne-
its situation, and therefore tagk can not be accomplished gotiation does not affect the other. Associated with eéBch
successfully. Sincel; does not get the expected reward of is a rewardR,. Upon completion off}, A; will collect a
20 units, it cannot givel, the promised 6 units of real re- part of the total reward,; for itself, and hand the regt;»
ward. At the same timed, also loses the opportunity of andR;3to A, andAs respectivelyR, = Ri1 + Ris+ R13.
accumulate 15 units real reward frdfh. The performance  In order for the reward to be collected, batlb, andsubs
of this small organization is not optimized. The reason is have to be completed.
that the information fromd; is uncertain: the expected re- During the negotiation process with age#f about a
ward is based on the assumption of both subtasks are acsubtasksub;, A; promises a real rewarf;; for complet-
complished successfully, which depends on the local deci-ing the task and tellgl; about the reward that; itself will
sions of both4, and As. gain if the task is completed, i.e., the relational rewRsgl.
How to deal with this uncertainty associated with multi- A;’s attitude parameter toward; about doingsub; is k;.
ple agents’ local decision processes? We have built an anAs a result, the utility of the subtasiub; for A; when it is
alytical model presented in the following sections, so that making the negotiation decision&; = Ry; + k; - (R11)-
agents can choose the appropriate attitude parameters t&®;, Ri1, R12 andR;3 are all constants.
cope with the uncertainty. T, and T3 both have a rewardR, and R3 respec-
4.2. Model Setup t(ively,bw?ichda(\re unifo]rmly distributed within the range of
. L arg, bro| and(ars, brs).
We formally describe the three-agent organization (as Once having received a subtaski;) request, the agent

shovyn in Figure 3) anq the mt_erac;uon among agents in t.hI.SAq; sees whether there is a conflict between the new task and
section. We chose this organization structure because it is : : .

- o T . other tasks (both the previous commitmenttpand its lo-
minimal in its simplicity and yet complex enough to high-

light the problem we are studying. We will extend this sim- cal taskT;). These other tasks include the tasks that came in
le model to more complex struc’éures as described in SeC_before the new one and those will come in after it. If there
Eon 3in our future Workp is no conflict,A; will commit to the task. Otherwise, it will
There are three agents in the systeimhas taski; com- choose th_e task with h_|gher rewarc_zl._ .
ing in, of which there are two subtaskab, andsubs that There is no task failure or explicit decommitment once

need to be subcontracted #p and A3 respectively. At the a commltment IS T“i“de- T_he only t|me_that a contract is
- . breached is by, if it receives a commitment from one
same time], andT3 arrive atA, and As.

i ) » ] of the agents and not the other. In this case, the commit-
1. T; arrives atA; with a probability ofl /r; at eachtime o agent will still execute the subtask as it promised but re-
unit. More formally, for any time, Pa;(t) = 1/r; 18P~ cejve no promised reward for that. This is a simple negotia-
resents the probability of there being a tdslarriving  tjon protocol and some of the uncertainty we discuss above

at4; attimet. _ o can be resolved by a more sophisticated negotiation proto-
2. For taskTj, e;, dur; andsl; are uniformly distributed:  ¢o|. We model this simple protocol for two reasons. First,
P _ o, ae; < < be; some of the necessary techniques are developed in the pro-
ei(t) = 0,7’ " otherwise cess and can be extended to model other protocols. Second,
1 ad; < x < bd; we demonstrate that in an environment without sophiscated
Pour,(z) = { bdi—adi otherwise global design or with a tight communication restriction, lo-
T < cal mechanisms such as attitude parameter can be used ef-
_ bsi—as’ as; < x < 0s; f ivel ith th Iti .
Py, () ) ectively to cope with the resulting uncertainty.
: 0, otherwise

4.3. Probability of Conflict
3. For the two subtasksub, and subs, e1;, dury; and An agent needs to choose between tasks to execute when
sl1; are uniformly distributed as well within the ranges and only when there is a conflict between tasks. A task of
(aeyi,bey;], (adyi, bdi;]) and (asy;, bsy;), respectively.  typei is in conflict with a task of typg (whether it came be-
The parameters of the subtasks should bear some relafore task: or after) if and only if there exists a task of type
tionship with those off; and with each other, and we j such that the following two inequalities are both true:

should take care when setting these parameters so that dl; — estj < dur; + dur;,

it will reflect such a relat|onsh|p. For example, the est dl; — est; < dur; + dur;. 1)

of the subtasks cannot be earlier tHars est. There

maybe an enable relationship betweei, and subs, Rewriting (1) in terms ots¢, dur andsl, we get

and as a result;sty3 > dl;o. sl — dury < est; — est; < dur; — sl; 2
When an instance df; arrives atd;, A; will start ne- For a task of type that arrives at a given time, we define

gotiation processes with both, and As. The two sessions  Pc;; as the probability of there being a task of typéhat



has conflict with it. Notice that for task we only know of

its arriving time, not its other relevant parameters. In addi-

tion, we do not know any parameter of task

Pcij
= P(sl; —dur; <est; —est; < dur; — slj)
400 +oo Y

S0 -0 = Pesty—eat, (@) -

Z=—00 Y=z r=z

Pdurifslj (y)PslifduTj (Z) (3)

First let us look atP,.:, —.st, (), the probability of the
difference between the earliest start time of teiBkand T}
beingz. Since the arrival time of taskis fixed, without loss
of generality, let us define the arriving time of tasks 0.

As aresultest; = e;, andest; can range from-oo to +oo.
Therefore Pest; —est, (r) = P(est;—e; = x),i.e., the prob-
ability of there existing a taskthat satisfiesst; — e; = «.

We first solve the probability of there being a task whose
est is at a specified timeg which we write asP(est = t):

“+o0
P(est =1t) > Pa(t—z)P.(x)

ot T be — ae
1
= )
r
Then we can further calculaté.;, ., ():
+oo
Pest_.j—esti (l) = Z Pgi (y)P(estj =y -+ 1)
Yy=—00
gy
o1 be; —ae; 7;
1
= - (5)
Tj

Now let us see Whaly,, —s1; (y) is.

Pdum —slj (y)

+oo
Z Pdur,; (I) N Pslj (I - y)

T=—00

bd;—as;—y
(bdi—adi)(bsj-—asj-)’
max(ad; — as;,bd; — bs;)
<y <bd; —asy;

1 .
W, adi—ClSj Sygbdl—bsj,
bsj+y—ad;

(bd;—ad;)(bsj—as;)’

ad; —bs; <y <

min(ad; — as;, bd; — bs;);
Otherwise.

07
(6)

Similarly, we get
Psli—durj (Z)

bs;—ad;—z
(bsi—asi)(bdj—adj)’
max(as; — ad;, bs; — bd;)
< z < bs; — ady;
1 .
ﬁlasi’ G/Si—a/dlj SZSbSl—bd],
bd;j+z—as;
(bsifasi)(bdjfadjy
as; —bd; < z <
min(as; — ad;, bs; —
otherwise.

bd;);

07
)

Now, we can put (5), (6) and (7) back to (3) and get the
probability of there being a conflict for a task that comes in
at a given time. Please note that this calculationPpfis
an approximation, since we are only considering the proba-
bly of two tasks conflicting with each other. In reality, there
might be three or more tasks that can not be scheduled suc-
cessfully at the same time but any two of them can be.
Therefore, the real probability of conflict may be slightly
higher than our approximation.

4.4. Expected Reward

What we are really concerned about is the expected re-
ward that the system may receive at any given time. Multi-
plying it by the time that the system has run yields the ex-
pected reward of the system.

For A, and A3, there may be two types of tasks com-
ing in at any moment: the local tagk with a probability of
1/r; and the non-local taskub; with a probably ofl /r;.
When a local task; for A; arrives, it accumulates reward
only under one of the following circumstances:

1. There is a conflict between it and one non-local task
sub; and there is no conflict with other local tasks. In
addition, the local task reward is greater than the util-
ity of the non-local task that it is in conflict with, i.e.,
R; > Rn; = Ry; + k; - Ry1. Therefore,

bT‘,;
z=|Rn;]+1

%, I_anJ < ari;

(brs =] Bn, ) (bri+| Bn; | +1)

2(br;—ar;) !
ar; < | Rn;| < bry;
LRTLiJ > bry.

Pg,(z) -z

®)
Oa

The part of expected reward gained by executing the
new task in this case is then:

ERY = Peyj; - (1- Peip) - B(Ri| Ry > Rny) (9)



2. The only conflict caused by this task is with another lo-

3.

Similarly, when a subtaskub; arrives atA;, A; will

cal task7}. In addition, the new reward is higher than choose to commit to it under four conditions, but it can ac-
that of T/. The expected reward gained by executing cumulate this reward only when the other agent decides to

this task under this condition is:
ER®
= (1 — Pcli,i) - Pey; - [E(RAR, > R;)

+%E(Ri|Ri = R;})] (10)

where
br; br;

E(Ri|R; > R))= Y > aPg(z)Ps(y)
y=ar;+1 xz=y+1
and
b’!‘i

Y w(Pr(x)?

rx=ar;+1

ar; +br; +1
4(br; — ar;)

1
gE(RHRz' =R;) =

There is a conflict with both another local task and a
non-local task. In addition, the reward gained by the

new local task is the highest.
ER®
= PCUJ‘ - Peg; - [E(RZ‘RZ > Rn;&R; > R;)
1

where
bTi b’!‘i
y=ar;+1 x=max(|Rn;|+1,y+1)
br; br;

1
pECoEr LD DRSSP DR

y=ar;+1 x=max(|Rn;|+1,y+1)

Pr,(z)Pr,(y)x

bm
> (Pr@P
z=|Rn;|+1
0, | Rn;| > bry;
4(br;—ar;)? ’
ar; < |Rn;] < bry;

ar;+br;+1
4(br;—ar;)?

Il
— N = N

| Rn;| < ar;.

4. There is no conflict caused by the new task.

ar; + br;

ER™ = (1= Pey;;)(1 — Pey) - .

(12)

commit to the other subtask as well. Therefore the expected
reward will be:

EREs) = Rq; - Pcommity - Pcommits (23)

where

Pcommit;
= Pcli,i(l — PCH)P(RTLi Z Rl)

1
+§P01¢ﬂ‘ . PCHP(RW/Z‘ 2 Rl>

1
+§(1 — PCM,Z‘)PCH

+(1 — PCli_’i)(l — PCll) (14)
and
[Rni]
P(Rn; > R;) = Pg,(x)
r=ar;+1
]., \_RTLZJ 2 b’l”i
= lmlen g <Ry < by

br;—ar;

0, |Rn;| < ar;

(15)

Now we have the expected reward tigtor A collects
at each time unit:

1 1

ER = —(ER{" + ER? + ER" + ER(")) + ~ER”
4 1

(16)

Let us have a look at the expected reward thAatcol-
lects at each time unit. There is only one type of task com-
ing into A;. The reward can be collected if and only if both
of the other two agents commit to the subtasks. As a re-
sult,

1
ERy = — - Ry1 - Pcommity - Pcommits a7)

1

Now that we have the expected reward for each of the
agents, we can calculate thke that will maximize the so-
cial utility given the set of the parameters. More formally,
we setky, andks to be:

argmax(ER; + ERs + ER3).
k2,k3

Please notice that when we are calculating the expected
reward collected by each of the agents by execulingve
are assuming perfect knowledge of the other agent’s model.
This is useful from a system designer’s perspective. Having
a global view of the system, the designer can set the attitude
parametek of each agent such that the global utility can be
maximized.

We ran a set of simulations in the integrative negotia-
tion framework with different parameter settings (Table 1)
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k3
to verify the model. We vary the arrival rate, deadline and Figure 4. Comparison of the model predic-
reward of the tasks and _record .the soglal utility generated tion and the simulation results. 2 = 3 = 10,
by the system after 950 time units for different attitude pa- ;79 _ ;13— 1 9 — 3 — 6
rameterst, andks. As seen in Figure 4, the simulation re- '
sults and the theoretical prediction match well with each

other, with a utility difference of around 1%. The difference ¢ tion history bet th F th tatistics. th
in the two curves are mainly caused by the two major dif- eraction history between them. =rom these stalistics, they

ferences between the simulator and our theoretical model.fflre ablg tp chtc;]oste :hle |rt_(|).\;v ntﬁtt![tude pt? ramﬁllezsrg %rdfr:
First, the tasks in the simulator arrives at the agents everyO (zjmé'ze € 3 aiuti 'fy a"miy ej;:o ebc € ythem
r; time step instead of with a probability df/r; at each andA,. Expressed more formally, if ager, observes the

step. Though these two settings are statistically equivalent,pmbab'“g of Ay handing 9”t the reward fasub, as P,
the simulator has less chance of the same type of tasks cont"€NE Ry andER, are written forA, as follows:
flicting with each other, and results in a higher utility gener-

ated by the simulation. Second, the simulator uses a sched- 1
uler that schedules all the tasks in a fixed time window to- ER; = — - Ry1 - Pcommity - Ps. (29)
gether and resolves the conflicts among them. Once a task E

is successfully scheduled, it will not be removed from the
schedule or shifted to accomodate tasks arriving in the next
time window. As a result, the simulator is not as sensitive
to slight parameter changes as the model is, which leads ko = argmax(ER, + ER,). (20)
to the gadual drop in utility in the theoretical model ver- k2

sus the step function drop in the simulator. Other parame-; is the same ford.

ter settings show a similar correlation between the simula- There are two cases of environment change to consider.

tion results and the model prediction. As tasks become IessFirst there is a change happeninglator A which makes
flexible (varied byr anddl), conflicts become increasingly the c,:orresponding agent adjust its Second, there is a

likely aqd global utitlity is reduced. The higher a Iocal'task’s change of the local parameters/ that leads to a change
reward is compared to that of the subtask, the less likgly in k, in one or both of the agents’ attitude. When such

will be finished and the more self-directed the other agent change happens, one or both of the agents initiate the ad-
should be for the system to collect more reward. These be

. . . ‘justment in their attitude parametetsin response, which
haviors are both pr_edlcted and explained by the model andlleads to a change in the other agent's observatio ahd
the resultant equations.

further adjustment of;. We prove the following theorem:

5. Adjusting Local Att'FUde ) Theorem 1 The local adjustment of the attitude parame-
In a real system, the environment may evolve over time. (g5 js stable, i.e., the process will converge.

In such situations, it is unlikely that a static organization
will remain optimal as the environment changes. Further- PROOF If we fix the parameters other thdn and de-
more, it is impractical for the agents to always have a global note the utility that4, is trying to maximize ag¢/,, we can
view of the system without significant communication cost. Write it as a function oft; = |Rny]: U = ER1 + ERy =
Fortunately, an agent can often learn the other agents’ be-—a-23+(b+d-P»)-z2+c, whenary < |Rny| < bro, where
havior through past interactions with them. If agents can dy- a, b, ¢, d are all constants. Then we have the optirnah; |
namically adjust their relationships with other agents basedaszz = -2, Sincezs = |Rna] = Ria + ko - Riq, the
on observations of each other, then the system can achieveptimal k, changes monotonically aB, changes (shown
more global utility than a static system. in Figure 5(a)). WhenA, sets its newks, As's observa-

The agentsi,; andAs can learn the probability of the re-  tion of P; changes accordinglyPs = e - |Rns| + f
ward being actually collected from; by recording the in-  whenars < |Rns| < brs, wheree and f are constants.

ERéE)) = Ryo - Pcommity - Py; (18)

In order to maximize the social utility as its vision of the
environment allowsA, should sek; as:



x|

@

(b) (©

Figure 5. (@) k. changes monotonically as P,
changes. (b) P; changes monotonically as
ko changes. (c) k, converges over time even
when k5 and k3 change in different directions
at the same time.

As shown in Figure 5(b)P; changes monotonically ds
changes as well.

the attitude parameter of an agent can be seen as an effec-
tive way to handle distraction introduced by uncertain ex-
ternal information.

6. Conclusions

In this paper, we successfully constructed a statistical
model for a small cooperative multi-link negotiation sys-
tem. It shows us the relationship between the environment,
the level of local cooperation and the global system perfor-
mance in a formal and clear way that allows us to explain
system behavior and predict system performance. The anal-
ysis also results in a set of design equations that can be used
directly to design distributed local mechanisms that opti-
mize the performance of the system dynamically. Finally,
it helps us more concretely understand the important issue
of distraction that was first discovered and studied by [4, 2]

No matter what change in the environment causes theand provides us with the local attitude parameter to han-

change in local parametgy, the value of;; either increases

dle distraction effectively. This research demonstrates that

or decreases. If the changes of both agents are towards thgophisticated probabilistic modelling can be used to under-
same direction, i.e., both of them |ncreqse, both deCfeasestand the behaviors of a system with Comp|ex agent inter-
or one of them stays the same, then as Figures 5(a) and 5(bctions, and provide guidelines for the development of ef-

show, bothk, andk3; change monotonically without oscil-
lation. Since there are only limited number of different val-
ues for| Rn; |, k; will converge to a certain value.

On the other hand, if; and k3 start changing towards
different directions, they will both oscillate, as the direc-

tions of change caused by the two agents are different. For-

tunately, the oscillation is bounded by the curves of change
in k; in Figure 5(a) (as shown in Figure 5(c), and the pro-
cess will converge in the end [

Theorem 1 tells us that it is safe for the agents to adjust
their attitude parameters locally and reach a global equi-
librium. We can add a simple learning component to each
agentA; which observes the probability of; handing out
the reward forsub; as P; and adjusk; to the optimal value
related toP; dynamically.

In an environment with uncertainty, the information pro-

vided by other agents may be inaccurate and prove a dis{4]

traction for an agent’s goal [2]. [2, 4] suggest that mech-
anisms that appropriately handle distraction in a complex
multi-agent system are important to improving the overall
system performance. In the three agent multi-linked nego-
tiation system we are modelling in this paper, there is un-
certainty related to the rewards th&t promises tad, and

Az and may prove distracting® and P; are good mea-
sures of this uncertainty. The proof of Theorem 1 shows that
the level of uncertainty in the external information received
from A, directly affects the amount of self-directness that
an agent should have in order to optimize the social util-
ity. As seen in Figure 5(a), the greater the valué’pis, the
higher the optimak; is, which means the more externally-
directedA; should be towardd ; regardingsub;. Likewise,
when there is more uncertainty related to the external infor-
mation, an agent should be more self-directed. Therefore

fective distributed control mechanisms. Though what we
present in this paper is a model of a simple three agent sys-
tem, both the model itself and the techniques we use can be
extended to more interesting and larger systems with more
complex inter-agent interactions.
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