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Abstract. Multi-agent systems provide an increasingly popular solution in prob-
lem domains that require management of uncertainty and a high degree of adapt-
ability. Robustness is a key design criterion in building multi-agent systems. We
present a novel approach for the design of robust multi-agent systems. Our ap-
proach constructs a model of the design of a multi-agent system in Alloy, a declar-
ative language based on relations, and checks the properties of the model using
the Alloy Analyzer, a fully automatic analysis tool for Alloy models. While sev-
eral prior techniques exist for checking properties of multi-agent systems, the
novelty of our work is that we can check properties of coordination and inter-
action, as well as properties of complex data structures that the agents may in-
ternally be manipulating or even sharing. This is the first application of Alloy to
checking properties of multi-agent systems. Such unified analysis has not been
possible before. We also introduce the use of a formal method as an integral part
of testing and validation.

1 Introduction

Multi-agent systems provide an increasingly popular solution in problem domains that
require management of uncertainty and high degree of adaptability. Robustness is a key
design criterion in building multi-agent systems.

A common definition of a multi-agent system (MAS) [26] stipulates that an agent is
an autonomous, interacting and intelligent (i.e. optimizing its actions) entity. Any MAS
is a distributed system but not every distributed system can be categorized as a MAS by
the above mentioned definition.

Management of uncertainty via adaptability and an ability to provide a satisficing
solution to otherwise intractable problems are distinguishing features of multi-agent
systems compared to centralized or other distributed systems. An agent knows of a great
variety of methods to solve their local tasks, and it can tailor a method of achieving a
goal according to resource availability for data processing, information exchanges and
sources of information. Agents, due to their interactions, are capable of influencing the
choices of methods both by themselves and by other agents due to recognition of vari-
ous kinds of relationships between their subtasks that can be generalized as redundancy,



facilitation and enabling [19]. Agents can decide the degree to which an environment
state, their own state, and their partial knowledge about states of other agents influence
the amount of their contribution to the solution of a task imposed on the whole MAS.
Unlike components of other distributed systems, an agent can refuse a request or can
choose not to answer. At the same time, other agents are prepared to deal with a possi-
bility that their requests will be refused or not answered. This freedom of choice, in a
way, defines an agent’s autonomy and distinguishes it from a component in a conven-
tional distributed system. Thus, due to the above mentioned capabilities, agents are able
to adapt their solution methods to the dynamics of the environment [17].

Some MAS have explicit specifications of interaction protocols between the agents.
There has been a plethora of work on verification of MAS systems. Such approaches as
model-checking ([27], [21], [16], [3]), Petri-nets and situation-calculus [8] have been
applied to MAS verification. The vast majority of recent work on MAS verification are
various applications of model checking that take into account peculiarities of properties
that are desired to be verified in a MAS. The peculiarities of such properties usually are
a consequence of bounded rationality in agents. Thus the set of operators (modalities)
for property specifications is often extended to include such operators as agentbeliefs,
desires, intentions. Once such additional operators are introduced, usually a method is
suggested to map a property specification that uses these MAS-specific operators into a
formalism understood by off-the-shelf model-checkers, e.g. into the propositional LTL.

Examples of properties might be: ”every request for a quote is answered within 4
time steps” [3], ”for all paths in each state if agentTrain1 is in the tunnel then agent
Train1 knows that agentTrain2 is not in the tunnel” [16], ”when sender is about to
send an acknowledgment then it knows that the receiver knows the value of the bit that
was most recently sent” [21] and ”some agentAi eventually comes to believe thatAj

intends thatAi believes variablea has the value 10” [27].

As we can see from these examples most properties are some sort of reachability
properties on a state transition model of a MAS. The use of model checking for these
properties is understandable since it is essentially an efficient brute-force global state
transition graph reachability analysis. ConGolog [8] uses situation calculus which is
also most suited for the specification and analysis of event sequences, not data struc-
tures.

One lightweight formal method that is particularly suitable for checking properties
of data structures is Alloy.

Most of the prior applications of the Alloy Analyzer have abstracted away from
properties of multi-threaded systems. We explore the use of Alloy in designing, testing
and validating a class of distributed systems known as themulti-agent systems(MAS).
In particular we focus on exploring the suitability of the Alloy Analyzer to checking
structurally rich properties of MAS.

In case of a model checking approach one needs to generate a number of particular
instances of data structures either by hand or by writing a dedicated generator. For
complex data structures the size of such an enumeration can be prohibitively large.
Moreover, writing a generator correctly can itself be error-prone [22]. In contrast, the
Alloy approach allows verification of rich structural properties, such as acyclicity of a



binary tree, via capturing them in a simple first-order logic formula based on intuitive
path expressions.

We explore an application of Alloy with its relational logic specification language
to multi-agent systems specifically focusing on properties of data structures in addition
to event sequences. We expect to be able to check properties of the following format:
”if agentA receives a data structure that satisfies propertyφ then eventually agentA will
enter stateσa if it believes that agentB is in stateσb”, ”if agent A is in stateσa and its
task structureτ1 satisfies propertyφ1 then on reception of data structurem (from agent
B) agentA will modify τ1 with some part ofm such thatτ1 will preserve propertyφ1”
and so on.

We also propose the use of a formal method for checking actual behavior of a system
as exhibited by its execution traces against a behavior of its model. This is done in
addition to the usual application of a formal method for verification of the system’s
model. Thus we integrate a formal method into testing and validation activities of a
software design and analysis process.

We make the following contributions:

– Checking multi-agent systems.We present an approach to check autility-based
reasoningmulti-agent system using a lightweight formal method;

– Alloy application. We present a novel application of the Alloy tool-set in checking
rich properties that represent structural constraints in a multi-threaded scenario; and

– Adequacy checking.Our approach allows checking the adequacy of a given test
suite against a relational specification.

2 Brief overview of Alloy

As software systems steadily grow in complexity and size, designing such systems man-
ually becomes more and more error-prone. The last few years have seen a new gener-
ation of design tools that allow formulating designs formally, as well as checking their
correctness to detect crucial flaws that, if not corrected, could lead to massive failures.

The Alloy tool-set provides a software design framework that enables the modeling
of crucial design properties as well as checking them. Alloy [13] is a first-order, declar-
ative language based on relations. The Alloy Analyzer [15] provides a fully automatic
analysis for checking properties of Alloy models.

The Alloy language provides a convenient notation based on path expressions and
quantifiers, which allow a succinct and intuitive formulation of a range of useful prop-
erties, including rich structural properties of software. The Alloy Analyzer performs
a bounded exhaustive analysis using propositional satisfiability (SAT) solvers. Given
an Alloy formula and ascope, i.e., a bound on the universe of discourse, the analyzer
translates the Alloy formula into a boolean formula in conjunctive normal form (CNF),
and solves it using an off-the-shelf SAT solver.

The Alloy tool-set has been used successfully to check designs of various applica-
tions, such as Microsoft’s Common Object Modeling interface for interprocess com-
munication [5], the Intentional Naming System for resource discovery in mobile net-
works [1], and avionics systems [7], as well as designs of cancer therapy machines [14].



The Alloy language provides a convenient notation based on path expressions and
quantifiers, which allow a succinct and intuitive formulation of a range of useful prop-
erties, including rich structural properties of software. Much of Alloy’s utility, however,
comes from its fully automatic analyzer, which performs a bounded exhaustive analysis
using propositional satisfiability (SAT) solvers. Given an Alloy formula and ascope,
i.e., a bound on the universe of discourse, the analyzer translates the Alloy formula into
a boolean formula in conjunctive normal form (CNF), and solves it using an off-the-
shelf SAT solver.

We present an example to introduce the basics of Alloy.
Let us review the following Alloy code for a DAG definition:

module models/examples/tutorial/dagDefSmall

sig DAG {
root: Node,
nodes: set Node,
edges: Node -> Node

}
sig Node {}

The keywordmodule names a model. Asig declaration introduces a set of (indi-
visible) atoms; the signaturesDAGandNode respectively declare a set of DAG atoms
and a set of node atoms. Thefieldsof a signature declare relations. The fieldroot de-
fines a relationship of typeDAG x Nodeindicating that only one node can correspond
to a DAG by this relationship. The absence of any keyword makessize a total func-
tion: each list must have a size. The fieldnodes has the same type asnodes but maps
a DAG onto a set of nodes defining a partial function. Alloy provides the keywordset

to declare an arbitrary relation. The fieldedges maps a DAG onto a relationship, i.e.
on a set of tuplesNode x Node , thus defining edges.

The followingfact constrains a graph to be a DAG:

fact DAGDef {
nodes = root.*edges
all m: Node | m !in m.ˆedges

}

The operator ‘* ’ denotes reflexive transitive closure. The expressionroot.*edges

represents the set of all nodes reachable from the root following zero or more traversals
along theedge field. A universally quantified (all ) formula stipulates that no atom m
of signatureNode can appear in traversals originating for that atom m. The operatorˆ

denotes transitive closure.
Here are some other common operators not illustrated by this example. Logical im-

plication is denoted by ‘=>’; ‘ <=>’ represents bi-implication. The operator ‘- ’ denotes
set difference, while ‘#’ denotes set cardinality and ‘+’ - set union.

To instruct the analyzer to generate a DAG with 6 nodes, we formulate an empty
predicate and write arun command:



pred generate() {}

run generate for 6 but 1 DAG

The scope of 6 forces an upper bound of 6 nodes. Thebut keyword specifies a separate
bound for a signature whose name follows the keyword. Thus we restrict a generated
example to 1 DAG.

3 Subject system details

As the subject of our analysis we have chosen a cooperative multi-agent system with
explicit communication and with a utility-based proactive planning/scheduling.

A multi-agent system is cooperative if it can be assumed that agents strive to col-
lectively contribute to reaching some common goal. In such a cooperative MAS, agents
are willing to sacrifice their local optimality of actions if they are convinced (e.g. via
a negotiation) that such a sacrifice will help increase the global optimality of the com-
bined actions in the whole MAS. For simplicity we also assume there are no malicious
agents in the chosen MAS.

3.1 Property examples derived from requirements

We can describe several properties informally at this stage, before we fix the assump-
tions of the MAS design further.

Some of the informal properties that are likely to be useful for such a negotiation:

1. negotiation must terminate;
2. the utility of the agreed upon combination of schedules must eventually increase

throughout the course of negotiation even though occasional decreases are allowed;
i.e. the negotiation must eventually converge on some choice of schedules that pro-
vides a local optimum of the combined utility (here local is used in the sense of
restrictions on action set and time deadline, not in the sense of local to a single
agent);

3. if agentB (the one who is requested to do an additional task) agrees to accomplish
the task at a certain point in negotiation then it cannot renege on that agreement in
the course of subsequent negotiation (somewhat related to the need to converge);
and,

4. the beliefs of one agent about an abstraction of partial state of another agent ob-
tained as a result of negotiation should not contradict the actual state of that other
agent.

3.2 Experiment design

The experiment design is illustrated as derivation relationships between the software
process artifacts in Fig. 1. The system requirements are used to derive a test suite and
specify the intended behavior as properties. The subject MAS system is run on the test
suite thus producing traces. The Alloy model of the system includes the representation
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Fig. 1. Experiment design

of traces. This model is then verified against the formally specified properties and the
properties that check correspondence of the traces to the results of the verification.
Thus we check if the model satisfies the properties and if a sample of actual behavior
highlighted by the test suite does not contradict the ideal behavior of the model.

3.3 Choice of the analyzed system

Next we will provide greater detail about the design of the chosen MAS. This detail will
let us illustrate the task allocation problem introduced generally above and to formalize
a property. The chosen system has been developed in the MAS laboratory headed by
Prof. Victor Lesser at the University of Massachusetts, Amherst. This MAS is a mature
utility-based reasoning multi agent system that has been extensively used and validated.
It has been used as a testbed for a great number of experiments and technology transfer
demonstrations in the area of MAS ([23], [24], [11], [12], [18], [9], [10]). This MAS is
not restricted to a particular problem domain. It applies the utility-based reasoning to
abstract tasks with generalized relationships. Thus we expect that the results obtained
from its analysis can be useful for other utility-based systems. In this system an agent is
combined of several components that include a problem solver and a negotiation com-
ponent, among others. The problem solver provides a schedule based on a current set
of task structures assigned for execution. The negotiation component drives the exe-
cution of negotiation protocols, it is aware of protocol specifications and keeps track
of current states of negotiation instances undertaken by its agent. The task structures
are specified in the TÆMS language [6]. The schedules are provided by the Design-
To-Criteria (DTC) scheduler ([25]) developed by Dr. Tom Wagner which is invoked as
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Fig. 2. Pre-negotiation task structures.

part of the agent’s problem solver component operation. The DTC takes as input a task
structure in TÆMS and a utility function specification and provides as output a set of
schedules ranked by their utilities.

In this system a simplified description of an agent’s cycle is as follows:

1. Local scheduling: in response to an event requesting a certain task to be performed,
obtain a number of high ranked schedules by utility;

2. Negotiation: conduct negotiation(s) within a predefined limit of time; and,
3. Execution: start execution of the schedule chosen as a result of negotiation(s).

The actual cycle of agent’s operation is more complex as an agent can react to
various kinds of events that it can receive at any of the mentioned cycle stages.

3.4 Relation between protocol FSMs, task structures, offers and visitations

Next we describe the task allocation problem in terms of this design. More details about
the cooperative negotiation example can be found in [28]. The negotiation protocol
of an agent starting the negotiation (agentA), the contractor, is given in Fig. 4. The
negotiation protocol of an agent responding to the request (agentB), the contractee, is
given in Fig. 5.
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Let us assume that agentA needs a certain non-local task (this means that an agent
is not capable of doing that task even though it appears in one of its task structures) to
be performed by some other agent. The negotiation’s goal is to increase the combined
utility of actions of both agents by choosing a particular way to perform the non-local
task at a particular time.

In the description that follows we mention the concepts of a protocol FSM, task
structures, offers and execution paths encoded in visitations. These concepts are related
to one another in the following way.

The design of the particular MAS we are analyzing contains a module called an
agent [23]. This module itself is an aggregate of several submodules. One of these sub-
modules is the “Negotiation” submodule and it is responsible for encapsulating knowl-
edge about various protocols known to an agent. These protocols are encoded as FSMs
with states corresponding to abstractions of the states of an agent in negotiation and
transitions attributed with trigger conditions and actions. A sequence of visitations cor-
responds to a path from a start node of such a protocol FSM to one of the final nodes.

A task structure of an agent captures its knowledge about multiple ways in which
a certain task can be accomplished. The root of a task structure corresponds to a task
that an agent is capable of accomplishing. The leaves of a task structure correspond to
atomic actions in which both the set and partial order can vary to reflect the way to
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accomplish an assigned task in a “utility-increasing” (but not guaranteed to be optimal)
way. As an agent progresses through a negotiation protocol according to an FSM, the
agent’s task structure changes to reflect the agent’s changing knowledge about other
agent’s state throughout that negotiation. Thus there are certain properties imposed on a
task structure that must hold while an agent is in certain states of a negotiation protocol
FSM.

A collection of task structures determines an agent’s functionality analogously to a
set of function signatures that define an interface of a module. The roots of task struc-
tures serve a similar purpose to function signatures at the agent level of abstraction
of describing a software system. An outside event corresponding to a request to ac-
complish a certain task triggers an agent’s reasoning about whether it can accomplish
that task considering an agent’s knowledge about the way to accomplish that task, that
agent’s state, the environment state and partial states of some other agents in the same
MAS. The result of that reasoning is the current schedule that “interweaves” instances
of atomic actions from various tasks currently assigned to that agent in a time-oriented
partial order. That current schedule can be changed dynamically, as it is being executed,
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in response to agents’ changing opinion about the most reasonable schedule for a certain
moment in time.

We do not consider execution of schedules, but focus only on the negotiation phase
in which schedules always cover future time intervals.

An offer is a data structure generated by actions associated with FSM transitions.
An offer encapsulates the parameters of a particular schedule formed on the basis of the
agents’ task structures, such as quality achieved, start time and finish time. The agents
negotiate over these parameters.

Another submodule of an agent is “Communication”. The “Negotiation” submod-
ule relies on “Communication” in a fashion similar to how a networking application
relies on TCP/IP protocols. The design intentionally separated the concern of ensur-
ing reliable communication and naming mechanisms from the concern of ensuring that
a certain “utility-increasing” protocol is followed during a negotiation between a pair
of agents. Thus the issues of identifying agents to communicate with for a particular
purpose were separated from the “negotiation” submodule by the authors of the MAS
system we analyze. This was done to simplify their own analysis, to separate concerns.
Our Alloy specification reflects that separation.



In a way, the task structure specifies all possible behaviors of an agent responsible
for achieving the goal embodied by a task structure’s root. During the stages ofLocal
schedulingandNegotiationthe task structure can be modified, thus modifying specifi-
cation of a set of behaviors of an agent during anExecutionstage. The behavior of an
agent during the stages ofLocal schedulingandNegotiationis static, i.e. it is not mod-
ified during run-time. A schedule agreed upon as a result ofNegotiationis a selected
behavior (execution path) from a set of behaviors that was modified at run-time (repre-
sented by a task structure; to be performed in theExecutionstage). Thus a property we
describe below checks certain well-formedness of a behavior specification modified at
run-time and correctness of an implementation responsible for the modification.

3.5 Details of the task allocation problem in the chosen design

Let us go over a possible scenario of agents’ interactions in regard to a task allocation
problem for the sake of illustration. This kind of interaction between agents is quite
common in any utility-based reasoning MAS. In Fig. 2 we see two task structures.
Suppose one task structure, with the root TCR, was assigned to agentA, the other,
TCE, was assigned to agentB. Before the negotiation the striped methods (M4 and its
children) are not part of the TCE structure. This assignment can be due to requests sent
from the environment (e.g. a human or other automated system). TCE and TCR turned
out to be non-leaf nodes with elaborations. Upon receiving task assignments agentA
sent TCR structure to its local scheduler, agentB did the same for TCE.

Let us suppose agentA receives the following schedules from its scheduler:

– M1, M2, M3, M4 - highest utility
– M1, M2, M3, M5 - lower utility, feasible

AgentB receives the following schedule: B3, B4 that has the highest utility.
Next, agentA identifies M4 in its best schedule as non-local. It sends a request

to agentB to do it. The fact that agentA knows thatB can do M4 is hardwired for
the example without loss of generality for the negotiation analysis results. The request
initiates an instance of negotiation. AgentA plays the role of aContractor, agentB -
that of aContractee. AgentB must see whether it can do M4 by the deadline agentA
needs it, while accomplishing its current task TCE within the constraints. This is done
by modifying the ”currently reasoned about” structure and submitting it to the scheduler
that will report if such a schedule is possible and, if yes, then with what utility.

The TCE structure must be modified preserving its well-formedness constraints
(e.g. functional decomposition remains a tree); and forcing an M4 into a schedule by
choosing appropriate quality of M4 that reflects the combined utility of both schedules
(chosen byA and byB). Fig. 3 shows agentB’s task structure updated with an M4. The
quality attribute of M4 must be such that the scheduler of agentB must produce feasible
(though not necessarily high ranking) schedules that contain M4 and still accomplish
the original TCE task.

Even if the agentB’s local scheduler returns an acceptable schedule (which has M4
in it and the original TCE is accomplished with the constraints on time and quality),
agentA can request to make a tighter fit. Therefore if its scheduler found a feasible



schedule that includes M4, agentB (Contractee) is supposed to transition to state ”Fea-
sible” (Fig. 5) and wait for agentA to send another proposal with a “tighter” deadline on
M4’s execution or a “finish” message. This means that agentB must have modified its
task structure to include M4. On the contrary, if there is not a single feasible schedule
that can include M4 then agentB is supposed to transition to state “Rejected”. If agent
B reaches state “Rejected” then its post task structure TCE’ is unchanged from the pre
TCE.

With this description in mind we can rephrase this property in terms of the TÆMS
structures and negotiation protocol specifications in Figures 4 and 5 as:

After agentB reaches state ”Feasible” at least once its task structure must contain a
subtree corresponding to task M4 and M4 must appear in a feasible schedule returned
to agentA.

In this example the Contractee’s FSM has been simplified for the sake of this illus-
tration. For additional details about this example please refer to [28].

4 Alloy specification for the negotiation model

Our approach implies modeling particular paths traversed in the agents’ negotiation
finite state machines (FSMs) in response to certain testcases. Thus we check an abstrac-
tion of an execution path in a particular implementation. Both FSMs contain cycles.
If a cycle diameter can be modeled with the scope that can be processed by the Al-
loy analyzer then we can iteratively check a certain property on an execution path that
corresponds to multiple iterations of a cycle.

The negotiation protocols and task structures described in section 3 had to be sim-
plified to have a tractable scope for the Alloy analyzer. The simplifications include:

1. ignoring attributes of task structures nodes (quality, duration, cost);
2. ignoring attributes of offers (mutual utility gain, cost, earliest start time);
3. ignoring attributes of schedules (start time and finish time of actions); and,
4. simplifying task structures by removing intermediate nodes (e.g. no Task1, Task2)

and reducing the number of leaf nodes (e.g. only B1 and B3 left in agentB’s task
structure).

The actual models used for analysis also contain only those atoms that are necessary
for verifying a property at hand. Thus transitions that were not traversed by a modeled
execution path and associated states were removed.

This amount of simplification was necessary to make the analysis feasible. Earlier
we constructed a more detailed Alloy specification of the analyzed system. The Alloy
analyzer was not able to cope with such a specification. We had to reduce its size grad-
ually while still keeping the analysis useful. We expect that the next generation of the
Alloy analyzer, Kodkod [20], would be able to deal with a larger specification.

The resultant Alloy model of the MAS for the purpose of verifying our assertions
consists of 3 modules. One module,negProtocol12 1abridgeDataProp , models
the FSMs, visitations of transitions through the FSMs (paths specified by transitions)
and assertions. Two more modules model the data structures manipulated by the agents



- their task structures and schedules. Let us briefly go over the Alloy models in these
modules.

ThenegProtocol12 1abridgeDataProp defines signatures forState , Transition ,
Visitation andOffer . Thus an FSM is modeled by constraining atoms ofState

andTransition signatures via the “fact” construct. ATransition signature con-
tains fields for source and destination states, a set of visitations of that transition by
a path and a set of transitions outgoing from the destination state of the transition.
ThetreeDefSmall module models a task structure of an agent. TheschedDefSmall

module models a schedule data structure of an agent. It imports thetreeDefSmall so
that schedule items can reference the nodes of task structures. The consistency of the
model has been successfully checked with an empty stub predicate. The analyzer found
a solution.

abstract sig State {}

abstract sig Transition {
source, dest: State,
visit: set Visitation,
nextTrans: set Transition

}

fact Injection { all t, t’: Transition | t.source =
t’.source && t.dest =
t’.dest => t = t’ }

abstract sig Visitation {
trans: lone Transition,
nextVisit: lone Visitation,
offer: lone Offer

}
fact VisTransConsistent {

all visitation: Visitation | visitation in
visitation.trans.visit

}

5 Alloy specification for the properties

The paths of execution of the two negotiation protocols are represented by atoms of
the Visitation signature. Thus it is via these atoms that we express a property that
can be informally phrased as “If agentA is led to believe by a certain sequence of
communications that agentB reaches a certain state then agentB should have indeed
reached that state, having been subjected to the same changes of observed environment
as agentA”. This informal statement pinpoints such a feature of agents in a MAS as
bounded rationality. The property checks for consistency between a certain abstraction
of other agent’s state (agentB) that a certain agent (A) obtains via communication. In
the case of the particular system we used the communication is explicit. By modeling
the environment sensed by agents we could allow for checking such properties based
on implicit communication.

More specifically, in view of the simplifications we made, a property of this kind can
be informally restated as “if agentA reaches stateEvalCounterProposal then agent



module models/examples/tutorial/treeDefSmall

abstract sig Tree {
root: Node,
nodes: set Node,
edges: Node -> Node

}

{
nodes = root.*edges
all m: Node | m !in m.ˆedges

}

abstract sig Node {}

one sig TCR, M3, M4, M5, TCE, B1, B3, New_TCE extends Node{}

one sig AgentB_preTaskStrucTCE extends Tree {}
fact AgentB_preTaskStrucTCEDef {

AgentB_preTaskStrucTCE.root = TCE
AgentB_preTaskStrucTCE.nodes = TCE + B3
AgentB_preTaskStrucTCE.edges = TCE->B3

}

one sig AgentB_postTaskStrucTCE extends Tree {}
fact AgentB_postTaskStrucTCEDef {

AgentB_postTaskStrucTCE.root = New_TCE
AgentB_postTaskStrucTCE.nodes = New_TCE + TCE + B1 + M4
AgentB_postTaskStrucTCE.edges = New_TCE->TCE +

New_TCE->M4 + TCE->B1
}

B should have reached stateWait2 and beginning since that state, agentB’s current
schedule data structure should have contained an instance of atomic action M4”. Below
we can see how this property is formally expressed in the Alloy’s relational algebra.
The assertion has been successfully checked. No counterexamples were found for the
path containing visitations that corresponded to the expected states and data structure
conditions. Conversely, once an inconsistency between agentA’s belief and agentB’s
state and data structures has been introduced into visitations, the analyzer pinpointed a
possible counterexample.

We have also translated an Alloy specification of this property into a dynamic asser-
tion in Java using a systematic translation approach [2]. Thus we were able to dynami-
cally check the conformance of an implementation to the Alloy specification. We also
showed the utility of the Alloy Analyzer by making sure that an assertion in the Alloy
specification is right and then mechanically translating that assertion into a dynamic
assertion in Java implementation.



module models/examples/tutorial/schedDefSmall
open models/examples/tutorial/treeDefSmall

abstract sig SchedItem {
activity: Node

}

one sig SchedItemM3 extends SchedItem{}
fact SchedItemM3Def {

SchedItemM3.activity = M3
}

one sig SchedItemM4 extends SchedItem{}
fact SchedItemM4Def {

SchedItemM4.activity = M4
}

one sig SchedItemM5 extends SchedItem{}
fact SchedItemM5Def {

SchedItemM5.activity = M5
}

one sig SchedItemB1 extends SchedItem{}
fact SchedItemB1Def {

SchedItemB1.activity = B1
}

one sig SchedItemB3 extends SchedItem{}
fact SchedItemB3Def {

SchedItemB3.activity = B3
}

abstract sig Sched {
items: set SchedItem,
precedenceRel: SchedItem -> SchedItem

}

one sig AgentAschedWithNL extends Sched {}
fact AgentAschedWithNLDef {

AgentAschedWithNL.items = SchedItemM3 + SchedItemM4
AgentAschedWithNL.precedenceRel =

SchedItemM3->SchedItemM4
}

one sig AgentAschedWithOutNL extends Sched {}
fact AgentAschedWithOutNLDef {

AgentAschedWithOutNL.items = SchedItemM3 + SchedItemM5
AgentAschedWithOutNL.precedenceRel =

SchedItemM3->SchedItemM5
}

one sig AgentBschedWithNL extends Sched {}
fact AgentBschedWithOutNLDef {

AgentBschedWithOutNL.items = SchedItemB1 + SchedItemM4
AgentBschedWithOutNL.precedenceRel =

SchedItemB1->SchedItemM4
}

one sig AgentBschedWithOutNL extends Sched {}
fact AgentBschedWithNLDef {

AgentBschedWithNL.items = SchedItemB3
}



assert AgentAbeliefCompliesWithAgentBState {
(some visitation: Visitation |

visitation.trans.dest = EvalCounterProposal) =>
(some visitation’: Visitation |

visitation’.trans.dest = Wait2 &&
M4 in visitation’.offer.agentBTaskTree.nodes)

}

6 Specification difficulties

The main difficulty is keeping the Alloy model under a tractable scope while checking
useful properties. In the case of the design of this particular MAS the protocols are
specified via FSMs with loops. Thus we can check properties only within the scope
of the FSM’s diameter. Other difficulties are due to highly dynamic, hard to predict
behavior of sensing agents. One has to classify the dynamics of the environment sensed
by the agents and check the properties within each such situation. For instance, in the
example used in this paper we can classify the situations based on combinations of
“best” schedules of the 2 agents with regard to including the non local task (M4) into
their schedules. Some of the possible combinations (for all cases agentA has M4 in its
best schedule):

– agentB does not have M4 in its best schedule; the local utility of agentB’s schedule
outweighs the combined utility if agentB is forced to do M4;

– agentB does not have M4 in its best schedule; the local utility of agentB’s schedule
is below the combined utility if agentB is forced to do M4;

– agentB has M4 in its best schedule too, but not within the timeframe agentA needs
M4 to be finished

– agentB has M4 in its best schedule too, it is within the timeframe agentA needs
M4 to be finished

It should be possible to provide an Alloy model so that these combinations would not
have to be specified explicitly. Instead, the Alloy analyzer itself would check over all
the alternatives it sees in the model. A straightforward approach of modeling the at-
tributes of the nodes in the agents’ task structures results in too large a scope for the
Alloy to handle. Perhaps the attribute values should be abstracted as features of the task
structures, not as numerical values.

7 Conclusions and Future Work

We have created and validated a model for verifying data structure rich properties of a
cooperative multi-agent system using a manually created execution path. To our knowl-
edge, our work is the first application of the Alloy analyzer for checking properties of
a multi-agent system. Moreover, this example illustrates how the use of Alloy’s for-
mal reasoning capability can be integrated into the testing and validation activities of
software development.

Another step might be checking a property on all interior paths of a loop in an FSM.
One more interesting property would involve checking if an elaboration of the non-
local task is “interwoven” in one of the many alternative ways into the task structure of



an agent. We expect that checking such a more complicated and a more realistic case
might highlight Alloy’s advantage due to the declarative nature of its relational algebra.
It would also be interesting to see whether CSP-based models and tools (FDR) or B
CSP models would be useful for checking properties of negotiation in MAS systems
with explicit communication.
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