
Developing Multi-Agent Systems with Automatic Agent
Generation and Dynamic Task Allocation Mechanisms

Xiaoqin Zhang
Computer and Information

Science Department
University of Massachusetts at

Dartmouth
x2zhang@umassd.edu

Haiping Xu
Computer and Information

Science Department
University of Massachusetts at

Dartmouth
hxu@umassd.edu

Bhavesh Shrestha
Computer and Information

Science Department
University of Massachusetts at

Dartmouth
g bshrestha@umassd.edu

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; D.2.13 [Software Engineering]: Reusable Soft-
ware

General Terms
Design, Standardization, Verification.

Keywords
Role-Based Agent Development, Multi-Agent Systems, Mo-
tivations, Role-Agent Mapping, Task Allocations

1. INTRODUCTION
Multi-Agent System (MAS) is a suitable programming

paradigm for distributed information systems and applica-
tions. We have been working on a set of technologies and
mechanisms to ease and formalize the development of MAS,
and to increase its reliability and reuse-ability too. We aim
to cover the analysis and modeling, design and implemen-
tation phases. The first goal is to separate concerns. We
have proposed a three-layered development process to sepa-
rate the multiple issues in a multi-agent system, while some
of them are application-dependent, others are not; some of
them are platform-dependent and others are not. We have
also aimed to separate the domain knowledge and the intel-
ligent problem-solving capabilities. We adapt a role-based
modeling approach, conceptual roles are defined with the
domain related knowledge, such as goals, permissions, orga-
nizational relationship, and interaction protocols, etc; where
agent is a concrete entity equipped with motivations, re-
sources and problem-solving capabilities.

The second goal is to automate the agent generation
process, while utilizing the existing tools and mechanisms
as much as possible. We propose to create agents using a
drag-and-drop mechanism where the user can select compo-
nents to plug in the system depending on the application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

requirement. We adapt a quantitative model of motivation
named MQ framework [4]. Based on this MQ framework,
the agent can perform a quantitative reasoning on how im-
portant a role instance is given its preference, its utility
function and its current achievement. In the definition of
a role, we introduces a RTÆMS language (Role-Based Task
Analyzing, environment Modeling, and Simulation) to rep-
resent the domain knowledge about how to achieve a goal.
RTÆMS language is an extension of TÆMS language [1], a
hierarchical task network representation language with task
inter-relationships and quantitative descriptions of different
alternatives to achieve a goal. When an agent takes a role
instance, it has access to this RTÆMS representation of the
goal. As a result, the existing planning/scheduling [5] and
coordination [2] mechanisms based on TÆMS language can
easily be exploited by the agent.

2. AUTOMATIC AGENT GENERATION PRO-
CESS

We have developed a tool to support the automatic agent
generation process. This tool is created by extending the
current JAF framework [3] developed by MAS lab at UMass
Amherst. This tool includes a graphic user interface, which
can be used to create new agents, modify existing agents,
run agents and delete agents. A screen shot of the graphic
user interface is shown in Figure 1.

Agent class is defined by a set of attributes, motivations,
utility function, and a set of reasoning mechanisms and ex-
ecution mechanisms [6]. The user can create a new agent
(class) through this interface. The user can define a variety
of attributes including name, qualification, and other pa-
rameters to control the agent execution process such as log
file name and log level. Qualification is an attribute that de-
scribes a particular capability or certificate this agent class
owns, which is used in the role-agent mapping process to
decide whether an agent is qualified for a particular role.

3. DYNAMIC TASK ALLOCATION THROUGH
ROLE-AGENT MAPPING

In RADE framework, agents can dynamically choose the
role instances, and role instances can be created dynami-
cally too. In the development phases, roles and agents are
designed separately. In the implementing phases, agents are
created by users. In addition, there is a role space compo-
nent built in the system to manage role instances:

When the system execution starts, one or more role in-



Figure 1: Automatic Agent Generation Interface

stances are created by the human user. Those agents who
are interested in taking a particular role instance send mes-
sages to the role space. The role space then checks the qual-
ification of the agents. If an agent is currently taking other
role instances, it checks if this role instance is compatible
with the other role instances, according to the incompatible
relationship defined between role classes.

After this process, a list of qualified agents is sent to the
the creator of this role instance (in this case, the creator is
the human user, it can be an agent too). The creator then
selects one agent from this list to take the role instance. This
selection is totally based on the creator’s preference, the user
can define different criteria for the selection, such as based
on the profile of the candidate agent, or the experience of
previous interaction with the candidate agent.

When an agent takes a role instance, it checks the goals
that belong to this role instance and decides if more role
instances need to be created to carry the subgoals or to
achieve some necessary preconditions. If this is the case,
more role instances will be created and posted in the role
spaces. The process described above is repeated until no
more role instances are created.

An agent decides whether it is interested in a role instance
by checking if some of the goals that belong to the role in-
stance match the agent’s motivation. A goal G matches
agent A’s motivation if and only if:
∃MQx ∈ MQPS(G), ∃MQy ∈ Motivations(A), MQx .type ==
MQy .type
According to the above definition, there may be multiple
role instances an agent is interested at the same time. How
much the agent is interested in a particular role instance
depends on the type and number of units of MQ associated
with the goal that belongs to this role instance, the agent’s
preference on different MQs given its current MQ accumu-
lations. and the agent’s resource and capability.

Since each goal defined in a role instance essentially repre-
sents a task to be accomplished, so the role-agent mapping
process is a task allocation process. In this process, the

Figure 2: RADE Interface for Creating Roles

agent decides which task it would like to take depending on
the user-defined preference functions, its previous experience
of task accomplishment and its resource limitation. On the
other hand, which agent is chosen to perform this task also
depends on the qualification requirement, the organizational
rules (represented as the incompatibility relationship) and
other dynamic issues such as the agent’s previous experi-
ence.

4. HEALTH CARE APPLICATION DOMAIN

4.1 Role Definition
Figure 2 shows the RADE interface for user to create role

classes and define the interrelationships among role classes.
In this example, the interrelationships include inheritance,
association and incompatibility. Each role is defined with
a goal, a plan tree, a motivational quantity production set
(MQPS), a certificate and other attributes. A goal is a task
this role needs to accomplish, and the plan tree specifies the
domain knowledge of how to accomplish this goal in terms
of decomposing it as sub-goals.
ROLE: Physician
GOAL: Provide Cure
MQPS: (MQ professional P, p1), (MQ moral P, p2),
(MQ experience P, p3)
CERTIFICATE: MD (Doctor of Medicine)

For example, Physician role is defined with a goal to pro-
vide care. The plan tree shown in Figure 3 provides domain
knowledge of how to accomplish this goal. The MQPS spec-
ifies the type and the number of units of motivational quan-
tities can be collected by the agent after it accomplishes the
goal defined in the role. The Certificate defined in the role
describes the qualification requirement for this role. This
role can only be taken by an agent who has this specified
certificate. For example, Physician role is defined with a
certificate of MD (Medical Doctor).

4.2 Agent Definition
As Figure 1 shows, a user creates an assistant agent named

Adam. The user specifies his preference on choosing tasks
by defining the motivation of this agent. The user speci-
fies three long-term goals: professional achievement, moral
achievement and experience achievement, as a physician,



Figure 3: Plan Tree definition for Physician Role
Table 1: Agent’s Motivation

MQ Type Function Index Initial Amount
MQ Professional P 0 0

MQ Moral P 1 1
MQ Experience P 2 2

which are represented by three types of MQs shown in Ta-
ble 1 . The function index specifies a utility function that
maps a certain number of units of MQ of this type into the
agent’s local utility. Since the function can be a non-linear
function and is also context sensitive, the initial amount of
this type MQ is also important. The user also provides this
agent his qualification MD so this agent can be qualified for
a Physician role.

4.3 Runtime Scenario
This system is modeling a hospital organization. When

the system is initialized, the system administer creates sev-
eral Patient role instances to express the expected service
requirements from patients. When a (real) patient Bryan
enters in this hospital for service, an personal assistant agent
named Bryan is created for this patient, and this agent takes
one Patient role instance. When agent Bryan takes the Pa-
tient role instance, it has one goal to achieve: Get Cure. The
plan tree of this goal describes that another goal Provide
Care is a precondition of this goal (Provide Care enables
Get Cure), and the goal Provide Care belongs to a Physician
role. Based on this information, agent Bryan sends a request
to the role space for creating a Physician role instance.

When this Physician role instance is created in the role
space, all agents who are interested in taking any additional
role instances receive a message for this update. After re-
ceiving this message, the agent looks at the goal associated
with this role instance, especially the MQPS and to see if
it matches its own motivation. If the MQPS contains the
same type of MQ the agent has in its motivation, the agent
is interested in taking this role instance. It is also possi-
ble that the role space would receive requests from multiple
agents for the same role instance. The role space verifies the

qualification of each agent by matching the agent’s qualifi-
cation to the certificate requirement defined in the role class
that this role instance belongs to. After that, a short list
of agents are sent to agent Bryan, who is the creator of
the role instance. Bryan will select one agent from this list
to take the role instance according to the criteria defined
by its user. Assume that agent Adam is selected by agent
Bryan to take the Physician role instance, it loads the plan
tree of the goal Provide Care associate with the Physician
role. It finds that to accomplish this goal, three subgoals
Clinical Test, Setup Equipment and Provide Cure must be
accomplished by other roles. In response to this need, agent
Adam requests three new role instances to be created in role
space, one MA Clinical role instance and two Nurse Assis-
tant role instances. Other agents who are interested in these
role instances would send requests to the role space, a short
list of candidates will be sent the agent Adam for selection.
This process will continue until no more new role instance
is needed and all role instances have been taken.

After a goal defined in a role instance is accomplished, the
agent will collect the MQs as defined in the MQPS of this
role instance. The agent will release this role instance, and
this role space will delete this role instance. In the system
runtime, new role instance is created according to the need
to accomplish a certain goal. Agent is mapped to the role
instance according to the matching of the motivation, the
qualification and the compatibility. Since each role instance
is associated with a goal, the mapping process is also a task
allocation process. In this process, the agent is reasoning
on its local utility achievement, described as its motivation
and MQ mapping functions. The domain-related constrains
such as qualification and compatibility are defined in the
role and monitored by the role space. This implementation
realizes the separation of concern principle.

5. REFERENCES
[1] K. Decker. TAEMS: A Framework for Environment

Centered Analysis & Design of Coordination Mechanisms. In
Foundations of Distributed Artificial Intelligence, Chapter
16, pages 429–448. G. O’Hare and N. Jennings (eds.), Wiley
Inter-Science, January 1996.

[2] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey,
B. Horling, D. Neiman, R. Podorozhny, M. NagendraPrasad,
A. Raja, R. Vincent, P. Xuan, and X. Zhang. Evolution of t
he GPGP/TAEMS Domain-Independent Coordination
Framework. Autonomous Agents and Multi-Agent Systems,
9(1):87–143, July 2004.

[3] R. Vincent, B. Horling, and V. Lesser. An Agent
Infrastructure to Build and Evaluate Multi-Agent Systems:
The Java Agent Framework and Multi-Agent System
Simulator. Lecture Notes in Artificial Intelligence:
Infrastructure for Agents, Multi-Agent Systems, and
Scalable Multi-Agent Systems., 1887, January 2001.

[4] T. Wagner and V. Lesser. Evolving real-time local agent
control for large-scale mas. In J. Meyer and M. Tambe,
editors, Intelligent Agents VIII (Proceedings of ATAL-01),
Lecture Notes in Artificial Intelligence. Springer-Verlag,
Berlin, 2002.

[5] T. A. Wagner, A. J. Garvey, and V. R. Lesser. Criteria
Directed Task Scheduling. Journal for Approximate
Reasoning (Special Scheduling Issue); a version is also
available as UMass Computer Science Technical Report
1997-59, 19:91–118, January 1998.

[6] X. Zhang and H. Xu. Towards automated development of
multi-agent systems using rade. In Proceedings of The 2006
International Conference on Artificial Intelligence, pages
44–50, Las Vegas, Nevada,, June 2006. ICAI-06.


