
A Randomized ANOVA Procedure
for Comparing Performance Curves

Justus H. Piater
piater@cs.umass.edu

Paul R. Cohen
cohen@cs.umass.edu

Xiaoqin Zhang
xqzhang@cs.umass.edu

Michael Atighetchi
adi@cs.umass.edu

Computer Science Department
University of Massachusetts

Amherst, MA 01003

Abstract

Three factors are related in analyses of per-
formance curves such as learning curves: the
amount of training, the learning algorithm, and
performance. Often we want to know whether
the algorithm affects performance and whether
the effect of training on performance depends on
the algorithm. Analysis of variance would be an
ideal technique but for carryover effects, which
violate the assumptions of parametric analysis
of variance and can produce dramatic increases
in Type I errors. We propose a novel, random-
ized version of the two-way analysis of variance
which avoids this problem. In experiments we
analyze Type I errors and the power of our tech-
nique, using common machine learning datasets.

1 INTRODUCTION

A common task in machine learning is comparative assess-
ment of learning methods. Most research on this issue fo-
cuses on performance measures such as classification accu-
racy after training, or percentage of games won by a game-
playing program (e.g. Mitchell 1997 ch. 5, Dietterich (in
press), Rasmussen et al. 1996). However, it is sometimes
interesting to compare time series of performance, such as
learning curves. For example, two algorithms might have
comparable asymptotic performance, but we would like to
test the hypothesis that one achieves this level of perfor-
mance more quickly than the other.

Which statistical procedures are appropriate to identify dif-
ferences between the performance of algorithms over time,
and particularly during training? One obvious approach
might be to apply the aforementioned methods repeatedly

at different times, comparing the performance of algo-
rithms at each of several levels of training. Unfortunately,
multiple comparisons can lead to overestimates of the sig-
nificance of results (see Section 2) and are inappropriate for
comparing performance curves.

A better approach is to describe differences between algo-
rithms during training in terms of two effects:

Algorithm Effect: Does one algorithm generally achieve
higher performance than another?

Interaction Effect: Does the influence of training on per-
formance depend on the algorithm?

Figures 1a and 1b illustrate prototypical cases for each ef-
fect. In practice, however, some combination of effects
will occur. In Figure 1c, for instance, both curves start out
with similar slopes, but one of them converges to a lower
asymptote. Figure 1d shows a case where both curves start
at the same point and achieve similar asymptotic perfor-
mances, but one algorithms learns faster (with respect to
the amount of training) than the other. In this latter case, we
find that both algorithm and interaction effects concentrate
in the early stages of training, and both effects essentially
disappear with increasing amount of training.

This paper presents a method for detecting Algorithm and
Interaction effects in learning curves. Actually, the method
is not restricted to learning curves, it applies to any kind of
performance curves. The method tests two hypotheses:

� The mean performances of two or more algorithms are
the same (no Algorithm effect).

� The relationship between training and performance
does not depend on Algorithm (no Interaction effect).

Such effects are typically tested with analysis of variance
(ANOVA). However, the conventional parametric ANOVA is

Algorithm

(a)

Interaction
Algorithm,

(d)

InteractionPe
rf

or
m

an
ce

Algorithm,

(c)

Interaction

(b)

Training

Figure 1: Some kinds of differences between learning curves. The statistical effects on performance (Algorithm and/or
Interaction effects) are listed for each situation. In case c, the Interaction effect disappears at the later stages of training; in
case d, both effects disappear.

based on several assumptions, of which one, homogene-
ity of covariance, is strongly violated by most time se-
ries data. In particular, conventional ANOVAs on learning
curves can dramatically overestimate the significance of al-
gorithm effects and underestimate the significance of in-
teraction effects. Following some statistical preliminaries
in Section 2, we demonstrate how ANOVA gives incorrect
results for learning curves (Section 3) and then introduce
our novel procedure, a randomized version of ANOVA (Sec-
tion 4). The remainder of the paper presents experimental
results with conventional and randomized ANOVA, compar-
ing the power and Type I errors of the methods.

2 STATISTICAL HYPOTHESIS TESTING

This section defines terms and may safely be skipped by
readers familiar with statistical hypothesis testing.

Hypothesis testing involves these steps: Assert a null hy-
pothesis H0. Decide on a statistic �. Collect a sample s

of size n and calculate �(s) for the sample. Derive the
probability distribution S of all possible values of �(i) for
samples i of size n under H0. These restrictions are im-
portant: S isn’t the distribution of � for any sample, but
for samples of size n that would arise if the null hypoth-
esis were true. S is called the sampling distribution of �.
One may then ask, “What is the probability of obtaining a
statistic value of �(s) or more by chance if H0 were true?”
The answer, called a p value, is the area of S above �(s).
Suppose p = :01. Should you reject the null hypothesis?
There isn’t a correct answer to this question, but you can be
assured that if you do reject H0, the probability that you do
so in error is no greater than p. Rejecting H0 when it is true
is called a Type I error. Failing to reject H0 when it is false
is a Type II error, and the power of a test—the probability
that you will reject H0 when it is false—is one minus the
probability of a Type II error.

One may also ask, “What value of �(s) must I exceed to
be assured that my p value is less than some threshold �?”
This is called the critical value of � and, obviously, it varies
with �.

One should not compare performance curves by repeatedly
comparing points on the curves (e.g., comparing perfor-
mance after i; 2i; 3i : : : training instances). Each compari-
son will with some probability � assert a difference in per-
formance when in reality there is none — a Type I error.
If the comparison procedure is applied m times, to m pairs
of points on learning curves, then the total probability of
Type I error is roughly 1 � (1 � �)m. (The probability is
exactly 1� (1 � �)m if the comparisons are independent,
but they are not, and their non-independence necessitates
the technique developed in this paper.) One can control the
total probability of a Type I error, but only by reducing �

— which increases the critical values for individual com-
parisons — making it less likely that comparisons will find
differences that actually exist. Said differently, the power
of the tests is reduced (see Cohen 1995 for a discussion of
related issues). Multiple comparisons are not the right tool
for comparing performance curves.

3 ANOVA FOR COMPARING
PERFORMANCE CURVES

Suppose we have two learning algorithms A1 and A2, each
of which trains l times on a set of k instances, e.g., in an
l-fold cross validation procedure. Then we have l estimates
of the performance of each algorithm at each level of train-
ing. Put another way, we have l “lines” L(1)

1 ; : : : ; L
(1)

l
for

A1 and another l lines L(2)
1 ; : : : ; L

(2)

l
, where each line is

a list of k numbers that represent the performance of the
algorithm at level h (1 � h � k) of training, on that par-
ticular fold of the cross validation. A schematic data table
is shown in Figure 2, where the axes of the table represent

the factors Training and Algorithm. Lines may of course
be generated by methods other than cross-validation; for
example, they might represent training on several differ-
ent datasets. The important thing is that the data points on
a line are not independent. In statistical parlance, they are
repeated measures and they create carryover effects, mean-
ing that the performance represented by earlier points on a
line influences, or carries over to, later performance.

A
lg

or
ith

m

Training

t1 t2 t3 tk...

A1

A2

Am

.
.
.

Figure 2: Data table setup for randomized ANOVA. This
example shows l = 4 learning curves per algorithm.

Were it not for these carryover effects, analysis of variance
would be an ideal tool to analyze learning curves. Analysis
of variance tests for main effects of factors and interaction
effects between factors. Each kind of effect is represented
by an F statistic, which has an expected value of 1.0 under
the null hypothesis of no effect. Formulae for calculating
F are straightforward and widely available (e.g., see Cohen
1995) and will not be repeated here. The patterns of data in
Figure 1 can be discriminated by F statistics for main and
interaction effects.

Carryover effects make it difficult to specify the sampling
distributions of F statistics. Classical F distributions are
derived under some assumptions, and while F tests are ro-
bust against departures from most of these, learning curves
violate an important one: homogeneity of covariance. To
see what this means, note that we could calculate a correla-
tion between the four data points in theA1; t1 cell of Figure
2 and the four in the A1; t2 cell. Under homogeneity of co-
variance, this correlation would be constant for any pair of
cells Ak; ti and Ak; tj . However, the correlation between

performance after t and t+1 training instances is apt to be
higher than the correlation between performance after t and
t + 100 instances, so homogeneity of covariance is apt to
be violated. The consequence is that the Type I error prob-
abilities no longer correspond to the given � level (Cohen
1995 (p. 306), Keppel 1973, O’Brien and Kaiser 1985).

So F statistics can represent the effects in Figure 1, nicely,
but carryover effects bias the p values of the statistics. Can
we salvage ANOVA and F tests? One common tactic is to
correct statistics to compensate for biases. The following
experiment (and those in Sec. 5) shows that this tactic will
not work. We generated learning curves from three dif-
ferent datasets (Chess, RL, and Tic-Tac-Toe; see the Ap-
pendix). The results (Figure 3) demonstrate a dramatic in-
crease in Type I error in the case of Algorithm effects, and
a decrease for Interaction effects. The histograms demon-
strate that the frequencies of these errors depend on the
dataset, which implies that one cannot correct the F statis-
tics with a simple adjustment. In particular, the Chess and
Tic-Tac-Toe learning curves were generated according the
same procedure, their degrees of freedom are identical, and
yet their mean rejection rates differ dramatically.

Another way to salvage ANOVA is to somehow find the ap-
propriate sampling distributions for F statistics when ho-
mogeneity of covariance is violated. This would allow us
to control Type I errors precisely. Our method, discussed
in Section 4, yields these sampling distributions, and ac-
curate p values, whether or not homogeneity of covariance
is violated. The procedure is based on randomization (see,
e.g., Cohen 1995, ch. 5). Consider first the null hypothe-
sis that Algorithm has no effect on performance. If it were
true, then the lines associated with algorithmA1 in Figure 2
might equally well be associated with A2, or with any other
algorithm. Thus, if we randomly redistribute lines among
algorithms, and then calculate Falg in the usual way, we
will derive one value of Falg under the null hypothesis that
Algorithm is independent of performance. For clarity, de-
note this statistic F �

alg to remind us that it was derived by
randomization, that is, shuffling lines, and to distinguish
it from the sample statistic Falg that was calculated from
the original (unshuffled) data table. If we shuffle the lines
again, we will get another, somewhat different value of
F �

alg, and if we shuffle 1000 times we can get a distribu-
tion of 1000 values of this statistic.

By shuffling lines instead of, say, individual data points
among algorithms, we preserve the dependencies among
the data points on each line. Said differently, we treat a line
as a unit for the purpose of estimating the distribution of
F �

alg, so the degree of dependence among the data on a line
is irrelevant. As mentioned above, when homogeneity of
covariance is violated, comparing Falg to a conventional F

Initialize c = 0. Then do 1000 times:
1. Generate a set L of learning curves using C4.5.

2. Partition L randomly into L1 and L2 representing two different imaginary algorithms,
with jL1j = jL2j =

jLj

2
.

3. Perform conventional ANOVA on these data, obtaining the probability p that it is incor-
rect to reject the null hypothesis that there is no effect of Algorithm on performance.

4. If p < 0:05 then increment c.

Chess RL Tic-Tac-Toe

A
lg

or
ith

m

300 350 400 450
0

10

20

30

50 100 150
0

10

20

30

100 150 200
0

10

20

30

In
te

ra
ct

io
n

0 2 4
0

20

40

60

0 10 20 30
0

10

20

30

40

20 40 60 80
0

5

10

15

20

Figure 3: Illustration of the increase in Type I error resulting from carryover effects. For each dataset, the procedure
given above was executed 100 times and the resulting c values averaged. Without carryover effects, one would expect
c = 1000� = 50. The histograms of c values show that H0 was rejected much more frequently, which demonstrates the
inappropriateness of the conventional ANOVA for comparison of learning curves. See the Appendix for details about the
datasets used.

distribution will underestimate p, that is, it will make Falg

look significant at a given level of � when it is not. The
distribution of F �

alg protects against this error, as illustrated
by Figure 4.

F �

alg is not technically a sampling distribution but it serves
the same purpose, namely, to estimate a p value for a sam-
ple result, or to find a critical value that Falg must exceed
to reject H0 with some level � of confidence (Cohen 1995,
p. 175).

4 THE PROCEDURE IN DETAIL

Consider a set A of m learning algorithms A1; : : : ; Am.
For each algorithm Ai we have a set L(i) of l learning
curves L(i)

1 ; : : : ; L
(i)

l
. Each learning curve L(i)

j
constitutes

a k-tuple (L(i)

j;1; : : : ; L
(i)

j;k
) of real numbers, where each L(i)

j;h

gives the performance score of the learning algorithmAi on
the jth run after Ai has performed an amount th of train-

ing.1 Note that k and the th (1 � h � k) are the same for all
algorithms, but l, the number of learning curves generated
by an algorithm, need not be the same for all algorithms.

We will test two null hypotheses: There is no effect of
Algorithm on performance, and there is no effect of Al-
gorithm on the relationship between Training and perfor-
mance. These correspond to F tests of a main effect and
the interaction effect in a two-way analysis of variance, so
we will compute the appropriate statistics, Falg and Fint,
but we will compare them to the randomized sampling dis-
tributions of F �

alg and F �

int.

The complete procedure can be summarized as follows:

1. For each algorithm i, collect l learning curves
L
(i)
1 ; : : : ; L

(i)

l
. If there are m algorithms, this will pro-

1The “amount of training” is an abstract notion here which
could be given by the number of training instances processed, the
number of trials run, or even by the training time.

Chess RL Tic-Tac-Toe

A
lg

or
ith

m

20 40 60 80
0

5

10

15

20

0 50 100
0

10

20

30

0 50 100
0

10

20

30

Figure 4: Histograms generated by the same procedure as Figure 3, but p-values were compared against randomized F

distributions (500 shuffles) instead of the parametric distributions. In fact, the mean rejection rates of around 50 correspond
to the target significance level of � = 0:05. This is also true for the corresponding histograms for the Interaction effect
(not shown).

duce a data table like the one in Figure 2.

2. Run a conventional two-way analysis of variance on
this data table to obtain sample statistics Falg andFint.

3. Generate the sampling distributions F �

alg and F �
int:

Throw the m� l learning curves into a “pool”P .

Do i = 1 : : : z times (where z is large, e.g.,
1000):

(a) Shuffle P and reassign each of the ml learn-
ing curves to the m algorithm categories
(rows in the data table) such that each row
contains l curves. Shuffling P enforces the
null hypothesis of no association between
performance and algorithm.

(b) Run a conventional two-way analysis of vari-
ance on the resulting data table and record
F �

alg;i and F �
int;i.

4. Find the critical values in the distributions F �

alg and
F �
int. If � = :05 and z = 1000 then the critical value

in each sorted distribution is the 950th, because 5% of
the distribution lies above this value. In general, the
critical value is the �100th quantile.

5. If Falg exceeds the critical value for the F �

alg distri-
bution, reject the null hypothesis that Algorithm does
not affect performance. Similarly if Fint exceeds the
critical value for the F �

int distribution, reject the null
hypothesis of no interaction effect.

6. The p value for each hypothesis is derived from the
rank of the closest value in the sorted sampling dis-
tribution. For example, if Falg = 10:3 and the closest
value in F �

alg is 10.2, and if the rank of this value is 972
out of 1000, then p < (1000� 972)=1000 = :028.

5 EXPERIMENTAL RESULTS

In Section 3 we illustrated the increase in Type I error
caused by comparing F statistics to standard F distribu-
tions. This section provides a more detailed account of this
phenomenon. Both Algorithm and Interaction effects are
analyzed on the Chess dataset (see Appendix). The fol-
lowing section discusses the probability of Type I error,
and Section 5.2 compares the power of the conventional
and randomized ANOVAs. In all cases we use m = 2 sets
of learning curves. Note that our method applies to any
m � 2.

5.1 TYPE I ERROR MEASUREMENTS

As shown in Section 3, the standard F distributions tend to
overestimate the significance of Algorithm effects, but un-
derestimate the Interaction effects. We expected the overes-
timations based on previously published results (e.g., Kep-
pel 1973, p. 464) but the underestimations were a surprise
and we do not have a satisfactory explanation for this phe-
nomenon. In one sense, we do not care why the standard
F distributions detect Interaction effects less often than ex-
pected, because we have a method to construct correct F
distributions. Yet we were curious. To shed some light on
this issue, we examined the frequency of Type I errors for
Interaction and Algorithm effects, for conventional ANOVA

and our method, in a variety of conditions.

Recall that Type I error rates are the frequencies with which
the null hypothesis is rejected when it is true, i.e., when
there is no effect. In Section 3 we enforced the null hy-
pothesis by splitting a set of learning curves generated by
one algorithm into two groups, calling one group “algo-
rithm A,” the other “algorithm B,” then testing for an Al-
gorithm effect and an Interaction effect. Because the two
groups were generated by one algorithm, we expected nei-
ther effect; that is, we expected Type I error rates of �. In

the following experiments we enforce the null hypothesis
in a slightly different way. First we generated a set L of
learning curves with C4.5, then to each curve we applied
a transformation, yielding another set L0. The transforma-
tion induced an Algorithm effect or an Interaction effect or
both. In other words, the mean curves for L and L0 corre-
spond to the pairs of curves in Figure 1. Then, to enforce
the null hypothesis, we shuffled the curves in L and L0.
Whereas the earlier procedure enforced the null hypothesis
by randomly dividing a set of statistically-identical learn-
ing curves, this procedure is more natural in starting with
two sets of curves (L and L0) that are different, then shuf-
fling them. Moreover, we have tight control over the degree
of difference between L and L0 because we transform the
former to get the latter.

We now describe this procedure in detail. The following
steps compute the number c of rejections of H0 during
1000 analyses of variance, starting from a set L of learn-
ing curves:

Initialize cconv = crand = 0. Then do 1000 times:

1. Construct L0 by modifying each curve from L accord-
ing to one of the cases given in Figure 1. The degree
of modification is controlled by a factor f . We will
denote this operation by L0 = Ma(L; f) for case a in
Figure 1, and likewise for cases b; c; d.

2. Partition L[L0 randomly into L1 andL2, with jL1j =
jL2j = 20.

3. Perform conventional ANOVA on these data to obtain
the F statistic for the tested effect.

4. Compare F to the appropriate conventional F distri-
bution and read off the probability pconv that it is in-
correct to reject H0.

5. Generate a randomized sampling distribution F � us-
ing 400 shuffles as described in Section 4 item 3, and
read off prand.

6. If pconv < � then increment cconv.
If prand < � then increment crand.

This procedure was performed with respect to Algorithm
and Interaction effects, and for 10 different values of f .
For each of these cases, the c values resulting from 10 such
runs were averaged to yield a data point shown in Figure 5.
The effect of the modification factor f on the shape of a
curve is also illustrated in the figure. Details on the four
modification procedures are given in the Appendix.

As expected, the randomized ANOVA always achieves
Type I error probabilities near the target significance level

of � = 0:05. The conventional method, however, tends to
assert an Algorithm effect too often (increase in Type I er-
ror probability). In contrast, Interaction effects are mostly
detected less often than the expected 5%.

Modification Mb is a dramatic case: This modification did
not introduce an Algorithm effect, and yet such an effect
was often detected by the conventional ANOVA at a fre-
quency inversely proportional to the modification factor
f . The modification introduced an Interaction effect which
was then shuffled away, enforcing the null hypothesis of no
interaction, yet the frequency with which conventional AN-
OVA detected Interaction effects increases with f . We do
not know why, and these experiments fail to explain why
Type I errors for interaction effects are lower than expected,
although the dependence on f is intriguing.

The magnitude of these misjudgments can be quite dra-
matic (up to a factor of ten in these examples), but depends
on the type of the effect and the modification factor f . Be-
cause of these dependencies, we think it is not possible to
correct the standardF statistics to control Type I errors pre-
cisely. No matter: Our randomized ANOVA produces the
expected Type I errors.

5.2 POWER MEASUREMENTS

Whereas Type I errors involve detecting effects that don’t
exist, Type II errors involve failing to detect errors that do
exist. The power of a test is one minus the Type II error
rate, that is, the probability of detecting a true effect. To
measure the power of both conventional and randomized
versions of ANOVA, we employed the same modification
strategy as in the previous section. Here, however, L and
L0 are not shuffled. In other words, L and L0 give us con-
trolled Algorithm and Interaction effects. The following
procedure measures the power of both ANOVAs to detect
these effects:

1. Construct L2 = Mx(L1; f), where x is one of
a; : : : ; d.

2. Generate a randomized sampling distribution F �, as
described in Section 4 item 3, using 500 shuffles of
2� 10 learning curves each.

3. cconv = crand = 0.

4. Do 100 times:

(a) Randomly draw a set L0
1 of 10 unique curves

from L1.
Randomly draw a set L0

2 of 10 unique curves
from L2.

(b) Perform conventional ANOVA and obtain F .

Curve Illustrations Algorithm Effect Interaction Effect

a

0 10 20 30
300

400

500

600

700

Amount of Training (x103)

P
er

fo
rm

an
ce

f = 0
f = 2
f = 8

0 5 10
0

200

400

600

Modification factor f

as
se

rt
io

ns

conv
rand

0 5 10
0

20

40

60

80

Modification factor f

as

se
rt

io
ns

conv
rand

b

0 10 20 30
300

400

500

600

700

0 5 10
0

200

400

600

0 5 10
0

50

100

150

200

c

0 10 20 30
300

400

500

600

700

0 5 10
0

200

400

600

0 5 10
0

20

40

60

d

0 10 20 30
300

400

500

600

700

0 5 10
0

200

400

600

0 5 10
0

20

40

60

80

Figure 5: Effects asserted by the conventional and randomized ANOVA methods. Each row shows one of the modification
cases a–d from Figure 1. The left column illustrates the effect of the modification for different values of f (f = 0 means no
modification). The center and right columns plot the number of times (of 1000) the conventional and randomized analyses
asserted an Algorithm or Interaction effect at � = 0:05.

(c) Compare F to the parametric F distribution and
obtain pconv.
Compare F to the randomized F � distribution
and obtain prand.

(d) If pconv < � then increment cconv.
If prand < � then increment crand.

Divide cconv and crand by 100 to obtain the power
measurements.

This procedure was performed to introduce Algorithm and
Interaction effects for 10 different values of f . For each of
these cases, the c values resulting from 8 such runs were
averaged to yield a data point shown in Figure 6.

As in earlier experiments, the conventional ANOVA usually
overestimates the presence of an Algorithm effect, thus it
appears more powerful than our randomized ANOVA. But
this “power” is illusory, like a watchdog that barks all night
whether or not a prowler is on the premises. Sure, the dog
will bark when there is a prowler — the probability of de-
tecting a prowler is 1.0 — but it is a useless animal. In mod-
ifications a, c and d, where Algorithm effects are present,
our method detects them handily and at a Type I error rate
of approximately 5%. In case b, where there is no algorithm
effect, our method does not report one, but the conventional
method does. Similarly, for interaction effects, our method
does not detect one in case a, because none exists, and it is
quite powerful in the other cases, where interaction effects
are present.

6 CONCLUSION

We have presented a statistical method for comparing sets
of performance curves, such as learning curves, when
points on the curves are not independent, that is, when there
are carryover effects and homogeneity of covariance is vi-
olated. We demonstrated that in these conditions conven-
tional analysis of variance produces a sometimes dramatic
surplus of Type I errors for main (algorithm) effects and a
shortfall of Type I errors for interaction effects. Because
the magnitude of these surpluses and shortfalls depends on
the original dataset, among other things, we do not think
they can be corrected by adjusting conventional F statis-
tics. Instead we show how to construct sampling distribu-
tions for the F statistics that correct for violations of ho-
mogeneity of covariance. With this method, one can con-
trol error rates precisely. We recommend the method for
its simplicity and hope it will be a helpful addition to the
statistical toolbox of the machine learning community.

Algorithm Effect Interaction Effect

a

0 2 4
0

0.5

1

Modification factor f

P
ow

er

conv
rand

0 2 4
0

0.5

1

Modification factor f

P
ow

er

b

0 2 4
0

0.5

1

0 2 4
0

0.5

1

c

0 2 4
0

0.5

1

0 2 4
0

0.5

1

d

0 2 4
0

0.5

1

0 2 4
0

0.5

1

Figure 6: Power measurements of the conventional and
randomized ANOVA methods. Each row shows one of the
modification cases a–d from Figure 1. The horizontal axes
indicate the degree f to which one of one underlying two
sets of curves was modified with respect to the other (see
Figure 5).

Appendix: Sources of Learning Curves

Chess: Chess Endgame Database (king-rook-vs-king,
Bain 1994) provided by the UCI Machine Learning
Repository (Merz and Murphy 1996). Twenty Learn-
ing curves were generated by running the decision tree
algorithm C4.5 (Quinlan 1993) in a 20-fold cross val-
idation procedure.

We now describe the modification functionsMx(L; f)
used in Section 5. In the following, r refers to the dif-
ference between the performance values of the last and
first points of a given learning curve, i.e. r = Lk�L1.
For each learning curve L, each performance value Li

is altered according to a given modification case (cf.
Figure 1):

(a) Li = Li + f r

80

(b) Li =

�
Li + f r

100
(k
2
� i+ 1) if i � k

2

Li � f r

100
(i� k

2
) if i > k

2

(c) Li = Li + f Li�L1

100
(i� 1)

(d) Li = Li +

�
fr i�1

100
if i � k

2

fr k�i

100
if i > k

2

RL: These data were generated by an AI program that em-
ployed TD(0) Reinforcement Learning (Sutton 1988)
to learn to play Tic-Tac-Toe against a random oppo-
nent. The performance score was the cumulative score
of one hundred test games against a random player,
where losses, draws and wins scored -1, 0, and 1 re-
spectively. Ten learning curves were generated by one
training session each.

Tic-Tac-Toe: Tic-Tac-Toe Endgame Database (Aha 1991)
provided by the UCI Machine Learning Repository.
Learning curves were generated as with the Chess
dataset.

References

Aha, D. W. (1991). Incremental constructive induction:
An instance-based approach. In Proc. 8th Int. Work-
shop on Machine Learning, Evanston, IL, pp. 117–
121. Morgan Kaufmann.

Bain, M. (1994). Learning Logical Exceptions in Chess.
Ph. D. thesis, University of Strathclyde.

Cohen, P. R. (1995). Empirical Methods for Artificial
Intelligence. Cambridge, Massachusetts: MIT Press.

Dietterich, T. G. (in press). Approximate statistical tests
for comparing supervised classification learning al-
gorithms. Neural Computation.

Keppel, G. (1973). Design and Analysis: A Researcher’s
Handbook. Englewood Cliffs: Prentice-Hall.

Merz, C. and P. Murphy (1996). UCI Repository of
machine learning databases. http://www.ics.uci.edu/
�mlearn/MLRepository.html.

Mitchell, T. M. (1997). Machine Learning. McGraw-
Hill.

O’Brien, R. G. and M. K. Kaiser (1985). MANOVA
method for analyzing repeated measures designs:
An extensive primer. Psychological Bulletin 97(2),
316–333.

Quinlan, J. R. (1993). Programs for machine learning.
Morgan Kaufmann.

Rasmussen, C. E., R. M. Neal, G. Hinton, D. van
Camp, M. Revow, Z. Ghahramani, R. Kustra, and
R. Tibshirani (1996). The DELVE Manual. Univer-
sity of Toronto, Dept. of Computer Science. http://
www.cs.utoronto.ca/�delve.

Sutton, R. S. (1988). Learning to predict by the methods
of temporal differences. Machine Learning 3, 9–44.

