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Abstract

A Multi-linked negotiation problem occurs when an agent needs to negotiate with multiple other agents aliergrdtisubjects (tasks,
conflicts, or resource requirements), and the negotiation over ofecsias influence on negotiations over other subjects. The solution
of the multi-linked negotiations problem will become increasingly importanttie next generation of advanced multi-agent systems.
However, most current negotiation research looks only at a singlatinéign and thus does not present techniques to manage and reason
about multi-linked negotiations. In this paper, we first present a techriigaed on the use of a partial-order schedule and a measure of
the schedule, called flexibility, which enables an agent to reason explicitlyt alve interactions among multiple negotiations. Next, we
introduce a formalized model of the multi-linked negotiation problem. Basethis model, a heuristic search algorithm is developed
for finding a near-optimal ordering of negotiation issues and their patem Using this algorithm, an agent can evaluate and compare
different negotiation approaches and choose the best one. We siwparhagent uses this technology to effectively manage interacting

negotiation issues. Experimental work is presented which shows thiedfjcof this approach.

keywords: multiple related negotiations, agent reasoning and chroaflict resolution, performance optimization

1 Introduction

Multi-linked negotiation describes a situation where ogerd needs to negotiate with multiple agents about diftassnes (tasks,
conflicts, or resource requirements), and the negotiatien one issue affects the negotiations over other issuesmulti-task,
resource-sharing environment, an agent needs to deal witipfe, related negotiation issues including: tasks caeted to other
agents, tasks requested by other agents, external regequéeements for local activities, and interrelationsh@mong activities
distributed among different agents.

Consider the following example shown in Figure 1, which isnapdified supply chain containing four agents. T@ensumer
Agentrepresents the environment that generates tasks to be ety the other three agents. When a new task is generated
by the Consumer Agenit indicates how much it is worth and its deadline. When @wmmputer Producer Agemeceives task

PurchaseComputerfrom theConsumer Agenit also needs to sub-contract parts of the @skHardwareandDeliver. Computer
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Figure 1: A supply chain scenario

to theHardware Producer Agerand theTransporter Agentespectively. The following three negotiations are irgkted: the
negotiation between tHeomputer Producer Ageind theConsumer Agerdn taskPurchaseComputerthe negotiation between
the Computer Producer Agerind theHardware Producer Ageran taskGet Hardware and the negotiation betwe&@omputer
Producer Agenand theTransporter Agenbn taskDeliver_ Computer

How can the agent deal with these interrelated negotididBae approach is to deal with these negotiations indepégden
ignoring their interaction's If these negotiations are performed concurrently, thetdctbe possible conflicts among the solutions
to these negotiations; hence the agent may not be able to finchhined feasible solution that satisfies all constrainthout
re-negotiation over some already “settled” issues. Fomgte, in Figure 1, suppose tli@mputer Producer Agemtegotiates
with the Consumer Agerdand promises to finisRurchaseComputerby time 20, and concurrently tf@omputer Producer Agent
also negotiates with théransporter Agenaibout taskDeliver_.Computerand gets a contract that taBleliver.Computerwill be
finished at time 30, then tHeomputer Producer Agentill find it is impossible for taskPurchaseComputetbe finished by time
20 given that its subtadReliver_ Computemwill not be finished until time 30.

To reduce the likelihood that this type of conflict occures negotiations could be performed sequentially; thetalgais
with only one negotiation at a time, and later negotiatioreskased on the results of earlier negotiations. This seigligmo-
cess, however, is not a panacea. First of all, the negatigtiocess takes much longer when all the negotiations nebd to
negotiated sequentially, potentially using up valuabieet(delaying when problem solving can begin) and reduciegtitential
solution space. For example, in Figure 1, suppose the aexfdii completion of tasPeliver Computeris 20, the same as task
PurchaseComputer If the negotiation on taskeliver Computerstarts at 10 and finishes at time 12, then the execution of task
Deliver Computercan only start after time 12. However, if the negotiation askDeliver Computerstarts at time 3, there is a
larger time slot for the execution of tafkeliver.Computer hence, it is easier for the negotiation on t&3#diver Computerto
succeed. Additionally, when the negotiation deadline kemainto consideration, a negotiation started later mag &%/ chance
of success. For instance, in Figure 1, suppos€tiressumer Agerdssociates a negotiation deadline of 8 with the proposalsi(f t
PurchaseComputer if the Computer Producer Agemeplies to this proposal later than time 8 because it wansgttte its other
negotiations first, it cannot get the contract on tBskchaseComputeraccepted.

Secondly, even if all the negotiations are sequenced, flseme guarantee of an optimal solution or even of any possible

1 This approach seems too naive, but is commonly used. Most réaseaiscdeals with single negotiation; little work has been done to study
the relationships among different negotiations with complex task strugtBeesion 7 provides more discussion of related work).



Agent A

Agent B Agent C

N enables,
[Ta1l [ Ta1d | Ta13 [ Ta21 | Tad2
o faoltates 7

negoiiaion o negotidtion. -

Figure 2: Negotiations linked by a “facilitates” relatidig

solution. This problem can occur if the agent does not readmut the ordering of the negotiations and just treats them a
independent negotiations, with their ordering being randim this situation, the results from the previous negimtiet may make
later negotiations very difficult or even impossible to exd. For instance, in Figure 1, if tt@omputer Producer Ageiffirst
negotiates about taskurchaseComputerbefore starting the negotiations on tas&t Hardwareand taskDeliver Computey and

the promised finish time of tagkurchaseComputeresults in tight constraints on the negotiations on taskHardwareand task
Deliver Computer these negotiations may fail and the commitment on RiskchaseComputerwould have to be decommitted
from.

One additional problem is caused by the difficulty in evahgta commitment given that the result of later negotiatiares
unknown, and thus making it harder for an agent to find a lookit®n that will contribute effectively to the construmti of a
good global solution. For example, in Figure 2, agdrtias two non-local tasks (the tasks that are performed by atfents),
taskT'a12 contracted to ager® and taskl'a21 contracted to ager. There is a “facilitates” relationship froffia12 to T'a21. If
Ta12 could be finished before Ta21 starts, it would reduce thegssing time off'a21 by 50%. Suppose ageHitfirst negotiates
with agentC' and then negotiates with ageBt as a result of the negotiation with agemntit is decided thaf'a21 starts at time
20 and finishes by time 40, but then it is found through the tiation with agent B that tasKa12 could only be finished by time
25. Given this later information, if the start %21 is delayed to time 25['a21 actually could be finished at time 35 because of
thefacilitateseffect. This solution would not be found, however, if the ratggnores the interactions among these negotiations.

These previous examples indicate how important it is forgenato reason about the interactions among different reguts
and manage them from a more global perspective. If donetefdg this permits the agent to minimize the possibilifyconflicts
among the different negotiations and thus achieve bettéoipeance. Additionally, these examples show that it ifidift to deal

with multi-linked negotiation problems because:

1. There are possible conflicts among related negotiatlbnst resolved, these conflicts may cause the failure of genés local

plan or reduce the agent’s local utility achievement.

2. There are uncertainties associated with negotiatiomsceShe agent does not have perfect and complete knowlefdile o
other agents’ states, the result of a negotiation is unicerfdne agent may have an estimation about the likely outcohtiee

negotiation, but it needs to be prepared for different ouies.

3. There is a cost for negotiation. On one hand, the agensrtealocate valuable computational and communicatioouess

for negotiation. On the other hand, the time spent on nemtianay affect the outcome of the negotiation. For example,
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the longer time spent on negotiation may reduce the timdadlaifor execution hence reducing the possibility of firgdan
solution. Similarly, a delayed reply to a proposal may noabeepted if there are other agents who have already repligd t

earlier.

4. The negotiation process needs to be interleaved withgbeta local planning and scheduling process because 81 ageds

to find a feasible local solution that satisfies all committsemd local constraints.

The multi-linked negotiation problem is not only a compted problem, but also an important one because it actuglipdras
in a number of application domains. For example, in a suppgircproblem, negotiations go on among more than two agents.
The consumer agent negotiates with the producer agenthangtéducer agent needs to negotiate with the supplier agéhe
negotiations between the producer agent and the suppketabas a direct influence on the negotiation between thoupen
agent and the consumer agent. Figure 3 shows a supply cherimpéx, where there are a number of companies, some of which
produce parts for computers and some of which assemble demspwhere others are distributors, stores and custorivknsi-
linked problems occur throughout this system. We will alsgspnt a detailed supply chain scenario with multi-linkedatiations
based on Figure 3 in Section 2, and use this scenario as arpkx#amoughout this paper. Another example of multi-linked
negotiation is a distributed sensor network [5]. There avdtiple sensors distributed at different locations, eatkvioich has
different coverage. Multiple targets move through theaagind it takes a certain number (more than one) of sensoradio &
target so as to get sufficient sensor data for acceptabldntpquality. Which sensors should be used to track whictetadgring
which time interval poses an interesting multi-linked niggtion problem.

In general, aMulti-linked negotiation problem occurs when an agent needs to negotiate with multiple othenta about



different subjects, and the negotiation over one subjexiffiuence on the negotiations over other subjects. The ¢onant of

resources for one subject affects the evaluation of a comenit or the construction of a proposal for another subjeatsolve

a multi-linked negotiation problem, an agent needs to finéffinient approach, which includes a temporal ordering ek
negotiations and appropriate parameters for each featumegotiations, so as to minimize the conflicts and maxinfizeagent’s
expected utility. In this paper, we first explicitly addrekis multi-linked negotiation problem and analyze it, thves develop a
formalized model and a set of reasoning tools that enablgeantao find an near-optimal solution for this problem.

In the remaining of this paper, we will first introduce a dtdimulti-linked negotiation scenario and basic assumgtio
this work (Section 2). Next we will present a formalized miofie the problem is presented in Section 3. Using this model,
the agent can find the best ordering of the negotiations agidglarameters, and hence increase its local utility aehm@nt. A
partial order schedule and a set of related algorithms wilplesented in Section 4, which are necessary for the agesason
about the time constraints and the flexibility of each negmth. The partial order schedule and the related reasdaoig also
make parallel negotiations feasible by eliminating pagmonflicts. An example to show how this model works is présé in
Section 5. Three sets of experimental work are presenteddtidd 6. Section 6.1 examines the performance of the thistieu
algorithm, Section 6.2 shows that this management teckrfigumulti-linked negotiation leads to improved perforroanand
Section 6.3 shows it is important for agents to reason abexibflity in a multi-linked negotiation problem. Sectiordiscusses
related work, with special attention on the relationshipgen the approach presented in this paper and anotheraappoased

on a combinatorial auction. Section 8 summarizes this paper

2 Supply Chain Example

In this section, we describe the supply chain example ptedém Section 1 in greater detail. This example will be usedughout
the rest of this paper to explain the multi-linked negotiatoroblem. However, the negotiation process and the fatigapproach

are domain-independent and are not restricted to thiscgin.

2.1 Supply Chain Scenario

There are four agents in Figure 1:

1. Consumer Agergenerates three types of new tasRstrchaseComputertask forComputer Producer AgenPurchaseParts

task forHardware Producer AgenaindDeliver_Producttask forTransporter Agent

2. Computer Producer Ageméceives théurchaseComputertask fromConsumer Agenand needs to decide if it should accept
this task and, if it does, what the promised finish time of #ktshould be. Figure 1 shows the local plan for producing
computers; it includes a non-local taSlet Hardwarethat requires negotiation witdardware Producer Agentt also includes

a non-local tasloeliver.Computerthat requires negotiation witfransporter Agent

3. Hardware Producer Agentceives two types of task&et Hardwarefrom Computer Producer AgeandPurchasePartsfrom

Consumer Agentt need to decide whether to accept a new task and what isditsiged finish time.

4. Transporter Agenteceives two types of task®eliver_Computerfrom Computer Producer AgerindDeliver_Productfrom

Consumer Agentit needs to decide whether to accept a new task and whatgsoitsised finish time.

We first define two generalized terms to make the followingdpton easier. In the following description, we will ugetterm

contractor agento refer to the agent who performs the task for another agehgats rewarded for the successful completion of



the task; anatontractee agenb refer to the agent who has a task that needs to be perforynaddther agent and pays a reward
to the other agent. Theontractor agentind thecontractee agentegotiate about a task and a contract is signed (a commitisient
built and confirmed) if an agreement is reached during thetnipn.

In this work, the negotiation process between agents ishhas@n extended contract net model [10, 13]:

1. Contractee agerdannounces a task by sending out a proposal.

2. Contractor agenteceives this proposal, evaluates it, responds to it in dtieree ways: by accepting it, by simply rejecting it,

or by rejecting it but at the same time making a counter-psapo

3. Contractee agentvaluates the responses, it either chooses to confirm aptadceroposal, or chooses to accept a counter-

proposal.

4. Contractee agerdwards the task to the chossmntractor agenbased on the commitment (the mutually accepted upon prbposa
or counter-proposal) which is confirmed by both agents; #gotiation process then ends successfully. If a mutualiged)

proposal/counter-proposal cannot be found, the negmtigtiocess fails.

This process can be extended to a multi-step process bylirding an extended series of alternative proposals and@sun
proposals. However, in this paper, we only focus on the tiep-§proposal, counter-proposal) negotiation process.iifiplica-
tions of performing a multi-step negotiation instead of a{step negotiation can be found in [17].

A proposal which announces that a tagkneeds to be performed includes the following attributes:

1. earliest start timdest): the earliest start time of tagktaskt cannot be started before timaet.

2. deadline(di): the latest finish time of the task; the task needs to be faislefore the deadling.

3. minimum quality requiremerftning): the task needs to be finished with a quality achievemenesmthanning?.
4. regular reward(r): if the task is finished as the contract requested, the aotar agent will get reward r.

5. early finish reward ratde): if the contractor agent can finish the task by the tirfi§ @s it promised in the contract, it will get

the extra early finish rewardnaz (e * r  (dl — ft),r)3, in addition to the regular reward

6. decommitment penalty ra{g): if the contractor agent cannot perform the task as it psedhiin the contract (i.e. the task
could not finish by the promised finish time), it paydecommitment penaly = r)* to the contractee agent. Similarly, if the
contractee agent needs to cancel the contract after it legsdomfirmed, it also needs to paga@commitment penalfy « ) to

the contractor agent.

When the potential contractor agent receives a task propbeahluates it and decides to either accept it or rejedtiitaccepts

this proposal, it needs to decide what the promised finisk should be. If it rejects the proposal, it can either simply ‘610"

2In this framework, we allow a task to be completed in different ways whialy lead to different quality achievements, different durations

and different costs.
31t is assumed that for each time unit the task being finished earlier thare#tflime, the contractor agent gets extra rewasd-, but the

total extra reward would not exceed the reward
4Using this model, the penalty only depends on the decommitment rate aretjtiarrreward in the contract. Actually a more complicated

model can be introduced where the time of decommitment is taken into esaanh, i.e., a decommitment announced earlier has less penalty

than a decommitment in the last minute.



or generate a counter-proposal which modifies some of thibwtis in the proposal to accommodate its local problelvivsp
context.

In the above discussion, we assume the negotiation is altask éhat needs to be performed; however, the negotiativalca
be about a nonlocal resource requirement necessary foothpletion of a task. The agent can require a resource duriimgea
period and pay for this resource usage. In this situatiomesof the attributes specified in the proposal are differmrhfthose
in the above descriptidn but the basic negotiation process is the same, and the dwtigies we discuss in this paper are also

suitable for negotiation over resources.

2.2 Detailed example of a multi-linked negotiation problem
SupposeComputer Producer Agetias received the following two tasks in the same scheduiling windowf:

task name : PurchaseComputer_A

arrival time: 5

earliest start time: 10 (arrival time + estimated negotatitime (5))
deadline: 40

reward: r=10

decommitment penalty: p=0.5

early finish reward rate: e=0.01

task name : PurchaseComputer_B

arrival time: 7

earliest start time: 12 (arrival time + estimated negota@iitime (5))
deadline: 50

reward: r=10

decommitment penalty rate: p=0.6

early finish reward rate: e=0.005

The agent’s local schedufereasons about these two new tasks according to the abovenitfon: their earliest start times,

deadline, estimated process times and the rewards. It #rerates the following agenda which includes the followasks:
Agenda 2.1 [10, 26] PurchaseComputerA [26, 46] PurchaseComputerB

In this agenda, tadRurchaseComputerA is scheduled during time range [10, 26], and tBskchaseComputerB is scheduled
during time range [26, 46]. This agenda is only a high levahgnd does not include the detailed actions (methods) et t©
be executed. Th€omputer Producer Agemhecks the local plans for these tasks shown in Figure 4 and finds there are five
negotiations:
Wxample, the minimum quality requirement is not applicable for a reesqequirement. A quantity requirement may be necessary to
specify how much resource is needed.

5The agent will not schedule every time a new task arrives, but willcdudkeall tasks that fall into the same scheduling time window.

"The task cannot be started until the contract has been confirmed.
8In this work, we use MQ scheduler as agent’s local scheduler, whidsischon the MQ framework [14] that allows agents to reason about

different organizational objectives.
9There are different ways to perform a task, which are represerstatiffarent methods in the task structures. In FigureCdmputer

Producer Agenthooses to deliver the computer through the transporter aBetivér ComputerA) for taskPurchaseComputerA while ship
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1. Negotiate withConsumer Ageraibout the promised finish time BurchaseComputerA'°.
2. Negotiate withConsumer Agerdbout the promised finish time BurchaseComputerB.

3. Negotiate wittHardware Producer Agerabout whether it can accept the ta@s&t Hardware A and if it accepts this task, what

is the promised finish time.
4. Negotiate wittHardware Producer Agerdbout the taskset Hardware B, with the same concerns as above.

5. Negotiate withTransporter Agenabout whether it can accept the td3&liver ComputerA, and if it accepts this task, what is

the earliest start time and what is the promised finish time.

These five negotiations are all related. The potentialicglahips among multiple negotiation issues can be cladsafsetwo
types. One type of relationship is thaectly-linkedrelationship: negotiations A and B are directly-linked égotiation B affects
negotiation A directly because the subject in negotiatide 8 necessary resource (or a subtask) of the subject iniaggotA.
The characteristics (such as cost, duration and qualitgubject B directly affect the characteristics of subjecEar example,
as pictured in Figure 1, the negotiation on the tBskchaseComputerA is directly-linked to the negotiation on the two tasks:
GetHardware A and Deliver_.ComputerA. If either one of these two tasks fails, the ta&lrchaseComputerA cannot be ac-
complished. Furthermore, when and how these two tasks af@ped also affects the way that the td&lrchaseComputerA
is going to be accomplished. In the same way, the negotmadtoutGet Hardware B and PurchaseComputerB are directly-
linked.

Another type of relationship is thadirectly-linkedrelationship: negotiation A and B are indirectly-linkedtié subjects in these
negotiations compete for use of a common resource. For deaagpshown in Figure 4, besides the tBskchaseComputerA,
Computer Producer Agelhias another contract on taBkirchaseComputerB. Because of the limited capability of ti@mputer
Producer Agentwhen taskPurchaseComputerA will be performed affects when tagkurchaseComputerB can be performed.
The negotiation about tagkurchaseComputerA and the negotiation about taBkirchaseComputerB areindirectly-linked

the computer through a package mailing syst&migpingComputerA) for taskPurchaseComputerB. This decision is made by the agent’s

scheduler depending on the difference of the characteristics of thetbeds and the problem-solving context.
0There are other attributes in the proposal that also can be negotiatedunteagegular reward earlier reward ratg anddecommitment

penalty We only mentioneghromised finish timéere as an example, because it is closely related to other negotiations.



The essential difference between directly-linked andréwatly-linked relationships is the following. If negofiat A and B are
directly-related, then the failure of one negotiation mayse the subject (task or resource) in the other negotittioa infeasible
or unnecessary. For example, if the subject B is a subtask tfeh the failure of negotiation on B will cause the task A & b
infeasible if there is no other task that could substitutetdisk B; likewise, the failure of negotiation A will make tBabtask B
unnecessary. If negotiation A and B are indirectly-linkéndn there is no such influence between them. In the fornthlizadel

presented in Section 3, we will show that these two differelationships are represented differently.

2.3 Analysis of the Problem

In general, multi-linked negotiation (including both tieectly-linkedand theindirectly-linkedrelationships) describes situations
where one agent needs to negotiate with multiple agentd difterent issues, where the negotiation over one issuedanfies the
negotiations over other issues. The characteristics afdh@mitment on one issue affects the evaluation of a commitimethe
construction of a proposal for another issue. How can thatadgal with these interrelated negotiations? Two questiwed to
be answeredThe first question is in what order should the negotiationp&dormed Should all the negotiations be performed
concurrently or in sequence? If in sequence, in what se@?ehibe second question is how the agent assigns values for those
attributes (also referred as “features”) in negotiatipsuch as the earliest start time, deadline, so as to minithegotential
conflicts among negotiations and maximize the utility oféigent as a result of multiple negotiations.

In a multi-linked negotiation problem, there are potertiahany choices to order negotiatigrsuch as doing some of them
in parallel and some of them in sequence. Why is the order dftregpn important? First, because each negotiation ibsise
a negotiation deadline, set by the contractee agent, ifdh&ractor agent cannot reply to a task proposal before thetiagion
deadline, the negotiation fails. One reason for missingnibgotiation deadline is that the contractor agent is busytber
negotiations before it decides to perform this negotiatibarthermore, even if the negotiation is completed beftweléadline,
when the negotiation is started affects the likelihood ofiecessful negotiation. For example, when there are sepetahtial
contractor agents, the earlier a response to negotiaticeceved, the more likely the offer is accepted. Likewise earlier
the contractee agent initiates the negotiation, the magdylithe contractor agent is to accept the proposal, sineedrlier a
negotiation is started, the larger the space (time rangedhf agent to find a feasible solution. For instance, givex the
deadline for taskGetHardwareA is 30, if the negotiation on this task finishes at time 10, ¢hisra 20-time-unit range for
Hardware Producer Agertb find a time in its local schedule to execute this task; ifriegotiation finishes at time 2Blardware
Producer Agenbnly has 10-time-unit range to find a suitable time slot tocexe this task. So the order of negotiation directly
affects the outcome of the negotiation.

Meanwhile, in a multi-linked negotiation problem, theree aeveral features that the agent needs to negotiate ovezafci
subject. For a task proposal, the contractee agent needs to find theséatart time and deadline to request for the task, how
much reward to pay for this task, the early reward rate, aadldtommitment penalty, etc. The contractor agent needscidel
the promised finish time. Some of these features are relatén tfeatures of the subjects in other negotiations. Fameia the
deadline proposed for tasket Hardware A affects the earliest start time of taBleliver ComputerA, and the deadline of task
Deliver_ ComputerA affects the promised finish time for taBkirchaseComputerA. The agent needs to find appropriate values
for these features to avoid conflicts among them and to maiestkare is a feasible local schedule to accommodate albttad |
tasks and commitments. Furthermore, the values of thetgrésanfluence the outcomes of the negotiation and the adecal

utility. For example, the greater the reward is, the gretiterlikelihood that the task will be accepted by the contraegent;
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Figure 5: Interrelationships among negotiations

B or A: negotiation on Purchase_Computer_A
C1: negotiation with TAgent_1 about Deliver_Computer_,
C2: negotiation with TAgent_2 about Deliver_Computer_,

C1l Cc2

Figure 6: Negotiation with multiple agents on one subject

however, the contractee agent’s local utility decreasdbeaseward it pays to the contractor agent increases. Atsolater the
deadline for taskset Hardware A is, the more likely that this task will be accepted by Herdware Producer Agenhowever, the
consequence of a later deadline for t&# Hardware A is that there is less freedom for scheduling tBskiver ComputerA, and
the promised finish time for tadRkurchaseComputerA is pushed back later, hence reducing the early reward th&dmputer
Producer Agentay get. A good negotiation strategy for a multi-linked rigggeon problem should take an end-to-end perspective
that accounts for all negotiations, and provides the agéhtam appropriate order of all negotiations and a featuseament (a

set of assigned values) for those attributes under negutjao as to avoid the conflicts among negotiations and dgeintility.

3 Model of the Problem

In this section, we first introduce a formalized model of thdtirlinked negotiation problem and then present a heigrigtarch
algorithm to find a near-optimal negotiation approach: &ufieaassignment and an order for a group of negotiationsathagent

needs to conduct in order to optimize the expected utility.

3.1 Definition of the Problem
A multi-linked negotiation problem occurs when an agentihattiple negotiations that are interrelated.

Definition 3.1 A multi-linked negotiation problem is defined as an undirected graph (more specifically, a foassa set of
rooted trees): M = (V, &), whereV = {v} is a finite set of negotiations, anfl = {(u,v)} is a set of binary relations on
V. (u,v) € E denotes that negotiation u and negotiation v are diredtiked'. The relationships among the negotiations are
described by a forest, a set of rooted trd@%}. There is a relation operator associated with every norfHesgyotiationv (denoted
asp(v)), which describes the relationship between negotiatiamd its children. This relation operator has two possibléies:
AND andOR.

Figure 5 shows the model of the multi-linked negotiationhpeo (described in Figure 4) faomputer Producer Agent
the problem includes five negotiations. This model can aludke negotiating with multiple agents on one subject. Ker e

Hisolated nodes can be either independent or indirectly-linked, degendinvhether they compete for the same resource. Let’s take the
computational resource as an example: if the time window [est, dI] for thengotiation subjects are overlapped, they are indirectly-linked;
otherwise, they are independent.

10



ample, Figure 6 shows there are two transport agents: TAhgemtd TAgent2, both can be a potentially contractee for task
Deliver_.ComputerA. The negotiation with TAgent and the negotiation with TAger& can be modeled as C1 and C2 under C
with a relation operato® R.

The subject in a negotiationmay be a task to be allocated or a resource to be acquiredhthragotiation.

From an agent’s viewpoint, there are two types of negotiatio

1. Incoming negotiation: The negotiation about a task proposed by another agentresaarce requested by another agent.
For example, negotiation APurchaseComputerA) and D PurchaseComputerB) in Figure 4 are incoming negotiations for

Computer Producer Agent

2. Outgoing negotiatiort The negotiation about a task that needs to be sub-condrszt@nother agent, or a resource requested
for a local task. For example, issue Bt Hardware A), C (Deliver ComputerA) and E GetHardware B) in Figure 4 are

outgoing negotiations faComputer Producer Agent

Definition 3.2 A negotiationv is successfuif and only if a commitment has been established and confiforetthe subject in

this negotiation by those agents which are involved in tegatiation.

Definition 3.3 A leaf nodev is task-level successfuif and only ifv is successful; A non-leaf nodels task-level successfuif

and only if the following conditions are fulfilled:

e v is successful;

e all its children are task-level successfupifv) = AN D; or at least one of its children is task-level successful(if) = OR.

As in Figure 5, negotiation A is task-level successful if amdy if negotiation A is successful, and negotiations B andr€
also successful. In this casepmputer Producer Agesan actually perform tasRurchaseComputerA successfully.

Each negotiation;(v; € V) is associated with a set of attributds = {a;;}. Each attributes;; either has already been
determined or needs to be decided. There are two types fudis: theattributes-in-negotiatior(the features (attributes) of
the subject to be negotiated, such as task deadline, rewan), quantity, etc.), and thattributes-of-negotiation itselfi.e.
negotiation start time, negotiation deadline, etc.). Ttigbaites in negotiation are in general domain dependenthis supply
chain example, the following attributes (this is a comphete formal presentation compared to those mentioned inoBe2tl)

need to be considered:

1. time rangdst(v;), dl(v;)): the time range associated with a task contains the staet(tit(w;)) and the deadlinei{(v;)). The
task can only be performed during this rangg(v;), di(v;)) to produce a valid result.

2. duration {(v;)): the process time requested to accomplish this task.

3. flexibility (f(v;)): the flexibility is defined based on the time range and thetitm: f(v;) = % The flexibility
is an important feature because it directly affects thesseprobability of the negotiation (See detail in Sectian 5)

4. finish time (ft(v;)): the promised finish time for the task.

5. regular rewardi((v;)): if the contractee agent can finish the task by the deadlifg), it gets reward-(v; ).

6. early reward ratee(v;)): if the contractee agent can finish the task earlier tharléallinedi(v;), it gets extra reward(v;) *
(dl(vi) — ft(vi)).

7. decommitment penaltg(v;)): the penalty paid to the other agent which is involved inategionv;, when the agent decommits

afterv; is successful.
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. task-level successful reward(;)): the agent's utility increases by the amountydi;) whenw; is a root of a tree and is
task-level successful. It is calculated by subtractingcthe ofwv;, including the local cost and sub-contracting cost (thearelw

paid to other agents), from the total rewardvp{regular reward plus early reward).
The attributes-of-negotiation itself describes the niegjion process, they are domain in-dependent:

. nhegotiation durationd(v;)): the time needed for negotiatian either to successfully complete or fail. It is assumed that
negotiation duration is part of the agent’s knowlettge

2. negotiation start timen((v;)): the start time of negotiation;. a(v;) is an attribute that needs to be decided by the agent.

. negotiation deadline:(v;)): negotiationv; needs to be finished before this deadliie;). The negotiation is no longer valid
after timee(v; ), which is the same as a failure outcome of this negotiatian.eikample, if task; is proposed for negotiation,
the contractee agent needs to reply before tifeg). Otherwise, this task proposal is no longer valid and therectee agent
would think the contractor agent is not interested in thiktdurthermore, even if the agent starts the negotiatiorée(v;),
it is not necessarily true that all times befefe;) are equally good. Usually, a negotiation that is startellezdras a better
chance to succeed for two reasons: the other party congtisrissue before other later arriving issues, and thisisgas a
larger time range for negotiation. This relationship isalieed by the functior; that takesxy(v;) as one of its parameters.

. success probabilityp((v;)): the probability that; is successful. It depends on a set of attributes, includaoth httributes-
in-negotiation (i.e. reward, flexibility, etc.) and atwiies-of-negotiation (i.e. negotiation start time, negtin deadline,
etc.). How these attributes affect the success probaluitity be described as a functign(an example of this function is
introduced in Section 5), which maps the values of the aiteib;;, j = 1,2, ..., k, tops(v;): ps(vi) = Ci(ain, @izs -, Gik)- Gij
(j = 1,..., k) represent the attributes that affect the success protyatiilihis negotiation. This function is domain dependent,
the agent can construct this function through the follonapgroaches. One approach is that for the agents to comnteinica
meta-level information before negotiation, such as theksime in the agent’s schedule, the number of other congrstietc.
This information could be used by the agent to construct timetfon more accurately. Another approach is for an agent to
learn to construct and adjust the structure of this fundbased on its previous negotiation experience, providettigasimilar

negotiation situations are encountered multiple timesnfeecement learning is a suitable technique for this peathl

The attributes above are similar to those used in projectagement [7], however, the multi-linked negotiation probleannot
be reduced to a project management problem or a schedulitdepn. As Figure 7 shows, the multi-linked negotiation peat
includes two sets of interrelated objects, the set of nagiotis (shown in the upper box) and the subjects in thesetiaéigas
(shown in the lower box). The negotiations are interrelaed the subjects are interrelated, also the attributes gitizgions
and the attributes of the subjects are interrelated too. lilke among those attributes show the interrelationshipsray these
attributes. For example, the negotiation start time andhéfgotiation deadline affect the success probability, ithe range, the
regular reward, and the earlier reward rate also affect ticeess probability. To solve a multi-linked negotiatiololgem, an
agent needs to find a negotiation solution that includes tterimg of these negotiations (negotiation ordering) goprapriate
values assigned to those attributes-in-negotiation feaassignment). The goal is to find a negotiation solutiah diptimizes
the agent’s expected utility in these negotiations. Theasg probabilities, the task level success rewards ancett@unitment
penalties all contribute to the evaluation of a negotiasoiution. The negotiation ordering determines the netjotiastart

time and/or the negotiation deadline of each negotiatibis, drdering process can be viewed as a scheduling procekess

12|n this case, we used an expectation of the negotiation duration, which lbeldgrned from experience.
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Negatiations: A, B, C D, and E

Attributes of each negotiations:

negotiation start time
negotiation deadline >\

success probability

Evaluation of

et_Software_A

Subjects in negotiations
A,B,C,D,and E

a negotiation solution:

negotiation ordering

[10, 24]

Inslall_Soflware_HDeliver_Compuler_/%

feature assignment

B

[24, 30] [30, 40] | Attributes in negatiation of A and D:
1| Get_Hardware_A ' promised finish time
| Purchase_Computer_A finish at time 4(Q
I [10, 24] A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, task-level successful reward

Get_Software. B  [Attributes in negotiation of B, C, and E:,

[12,26]

Insta]l_Software_%—[ShippinU_Computer_% ! time range

126, 44] 129, 50]

E

regular reward
Get_Hardware_B

Purchase_Computer_B finish at time 50 3 earlier reward rate

[12,26]

decommitment penalty

Figure 7: The Structure of Multi-Linked Negotiation Proivle

negotiations. Part of the feature assignment process isdafinsistent time ranges for those subjects in negot&tiwhich is
another scheduling-like process. However, the whole Hiinlted problem is not a classic scheduling problem giverséhtwo
sets of interrelated objects. These extra dimensional qties and interrelationships distinguish it from thasdic project

management/scheduling problem, where there is only oraf ggterrelated objects that need to be arranged in order.

3.2 Description of the Solution

Given this multi-linked negotiation problemv = (V, £), an agent needs to make a decision about how the negotiationdd
be performed. The decision concerns the negotiation ergend the feature assignment, and they are interrelatesl valbhes
assigned to some attributes, such as reward and flexibilityaffect the probability of the success of the negotiatiand hence

will affect the ordering of the negotiations.

Definition 3.4 A negotiation ordering ¢ is a directed acyclic graph (DAGY; = (V, Ey). If e : (v;,v;) € E4, then negotiation
v; can only start after negotiation; has been completed. : (v;,v;) is referred as gpartial order relationship (POR), e. A
negotiation ordering can be represented as a s®0ORs, {e}.

Definition 3.5 A negotiation scheduld/S(¢) contains a set of negotiatiof{s; }. Each negotiation; has its negotiation start
time a(v;)4 and its negotiation finish time(v; ), that is calculated based on its negotiation duratiéfy;) and its negotiation

start timea(v;) .

Using the topological sorting algorithm, a negotiationestle 'S (¢) can be generated from a negotiation ordegiragsuming
all negotiations started at their earliest possible tihe&iven this assumption and a start timé for a set of negotiations, the

13|t assumes the negotiation on an issue starts immediately after all the negsttatib precede this negotiation have been finished according

to the negotiation ordering.
“The start time specifies the earliest start time for all negotiations. It is alssille to specify a separately earliest start time for each

negotiation.

13



D E D———E D

Ordering #1 Ordering #2 Ordering #3

Figure 8: Three possible negotiation orderings

negotiation schedule generated from a negotiation orgésinnique.

As shown in Figure 8, suppose the negotiation start time 0, and the negotiation duration of each negotiation is theesam
0(v;) = 5, then the following negotiation schedule is generated égiatiation ordering #3 in Figure 8 according to the assuonpti
that every negotiation starts at its earliest possible:time
A[0,5]B[5,10]C[5,10]D[0, 5] E[5, 10]

A0, 5] means that negotiation A starts at time 0 and finishes at time 5

Definition 3.6 Given a start timer, a negotiation ordering is valid if for every negotiation issue;, the finish time:(v;)4 is no
later than the negotiation deadlingv;).
Definition 3.7 A feature assignmengtis a mapping function that assigns a valug to each attributes,; that needs to be decided

in the negotiation. A feature assignmenis valid if the assigned values of those attributes are consistethteech other.

"Consistent” is interpreted differently for different fiemes. For time-related features, "consistent” meansgivan the assigned
values of those time constraints, there exists at least @astfle local schedule for all tasks. The partial order dalee and a
related toolkit presented in section 4 are used to test &fiseggned values of the time-related features are consigt@nmonetary
features such as reward or price, "consistent” means tleagum of the sub-contracting cost paid to other agents ishassthe

total expected reward. Algorithm A.1 in the Appendix hamsdlee consistent check for all types of features.
Definition 3.8 A negotiation solutiorf¢, ¢) is a combination of a negotiation orderirgand a valid feature assignmeat
The evaluation of a negotiation solution is based on the @rgetask-level successful rewards and decommitment femnal

given all possible negotiation outcomes for each negotiath negotiation has two possible outcomssccesandfailure.

Definition 3.9 A negotiation outcomg for a set of negotiation$v; }, (j = 1, ..., n) is a set of number§o, }(j = 1, ...,n),0; €
{0,1}. o; = 1 meansy; is successfulp; = 0 meansy; fails. There are a total o™ different outcomes for. negotiations,
denoted ag(1, x2, .- X2n-
Definition 3.10 The expected value of a negotiation solutigny), denoted agV (¢, ), is defined as:
EV(#.9) =TI, P(xir @) * (R(xir @) + C(xir 6,9))

P(x:, ) denotes the probability of the outcorgegiven the feature assignmept

P(xi» ) = Tj=1 pis(¢)

Ps(v)), (ps(vs) = Gi(p)) ifoj €xi=1
pij(p) = .
1 —ps(vy) ifoj € xi=0
R(x:,¢) denotes the agent's utility increase given the outcamend the feature assignmept R(x;,¢) = >, 7 (v;), v;
is a root of a tree and; is task-level successful according to the outcome C(x;, ¢, ¢) denotes the decommitment penalty
(C(xi, ¢, ) <= 0) according to the outcomg;, the negotiation ordering and the feature assignmept C(x;, ¢, ¢) is the sum

of the decommitment penalties of those negotiations, vérelsuccessful, but their root nodes are not task-levelessfal, and
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such situations are unknown before these negotiation artest. C'(x;, ¢, ¢) = Zj B, (v;), v; represents every negotiation that

fulfills all the following conditions:

1. v; is successful according tg;;
2. the root of the tree that; belongs to isn't task-level successful accordingp
3. according to the negotiation ordering there is no such negotiatian, existing that fulfills all the following conditions:
(a) v andv; belong to the same tree;
(b) vy gets a failure outcome according to the outcome
(c) vx makes it impossible fatoot(v;) to be task-level successful;
(d) the negotiation finish time @, is no later than the negotiation start time ©f according to the negotiation ordering

3.3 Description of a Heuristic Search Algorithm

Based on the above definition, we present an algorithm thdtdimearly optimal (as we show in the experimental results)
negotiation solution for a multi-linked negotiation prebi M = (V, £).

Given a multi-linked negotiation problesm = (V, ), the start time for negotiation, a set of valid feature assignments
w={er}, k =1,...,m, the complete search algorithm evaluates each pair of iaigot ordering and valid feature assignment
(¢:, ox), and then return the best dfie The exponential complexity of this complete algorithmveres it from being used for
real-time applications when the number of negotiationstaechumber of valid feature assignments are large; henceréstie
search algorithm has been developed.

The heuristic search for the near-optimal negotiationtgmilis broken into two parts. One is to find a near-optimalatiegion
schedule; the other one is to find a near-optimal featurgasegnt for a given negotiation schedule. The search for ptienal
negotiation schedule is based on a simulated annealingtse@iven a negotiation ordering randomly pick a POR, if e € Ey,
remove it fromE,; otherwise add it intdZ,'°. A new negotiation ordering,,.., is now generated. If the negotiation schedule
NS (¢new) is better thanV'S(¢), move t0g,,..,; otherwise, move t@,,.., with some probability less than 1. This probability

decreases exponentially with the “badness” of this moveed heuristics have been added to this simulated anneaticggs:

1. Record the best negotiation schedule so far found. Whesdhich process ends, return the best negotiation schedarle e
found rather than the current one.
2. Instead of randomly deciding whether to add a POR or renao®©R, use a parameterd(l_por_probability) to control
the probability of the operation “add” or “remove”. Actuglthis parameter controls the tradeoff between sequenargus
parallelizing the negotiation schedule (adding a POR fote® negotiations to be serialized).
3. Instead of completely randomly choosing a POR to charage fiurrent negotiation ordering, evaluate every RQiRcording
to how the value of the negotiation schedule changes by gdtia PORe to an empty POR set. The probability of adding
PORe to the current POR set or removing P@Rom the current POR set depends on this evaluation. A P@ith a higher
mvalid feature assignments is a complete set of all possiblefeatisre assignments, this algorithm is guaranteed to find the best
negotiation solution. However, when the attributes have continuous vaigesait is impossible to find all possible valid feature assignments.

We use a depth- first search (DFS) algorithm that searches overtiteevaiue space for all undecided attributes by pre-defined searchizeep

and finds a set of valid feature assignments (See Appendix, Algoritim A.
1%The algorithm checks whether adding P@R ¢ causes a circle. If se,won't be added, and the algorithm will randomly choose another

POR and continue.
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positive evaluation has a higher probability of being ad@ded has a lower probability of being removed.
Consider an example with three negotiations A, B and C. Sspfiee negotiation start time= 0, and the negotiation duration
of each negotiation is the sani¢v;) = 5, the evaluation of PORA — B) is calculated as: the value of the negotiation

schedule:A[0, 5] B[5, 10]C0, 5] minus the value of the negotiation schedwg0, 5] B[0, 5]C0, 5].

The search for the near-optimal feature assignment is twasadill climbing search. Randomly pick another featurégmsaent
vk Ifitis better than current one, move ¢q.. After considering the characteristics of this problene, fitllowing heuristics have

been added to this search process:

1. According to the generation process, the change of thalgkfeature assignments is continuous. Based on this wditsem, a
number of sample points with equal distance (the distanadjisstable, denoted aample_step) in between can be selected
from all the valid feature assignments and evaluated. Hifilting search then can be performed for each sample point.

2. Given current chosen feature assignment, the possiblatipns include: moving to left and moving to right. If tees a better
selection than current one, move to the better selectitreraise the search stops and a local maxima is found.

3. Compare all local maxima and return the best one.

Both search algorithms are implemented with search limitaihreshold: after certain amount of search effort, tlypalhm
will stop and report the result. Experiments were performogest how well these combined heuristic algorithms workl as we
will describe in 6.1, the experimental work shows that therlstic search algorithm finds solutions very close to thet belutions

found by the complete search algorithm with significantisleffort.

4 Partial Order Schedule and Related Algorithms

In this section, we will introduce a partial order schedukaich allows the agent to reason about the time-relatedt@ints and
the flexibility associated with each negotiation issue sTholkit is used by the agent to find valid feature assignmevitich are

part of the input for the heuristic search algorithm desim Section 3.3.

4.1 Partial Order Schedule

A partial-order schedule is the basic reasoning tool thauseefor interrelated negotiations. Here we present thedtization
of the partial-order schedule and use examples to explainth@orks for a multi-linked negotiation. Figure 9 shows theertial-
ordered schedule generated for the example in Figure 4.

A partial order schedul€ represents a group of tasks with specified precedenceareships among them using a directed
acyclic graph:PS = (T, R). T = {t|tisatask}, where each vertex ifi represents a task, aftl = {(s,t)|s,t € T)}, where
each edgés, t) in R denotes the precedence relationship betweensasid task: (P(s, t)), which means that taskhas to be
finished before taskcan be started.

A Taskis represented as a node in the graph; it is the basic elenfighé achedule. A task needs a certain amount of
processing time, also referred as its duratibprocess_time). A task can be a local task or a non-local task; a local task is
performed locally (i.e, tasteet SoftwareA and taskShippingComputerB) and a non-local task (i.e. tasket Hardware _A and
taskDeliver_.ComputerA) is performed by another agent; hence, it does not consucaépoocess time. Theretasks of taskis

7In this paper, the term “partial order schedule” refers to a repretiemtaf a group tasks with specified precedence relationships, which also
includes the associated definitions in this section. The term “partial ortledster” is used to refer to the procedure which actually produces
the partial order schedules for tasks, and a set of associated irgpatjorithms presented in Section 4.2.
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est: earliest start time
dl:deadline
est_0:10; dl_0:70; pt:3 est_0:10; dI_0:40; pt:6 | pt: process time

est:10; dl:31; eft:13; Ist:28 DeIiver_Computer_A) |6ft2 Iearliest finish time
st: latest start time
est_0:10; dI_0:40; pt:7 ~~ €st:17; dI:34; eft:20; Ist:31  est:20; dl:40; eft:26; Ist:3 est_o: outside earliest start tim

dl_o: outside_deadline

est_0:10; dl_0:40; pt:3

est_0:12; dl_o:50; pt:3
est:10; dI:31; eft:17; Ist:24

est_0:12; dl_0:50; pt:3 est_0:12; dl_0:50; pt:10
InstaII_Software_}B_,[ Shipping_ComputerJB
est:19; dl:40; eft:22; Ist:37 est:22; dI:50; eft:32; Ist:40

(e Sotvare ¢
est:12; dI:37; eft:15; Ist:34
est_0:12; dl_o:50; pt:7
est:12; dI:37; eft:19; Ist:30

Figure 9: The partial order schedule@dmputer Producer Agent

a set of tasks that need to be finished befatan start:Pre(t) = {s|s €T, (s,t) € R}; t can start only after all tasks iRre(t)
have been finished. For example, the pretasks ofltestkll_SoftwareA includes taslGet Hardware A and taskGet SoftwareA.
The posttasks of task is a set of tasks that only can start aftdras been finishedPost(t) = {r|r €T,< t,r >€ R}. For
example, the posttasks of taistall_SoftwareB includes tasiShipping_ Computer.B.

A taskt has constraints dfarliest start timgt.est) anddeadline(t.dl). Theearliest start timeof a tasks (¢.est) is determined

by theearliest finish timeof its pretasksdft[Pre(t)]) and itsoutside earliest start timeonstraint {.est_o) 8:
t.est = maz(eft[Pre(t)],t.est_o)

Theearliest finish timeof a taskt (t.eft) is defined as:
t.eft =t.est + t.process_time

The earliest finish timeof a set of taskg (eft[T7]) is defined as the earliest possible time to finish every taske setT’; it
depends on thearliest start timeand the duration of each task. For example, in Figure 9ptitgide earliest start timeonstraint
for task Install_SoftwareA is 10 (same as its super taBkirchaseComputer A, the earliest finish timefor its pretasks is 17
(assumeset Hardware A could be finished at its earliest possible time), thenetiiest start timeor taskinstall_SoftwareA is
17.

The deadlineof taskt (¢.dl) is determined by théatest start timeof its posttasksigt[Post(t)]) and itsoutside deadline

constraint{.dl_o):
t.dl = min(lst[Post(t)], t.dl-o);

Thelatest start timeof a taskt (Ist(t)) is defined as:
t.Ast = t.dl — t.process_time;

Thelatest start timeof a set of taskd” (Ist[T']) is defined as the latest time for the tasks in this set towsiitout any task missing

its deadline. It depends on the deadline and the duratioaaif &ask.

180utside earliest start timfor task t is the earliest possible start time decided by the problem-soleittgxt. As a given parameter, it is not
changeable during the partial order reasoning process. For exdfithkecurrent time is 15, the task cannot start before time 15. In a similar
way, theoutside deadlineonstraint is the task'deadlinedecided by the problem solving context.
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Get_Software_A

Install_Soft
17341 [24, 30]

C
Deliver_Com
—f26:461 [30, 40]

116,31 [10, 24] Purchase_Computer_A finish at time 40

Install_Software_I%—[ Shipping_Computer_%

119,461 [26, 4] 1227561 [29, 50]

Get_Hardware_B

2737 [12, 26]

Purchase_Computer_B finish at time 50

Figure 10: The consistent ranges for tasks in negotiati@t:HardwareA, Get HardwareB, and DeliverComputerA

Theflexibility of task trepresents the freedom to move the task around in this stshedu

__ t.dl—t.est—t.process_time
F(t> - t.process_time '

For exampleF'(Get_Software_A) = % =0,

A feasible linear schedulis a total ordered schedule of all tasks, that fulfills théoiwing conditions:

e Each taskt takesn (n>=1, if ¢ is interruptible; otherwise, n=1.) time periodst{: = 1,...n ) for execution,) . pt; =

t.processtime.
e All precedence relationships are valid.
o All earliest start time and deadline constraints are valid.

A partial-order schedule is\alid if and only if there exists at least one feasible linear sakeethat can be produced from this
partial order schedule without additional constraints aiitl the interruptible execution assumptién

Without additional constraints and with the interruptibbecution assumption, for a taskvith the range [est, dlI], no matter
when task is executed during this range, if there exists at least oaglfée linear schedule that can be produced from this partia
schedule, then the range [est, dI] for task afree rangebecause taskcan be executed during any period in this range.

Without additional constraints and with the interruptibbecution assumption, for a set of tagkgi = 1,2,...,n), with the
rangelest;, dl;], (i = 1,2,...n) respectively, no matter what timeg is executed during the randest,, di;], if there exists at
least one feasible linear schedule that can be producedtfiisnpartial schedule, then the randest;, dl;], (i = 1,2, ...n) for
taskst;, (i = 1,2,...,n) areconsistent rangesNegotiation over tasks;, (i = 1,2,...,n) can be performed in parallel using
these consistent ranges without worrying about conflicigurié 10 shows the consistent ranges for the tasks in thdysapain
example. This means, the negotiation for task BatdwareA, Get HardwareB, and DeliverComputerA can be performed in
mr schedule is a representation and reasoning tool of @ gftasks and their interrelationships. It is not an executable schedule
for the agent. To translate a partial-order schedule to an executabledatestule, there are two different assumptions: the task is interruptible
or non- interruptible. The interruptible execution assumption is that thet @gerswitch to another task during the execution of one task, and
it can switch back at some point and continue the execution of the inconiaéteThe non-interruptible execution assumption does not allow

execution of a task to be split into parts. In this work we adopt the interrupgitdeution assumption, however, we also do not consider there is
cost for interrupting and resumption of a task.
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[Get_Hardware_A]E Get_Hardware_@ [ Deliver_Computer_}A

[10, 24] [12, 26] [30, 40] f@ time gish time
10 13 13 16 24 27 27 30 30 40
[Get_Software_A] [Get_Software_B] [I nstall_Software_A ] [InstaII_Software_B ] [Shipping_Computer_B]
[10, 24] [12, 26] [24, 30] [26, 44] [29, 50]
consistent range
Purchase_Computer_A finish at time 40 Purchase_Computer_B finish at time 40

Figure 11: The feasible linear schedule for those tasksguorgi10

parallel using the time range [10, 24], [12, 26] and [30, 48fure 11 presents a feasible linear schedule given thesastent
ranges. The two numbers in a box below a task represent theéstamt range for this task, and the two numbers above a task
indicate the start time and the finish time for this task in imear schedule. It should be noticed that for each taskttme ttme

and the finish time fall into its consistent range, they abso lse moved freely during this range.

The partial order schedule work is related to the Graphieallition and Review Technique(GERT) [8] which is used for
project scheduling and management. The major different@dam the GERT work and ours is that the GERT work is not
oriented to negotiation; all activities are local and cami@aged with authority. Thus, with GERT there is no reagpaivout
free range, consistent ranges and schedule flexibility wieafeel are critical for an agent to effectively manage mudtied

negotiation. Without reasoning of these factors, it is cliffi to negotiate efficiently on multiple related issues.

4.2 Algorithms
We have built the following algorithms to support the negtitin based on the partial order schedule. We only desdnibe t
functions of these algorithms, the detailed processesrasepted in [16]. The complexities of these algorithms aowigded

accordinglyn represents the number of input tasks.

Algorithm 4.1 PropagateESTDL (Complexity:O(n?))
Given a set of tasks with the outside constraints of the estritart times and deadlines, durations and precedenatigakhips,

this procedure finds the earliest start timeet) and the deadlinet(dl) for each task according to the definitions in Section 4.1.

Algorithm 4.2 GetEarliest Finish_Time (ComplexityO(n?))
Given a set of task®, each task t has earliest start timedst) and its duration {.process_time), this procedure calculates the

earliest finish time of a set of tas&s(e ft[T7)).

Algorithm 4.3 Get LatestStart Time (ComplexityO(n?))
Given a set of task®', each task has its deadlinet(dl) and its duration {.process_time), this procedure calculates the latest

start time of a set taskB (Ist[T)).

Algorithm 4.4 FeasibleSchedule (Complexity?(n?))
Given a partial order schedule (T, R), each task has its earlstart time and duration with respect to its pretask, aestand its
outside constraints, this procedure generates a feasibéat schedule if the partial order schedule is valid; otvese it reports

failure.

Theorem 4.1 If there exists a feasible linear schedule, the Feastdbedule algorithm can find one.
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Figure 12: Success probability depends on flexibility

The proof of this theorem is presented in [16].
Besides Algorithm 4.4, we have also developed Algorithmtd.&nswer the question of whether a partial order schedule is

valid without trying to find a feasible linear schedule.

Algorithm 4.5 RangeEvaluation (ComplexityO(n?))

This procedure determines if a partial order schedule isdval

The basic idea of Algorithm 4.5 is to check every possibleetimngelest, dl] by constructing all possible combinations of
every task’s earliest start time and deadline. For all tékag into this range, if the sum of process times of thesks is greater
than the time availabl&ll — est), there is no feasible linear schedule; otherwise, thergt®zifeasible linear schedule, because
every task can find a place between its earliest start time andaedline

This proves the following theorem:
Theorem 4.2 A partial order schedule is valid if and only if the proceddr® returns true.

Using the above procedure, we have constructed the folpaigorithm to find the free range of a non-local task usedHer t
negotiation.
Algorithm 4.6 Find_NL_Range (Complexity©(n?))
Given a partial order schedul€l’, R) containing a task:it, this procedure finds the largest free range for tagk

If there is more than one non-local task, we need to sort thegarding to some characteristics (i.e. flexibility, im@orte,
difficulty of negotiation, etc.), and work on them one by oiéhen the Find\L _range procedure works on one task_i, the
range for those tasks beforeitl(_1, ...,nlt_(i — 1)) has already been decided and cannot be changed. The rarigede tasks
afterit (nlt_(: + 1), ...) are set to a range that is as small as possible, so dewothis tasknlt_i to have the most freedom.

All of the above algorithms and procedures provide a todtkithe agent to reason about its proposals and evaluatdereun

proposals from other agents.

5 Example

In this section, we demonstrate how the definition and theralgn work on the supply chain examples in Figure 4.
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Figure 13: Partial order schedule

To make the output easier to understand, only negotiatiorPérghaseComputerA), B (GetHardwareA) and C (De-
liver_ComputerA) are considered in the following example. For incomingatégion A, regular reward(A) = 19, the attribute
that needed to be decided is the promised finish tfinehe task-level successful reward depends on the promisisti fime f:
Y(v) = r(v) + e(v) * (dl(v) — ft(v)).

For outgoing negotiation B and C, the attributes needed weloeded are the start timet] and the deadlined{). It is assumed
that the negotiation durations are already known to thetaged) = 3, 6(B) = 4, 6(C) = 4. The negotiation start times
need to be decide by the agent as part of the problem of catisfyua negotiation ordering. It is also assumed that theess

probability depends on the flexibilit§(v), which is calculated based on the time rafggv), dl(v)) and the process timév)

(f(v) = HE=g=A):

Ps(v) = pos(v) % (2/7) * (arctan(f(v) + c)))
pps 1S thebasic success probabilityof this negotiatiory when the flexibility f (v) is very large.c is a constant parameter used to
adjust the relationship. In this example, the followingdtions are used to determine the success probabilities &wdBC:
ps(B) = pps(B) * (2/7) = (arctan(f(B) + 2.5));
Ps(C) = pos(C) * (2/m) * (arctan(f(C) + 5)).
Pps(B) = 0.95, pps (C) = 0.99.
The different constant parameters faf B) (2.5) andp,(C) (5) specify that issue C has a higterccess probabilitthan issue
B given the same flexibility, as shown in Figure 12. The follagvparameters are randomly generated: the success piitbabi
A, the negotiation deadline, the early reward ratelpénd the decommitment penalty.

For every attribute that needs to be decided: start tit}e deadline {/) and the promised finish timeg{), the agent can find its
maximum possible range using the partial order scheduleasrsin Figure 13. The agent searches over the entire pessihle
space (Appendix, Algorithm A.1), and use the partial orddreslule to test if a feature assignment is valid. A set ofMaature

assignments is found and used to find the optimal negotiatiution combining ordering constraints and feature assant.

29This function describes a phenomenon where initially the likelihood of aesisfel negotiation increases significantly as the flexibility
grows, and then levels off afterwards. This function mirrors our ggpee from the experiments in Section 6.3, which shows that after arcerta
point, additional flexibility does not significantly improve the success itiba Obviously this function could be affected by the meta-level
information from the other agent.
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Table 1 shows the output of the complete search algorithra &ppendix, Algorithm A.3) on six different cases in Figure 5
based on different negotiation deadlines, early rewasbsrand decommitment penalties. In both case 1 and case 2gbgation
deadlines = 6 is used, which results in a negotiation ordering that haghte= negotiations performed in parallel. In case 2, A
has a higher earlier reward rate4), and all negotiations have lower decommitment penaltidgan in case 1, so the negotiation
solution in case 2 arranges task A to finish 21 time units exattiian the requested deadline, and earns an extra rewar@. dh4
exchange, B and C have smaller flexibilitié6B) and f(C'), hence lower success probabiljly(B) andp,(C). In case 3 and
case 4, the negotiation deadline- 9. In case 3, A has a much lower success probahiliyd) than in case 4, so negotiation A
is scheduled before negotiation B and C. In case 5 and cake @gegotiation deadline = 11 and negotiation A, B and C are
sequenced according to the success probabilities; thetiaggo with the lower success probability starts earliercase 6, A
has a higher earlier reward ratéA), and all negotiations have lower decommitment penaftiisan case 5, so the negotiation
solution in case 6 arranges task A to finish 9 time units eattian the requested deadline; this earns an extra of rewardrl
exchange, B and C have smaller flexibilitig6B) and f(C') and hence lower success probabilitie$B) andps(C). It is also
important to notice that in all cases, B gets larger flexipilhan C, but has a similar success probability to that of Iis dccurs
because it is much easier for C to achieve a successful aéigataccording to the function that defines the relatiqnfleitween
the success probability and the flexibility. This result dastrates that this type of reasoning is possible givendiradl model

described in Section 3.

6 Experimental Work

We have implemented all the algorithms and reasoning taggsribed in previous sections. To evaluate how these mesthan
work, we have built those agents that described in the sughain scenario (Section 5). These agents are implemenitegl JA-
(Java Agent Framework) [4], which provides the basic fuoretisuch as communication and execution, for the agent, smawe
focus on building the negotiation component. The experisiare performed in the multi-agent system simulator (MARBE)
which provides a concrete, re-runnable, well-defined emvirent to test multi-agent negotiation. We designed anfbpeed

three sets of experiments for different purposes as desthblow.

6.1 Performance of Heuristic Algorithm

The first purpose is to test how well the heuristic algorithorkg compared to the complete search algorithm. The expetah
setting is based on the example described in Section 5. N&kg t@ere randomly generated with decommitment penalty
[0, 25], early finish reward rate € [0,0.2], and deadlinell € [60, 70], and arrived at the contractee agents periodically. We use
the same task structures as described in Figure 4, tasksvitAryandomly generated parameters. This scenario repieaelass
of problems where one agent needs to deal with both direetihted and indirectly-related negotiation problems. @eadlines
of tasks are randomly generated from a range, which alloesgent to choose different negotiation orderings. Thevioig
values (See algorithm A.4 for more details) were used ingleaperimentsadd_por _probability = 0.55, TEMP_MAX = 5;
TEMP_STEP = 0.1; sample_step = 10, search_limit = 106.

Table 2 shows the performance of this heuristic searchitihgocompared to the complete search algorithm. The qualitiye
negotiation solution found is very close to the best sotufmind by the complete search. This heuristic algorithnesavlarge
amount of search effort compared to the complete search tieenumber of negotiations and the number of possible featur

assignments increase. The heuristic search spends moretiefin the complete search when the search space is velty(witta
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Table 1: Examples of optimal negotiation solutions

€ v e(4) B et er fv) ps(v)
negotiation early decommit|| Negotiation| = dl — ft early reward flexibility success
deadline reward rate| penalty Schedule =e(A) x (dl — ft) probability

#1 A 0.012 22.2 A[0-3] 0 0 0.9

€=6 B 1.32 B[0-4] 3.0 0.84

C 1.32 C[0-4] 0.83 0.88

#2 A 0.189 1.95 AJ0-3] 21 4.0 0.92

e=6 B 0.12 B[0-4] 1.0 0.78

C 0.12 C[0-4] 0.5 0.88

#3 A 0.117 16.6 A[0-3] 0 0 0.19

e=9 B 0.991 B[3-7] 3.0 0.84

C 0.99 C[3-7] 0.67 0.88

#4 A 0.006 16.6 Al4-7] 0 0 0.64

e=9 B 0.99 B[0-4] 2.43 0.83

C 0.99 C[0-4] 0.67 0.89

#5 A 0.043 17.7 A[0-3] 0 0 0.15

e=11 B 1.06 B[3-7] 2.43 0.83

C 1.06 C[7-11] 0.83 0.88

#6 A 0.142 12.6 A[8-11] 9 1.3 0.84

e=11 B 0.75 B[0-4] 1.43 0.80

C 0.75 C[4-8] 1.0 0.89
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Table 2: Performance of heuristic search algorithi: number of negotiations; NF: Number of valid feature assignmémésdata points
are grouped according to NN and NF); Quality: the quality of the appréaatd by the heuristic search compared to the best approach found
by the complete search (with quality normalized to 1.0); CS: the numbeantk steps of the complete search. HS: the number of search steps
of the heuristic search; Ratio: the ratio of heuristic search steps to corspkateh steps. DS: Number of data samples)

INN| NF [ Qualty| cs | Hs | Ratio| Ds |
3 [0, 50) 0.982 336 520 | 1.547| 89
[50,100) | 1.000 832 590 | 0.709| 3

5 [0,50) | 1.000 | 1759 | 1967 | 1.119| 48
[50,100) | 0.998 | 3861 | 1766 | 0.457 | 6

6 [0, 50) 1.000 9353 | 1869 | 0.200 | 43
[50,100) | 0.998 | 19502 | 1734 | 0.089 | 111
[100,150) | 0.998 | 31086 | 1674 | 0.054 | 123
[150,200) | 0.996 | 44058 | 1674 | 0.038 | 108
[200,250) | 0.995 | 57253 | 1692 | 0.030 | 88
[250,300) | 0.994 | 70292 | 1670 | 0.024 | 57
[300,350) | 0.997 | 82736 | 1638 | 0.020 | 46
[350,400) | 0.995 | 95213 | 1644 | 0.017| 28
[400, 450) | 0.994 | 108185| 1662 | 0.015| 25
[450,500) | 0.998 | 121479| 1667 | 0.014 | 17

a few negotiations and a few of feature assignments). Tloislem can be fixed by choosing the values of the search pagesnet
dynamically according to the size of current search spastead of using the fixed values as we did in these experimEots
example, when the number of negotiations (NN) and the nurabealid feature assignments (NF) is small, we can set the
search_limit as a small number so that the search can stop earlier; bezgasel-enough solution can be found with less search

effort in a small search space.

6.2 Different Negotiation Strategies

The second purpose is to test how different negotiationiegjies affect the agent’s performance under multi-linkedatiation

situation. We compare the negotiation strategy generabed the reasoning based on the formalized model with somes etim-

pler strategies. Under this experimental setup, ComputeduRer Agent needs to deal with multi- linked negotiatiogiated to
the incoming taslPurchaseComputerand the outgoing tasket HardwareandDeliver. Computer The following three different

negotiation strategies were tested:

1. Sequenced Negotiation. The agent deals with the neigoisabne by one, first the outgoing negotiations, then theririog
negotiations. The finish time promised is the same as thdideadquested from the other agent, and the outgoing reggwis
get the largest possible flexibilities.

2. Parallel Negotiation. The agent deals with the negotiatin parallel. It arranges reasonable flexibility (1.%hiis experiment)
for each outgoing task, and based on this arrangement, tish fime of the incoming task is decided and promised to the
contractee agent.

3. Decision-Based Negotiation. The agent deals with thetmgpn as the best negotiation solution generated by tineptete

search algorithm.

24



Table 3: Comparison of computer producer agent’s perfoomaising different negotiation strategies

Policy Task Decommit| Early | Utility
Canceled| Penalty | Reward
Sequenced 37.25 73.82 0 358.09
Std.Dev. 2.6 11.8 0 57.4
Parallel 23.70 333.20 29.06 | 385.20
Std.Dev. 2.6 47.6 17.0 86.8
Decision-Based  25.78 56.65 185.79 | 779.16
Std.Dev. 24 23.5 47.8 62.3

The entire experiment contains 40 group experiments. Eemlpgexperiment has the system running for 1000 time clicks
for three times and each time Computer Producer Agent use®fthe three different approaches. During 1000 time clicks
there are 60 new tasks received by Computer Producer Agatie T3 shows the comparison of Computer Producer Agent’s
performance using different strategies. When the agenttbheesequenced negotiation strategy, more tasks are cdrastause
of the missed negotiation deadlines. When the agent usesthligbnegotiation strategy, the agent pays a higher dedbment
penalty because the failure of the sub-contracted taskeptswhe incoming task to be task-level successful. Thesieci
based approach is obviously better than the other two appesa. It chooses a negotiation strategy dynamically according t
negotiation deadlines and other attributes. Under thismental setup, it chooses the case where all negotiati@ngerformed
in parallel about 13% of the time; it chooses the case whéregbtiations are performed sequentially about 38% ofithe,tand
the other times it chooses the case where some negotiatepedormed in parallel. This strategy enables the agergdeive
more early reward and pay fewer decommitment penalties.

The experimental result shows that in a multi-linked neag@in situation, it is very important for the agent to reaabout the
relationship among different negotiations and make a ressle decision about how to perform negotiation. This desme the

likelihood of the need for decommitment from previoushtleet negotiations and increases the likelihood of utiligjrg

6.3 Experiments on Flexibilities

The third purpose is to study how the different flexibilitylig@es in negotiation, which involve different types of seming
strategies, affect the agent’s performance. The expetahenvironment is set up based on the scenario describedyurd-

14. 1t is a simplified scenario from the example shown in $ac. This scenario represents a class of problem where one
agent needs to deal with both directly and indirectly relategotiation problems. New tasks were randomly generatdd w
decommitment penalty rafec [0, 1], early finish reward rate € [0,0.1], and deadlinel € [45, 105] (this range allows different
flexibilities available for those sub-contracted taskay arrived at the contractor agents periodically. The Iscakduler of the
agent schedules all incoming new tasks occurring in a sdimedtime window according to their earliest start timesadiénes,
process times and rewards and generates an agenda (suatnda &gl on page 7). From this agenda, the agent can find the
Wgat-test, with the 0.001 alpha-level, the following hypothédsisis rejected: when using the decision-based approach, Computer
Producer Agent achieves an extra utility that is equal to 100% of the utilityedairhen using the sequenced negotiation strategy, and 78% of
the utility gained when using parallel negotiation strategy, compared to tfethegisH,: when using the decision-based approach, Computer

Producer Agent achieves an extra utility that is more than 100% of the utilitpdavhen using the sequenced negotiation strategy, and 78% of
the utility gained when using parallel negotiation strategy.
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Figure 14: Three agents scenario
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Figure 15: The feasible schedule with flexibility of 1 for bawn-local task

scheduled finish time of each task. It could continue the ti@in about these incoming tasks just based on the infioma
from this agenda without further reasoning about the dedgilan for each task (actually, that is what the agent doesiwking
the “Earliest-Finish-Time Policy” and the “Deadline Pgli. At the same time, if the local plan of these accepteddas¥olves
any non-local tasklt, then the Find\NL_Range procedure (Algorithm 4.6) is used to find the earligst §me and the deadline
of the tasknlt. The agent would then start negotiation with the other agbnut tasknlt based on this time range. The entire
experiment contains 32 group experiments. Every grouprérpat runs 3 times for 1000 time clicks each, each time usimg
of the three different polices (All agents use the same paliche same time).

In this experimentComputer Producer Agemteeds to deal with the multi- linked negotiations relatedht® incoming task

PurchaseComputerand the outgoing tasiet Hardware The following three different negotiation policies weested:

1. Earliest Finish Time Policythe agent finds the scheduled finish time of the task fromgé&nda and promises it as the finish
time in the contract with the intention of maximizing thelgdinish reward. In the example of Section 2CGymputer Producer
Agentwill accept both taslPurchaseComputerA and taskPurchaseComputerB, with the promised finish time 26 and 46
respectively, according to agenda 2.1 on page 7.

2. Deadline Policy The agent promises the finish time that is the same addhdlineof the task with no consideration of the
early finish reward. In the example of Section ZZmputer Producer Agentill accept both taslPurchaseComputerA and
taskPurchaseComputerB, with the promised finish time 40 and 50 respectively, adogrtb their deadline requests.

3. Flexibility Policy: the agent analyzes its detailed partial-order schedfiten-local tasks are found, it arranges for reasonable
flexibility (1, in this experiment) for each non-local tasiad based on this arrangement, the finish time of the incotasigis

decided and promised to the contractee agent. In the exashflection 2.2Computer Producer Agentill accept both task
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Table 4: Comparison of performance using different negjotigoolicies in multi- linked negotiation.

CPA: Computer Producer AgentiPA: Hardware Producer Agent

Policy Tasks Tasks Tasks Early Decommit| Early | Utility
Received| Accepted| Canceled| Finished| Penalty | Reward

CPA | Earliest Finish Time Policy| 60 59 27 33 123 283 391
CPA Deadline Policy 60 60 0.5 0 29 0 413
CPA Flexibility Policy 60 60 1.7 53 8.3 297 697
HPA | Earliest Finish Time Policy, 87 87 27 29 0 36 268
HPA Deadline Policy 84 84 9.6 0 0 0 256
HPA Flexibility Policy 87 87 11 17 0 32 294

PurchaseComputerA and taskPurchaseComputerB. The promised finish time for tagkurchaseComputerA is 39, and the

promised finish time for tasRurchaseComputerB is 40, according to the feasible schedule shown in Figure 15.

In all three cases above, the multiple negotiations arepadd concurrently based on the free ranges found by thiaartier
scheduler. However, with the first two policies, the agemtsiaot reason about the interaction among negotiations wageahe

flexibilities for each negotiation.

Table 4 shows the comparison of the agents’ performance uliferent policies. For th€omputer Producer AgerfCPA),
who has multi- linked negotiations, the flexibility policy obviously better than the other two policies; it gives therd higher
utility because it generates more early reward and it cafiesesr decommitment penalti&s For theHardware Producer Agent
(HPA), theEarliest Finish Time Policyand theFlexibility Policy make no difference in the agent’s decision making processes
since the agent has no sub-contracted task that needs etgid. The reason that ttarliest Finish Time Policygenerates
less utility for HPA is that because tl@@omputer Producer Agemancels more task requests (because the finish times that the
Hardware Producer Agentould provide are too late for CPA who also uses Hagliest Finish Time Policyat this time), and
hence theHardware Producer Agerthas fewer tasks to perform and gains less reward. Becaugeotin@uter Producer Agent
(CPA) is involved in the multi-linked negotiation, it payst$ of decommit penalties when it adopts Eerliest Finish Time Policy
when it finds that the finish time it promised can not be fulfillé-or theHardware Producer AgentHPA), who does not need
sub-contract task to other agents, Earliest Finish Time Policyproduces more utility than theeadline Policybecause it brings
some early reward without paying any decommit penalty. &eegeriments shows that in a multi-linked negotiationaitn, it
is very important for the agent to reason about the relatigmssamong different negotiations and maintain reasorfétiility
for them. This type of reasoning decreases the likelihoodeabmmitment from previously settled negotiations and tins

more utility.

22Using a t-test, with the 0.01 alpha-level, the following hypothdsisis rejected: when using the flexibility policGomputer Producer
Agentachieves an extra utility that is equal to 64% of the utility gained when usinBdhléest Finish Time Policycompared to the hypothesis
H,: when using the flexibility policyComputer Producer Ageichieves an extra utility that is more than 64% of the utility gained when using
the Earliest Finish Time Policy
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7 Related Work

To our knowledge, there is no other work that has addressadirtctly- linkedrelationship in the negotiation process. There is
some work that takes into account tinelirectly-linkedrelationship among multiple negotiations such as theibigted meeting
scheduling [12] problem and the distributed resource atioa problem [2]. However, those problems are differentrfrour
problem in the following ways: the negotiation is coopemtby nature and the agent can altruistically withdraw iguest
to help others succeed; the tasks are simple, no need foomstnacting; no time pressure on negotiation and no penalty f
decommitment. The negotiation problem presented in thigp&s much more complicated. Additionally, in these wotks
agents do not explicitly reason about the relationshipsrantifferent negotiations, in order to propose offers orntertoffers
(choose the appropriate parameters in the offer) to mimrtiie conflict and optimize the combined outcome. The ordesfn
different negotiations is not taken into considerationither of these approaches, which we feel is important foathent to find
a good negotiation approach. Sandholm [9] has developedhpleg contract type - "clustering- swap-multi-agent” tladows
tasks to be clustered, and then swapped between agentsaandimulated among agents. This work deals witlirectly- linked
negotiations by introducing complicated contract typesyéver it does not reason about the interrelationship anwasicgs and
the influence of the temporal constraints on tasks as in odt.wo

A combinatorial auction could be another approach to nulkied negotiation problem, in which there are multiplenitefor
sale, participants who may place bids on arbitrary subgdtmee items, and an auctioneer who must determine whichdalvke
combination of bids maximizes revenue. It allows agentstect a shared plan for the group through a distributed coatipn
process [6]. It is also used to form a supply chain [15]. Hoevewe don't feel that combinatorial auction is a panaceaHisr
multi-linked negotiation problem or a better approach tth@napproach we described in this paper given the followéagons.

First of all, in combinatorial auction, the agent does nasm about the ordering of negotiations, since all itemsan@unced
at the same time, meaning all issues are negotiated contlyrrelowever, this assumption does not fit with the direditiked

negotiation situation. For instance, in this PCT examptswshin Figure 16, th€omputer Producer Agenéceives a task proposal
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PurchaseComputer(A) from the Consumer AgentTo accomplish this task, theomputer Producer Agemieeds to subcontract
task Get Hardware (B) and taskDeliver Computer(C). If we put this example into the combinatorial auctioanfrework, we
will find that there is no way that these three negotiatiomeéssA, B, and C can be performed concurrently without conflict
Using the combinatorial auction model with time constrsii], the Computer Producer Agemeeds to first announce the two
tasksGet Hardware and Deliver_Computer and wait for other agents to bid for these two tasks, and sieéect the combined
bids with consistent time constrains and minimized costseBlaon these selected bids, themputer Producer Agerdan go
back to negotiate with th€onsumer AgentUsing this model, the ordering of negotiations A, B and Chgags (B,C)— A.
This could be a solution, but by no means to be the best solutimer all circumstances. As we have analyzed before and
also as the experimental results shown, the agent shoulahtgally choose the negotiation ordering based on the ratipot
deadlines, decommiment penalties, the estimations oessta probabilities, and other environmental contextsstmanaximize
the expected utility. However, the combinatorial auctiood®l neither reasons about these attributes nor provigesgént with
the flexibility to choose from different negotiation ordegs. This limitation prevents the agent from finding a battegotiation
solution.

Secondly, the agent using a combinatorial auction modeéhaenctively reasons about the interrelationships ambeget
related negotiation nor tries to direct the negotiatiorsopefully optimal solution, but just waits passively aatkst the solution
from whatever is available, which does not guarantee findifggpod) solution. Let’s continue with the previous exampging the
combinatorial auction model, tli@omputer Producer Agestmply announces the two tasket HardwareandDeliver Computer
and waits for the other agents’ bids. When Herdware Producer Agerdnd theTransporter Agentonstruct their bids for these
two tasks respectively, they have no idea of how these twkstelate to each other, all they can do is to construct the bid
based on their local problem solving context. Suppose baséte "first come, first serve” rule, these two agents arrdhgse
new tasks after their current tasks. Assume that the bid ff@Mardware Producer Agens "GetHardware, cost$100, time
range: 10-17 based on its current task finishes at 10 and it takes 7 timis tmiperform taskGet Hardware and the bid from
the Transporter Agenis "Deliver. Computer, cosgb, time range: 15-21based on its current task finishes at 15 and it takes 6
time units to perform tasbeliver Computer However, based on these two bids, emputer Producer Agerannot find a
consistent solution because there is no time left for thie ltrastall Software Actually the solution does exist if thEransporter
Agentwould leave some slack time before starting tBeliver Computer The Transporter Agentloes not have the necessary
information that leads to this decision. To solve this peoin combinatorial auction, it can be requested that th&ractee agent
generate all possible bids and send them all to the contragemt. However, this solution causes large amount of camation
(as shown in Figure 16, upper part), and large number of bidlsesithe winning-determination (WD) process more difficult
and time-consumirtg. This example shows that combinatorial auction is not aabigtmodel for multi-linked negotiation with
complicated task relationships. In comparison, in our agph (as shown in Figure 16, lower part), @@mputer Producer Agent
who has the most complete information, leads the negatidijoanalyzing the relationships among negotiations arehging
appropriate time ranges for related subjects in negotiatidhich resulting in a more efficient negotiation procesd arbetter
solution in the end.

Thirdly, the general winning-determination problem fonduinatorial auction is NP-complete [3]. Current WD algomits{11,

Z3There has been some recent work on preference elicitation[1] thexitjmoly could reduce the number of bids need to be sent. However, it
is our intuition that to make this preference elicitation process successfiduitl need the similar type of reasoning process as shown in our
work.
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3] are based on depth-first search and using different typesuristics. So, from the computational complexity pecipe,
combinatorial auction and our approach are at the samedenaplexity.

The above analysis shows that combinatorial auction coeilthiother approach to multi-linked negotiation, but it liragation
that does not permit efficient management of the negotiatidmere there are complex relationships. The approachsrpdper

provides a more general model and solution to multi- linkedatiation problem.

8 Summary

In this paper, we defined the multi-linked negotiation pesbland demonstrate how an agent could deal with the mulkdin
negotiation problem. Multi-linked negotiation deals wittultiple negotiations, where these negotiations aredotanected - the
negotiation over one issue affects other negotiations. oheesa multi-linked negotiation problem, the agent needfno out

in what order the negotiations should be performed, and lmonegotiate on each issue to avoid conflict among them. First,
we construct a partial order schedule, which allows the fatgeneason about time-related constraints and flexibilityeach
issue. This reasoning process is important for the agerdrfoqn conflict-free negotiation and manage flexibility igotiation.
Furthermore, we presented a formalized model of the minkield negotiation problem that enables the agent to represel
reason about the relationships among different negotisgxplicitly. Using this model, a heuristic search alduoritis developed

to that finds the nearly optimal approach in reasonable tifBeperimental work shows that this management technique for
multi-linked negotiation leads to improved performanceraather simpler approaches.

In this work, we model the success probability as a functimt tepends on a set of features, but we have not worked out how
the agent can construct such a function. In the future, wik&ltb use meta-level information and learning technolsda an
agent to construct and adjust the structure of this functiso, the model and the algorithm presented here are favidhl
agents, to extend this model to a multi-agent system is endihection of our future work. Additionally, in this workhe result
of the negotiation is limited to two outcomes: “success” fail". Actually, when negotiation is successful, there poentially
many different outcomes depending on the parameters inamenitment. such as different promising finish times. Dejfegmnd
upon the different outcomes, the agent can adjust its o#ggtiations that are related to this negotiation. The natijoh process
can be modeled as a Markov decision process, and the négosalution can be generated as a policy: perform the neimti

according to the results of the previous negotiations. Eémother direction of our future work.
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A Appendix

Algorithm A.1 Find a set of valid feature assignments.
Input: M = (V,€).
For each attributeu;, if a;; is already decided, the value of; is decided-value(a;;);
if a;; is undecided, the maximum possible rangedfgris: [min_value(a;;),maz_value(as;)],
the search step sizetep;;.
Output: a set of valid feature assignmeants
Generate the possible value siy; for attributea;;;
If a;; is already decided¥;; = {decided_value(as;)};
Elsez = min_value(ai;);
Repeat
addx to ¥,;;
T = T + step;y,
Until z > maz_value(a;;)
Generate all possible feature assignmepisbased on the possible valuesin;;
If valid(yr), addpy, into w;
Returnw;

Algorithm A.2 Evaluate a negotiation schedule with all possible feature assignments arttidibeést feature assignments and the best value.
Input: negotiation schedulg, a set of valid feature assignmenis= {¢p,}, k =1, ..., m.
Output: the best value with the best feature assignment.
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begin
for(i=0; i <=m; i+=sample step)
addp; to searchset;
for eachy; in searchset
for(t=0; t<searchlimit; t++)
if(EV(d, pit1) > EV(¢, i)

i=i+1;

else ifEV(, pi—1) > EV(9, i)
i=i-1;

else
break;

if(EV (¢, i) > bestvalue)
bestvalue =EV(¢, ¢:);
bestassignment = i;
return(bestvalue,besassignment);
end

Algorithm A.3 Complete search: Find the best negotiation strategy.
Input: M = (V, £), the start time for negotiation, a set of valid feature assignmenis= {¢x}, k = 1, ..., m.
The complete search algorithm evaluates each pair of negotiation ordaridgalid feature assignmefid’(¢;, ¢ ), then return the best one.
Output:the best negotiation strategy.
Generate all valid negotiation orderings; };
bestvalue = minimunvalue;
bestordering = null;
bestassignment = null;
for each negotiation ordering;
for each valid feature assignmept,
if EV(¢s, or) > best_value
bestvalue =EV (¢, vr);
bestordering = ¢;;
bestassignment zpy;
return (bestordering, bestassignment)

Algorithm A.4 Heuristic search: Find the best negotiation strategy.
Input: M = (V,€), the start time for negotiationr{, a set of valid feature assignments= {pr},k = 1,...,m, the probability to add a
por:add por_probability. TEMPMAX, TEMPSTEP: search parameters.
Output:the best negotiation strategy.
begin
Generate all possibI€ORs = {(vs, vj)|vi,v; € V}
total_value = 0;
total_inversevalue = 0;
basevalue = evaluateschedule{/S(V, 0), w);
for each pore PORs
$(por) = (V,por)
por.value = evaluateschedule{/ S(¢(por)), w).value - basevalue;
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end

por.inversevalue = 1.0 / por.value;
total_value = totalvalue + por.value;
total_inversevalue = totalinversevalue + por.inversevalue;
for each pore PORs
por.in_probability = por.value/totalvalue;
por.outprobability = por.value/totalinversevalue;
for(t = TEMP_MAX;t >=0;t— = TEMP_STEP)
generate a random numberbetweer{0, 1];
if( r < add_por_probability)
choose a por e from PORs/curreotdering
according to inprobability
new.ordering = currentorderingne
else
choose a por e from currerdrdering according to
out probability
newordering = currentordering - e
evaluationresult = evaluateschedulel/ S (¢(new_ordering)), w);
changevalue = evaluationresult.value - currentalue;
if (change_value > 0||random < e~ change-value/ty
currentvalue = evaluatiooresult.value;
currentassignment = evaluatiaresult.assignment;
currentordering = newordering;
if (change_value > best_value)
bestvalue = currentvalue ;
bestassignment = currenassignment;
bestordering =currentordering;
return (bestordering, bestassignment);
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