
00

An Ensemble Architecture for Learning Complex Problem-Solving
Techniques From Demonstration

Xiaoqin Shelley Zhang, University of Massachusetts at Dartmouth1

Sungwook Yoon, Arizona State University2

Phillip DiBona, Lockheed Martin Advanced Technology Laboratories3

Darren Scott Appling, Georgia Tech Research Institute4

Li Ding, Rensselaer Polytechnic Institute5

Janardhan Rao Doppa, Oregon State University6

Derek Green, University of Wyoming7

Jinhong K. Guo3, Ugur Kuter, University of Maryland8

Geoff Levine, University of Illinois at Urbana9

Reid L. MacTavish, Georgia Institute of Technology10

Daniel McFarlane3,James R Michaelis5, Hala Mostafa, University of Massachusetts, Amherst11

Santiago Ontañón10, Charles Parker6, Jainarayan Radhakrishnan10,Anton Rebguns7,
Bhavesh Shrestha1, Zhexuan Song, Fujitsu Laboratories of America12

Ethan B. Trewhitt4, Huzaifa Zafar11, Chongjie Zhang11, Daniel Corkill11, Gerald DeJong9,
Thomas G. Dietterich6, Subbarao Kambhampati2, Victor Lesser11,Deborah L.
McGuinness5, Ashwin Ram10,Diana Spears7, Prasad Tadepalli6, Elizabeth T. Whitaker4,
Weng-Keen Wong6, James A. Hendler5, Martin O. Hofmann3, Kenneth Whitebread3

We present a novel ensemble architecture for learning problem-solving techniques from a very small number of expert
solutions and demonstrate its effectiveness in a complex real-world domain. The key feature of our “Generalized Integrated
Learning Architecture” (GILA) is a set of heterogeneous independent learning and reasoning (ILR) components, coordinated
by a central meta-reasoning executive (MRE). The ILRs are weakly coupled in the sense that all coordination during learning
and performance happens through the MRE. Each ILR learns independently from a small number of expert demonstrations of
a complex task. During performance, each ILR proposes partial solutions to subproblems posed by the MRE, which are then
selected from and pieced together by the MRE to produce a complete solution. The heterogeneity of the learner-reasoners
allows both learning and problem solving to be more effective because their abilities and biases are complementary and
synergistic. We describe the application of this novel learning and problem solving architecture to the domain of airspace
management, where multiple requests for the use of airspaces need to be deconflicted, reconciled and managed automatically.
Formal evaluations show that our system performs as well as or better than humans after learning from the same training
data. Furthermore, GILA outperforms any individual ILR run in isolation, thus demonstrating the power of the ensemble
architecture for learning and problem solving.

General Terms: Design, Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Ensemble Architecture, Learning from Demonstration, Complex Problem-Solving

ACM Reference Format:
ACM Trans. Intell. Syst. Technol. 0, 0, Article 00 (20XX), 35 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Distribution Statement (Approved for Public Release, Distribution Unlimited). This material is based upon work supported
by DARPA through a contract with Lockheed Martin (prime contract #FA8650-06-C-7605). Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
DARPA, Lockheed Martin or the U.S. Government.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 20XX ACM 2157-6904/20XX/-ART00 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:2 X. Zhang, S. Yoon, P. DiBona et al.

1. INTRODUCTION
We present GILA (Generalized Integrated Learning Architecture), a learning and problem-solving
architecture that consists of an ensemble of subsystems that learn to solve problems from a very
small number of expert solutions. Because human experts who can provide training solutions for
complex tasks such as airspace management are rare and their time is expensive, our learning al-
gorithms are required to be highly sample-efficient. Ensemble architectures such as bagging, boost-
ing, and co-training have proved to be highly sample-efficient in classification learning [Breiman
1996; Freund and Schapire 1996; Blum and Mitchell 1998; Dietterich 2000b]. Ensemble architec-
tures have a long history in problem solving as well, starting with the classic Hearsay-II system to
the more recent explosion of research in multi-agent systems [Erman et al. 1980; Weiss 2000]. In
this article, we explore an ensemble learning approach for use in problem solving. Both learning
and problem solving are exceptionally complicated in domains such as airspace management, due
to the complexity of the task, the presence of multiple interacting subproblems, and the need for
near-optimal solutions. Unlike in bagging and boosting, where a single learning algorithm is typi-
cally employed, our learning and problem-solving architecture has multiple heterogeneous learner-
reasoners that learn from the same training data and use their learned knowledge to collectively
solve problems. The heterogeneity of the learner-reasoners allows both learning and problem solv-
ing to be more effective because their abilities and biases are complementary and synergistic. The
heterogeneous GILA architecture was designed to enable each learning component to learn and
perform without limitation from a common system-wide representation for learned knowledge and
component interactions. Each learning component is allowed to make full use of its idiosyncratic
representations and mechanisms. This feature is especially attractive in complex domains where the
system designer is often not sure which components are the most appropriate, and different parts of
the problem often yield to different representations and solution techniques. However, for ensem-
ble problem solving to be truly effective, the architecture must include a centralized coordination
mechanism that can divide the learning and problem-solving tasks into multiple subtasks that can be
solved independently, distribute them appropriately, and during performance, judiciously combine
the results to produce a consistent complete solution.

In this article, we present a learning and problem-solving architecture that consists of an ensem-
ble of independent learning and reasoning components (ILRs) coordinated by a central subsystem
known as the “meta-reasoning executive” (MRE). Each ILR has its own specialized representa-
tion of problem-solving knowledge, a learning component, and a reasoning component which are
tightly integrated for optimal performance. We considered the following three possible approaches
to coordinate the ILRs through the MRE during both learning and performance.

(1) Independent learning and selected performance. Each ILR independently learns from the same
training data and performs on the test data. The MRE selects one out of all the competing
solutions for each test problem.

(2) Independent learning and collaborative performance. The learning is independent as before.
However, in the performance phase, the ILRs share individual subproblem solutions and the
MRE selects, combines, and modifies shared subproblem solutions to create a complete solu-
tion.

(3) Collaborative learning and performance. Both learning and performance are collaborative, with
multiple ILRs sharing their learned knowledge and their solutions to the test problems.

Roughly speaking, in the first approach, there is minimal collaboration only in the sense of a
centralized control that distributes the training examples to all ILRs and selects the final solution
among the different proposed solutions. In the second approach, learning is still separate, while
there is stronger collaboration during the problem solving in the sense that ILRs solve individual
subproblems, whose solutions are selected and composed by the MRE. In the third approach, there
is collaboration during both learning and problem solving; hence a shared language would be re-
quired for communicating aspects of learned knowledge and performance solution if each ILR uses

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:3

a different internal knowledge representation. An example of this approach is the POIROT sys-
tem [Burstein et al. 2008], where all components use one common representation language and the
performance is based on one single learned hypothesis.

The approach we describe in this article, namely, independent learning with limited sharing and
collaborative performance is closest to the second approach. It is simpler than the third approach
where learning is collaborative, and still allows the benefits of collaboration during performance by
being able to exploit individual strengths of different ILRs. Since there is no requirement to share
the learned knowledge, each ILR adopts an internal knowledge representation and learning method
that is most suitable to its own performance. Limited sharing of learned knowledge does happen in
this version of the GILA architecture, though it is not required1.

The ILRs use shared and ILR-specific knowledge in parallel to expand their private internal
knowledge databases. The MRE coordinates and controls the learning and the performance pro-
cess. It directs a collaborative search process, where each search node represents a problem-solving
state and the operators are subproblem solutions proposed by ILRs. Furthermore, the MRE uses
the learned knowledge provided by ILRs to decide the following: (1) which subproblem to work
on next, (2) which subproblem solution (search node) to select for exploration (expansion) next,
(3) when to choose an alternative for a previous subproblem that has not been explored yet, and
(4) when to stop the search process and present the final solution. In particular, GILA offers the
following features:

— Each ILR learns from the same training data independently of the other ILRs, and produces a
suitable hypothesis (solution) in its own language.

— A blackboard architecture [Erman et al. 1980] is used to enable communication among the ILRs
and the MRE and to represent the state of learning/performance managed by the MRE.

— During the performance phase, the MRE directs the problem-solving process by subdividing the
overall problem into subproblems and posting them on a centralized blackboard structure.

— Using prioritization knowledge learned by one of the ILRs, the MRE directs the ILRs to work on
one subproblem at a time. Subproblems are solved independently by each ILR, and the solutions
are posted on the blackboard.

— The MRE conducts a search process, using the subproblem solutions as operators, in order to find
a path leading to a conflict-free goal state. The path combines appropriate subproblem solutions
to create a solution to the overall problem.

There are several advantages of this architecture.

— Sample Efficiency. This architecture facilitates rapid learning, since each example may be used
by different learners to learn from different small hypothesis spaces. This is especially important
when the training data is sparse and/or expensive.

— Semi-supervised learning. The learned hypotheses of our ILRs are diverse even though they are
learned from the same set of training examples. Their diversity is due to multiple independent
learning algorithms. Therefore, we can leverage unlabeled examples in a co-training framework
[Blum and Mitchell 1998]. Multiple learned hypotheses improve the solution quality, if the MRE
is able to select the best from the proposed subproblem solutions and compose them.

— Modularity and Extensibility. Each ILR has its own learning and reasoning algorithm; it can use
specialized internal representations that it can efficiently manipulate. The modularity of GILA
makes it easier to integrate new ILRs into the system in a plug-and-play manner, since they are
not required to use the same internal representations.

This work has been briefly presented in [Zhang et al. 2009]. However, this article provides signif-
icantly more details about the components, the GILA architecture, as well as discussions of lessons

1There are two ILRs sharing their learned constraint knowledge. This is easy because they use the same internal represen-
tation format for constraint knowledge; therefore, no extra communication translation effort is needed (see Section 4.3.1 for
more details).

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:4 X. Zhang, S. Yoon, P. DiBona et al.

Meta-Reasoning Executive (MRE)
 - System Execution Coordination
 - Subproblem Management

ILR1 (SPLR)
 Symbolic Planner
Learner Reasoner

ILR2 (DTLR)
 Decision Theoretic
Learner Reasoner

ILR3 (CBLR)
 Case Based

Learner Reasoner

ILR4 (4DCLR)
 4D Deconflication and

Constraint Learner
Reasoner

Blackboard
 - Expert Trace
 - World State
 - Learned Constraints
 - Subproblems
 - Partial Solutions

Fig. 1: Ensemble learning and problem solving architecture

learned and additional experimental results about the effect of demonstration content and the ef-
fect of practice. In Section 2, we present the ensemble learning architecture for complex problem
solving, which is implemented by GILA. We then introduce the airspace management domain (Sec-
tion 3), in which GILA has been extensively evaluated. Components in GILA include the MRE
(Section 5) and four different ILRs: the symbolic planner learner-reasoner (SPLR) (Section 4.1), the
decision-theoretic learner-reasoner (DTLR) (Section 4.2), the case-based learner-reasoner (CBLR)
(Section 4.3), and the 4D-deconfliction and constraint learner-reasoner (4DCLR) (Section 4.4). In
rigorously evaluated comparisons (Section 6), GILA was able to outperform human novices who
were provided with the same background knowledge and the same training examples as GILA, and
GILA used much less time than human novices. Our results show that the quality of the solutions of
the overall system is better than that of any individual ILR. Related work is presented in Section 7.
Our work demonstrates that the ensemble learning and problem-solving architecture as instantiated
by GILA is an effective approach to learning and managing complex problem solving in domains
such as airspace management. In Section 8, we summarize the lessons learned from this work and
discuss how GILA can be transferred to other problem domains.

2. ENSEMBLE LEARNING AND PROBLEM-SOLVING ARCHITECTURE
In this section, we will give an overview of the GILA architecture, presenting the reasons behind
our choice of this architecture and explaining its usefulness in a variety of different settings.

2.1. Problem Statement
Given a small set of training demonstrations, pairs of problems and corresponding solutions
{〈Pi,Si〉}mi=1 of task T , to solve a complex problem, we want to learn the general problem-solving
skills for the task T .

2.2. GILA’s Ensemble Architecture
Most of the traditional ensemble learning algorithms for classification, such as bagging or boosting,
use a single hypothesis space and a single learning method. We use multiple hypothesis spaces and
multiple learning methods in our architecture corresponding to each Independent Learner-Reasoner
(ILR), and a Meta Reasoning Executive (MRE) that combines the decisions from the ILRs. Figure 1
shows GILA’s ensemble architecture.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:5

Table I: The Four Independent Learner-Reasoners (ILRs)

Name Hypothesis Representation Performance Functions
SPLR decision rules (what to do) propose subproblem solutions

value functions (how to do)
DTLR cost function propose subproblem solutions

provide evaluations of subproblem solutions
CBLR feature-based cases propose subproblem solutions

rank subproblems
4DCLR safety constraints generate resulting states of applying subproblem solutions

check safety violations

Meta Reasoning Executive (MRE): The MRE is the decision maker in GILA. It makes decisions
such as which subproblem spi to focus on next (search-space ordering) and which subproblem
solution to explore among all the candidates provided by ILRs (evaluation).

Independent Learner-Reasoner (ILR): We developed four ILRs for GILA, as shown in Fig-
ure 1. Each ILR learns how to solve subproblems spi from the given set of training demonstrations
{〈Pi,Si〉}mi=1 for task T . Each ILR uses a different hypothesis representation and a unique learning
method, as shown in Table I.

The first ILR is a symbolic planner learner-reasoner (SPLR) [Yoon and Kambhampati 2007],
which learns a set of decision rules that represent the expert’s reactive strategy (what to do). It
also learns detailed tactics (how to do it) represented as value functions. This hierarchical learning
closely resembles the reasoning process that a human expert uses when solving the problem. The
second ILR is a decision-theoretic learner-reasoner (DTLR) [Parker et al. 2006], which learns a
cost function that approximates the expert’s choices among alternative solutions. This cost function
is useful for GILA decision-making, assuming that the expert’s solution optimizes the cost function
subject to certain constraints. The DTLR is especially suitable for the types of problems that GILA
is designed to solve. These problems generate large search spaces because each possible action has
numerical parameters whose values must be considered. This is also the reason why a higher-level
search is conducted by the MRE, and a much smaller search space is needed in order to find a good
solution efficiently. The DTLR is also used by the MRE to evaluate the subproblem solution candi-
dates provided by each ILR. The third ILR is a case-based learner-reasoner (CBLR) [Muñoz-Avila
and Cox 2007]. It learns and stores a feature-based case database. The CBLR is good at learn-
ing aspects of the expert’s problem solving that are not necessarily explicitly represented, storing
the solutions and cases, and applying this knowledge to solve similar problems. The last ILR is a
4D-deconfliction and constraint learner-reasoner (4DCLR), which consists of a Constraint Learner
(CL) and a Safety Checker (SC). The 4DCLR learns and applies planning knowledge in the form
of safety constraints. Such constraints are crucial in the airspace management domain. The 4DCLR
is also used for internal simulation to generate an expected world state; in particular, to find the
remaining conflicts after applying a subproblem solution. The four ILR components and the MRE
interact through a blackboard using a common ontology [Michaelis et al. 2009]. The blackboard
holds a representation of the current world state, the expert’s execution trace, some shared learned
knowledge such as constraints, subproblems that need to be solved, and proposed partial solutions
from ILRs.

We view solving each problem instance of the given task T as a state-space search problem.
The start state S consists of a set of subproblems sp1, sp2, . . . spk. For example, in the airspace
management problem, each subproblem spi is a conflict involving airspaces. At each step, the MRE
chooses a subproblem spi and then gives that chosen subproblem to each ILR for solving. ILRs
publish their solutions for the given subproblem on the blackboard, and the MRE then picks the
best solution using the learned knowledge for evaluation. This process repeats until a goal state is
found or a preset time limit is reached. Since the evaluation criteria are also being learned by ILRs,

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:6 X. Zhang, S. Yoon, P. DiBona et al.

Expert Trace

Demonstration Learning Phase
Individual ILR Learning

Collaborative Performance Phase
(Ensemble Solving)

Practice Learning Phase
MRE Controlled

Collaborative-Performance
(Ensemble Solving of
Practice Problem P)

ILRs Learn from
Feedback <P, S>

Pseudo Expert Trace S

MRE Controlled

Fig. 2: GILA’s system process

learning to produce satisfactory solutions of high quality depends on how well the whole system
has learned.

Connections to Search-Based Structured Prediction: Our approach can be viewed as a general
version of Search-Based Structured Prediction. The general framework of search-based structured
prediction [Daumé III and Marcu 2005; Daumé III et al. 2009] views the problem of labeling a given
structured input x by a structured output y as searching through an exponential set of candidate
outputs. LaSo (Learning as Search optimization) was the first work in this paradigm. LaSo tries to
rapidly learn a heuristic function that guides the search to reach the desired output y based on all the
training examples. Xu et al. extended this framework to learn beam search heuristics for planning
problems [Xu et al. 2007]. In the case of greedy search [Daumé III et al. 2009], the problem of
predicting the correct output y for a given input x can be seen as making a sequence of smaller
predictions y1, y2, . . . , yT with each prediction yi depending on the previous predictions. It reduces
the structured prediction problem to learning a multi-class classifier h that predicts the correct output
yt at time t based on the input x and partial output y1, y2, . . . , yt−1. In our case, each of these
smaller predictions yi corresponds to solutions of the subproblems spi, which can be more complex
(structured outputs) than a simple classification decision.

2.3. System Process
GILA’s system process is divided into three phases: demonstration learning, practice learning and
collaborative performance, as shown in Figure 2. During the demonstration learning phase, a com-
plete, machine-parsable trace of the expert’s interactions with a set of application services is cap-
tured and made available to the ILRs via the blackboard. Each ILR uses shared world, domain, and
ILR-specific knowledge to expand its private models, both in parallel during demonstration learning
and in collaboration during the practice learning. During the practice learning phase, GILA is given
a practice problem (i.e., a set of airspaces with conflicts) and a goal state (with no remaining con-
flicts) but it is not told how this goal state was achieved (via actual modifications to those airspaces).
The MRE then directs all ILRs to collaboratively attempt to solve this practice problem and generate
a solution that is referred to as a “pseudo expert trace.” ILRs can learn from this pseudo expert trace
(assuming it is successful), thus indirectly sharing their learned knowledge through practice. In the

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:7

collaborative performance phase, GILA solves an evaluation problem based on the knowledge it
has already learned. A sequential learning feature has been implemented in GILA, so that each ILR
can build upon its previous learned knowledge by loading a file that contains its learned knowledge
when the system starts.

2.3.1. Demonstration Learning - Individual ILR Learning. The system is provided with a set of
training examples (demonstrations) {〈Pi,Si〉}mi=1 of task T and the corresponding training exam-
ples {〈Pi,Ri〉}mi=1 of ranking the subproblems when performing task T . Learning inside the en-
semble architecture happens as follows. First, the system learns a ranking function R using a rank-
learning algorithm. This functionR provides an order in which subproblems should be solved. Then
each ILR i learns a hypothesis hILRi

from the given training examples; this process is called Indi-
vidual ILR Learning. We will describe the learning methodology of each ILR in Section 4. Recall
that ILRs are diverse because they use different hypothesis representations and different learning
methods, as shown in Table I.

ALGORITHM 1: ENSEMBLE SOLVING PROCESS

Input: problem instance P of task T ;
learned hypothesis of each ILR: hILR1 , hILR2 , . . . hILRn ;
ranking functionR to rank subproblems;

Output: solution of the given problem sol.
1: Initialize the start state s = sp1, sp2, . . . spk
2: root node n = new Node(s)
3: Add node n to the open list
4: Create evaluation function E using hILR1 , hILR2 , . . . hILRn .
5: repeat
6: node n′ = best node popped from the open list based on evaluation E(s′), s′ = state(n′)
7: if s′ is goal state then
8: sol = sequence of subproblem solutions applied from start state s to goal state s′

9: return solution of the given problem: sol
10: else
11: spfocus = highest ranked subproblem in current state s′ based on rankingR(s′)
12: for each ILR i = 1 to n do
13: Solve subproblem: solILRi = SolveH(hILRi , s

′, spfocus)
14: new resulting state si = applying solILRi to current state s′

15: add new Node(si) to the open list
16: end for
17: end if
18: until open list is empty or a preset time limit is reached
19: return no solution found

2.3.2. Ensemble Solving - Collaborative Performance. Algorithm 1 describes how a new problem
instance P for task T is solved with collaborative performance. The start state s is initialized as
the set of subproblems sp1, sp2, . . . spk. The highest ranked subproblem spfocus is chosen based
on the learned ranking function R. The MRE informs all ILRs of the current focused subproblem
spfocus and each ILR i publishs its solution(s) solILRi

, which may be a solution to a different
subproblem if one ILR cannot find a solution to the current focused subproblem spfocus. New
states, resulting from applying each of these subproblem solutions to the current state, are generated
by the 4DCLR through internal simulation. These new states are evaluated based on an evaluation
function E , which is created using the knowledge learned by ILRs. The MRE then selects the best
state to explore n′, according to E . This process is repeated until reaching a goal state, i.e., a state
where all subproblems are solved, or a preset time limit is reached. If a goal state is found, then a

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:8 X. Zhang, S. Yoon, P. DiBona et al.

solution is returned, which is the sequence of subproblem solutions applied from the start state to
the goal state; otherwise, the system reports no solution found.

This ensemble solving process is a best-first search, using the subproblem solutions provided
by ILRs as search operators. This process can be viewed as a hierarchical search since each ILR is
searching for subproblem solutions in a lower-lever internal search space with more details. The top-
level search space is therefore much smaller because each ILR is only allowed to propose a limited
number of subproblem solutions. The performance of this search process is highly dependent on
how well each ILR has learned. A solution can only be found if, for each subproblem, at least one
ILR has learned how to solve it. A better solution can be found when some ILRs have learned to
solve a subproblem in a better way and also some ILRs have learned to evaluate problem states more
accurately. A solution can be found quicker (with less search effort) if the learned ranking function
can provide a more beneficial ordering of subproblems. The search can also be more efficient when
a better evaluation function has been learned, which can provide an estimated cost closer to the real
path cost. As a search process, the ensemble solving procedure provides a practical approach for all
ILRs to collaboratively solve a problem without directly communicating their learned knowledge,
which is in heterogeneous representations, as shown in Table I. Each ILR has unique advantages,
and the ensemble works together under the direction of the MRE to achieve the system’s goals,
which cannot be achieved by any single ILR. The conjecture that no single ILR can perform as well
as the multi-ILR system is supported by experimental results presented in Section 6.3.1.

ALGORITHM 2: PRACTICE LEARNING

Input: Lp = {〈Pi,Si〉}mi=1: the set of training examples for solving problems of task T (demonstrations);
Lr = {〈Pi,Ri〉}mi=1: the set of training examples for learning to rank subproblems;
U = set of practice problem instances for task T .

Output: the learned hypothesis of each ILR: hILR1 , hILR2 , . . . hILRn and ranking functionR.

1: Learn hypotheses hILR1 , hILR2 , . . . , hILRn from solved training examples Lp

2: Learn Ranking functionR from Lr

3: Lnew = Lp

4: repeat
5: for each problem P ∈ U do
6: S = Ensemble-Solve(P , hILR1 , hILR2 , . . . , hILRn ,R)
7: Lnew = Lnew

⋃
〈P,S〉

8: end for
9: Re-learn hILR1 , hILR2 , . . . , hILRn from new examples Lnew

10: until convergence or maximum co-training iterations
11: return the learned hypothesis of each ILR hILR1 , hILR2 , . . . hILRn and ranking functionR

2.3.3. Practice Learning. In practice learning, we want to learn from a small set of training ex-
amples, 〈Lp,Lr〉 for solving problems and for learning to rank subproblems respectively, and a set
of unsolved problems U . Our ideas are inspired by the iterative co-training algorithm [Blum and
Mitchell 1998]. The key idea in co-training is to take two diverse learners and make them learn
from each other using the unlabeled data. In particular, co-training trains two learners h1 and h2
separately on two views φ1 and φ2, which are conditionally independent of the other given the class
label. Each learner will label some unlabeled data to augment the training set of the other learner,
and then both learners are re-trained on this new training set. This process is repeated for several
rounds. The difference or diversity between the two learners helps when teaching each other. As the
co-training process proceeds, the two learners will become more and more similar, and the differ-
ence between the two learners becomes smaller. More recently, a result that shows why co-training
without redundant views can work is proved in [Wang and Zhou 2007]. Wang and Zhou show that
as long as learners are diverse, co-training will improve the performance of the learners.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:9

Any set of learning algorithms for problem solving could be used as long as they produce diverse
models, which is an important requirement for practice learning to succeed [Blum and Mitchell
1998; Wang and Zhou 2007]. In our case, there are four different learners (ILRs) learning in a
supervised framework with training demonstrations (Lp, Lr). The goal of supervised learning is
to produce a model which can perfectly solve all the training instances under some reasonable
time constraints. For example, our Decision Theoretic Learner and Reasoner (DTLR) attempts to
learn the cost function of the expert in such a way that it ranks all good solutions higher than
bad solutions by preserving the preferences of the expert. Each practice problem P ∈ U is solved
through collaborative performance – ensemble solving (Algorithm 2). The problem P along with
its solution S is then added to the training set. The system re-learns from the new training set and
this process repeats until convergence is achieved or the maximum number of co-training iterations
has been reached.

3. DOMAIN BACKGROUND
The domain of application used for developing and evaluating GILA is airspace management in
an Air Operations Center (AOC). Airspace management is the process of making changes to re-
quested airspaces so that they do not overlap with other requested airspaces or previously approved
airspaces. The problem that GILA tackles is the following. Given a set of Airspace Control Mea-
sures Requests (ACMReqs), each representing an airspace requested by a pilot as part of a given
military mission, identify undesirable conflicts between airspace uses and suggest changes in lat-
itude, longitude, time or altitude that will eliminate them. An Airspace Control Order (ACO) is
used to represent the entire collection of airspaces to be used during a given 24-hour period. Each
airspace is defined by a polygon described by latitude and longitude points, an altitude range, and
a time interval during which the air vehicle will be allowed to occupy the airspace. The process of
deconfliction assures that any two vehicles’ airspaces do not overlap or conflict. In order to resolve
a conflict that involves two ACMs, the expert, who is also called the subject matter expert (SME),
first chooses one ACM and then decides whether to change its altitude (Figure 3(a)), change its time
(Figure 3(b)), or move its position (Figure 3(c)). The complete modification process is an expert
solution trace that GILA uses for training.

This airspace management problem challenges even the best human experts because it is complex
and knowledge-intensive. Not only do experts need to keep track of myriad details of different kinds
of aircraft and their limitations and requirements, but they also need to find a safe, mission-sensitive
and cost-effective global schedule of flights for the day. An expert system approach to airspace
management requires painstaking knowledge engineering to build the system, as well as a team of
human experts to maintain it when changes occur to the fleet, possible missions, safety protocols
and costs of schedule changes. For example, flights need to be rerouted when there are forest fires
occurring on their original paths. Such events require knowledge re-engineering. In contrast, our
approach based on learning from an expert’s demonstration is more attractive, especially if it only
needs a very small number of training examples, which are more easily provided by the expert.

To solve the airspace management problem, GILA must decide in what order to address the
conflicts during the problem-solving process and, for each conflict, which airspace to move and
how to move the airspace to resolve the conflict and minimize the impact on the mission. Though
there are typically infinitely many ways to resolve a particular conflict, some changes are better
than others according to the expert’s internal domain knowledge. However, such knowledge is not
revealed directly to GILA in the expert’s solution trace. The solution trace is the only input from
which GILA may learn. In other words, learning is from examples of the expert performing the
problem-solving task, rather than by being given the expert’s knowledge. The goal of the system is
to find good deconflicted solutions, which are qualitatively similar to those found by human experts.
GILA’s solutions are evaluated by experts by being compared to the solutions of human novices who
also learn from the same demonstration trace.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:10 X. Zhang, S. Yoon, P. DiBona et al.

(a) The expert removes the conflict by chang-
ing the altitude of ACM-I-23. The expert
changes the altitude for “ROZ” usage when
its shape is “polygon” and it conflicts with an-
other “ROZ” ACM, whose shape is ”circle”.

ACM-I-15
ROZ

HavaSouth
ROZ

TIme Shift

(b) The expert shifts the time when “orbit”
type “ROZ” ACM is in conflict with another
“ROZ” ACM in “corridor” shape.

ACM-I-01
AEW

ACM-I-1
8

SSMS

(c) The expert moves an ACM of “AEW” us-
age when it conflicts with an ACM of “SSMS”
usage.

Fig. 3: Expert deconfliction examples. (ROZ:Restricted Operations Zone. AEW: Airborne Early
Warning Area. SSMS: Surface-to-Surface Missile System)

4. INDEPENDENT LEARNING REASONING SYSTEMS (ILRS)
The GILA system consists of four different ILRs, and each learns in a unique way. The symbolic
planner learner-reasoner (SPLR) learns decision rules and value functions, and it generates de-
confliction solutions by finding the best fitting rule for the input scenario. The decision-theoretic
learner-reasoner (DTLR) learns a linear cost function, and it identifies solutions that are near-
optimal according to the cost function. The case-based learner-reasoner (CBLR) learns and stores a
feature-based case database; it also adapts and applies cases to create deconfliction solutions. The
4D-deconfliction and constraint learner-reasoner (4DCLR) learns context-sensitive, hard constraints
on the schedules in the form of rules. In this section, we describe the internal knowledge representa-
tions and learning/reasoning mechanisms of these ILRs and how they work inside the GILA system.

4.1. The Symbolic Planner Learner-Reasoner (SPLR)
The symbolic planner learner and reasoner (SPLR) represents its learned solution strategy as a hy-
brid hierarchical representation machine (HHRM), and it conducts learning at two different levels.
On the top level, it employs decision rule learning to learn discrete relational symbolic actions
(referred to as its directed policy). On the bottom level, it learns a value function that is used to
provide precise values for parameters in top-level actions. From communication with the SMEs, it
is understood that this hybrid representation is consistent with expert reasoning in Airspace Decon-
fliction. Experts first choose a top-level strategy by looking at the usage of the airspaces. This type
of strategy is represented as a direct policy in the SPLR. For example, to resolve a conflict involv-
ing a missile campaign, experts frequently attempt to slide the time in order to remove the conflict.
This is appropriate because a missile campaign targets an exact enemy location and therefore the

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:11

geometry of the missile campaign mission cannot be changed. On the other hand, as long as the
missiles are delivered to the target, shifting the time by a small amount may not compromise the
mission objective. Though natural for a human, reasoning of this type is hard for a machine unless
a carefully coordinated knowledge base is provided. Rather, it is easier for a machine to learn to
“change time” reactively when the “missile campaign” is in conflict. From the subject matter ex-
pert’s demonstration, the machine can learn what type of deconfliction strategy is used in which
types of missions. With a suitable relational language, the system can learn good reactive deconflic-
tion strategies [Yoon et al. 2002; Yoon and Kambhampati 2007; Khardon 1999; Martin and Geffner
2000]. After choosing the type of deconfliction strategy to use, the experts decide how much to
change the altitude or time, and this is mimicked by the SPLR via learning and minimizing a value
function.

4.1.1. Learning Direct Policy: Relational Symbolic Actions. In order to provide the machine with
a compact language system that captures an expert’s strategy with little human knowledge engi-
neering, the SPLR adopts a formal language system with Taxonomic syntax [McAllester and Givan
1993; Yoon et al. 2002] for its relational representation, and an ontology for describing the airspace
deconfliction problem. The SPLR automatically enumerates its strategies in this formal language
system, and seeks a good strategy. The relational action selection strategy is represented with a
decision list [Rivest 1987]. A decision list DL consists of ordered rules r. In our approach, a DL
outputs “true” or “false” after receiving an input action. The DL’s output is the disjunction of each
rule’s outputs,

∨
r. Each rule r consists of binary features Fr. Each of the features outputs “true” or

“false” for an action. The conjunction (
∧
Fr) of them is the result of the rule for the input action.

The learning of a direct policy with relational actions is then a decision list learning problem. The
expert’s deconfliction actions, e.g., move, are the training examples. Given a demonstration trace,
each action is turned into a set of binary values, which is then evaluated against pre-enumerated
binary features. We used a Rivest-style decision list learning package implemented as a variation of
PRISM [Cendrowska 1987] from the Weka Java library. The basic PRISM algorithm cannot cover
negative examples, but our variation allows for such coverage. For the expert’s selected actions,
the SPLR constructs rules with “true” binary features when negative examples are the actions that
were available but not selected. After a rule is constructed, examples explained (i.e., covered) by
the rule are eliminated. The learning continues until there are no training examples left. We list the
empirically learned direct policy example from Figure 3(a), 3(b) and 3(c) in the following:

(1) (altitude 0 (Shape ? Polygon)) & (altitude 0 (Conflict ? (Shape ? Circle))) : When an airspace
whose shape is “polygon” conflicts with another airspace whose shape is “circle”, change the
altitude of the first airspace. Learned from Figure 3(a).

(2) (time 0 (use ? ROZ)) & (time 0 (Conflict ? (Shape ? Corridor))) : When an airspace whose usage
is “ROZ” conflicts with another airspace whose shape is “corridor”, change the time of the first
airspace. Learned from Figure 3(b).

(3) (move 0 (use ? AEW)) & (move 0 (Conflict ? (use ? SSMS))) : When an airspace whose usage
is “AEW” conflicts with another airspace whose usage is “SSMA”, move the position of the first
airspace. Learned from Figure 3(c).

To decide which action to take, the SPLR considers all the actions available in the current situa-
tion. If there is no action with “true” output from the DL, it chooses a random action. Among the
actions with “true” output results, the SPLR takes the action that satisfies the earliest rule in the rule
set. All rules are sorted according to their machine learning scores in decreasing order, so an earlier
rule is typically associated with higher confidence. Ties are broken randomly if there are multiple
actions with the result “true” from the same rule.

4.1.2. Learning a Value Function. Besides choosing a strategic deconfliction action, specific val-
ues must be assigned. If we opted to change the time, by how much should it be changed? Should
we impose some margin beyond the deconfliction point? How much margin is good enough? To
answer these questions, we consulted the expert demonstration trace, which has records concern-

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:12 X. Zhang, S. Yoon, P. DiBona et al.

ing the margin. We used linear regression to fit the observed margins. The features used for this
regression fit are the same as those used for direct policy learning; thus, feature values are Boolean.
The intuition is that the margins generally depend on the mission type. For example, missiles need
a narrow margin because they must maintain a precise trajectory. The margin representation is a
linear combination of the features, e.g., Move Margin =

∑
wi × Fi (margin of move action). We

learned weights wi with linear regression.

4.1.3. Learning a Ranking Function. Besides the hierarchal learning of deconfliction solutions,
the SPLR also learns a ranking function R to prioritize conflicts. The SPLR learns this ranking
functionR using decision tree learning. First, experts show the order of conflicts during demonstra-
tion. Each pair of conflicts is then used as a training example. An example is true if the first member
of a pair is given priority over the second. After learning, for each pair of conflicts (c1, c2), the
learned decision tree answers “true” or “false.” “True” means that the conflict c1 has higher priority.
The rank of a conflict is the sum of “true” values against all the other conflicts, with ties broken
randomly. The rank of a conflict is primarily determined by the missions involved. For example, in
Table II, the first conflict that involved a missile corridor (SSMS) is given a high priority due to the
sensitivity to changing a missile corridor.

4.2. The Decision Theoretic Learner-Reasoner (DTLR)
The Decision-Theoretic Learner-Reasoner (DTLR) learns a cost function over possible solutions to
problems. It is assumed that the expert’s solution optimizes a cost function subject to some con-
straints. The goal of the DTLR is to learn a close approximation of the expert’s cost function, and
this learning problem is approached as an instance of structured prediction [Bakir et al. 2007]. Once
the cost function is learned, the performance algorithm of the DTLR uses this function to try to find
a minimal cost solution with iterative-deepening search.

4.2.1. Learning a Cost Function via Structured Prediction. The cost function learning is formal-
ized in the framework of structured prediction. A structured prediction problem is defined as a tuple
{X ,Y,Ψ, L}, where X is the input space and Y is the output space. In the learning process, a joint
feature function Ψ : X × Y 7→ <n defines the joint features on both inputs and outputs. The loss
function, L : X × Y × Y 7→ <, quantifies the relative preference of two outputs given some input.
Formally, for an input x and two outputs y and y′, L(x,y,y′) > 0 if y is a better choice than
y′ given input x and L(x,y,y′) ≤ 0 otherwise. We use a margin-based loss function used in the
logitboost procedure [Friedman et al. 1998], defined as L (x,y,y′) = log (1 + e−m), where m is
the margin of the training example (see Section 4.2.2 for details).

The decision surface is defined by a linear scoring function over the joint features Ψ(x,y) given
by the inner product 〈Ψ(x,y),w〉, where w is the vector of learned model parameters, and the best
y for any input x has the highest score. The specific goal of learning is, then, to find w such that
∀i : argmaxy∈Y〈Ψ(xi,y),w〉 = yi.

In the case of ACO scheduling, an input drawn from this space is a combination of an ACO and a
deconflicted ACM to be scheduled. An output y drawn from the output space Y is a schedule of the
deconflicted ACM. The joint features are x-y coordinate change, altitude change and time change
for each ACM, and other features such as changes in the number of intersections of the flight paths
with the enemy territory.

4.2.2. Structured Gradient Boosting (SGB) for Learning a Cost Function. The DTLR’s Structured
Gradient Boosting (SGB) algorithm [Parker et al. 2006] is a gradient descent approach to solving
the structured prediction problem. Suppose that there is some training example xi ∈ X with the
correct output yi ∈ Y , ŷi defined as the highest scoring incorrect output for xi according to the
current model parameters. That is,

ŷi = argmaxy∈Y\yi
〈Ψ(xi,y),w〉 .

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:13

Then the margin is defined as the amount by which the model prefers yi to ŷi as an output for xi.
The margin mi for a given training example is mi = 〈δ(xi,yi, ŷi),w〉, where δ (xi,yi, ŷi) is the
difference between the feature vectors Ψ (xi,yi) and Ψ (xi, ŷi). The margin determines the loss as
shown in Step 5 of the pseudo code of Algorithm 3. The parameters of the cost function are adjusted
to reduce the gradient of the cumulative loss over the training data (see [Parker et al. 2006] for more
details).

ALGORITHM 3: STRUCTURED GRADIENT BOOSTING

Input: {〈xi, yi〉}: the set of training examples;
B: the number of boosting iterations.

Output: weights of the cost function w.
1: Initialize the weights w = 0
2: repeat
3: for each training example (xi, yi) do
4: solve Argmax: ŷi = argmaxy∈Y\yi

〈Ψ(xi,y),w〉
5: compute training loss: L(xi,yi, ŷi) = log(1 + e−mi), where mi = 〈δ(xi,yi, ŷi),w〉
6: end for
7: compute cumulative training loss: L =

∑n
i=1 L(xi,yi, ŷi)

8: find the gradient of the cumulative training loss∇L
9: update weights: w = w − α∇L

10: until convergence or B iterations
11: return the weights of the learned cost function w

The problem of finding ŷi, which is encountered during both learning and performance, is called
the Argmax problem. A discretized space of operators, namely, the altitude, time, radius and x-y co-
ordinates, is defined based on the domain knowledge to produce various possible plans to deconflict
each ACM. A simulator is used to understand the effect of a deconfliction plan. Based on their po-
tential effects, these plans are evaluated using the model parameters, and the objective is to find the
best scoring plan that resolves the conflict. Exhaustive search in this operator space would be opti-
mal for producing high-quality solutions, but has excessive computational cost. Iterative Deepening
Depth First (IDDFS) search is used to find solutions by considering single changes before multiple
changes, and smaller amounts of changes before larger amounts of changes, thereby trading off the
quality of the solution with the search time. Note that the length of the proposed deconfliction plan
(number of changes) is getting iterative deepened in IDDFS. Since a fixed discrete search space of
operators is used, the search time is upper bounded by the time needed to search the entire space of
operators.

4.2.3. Illustration of Gradient Boosting. Figure 4 provides a geometrical illustration of the gradi-
ent boosting algorithm. There are four training examples (x1, y1), (x2, y2), (x3, y3) and (x4, y4).
As explained in the previous section, the features depend on both the input x and the output y,
i.e., Ψ(x, y). The data points are represented corresponding to features Ψ(xi, yi) of the training
examples xi with respect to their true outputs yi with ⊕, i.e., positive examples and data points cor-
responding to features Ψ(xi, ŷi) of the training examples xi with respect to their best scoring outputs
ŷi with 	, i.e., negative examples. Note that the locations of the positive points do not change, un-
like the negative points whose locations change from one iteration to another, i.e., the best scoring
negative outputs ŷi change with the weights, and hence the feature vectors of the negative examples
Ψ(xi, ŷi) change. Three boosting iterations of the DTLR learning algorithm are shown in Figure
4, one row per iteration. In each row, the left figure shows the current hyperplane (cost function)
along with the negative examples according to the current cost function, and the right figure shows
the cost function obtained after updating the weights in a direction that minimizes the cumulative
loss over all training examples, i.e., a hyperplane that separates the positive examples from negative

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:14 X. Zhang, S. Yoon, P. DiBona et al.

(a) (b)

(c) (d)

(e) (f)

Fig. 4: In all of these figures, ⊕ corresponds to the feature vectors of the training examples with
respect to their true outputs, 	 corresponds to the feature vectors of the training examples with
respect to their best scoring negative outputs and the separating hyperplane corresponds to the cost
function. (a) Initial cost function and negative examples before 1st iteration; (b) Cost function after
1st boosting iteration; (c) Cost function and negative examples before 2nd iteration; (d) Cost func-
tion after 2nd boosting iteration; (e) Cost function and negative examples before 3rd iteration; (f)
Cost function after 3rd boosting iteration.

ones (if such a hyperplane exists). As the boosting iterations increase, our cost function is moving
towards the true cost function and it will eventually converge to the true cost function.

4.2.4. What Kind of Knowledge Does the DTLR Learn?. We explain, through an example case,
what was learned by the DTLR from the expert’s demonstration and how the knowledge was ap-
plied while solving problems during performance mode. Before training, weights of the cost func-
tion are initialized to zero. For each ACM that was moved to resolve conflicts, a training example
is created for the gradient boosting algorithm. The expert’s plan that deconflicts the problem ACM
corresponds to the correct solution for each of these training examples. Learning is done using

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:15

the gradient boosting algorithm described before, by identifying the highest scoring incorrect so-
lution and computing a gradient update to reduce its score (or increase its cost). For example, in
one expert’s demonstration that was used for training, all the deconflicting plans are either altitude
changes or x-y coordinate changes. Hence, the DTLR learns a cost function that prefers altitude and
x-y coordinate changes to time and radius changes.

During performance mode, when given a new conflict to resolve, the DTLR first tries to find a
set of deconflicting plans using Iterative Deepening Depth First (IDDFS) search. Then, it evaluates
each of these plans using the learned cost function and returns the plan with minimum cost. For
example, in Scenario F, when trying to resolve conflicts for ACM-J-15, it found six plans with
a single (minimum altitude) change and preferred the one with minimum change by choosing to
increase the minimum altitude by 2000 (as shown on row #9 in Table II).

4.3. The Case-Based Learner-Reasoner (CBLR)
Case-based reasoning (CBR) [Aamodt and Plaza 1994] consists of solving new problems by rea-
soning about past experience. Experience in CBR is retained as a collection of cases stored in a case
library. Each of these cases contains a past problem and the associated solution. Solving new prob-
lems involves identifying relevant cases from the case library and reusing or adapting their solutions
to the problem at hand. To perform this adaptation process, some CBR systems, such as the CBLR,
require additional adaptation knowledge.

Figure 5 shows the overall architecture of the CBLR, which uses several specialized case libraries,
one for each type of problem that the CBLR can solve. A Prioritization Library contains a set of
cases for reasoning about the priority, or order, in which conflicts should be solved. A Choice Li-
brary is used to determine which ACM will be moved, given a conflict between two ACMs. Finally,
a Constellation Library and a Deconfliction Library are used within a hierarchical process. The
Constellation Library is used to characterize the neighborhood surrounding a conflict. The neigh-
borhood provides information that is then used to help retrieve cases from the Deconfliction Library.
For each of these libraries, the CBLR has two learning modules: one capable of learning cases and
one capable of learning adaptation knowledge. The case-based learning process is performed by
observing an expert trace, extracting the problem descriptions, features and solutions, and then stor-
ing them as cases in a case library. Adaptation knowledge in the CBLR is expressed as a set of
transformation rules and a set of constraints. Adaptation rules capture how to transform the solution
from the retrieved case to solve the problem at hand, and the constraints specify the combinations
of values that are permitted in the solutions being generated.

4.3.1. Learning in the CBLR. Each case library contains a specialized case learner, which learns
cases by extracting them from an expert trace. Each case contains a problem description and an
associated solution. Figure 6 shows sample cases learned from the expert trace.
Prioritization

Using information from the expert trace available to the CBLR, the Priority Learner constructs
prioritization cases by capturing the order in which the expert prioritizes the conflicts in the trace.
From this, the CBLR learns prioritization cases, storing one case per conflict. Each case contains a
description of the conflict, indexed by its features, along with the priority assigned by the expert.
The CBLR uses these cases to build a ranking functionR to provide the MRE with a priority order
for deconfliction. The order in which conflicts are resolved can have a significant impact on the
quality of the overall solution.
Choice

Given a conflict between two ACMs, the CBLR uses the Choice Case Library to store the identi-
fier of the ACM that the expert chose to modify. Each time the expert solves a conflict in the trace,
the CBLR learns a choice case. The solution stored with the case is the ACM that is chosen to
be moved. The two conflicting ACMs and the description of the conflict are stored as the problem
description for the case.
Hierarchical Deconfliction

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:16 X. Zhang, S. Yoon, P. DiBona et al.

GILA
BB

Constraints

Proposed
Solution

Performance
Goals

Adaptation Retrieval
C C C

S

Constellation
Reasoner

Prioritization
Library

Constraints Choice
Library Constellation

Library

Deconfliction
Library

Constraint
Learner

Case
Learner(s)

Adaptation Failure

Learning
Goals

Expert
Trace

Fig. 5: The architecture of the Case-Based Learner-Reasoner (CBLR)

The set of PSTEPS in the interval where the
conflict disappeared is stored as the solution
used by the expert for that conflict.

Trace:
GET_ACO_INFO()
GET_ACMREQ_INFO()
GET_CONFLICTS()
BEGIN_ALTITUDE_MOD (REFUELING6)
SET_MAX_ALTITUDE(REFUELING6,30000)
SET_MIN_ALTITUDE(REFUELING6,28000)
COMMIT_ALTITUDE_MOD (REFUELING6)
GET_CONFLICTS()
BEGIN_GEOMETRY_MOD(ACM-A-1)
…

ACM: REFUELING6
Time: 1200 – 2400
Usage: AAR
Airspace:

ORBIT
Altitude: 30000 – 32000

ACM: AWACS1
Time: 1600 – 1800
Usage: AEW
Airspace:

ORBIT
Altitude: 30000 – 32000

Deconfliction Case

Solution:
BEGIN_ALTITUDE_MODIFICATION(REFUELING6)
SET_MAX_ALTITUDE(REFUELING6,30000)
SET_MIN_ALTITUDE(REFUELING6,28000)
COMMIT_ALTITUDE_MODIFICATION(REFUELING6)

ACM: REFUELING6
Time: 1200 – 2400
Usage: AAR
Airspace:

ORBIT
Altitude: 30000 – 32000

ACM: AWACS1
Time: 1600 – 1800
Usage: AEW
Airspace:

ORBIT
Altitude: 30000 – 32000

Choice Case

Solution:
Modify ACM REFUELING6

Overlap: Time: 1600 – 1800
Altitude: 30000 – 32000

ACM: REFUELING6
Time: 1200 – 2400
Usage: AAR
Airspace:

ORBIT
Altitude: 30000 – 32000

ACM: AWACS1
Time: 1600 – 1800
Usage: AEW
Airspace:

ORBIT
Altitude: 30000 – 32000

Prioritization Case

Solution:
Deconfliction Priority 7

Overlap: Time: 1600 – 1800
Altitude: 30000 – 32000

Fig. 6: A set of sample cases learned from the expert trace.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:17

The CBLR uses a hierarchical reasoning process to solve a conflict using a two-phase approach.
The first phase determines what method an expert is likely to use when solving a deconfliction
problem. It does this by describing the “constellation” of the conflict. “Constellation” refers to
the neighborhood of airspaces surrounding a conflict. The choices for deconfliction available to
an airspace manager are constrained by the neighborhood of airspaces, and the Constellation Case
Library allows the CBLR to mimic this part of an expert’s decision-making process. A constella-
tion case consists of a set of features that characterize the degree of congestion in each dimension
(latitude-longitude, altitude and time) of the airspace. The solution stored is the dimension within
which the expert moved the ACM for deconfliction (e.g., change in altitude, orientation, rotation,
radius change, etc.).

The second CBLR phase uses the Deconfliction Case Library to resolve conflicts once the decon-
fliction method has been determined. A deconfliction case is built from the expert trace by extracting
the features of each ACM. This set of domain-specific features was chosen manually based on the
decision criteria of human experts. In addition to these two sets of features (one for each of the two
conflicts in a pair), a deconfliction case includes a description of the overlap.

The solution is a set of PSTEPs that describe the changes to the ACM, as illustrated in Figure
6. A PSTEP is an atomic action in a partial plan that changes an ACM. These PSTEPs represent
the changes that the expert made to the chosen ACM in order to resolve the conflict. Whereas the
constellation phase determines an expert’s likely deconfliction method, the deconfliction phase uses
that discovered method as a highly-weighted feature when searching for the most appropriate case
in the deconfliction case library. It then retrieves the most similar case based on the overall set of
features and adapts that case’s solution to the new deconfliction problem. We refer to this two-phase
process as hierarchical deconfliction.

In order to learn adaptation knowledge, the CBLR uses transformational plan adaptation [Muñoz-
Avila and Cox 2007] to adapt deconfliction strategies, using a combination of adaptation rules and
constraints. Adaptation rules are built into the CBLR. This rule set consist of five common-sense
rules that are used to apply a previously successful deconfliction solution from one conflict to a new
problem. For example, “If the overlap in a particular dimension between two airspaces is X, and
the expert moved one of them X+Y units in that dimension, then in the adapted PSTEP we should
compute the overlap Z and move the space Z+Y units.” If more than one rule is applicable to adapt
one PSTEP, the adaptation module will propose several candidate adaptations, as explained later.

During the learning process, one challenge in extracting cases from a demonstration trace involves
the identification of the sequence of steps that constitutes the solution to a particular conflict. The
expert executes steps using a human-centric interface, but the resulting sequence of raw steps, which
is used by the ILRs for learning, does not indicate which steps apply to which conflict. The CBLR
overcomes this limitation by executing each step in sequence, comparing the conflict list before and
after each step to determine if a conflict was resolved by that step.

Constraints are learned from the expert trace both by the CBLR and by the Constraint Learner
(CL) inside the 4DCLR. To learn constraints, the CBLR evaluates the range of values that the ex-
pert permits. For instance, if the expert sets all altitudes of a particular type of aircraft to some
value between 10,000 and 30,000 feet, the CBLR will learn a constraint that limits the altitude of
aircraft type to a minimum of 10,000 feet and a maximum of 30,000 feet. These simple constraints
are learned automatically by a constraint learning module inside the CBLR. This built-in constraint
learner makes performance more efficient by reducing the dependence of the CBLR on other mod-
ules. However, the CL in the 4DCLR is able to learn more complex and accurate constraints, which
are posted to the blackboard of GILA, and these constraints are used by the CBLR to enhance the
adaptation of its solutions.

4.3.2. Problem Solving in the CBLR. The CBLR uses all the knowledge it has learned (and stored
in the multiple case libraries) to solve the airspace deconfliction problems. The CBLR is able to
solve a range of problems posted by the MRE. For each of the case-retrieval processes, the CBLR
uses a weighted Euclidean distance to determine which cases are most similar to the problem at

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:18 X. Zhang, S. Yoon, P. DiBona et al.

hand. The weights assigned to each feature are based on the decision-making criteria of human
experts, and were obtained via interviews with subject-matter experts. Automatic feature weighting
techniques [Wettschereck et al. 1997] were evaluated, but without good results given the limited
amount of available data.

During the performance phase of GILA, a prioritization problem is sent by the MRE that includes
a list of conflicts, and the MRE asks the ILRs to rank them by priority. The assigned priorities will
determine the order in which conflicts will be solved by the system. To solve one such problem,
the CBLR first assigns priorities to all the conflicts in the problem by assigning each conflict the
priority of the most similar priority case in the library. After that, the conflicts are ranked by priority
(and ties are solved randomly).

Next, a deconfliction problem is presented to each of the ILRs so that they can provide a solution
to a single conflict. The CBLR responds to this request by producing a list of PSTEPs. It solves a
conflict using a three-step process. First, it decides which ACM to move using the choice library.
It then retrieves the closest match from the Constellation Library and uses the associated solution
as a feature when retrieving cases from the Deconfliction Library. It retrieves and adapts the closest
n cases (where n = 3 in our experiments) to produce candidate solutions. It tests each candidate
solution by sending it to the 4DCLR module, which simulates the application of that solution. The
CBLR evaluates the results and selects the best solutions, that is, those that solve the target conflict
with the lowest cost. A subset of selected solutions is sent to the MRE as the CBLR’s solutions to
the conflict.

Adaptation is only required for deconfliction problems, and is applied to the solution retrieved
from the deconfliction library. The process for adapting a particular solution S, where S is a list of
PSTEPs, as shown in Figure 6, works as follows:

(1) Individual PSTEP adaptation: Each individual PSTEP in the solution S is adapted using the
adaptation rules. This generates a set of candidate adapted solutions AS .

(2) Individual PSTEP constraint checking: Each of the PSTEPs in the solutions in AS is modified
to comply with all the constraints known by the CBLR.

(3) Global solution adaptation: Adaptation rules that apply to groups of PSTEPs instead of to in-
dividual PSTEPs are applied; some unnecessary PSTEPs may be deleted and missing PSTEPs
may be added.

4.3.3. CBLR Results. During GILA development, we were required to minimize encoded domain
knowledge and maximize machine learning. One strength of the case-based learning approach is
that it learns to solve problems in the same way that the expert does, with very little pre-existing
knowledge. During the evaluation, we performed “Garbage-in/Garbage-out” (GIGO) experiments
that tested the learning nature of each module by teaching the system with incorrect approaches,
then testing the modules to confirm that they used the incorrect methods during performance. This
technique was designed to test that the ILR used knowledge that was learned rather than encoded.
The case-based learning approach successfully learned these incorrect methods and applied them
in performance mode. This shows that the CBLR learns from the expert trace, performing and
executing very much like the expert does. This also allows the CBLR to learn unexpected solution
approaches when they are provided by an expert. If such a system were to be transitioned with a
focus on deconfliction performance (rather than machine learning performance), domain knowledge
would likely be included.

The CBLR also responded very well to incremental learning tests. In these tests the system was
taught one approach to problem solving at a time (Table V). When the system was taught to solve
problems using only altitude changes, the CBLR responded in performance mode by attempting to
solve all problems with altitude changes. When the system was taught to solve problems by making
geometric changes, the CBLR responded in performance mode by using both of these methods to
solve problems, confirming that the CBLR’s problem-solving knowledge was learned rather than
being previously stored as domain knowledge.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:19

Moreover, the different ILRs in GILA exhibit different strengths and weaknesses, and the power
of GILA consists exactly of harnessing the strong points of each ILR. For instance, one of the
CBLR’s strengths is that its performance during prioritization was close to the expert’s prioritization.
For this reason, the CBLR priorities were used to drive the deconfliction order of the GILA system
in the final system evaluation.

4.4. The 4D Constraint Learner-Reasoner (4DCLR)
The 4D Constraint Learner-Reasoner (4DCLR) within GILA is responsible for automated learning
and application of planning knowledge in the form of safety constraints. A safety constraint example
is: “The altitude of a UAV over the course of its trajectory should never exceed a maximum of
60000 feet”. Constraints are “hard” in the sense that they can never be violated, but they are also
context-sensitive, where the “context” is the task mission as exemplified in the ACO. For instance,
a recommended minimum altitude of an aircraft may be raised if the problem being solved involves
the threat of enemy surface-to-air missiles.

The 4DCLR consists of the following two components: (1) the Constraint Learner (CL), which
automatically infers safety constraints from the expert demonstration trace and outputs the con-
straints for use by the other ILRs in the context of planning, and (2) the Safety Checker (SC), which
is responsible for verifying the correctness of solutions/plans in terms of their satisfaction or vio-
lation of the safety constraints learned by the CL. The output of the Safety Checker is a degree of
violation, which is used by the MRE in designing safe subproblem solutions.

The approach adopted in the 4DCLR is strongly related to learning control rules for
search/planning. This area has a long history, e.g., see [Minton and Carbonell 1987], and has more
recently evolved into the learning of constraints [Huang et al. 2000] for constraint-satisfaction plan-
ning [Kautz and Selman 1999]. The Safety Checker, in particular, is related to formal verification,
such as model checking [Clarke et al. 1999]. However, unlike traditional verification, which outputs
a binary “success/failure,” our GILA Safety Checker outputs a degree of constraint violation (fail-
ure). This is analogous to what is done in [Chockler and Halpern 2004]. The difference is that when
calculating “degree” we not only calculate the probabilities over alternative states as Chockler and
Halpern do, but we also account for physical distances and constraints.

4.4.1. The Constraint Learner and the Representations It Uses. We assume that the system de-
signer provides constraint templates a priori, and it is the job of the Constraint Learner (CL) to infer
the values of parameters within these templates. For example, a template might state that a fighter
has a maximum allowable altitude, and the CL would infer what the value of that maximum should
be. In the future, the CL will learn the templates as well.

Learning in the CL is Bayesian. A probability distribution is used to represent the uncertainty
regarding the true value of each parameter. For each parameter, such as the maximum flying altitude
for a particular aircraft, the CL begins with a prior probability distribution, Pf(c)(ω) or Pg(c1,c2)(ω),
where c, c1, c2 ∈ C, f ∈ F , g ∈ G, and ω is a safety constraint. If informed, the prior might be
a Gaussian approximation of the real distribution obtained by asking the expert for the average,
variance and covariance of the minimum and maximum altitudes. If uninformed, a uniform prior is
used.

Learning proceeds based on evidence, e, witnessed by the CL at each step of the demonstration
trace. This evidence might be a change in maximum altitude that occurs as the expert positions and
repositions an airspace to avoid a conflict. Based on this evidence, the prior is updated applying
Bayes’ Rule to obtain a posterior distribution, Pf(c)(ω|e) or Pg(c1,c2)(ω|e), given the assumption
for the likelihood that the expert always moves an airspace uniformly into a “safe” region. After
observing evidence, the CL assigns zero probability to constraint parameters that are inconsistent
with the expert’s actions, and assigns the highest probability to more constraining sets of parameters
that are consistent with the expert’s actions. With a modest amount of evidence, this approach leads
to tight distributions over the constraint parameters.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:20 X. Zhang, S. Yoon, P. DiBona et al.

4.4.2. The Safety Checker and Its Outputs for the MRE. The Safety Checker (SC) takes candidate
subproblem solutions from the ILRs as input, the current ACO on which to try the candidate solu-
tions, and the safety constraints output by the CL; it outputs a violation message. The SC uses its 4D
spatio-temporal Reasoner to verify whether any constraint is violated by the candidate solution. A
violation message is output by the SC that includes the violated constraint, the solution that violated
the constraint, specific information about the nature of the violation in the context of the ACO and
the expected degree (severity) of the violation, normalized to a value in the range [0, 1].

The expected degree of violation is called the safety violation penalty, or simply the violation
penalty. The SC calculates this penalty by finding a normalized expected amount of violation, based
on the constraint posterior distribution learned by the CL. Let Pf(c)(ω|E) represent the posterior
distribution over the safety constraint governing property f applied to concept c, given expert trace
E. An example might be the maximimum altitude property of the “Combat Air Patrol” airspace
concept. Given a proposed solution that involves repositioning an airspace matching concept c, let v
represent f(c) in that solution (e.g., let it represent the maximum altitude of a “Combat Air Patrol”
in the proposed solution). Then the safety violation penalty is calculated as:

penaltyunnormalized =

∫
Pf(c)(ω|E) ·max(0, (v − ω))dω . (1)

For a minimum threshold, the unnormalized penalty would be:

penaltyunnormalized =

∫
Pf(c)(ω|E) ·max(0, (ω − v))dω . (2)

The method is identical for relational constraints g. The unnormalized penalty is normalized based
on the range of possible parameter values, so that violations in different dimensions (altitude versus
horizontal distance versus time) can be compared (additional details in [Rebguns et al. 2009]).
The MRE uses the violation penalty to discard subproblem solutions that are invalid because their
penalty is above the safety threshold.

Why is the SC needed if the ILRs already use the safety constraints during planning? The reason
is that the ILRs do not interact with one another during planning. Because each ILR may not have the
domain knowledge, representational expressiveness, or learning and planning capabilities to solve
the entire input problem, the ILRs output subproblem solutions, which are partial and incomplete
solutions. The MRE subsequently composes these subproblem solutions into one final complete
solution using search. This final solution needs to be checked because interactions between the
subproblem solutions will not emerge until after they have been composed into a single solution,
and these interactions might violate constraints.

5. THE META-REASONING EXECUTIVE (MRE)
In both the practice learning phase and the collaborative performance phase (see Figure 2), the sys-
tem is required to solve a test problem using the learned knowledge. The Meta-Reasoning Executive
(MRE) directs a collaborative performance process (Algorithm 1) during which the ILRs contribute
to solving the test problem. This collaborative performance process is modeled as a search for a
path from the initial state to a goal state (where the problem is fully solved). The complete solution
is a combination of the partial solutions contributed by each ILR.

First, the given test problem is decomposed into a set of subproblems. In general, problem de-
composition is a difficult task, and the quality of problem solving depends on how the problem is
decomposed. In this application, GILA uses domain knowledge to decompose the original problem:
given an ACO and a set of proposed ACMs, solving the problem consists of removing all existing
conflicts; so the whole problem is then decomposed as a set of subproblems, and the purpose of
each subproblem is to remove one conflict. These subproblems are interrelated, i.e., how a subprob-
lem is solved may affect how others can be solved. Solving one subproblem can also generate new
subproblems. To manage these interrelationships, the MRE conducts an internal search process,

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:21

Fig. 7: Partial search tree example - GILA performs on Scenario F.

as described below. In addition, one ILR in particular – the CBLR – learns the priority of these
subproblems and provides guidance on the ordering to solve them.

Next, the MRE posts these subproblems on the blackboard, and each ILR then posts its solu-
tions to some of these subproblems. These subproblem solutions are treated as the search operators
available at the current state. They are applied to the current state, which results in new states. New
conflicts may appear after applying a subproblem solution. These new states are then evaluated and
stored in an open list. The best state is selected to be explored next: if it is a goal state (no remaining

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:22 X. Zhang, S. Yoon, P. DiBona et al.

conflicts), the problem is fully solved; otherwise, the MRE posts all subproblems that correspond to
conflicts existing in this current state, and the previous process is repeated.

Figure 7 shows part of the search tree constructed when GILA is performing on Scenario F af-
ter learning from the expert demonstration that solves Scenario E, and practice on Scenario G.
The nodes marked with “MREDM-9-XXXX” represent problem states and the nodes marked with
“CBLR-6,” “SPLR-5” or “DTLR-8” represent subproblem solutions (sequences of ACM modifica-
tions) posted by the ILRs. The problem state node and subproblem solution nodes alternate. If a
problem state node represents the problem state s, and one of its child nodes is a subproblem solu-
tion sol selected for exploration, a new problem state node is generated representing the result of
applying sol to s. The ordering of nodes to be explored depends on the search strategy. A best-first
search strategy is used in this work. The node n that contains state s with the best evaluation score
E(s) is selected from the open list and explored next.

This search process is directed by the learned knowledge from the ILRs in the following two
ways. First, GILA learns a ranking function R to decide which subproblems to work on initially.
It is not efficient to have all ILRs provide solutions to all subproblems, as it takes more time to
generate those subproblem solutions and also requires more effort to evaluate them. Because solving
one subproblem could make solving the remaining problems easier or more difficult, it is crucial to
direct the ILRs to work on subproblems in a facilitating order. Though multiple ILRs are learning
this ranking function, the CBLR is the best one for this task. In the beginning of the search process,
the MRE asks the CBLR to provide a priority ordering of the subproblems. Based on this priority
list, the MRE suggests which subproblem to work on first. This suggestion is taken by all the ILRs as
guidance to generate solutions for subproblems. The ILRs work on the subproblems simultaneously.

Second, GILA learns an evaluation function E to evaluate the problem state resulting from apply-
ing a proposed subproblem solution to the current state. This evaluation function E is constructed
using the learned knowledge from the ILRs in the following ways:

(1) The Safety Checker (SC) checks for safety violations in a problem state. Some subproblem
solutions may cause safety violations that make them invalid. The Safety Checker determines
whether there is a safety violation and, if yes, how severe the violation is, which is represented
by the violation penalty. If the violation penalty is greater than the safety threshold, the MRE
discards the subproblem solution that causes this violation. For example, as shown in Figure 7,
there is a red box for safety value “1.05” on Node “CBLR-6-10053.” The red safety box means
that the problem state represented by this node has a violation penalty greater than the safety
threshold (1.0 in this example); hence, the corresponding subproblem solution is discarded.
Otherwise, if the violation penalty is less than or equal to the safety threshold, the following
evaluations are performed.

(2) The DTLR derives the execution cost for a new problem state after applying a subproblem
solution. The execution cost is learned by the DTLR to measure how close this subproblem
solution is to the expert’s demonstration. Ideally, GILA is looking for a solution that best mimics
the expert, which is a solution with minimal execution cost. However, this cost estimation is not
exact due to various assumptions in its learning, such as discretization of the action space and
inexact inference.

(3) Another ILR, the 4DCLR, performs an internal simulation to investigate the results of applying
a subproblem solution to the current state. The resulting new problem state is evaluated, and the
number of remaining conflicts is returned to the MRE as an estimate of how far it is from the
goal state, which is the state with no remaining conflicts.

If a subproblem solution does not solve any conflict at all, it is discarded; otherwise, the new
problem state resulting from applying this subproblem solution is evaluated based on the follow-
ing factors: the cost of executing all subproblem solutions selected on this path from the ini-
tial state to this current state (cumulative exec cost), safety violation penalties that would be
present if the path were executed (safety penalties), and the estimated execution cost and vi-
olation penalties from this current state to a goal state, in other words, to resolve the remaining

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:23

conflicts (estimated remaining cost). These factors are combined using a linear function with a
set of weight parameters:

(1) execution.cost.weight (w1)
(2) safety.violations.weight (w2)
(3) solved.to.remaining.conflict.balance.weight (w3)

The estimation of execution cost and violation penalties for resolving the remaining conflicts is
calculated as:

estimated remaining cost =
actual cost

number of resolved conflicts
∗number of remaining conflicts

actual cost = w1 ∗ cumulative exec cost+ w2 ∗ safety penalties
The estimated total cost is calculated as:

estimated total cost = w3 ∗ actual cost+ (1− w3) ∗ estimated remaining cost

The values of the weight parameters w1, w2, and w3 can be varied to generate different search
behaviors. Based on the estimated total cost, the MRE determines the ordering of nodes to be
explored. The search process stops when a goal state is reached, i.e., when there are no remaining
conflicts, or a preset time limit is reached. In Figure 7, there is a brown box with the 4DCR value
of “0” on Node “SPLR-5-11679.” This node represents a goal state because the 4DCLR reports that
the number of remaining conflicts in the current state is “0.”

6. EXPERIMENTAL SETUP AND RESULTS
The GILA system consists of an ensemble of distributed, loosely-coupled components, interacting
via a blackboard. Each component is a standalone software module that interacts with the GILA
system using a standard set of domain-independent APIs (e.g., interfaces). The distributed nature
of the design allows components to operate in parallel, maximizing efficiency and scalability. The
GILA system is composed of distributed GILA Nodes, which contain and manage the GILA com-
ponents. Each node runs in parallel and the components (e.g., ILRs, MRE) are multithreaded within
the node. Each node efficiently shares OWL data via the networked blackboard, and the MRE can
queue problems for the ILRs, minimizing any idle time. The deployment of components to GILA
Nodes is configurable – to optimize performance and scalability. There is no logical limit to the
number of nodes or components in the GILA system.

6.1. Test Cases and Evaluation Criteria
The test cases for experiments were developed by subject matter experts from BlueForce, LLC. The
experimental results were graded by these SMEs. One expert did the majority of the work, with help
from one or two other experts. In the remainder of this section, we use “the expert” to refer to this
group. Notice that the expert is independent of the GILA team and is not involved in designing the
GILA system.

For the final evaluation, four scenarios, D, E, F and G, were developed. The evaluator randomly
chose three of them, namely, E, F and G.In each test scenario, there are 24 Airspace Control Mea-
sures (ACMs). There are 14 conflicts among these ACMs as well as existing airspaces. Each test
case consists of three test scenarios for demonstration, practice and performance, respectively.

The core task is to remove conflicts between ACMs and to configure ACMs such that they do not
violate constraints on time, altitude or geometry of an airspace. The quality of each step (action)
inside the solution is judged according the following factors:

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:24 X. Zhang, S. Yoon, P. DiBona et al.

Table II: GILA’s and an expert’s deconfliction solutions for Scenario F

Expert’s Conflict Expert’s Solution GILA Solution GILA’s
priority priority

1 ACM-J-18 (SSMS)
ACM-J-19 (SOF)

Move 19 from 36.64/-116.34,
36.76/-117.64 to 36.64/-116.34,
36.68/-117.54

Move 19 from 36.64/-116.34,
36.76/-117.64 to 36.6/-116.18,
36.74/-117.48

4

2 ACM-J-17 (SSMS)
ACM-J-19 (SOF)

Already resolved Move 17 from 37.71/-117.24,
36.77/-117.63 to 37.77/-117.24,
36.84/-117.63

1

3 ACM-J-12 (CASHA)
ACM-J-23 (UAV)

Change alt of 12 from 16000-35500
to 17500-35500

Change alt of 23 from 1500-17000
to 1500-15125

7

4 ACM-J-11 (CASHA)
ACM-J-24 (UAV)

Move 11 from 36.42/-117.87,
36.42/-117.68 to 36.43/-117.77,
36.43/-117.58

Change the alt of 11 from 500-
35500 to 17000-35500

10

5 ACM-J-17 (SSMS)
ACM-J-18 (SSMS)

Move 17 from 37.71/-117.24,
36.78/-117.63 to 37.71/-117.24,
36.85/36.85/-117.73

Resolved by 17/19 (Step 1)

6 ACM-J-4 (AAR)
ACM-J-21 (SSMS)

Move 4 from 35.58/-115.67, 36.11/-
115.65 to 36.65/-115.43, 35.93/-
115.57

Move 4 from 35.58/-115.67,
36.11/-115.65 to 35.74/-115.31,
36.27/-115.59

5

7 ACM-J-1 (AEW)
ACM-J-18 (SSMS)

Move 1 from 37.34/-116.98, 36.86/-
116.58 to 37.39/-116.89, 36.86/-
116.58

Move 1 from 37.34/-116.98,
36.86/-116.58 to 37.38/-116.88,
36.9/-116.48

8

8 ACM-J-3 (ABC)
ACM-J-16 (RECCE)

Move 16 from 35.96/-116.3, 35.24/-
115.91 to 35.81/-116.24, 35.24/-
115.91

Move 16 from 35.96/-
116.3,35.24/-115.91 to 35.95/-
116.12, 35.38/-115.65

3

9 ACM-J-3 (ABC)
ACM-J-15 (COZ)

Change 3 alt from 20500-24000 to
20500-23000

Change the alt of 15 from 23500-
29500 to 25500-29500

9

10 Hava South ACM-J-
15 (COZ)

Change 15 time from 1100-2359 to
1200-2359

Change 15 time from 1100-2359
to 1215-2359

2

11 ACM-J-8 (CAP)
ACM-J-15 (COZ)

Move 8 from 35.79/-116.73, 35.95/-
116.32 to 35.74/-116.72, 35.90/-
116.36

Move 8 from 35.79/-116.73,
35.95/-116.32 to 35.71/-116.7,
35.87/-116.3

6

12 ACM-J-3 (ABC) Already resolved Resolved by 8/15
ACM-J-8 (CAP) (Step 6)

13 Hava South Already resolved Resolved by 4/21
ACM-J-4 (AAR) (Step 5)

14 ACM-J-1 (AEW) Already resolved Resolved by 1/18
ACM-J-10 (CAP) (Step 8)

— Whether this action solves a conflict.
— Whether the result of this action still satisfies the original purpose of the mission. For example,

changing the flying altitude of a missile may still satisfy its original purpose; however, changing
the destination of a missile would dissatisfy its original purpose.

— The simplicity of the action. A conflict may be solved in different ways, and a simple solution
should use as few steps as possible and affect the fewest number of conflicts.

— Proximity to the problem area.
— Suitability for operational context.
— Originality of the action, which is how creative it is. For example, one action may solve two

conflicts. Most of the time, this refers to solutions that the SMEs consider to be quite clever and,
perhaps, something that they did not even consider.

Each factor is graded on a 0-5 scale. The score for each step is the average of all above factors.
The final score for a solution is an average of the scores for each step, which is then multiplied by
20 to normalize it in the range [0,100].

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:25

GILA’s solution and the expert’s solution for Scenario F are both shown in Table II. Out of the
14 conflicts to be resolved, four of them are resolved as side-effects of solving the other conflicts
in both GILA’s and the expert’s solution. Three of these four conflicts are solved the same way
by both GILA and the expert. Among nine other conflicts for which both GILA and the expert
provided direct modifications, seven are conflicts for which GILA chose to change the same ACM
(in conflict) and make the same type of change as the expert, although the new values are slightly
different from the values chosen by the expert. There are two conflicts for which GILA chose to
change a different ACM (in conflict), but make the same type of change as the expert. There is one
conflict for which GILA changed a different ACM and also made a different type of change. There
are four conflicts to which GILA gave the same (or very similar – the difference was 1) priority as
the expert. Based on the criteria described above, this GILA solution is scored by the expert with a
score of 96 out of 100, as shown in Table III.

6.2. GILA Versus Human Novice Performance Comparison
Comparative evaluation of the GILA system is difficult because we have not found a similar man-
made system that can learn from a few demonstrations to solve complicated problems. Hence we
chose the human novices as our baseline. The hypothesis we tested is:

HYPOTHESIS 1.
GILA has achieved 100% human novice performance, measured by the
trimmed mean score, which is calculated by ignoring the two highest and
two lowest scores.

To compare the performance of GILA with novices, we first recruited human volunteers from
engineers at Lockheed Martin. After eliminating those who had prior experience with airspace man-
agement, we got 33 people for the test. These 33 people were randomly grouped into six groups.
Each group was given a demonstration case, a practice case and a test case on which to perform.
We used three test cases in six combinations for demonstration, practice and performance. The
test could have been more stable if each group could have worked on more than one combination;
however, given the availability of the subjects’ time, this could not be implemented in our test.

We started with an introduction of the background knowledge. Each of the participants was given
a written document that listed all the knowledge that GILA had before learning. They also received
GUI training on how to use the graphical interface designed to make human testing fair in compar-
ison with GILA testing. After the training, each participant was handed a questionnaire to validate
that they had gained the basic knowledge to carry out the test. The participants were then shown
a video of the expert demonstration traces on how to deconflict airspaces. Based on their observa-
tions, they practiced on the practice case, which only had the beginning and the ending states of the
airspaces, without the detailed actions to deconflict them. Finally, the participants were given a per-
formance test case on which they were expected to work. The test ended with an exit questionnaire.

Table III shows the scores achieved by GILA and human novices. The score for the human
novices shown in the table is the average score of all human novices in a group who are working
on the same testing scenario. The score of a solution represents the quality of the solution, which is
evaluated by the SME based on the six factors described in Section 6.1. To avoid any experimental
bias, the scoring process was blind. The solution was presented in a manner that prevented the ex-
pert from determining whether it was generated by GILA or by a human. The maximum possible
score for one solution was 100. For example, the first row in Table III shows that for experiment
EFG (using Scenario E for demonstration, F for practice and G for performance), the average score
for human novices is 93.84, while the score of the GILA solution is 95.40. It is shown that based
on the average of all six experiments, GILA has achieved 105% of human novices’ performance.
The trimmed mean score of human novices (which ignores the two highest and two lowest scores)

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:26 X. Zhang, S. Yoon, P. DiBona et al.

Table III: Solution Quality: GILA versus Human Novices and Number of Solutions Contributed by
Each ILR

Scenario Human Novices GILA SPLR CBLR DTLR
Demo Practice Performance

E F G 93.84 95.40 75% 25% 0
E G F 91.97 96.00 60% 30% 10%
F E G 92.03 95.00 64% 36% 0
F G E 91.44 95.80 75% 17% 8%
G E F 87.40 95.40 75% 25% 0
G F E 86.3 95.00 75% 17% 8%

Average 90.5 95.4 70% 24% 6%
STDEV 7.05 0.41

95% Confidence Interval [88.05, 92.87] [95.10, 95.76]

is 91.24. Hypothesis 1 that “GILA has achieved 100% human novice performance (measured by
trimmed mean score)” is supported with 99.98% confidence using a t-test.

Here are some general observations of how human novices performed differently from GILA in
solving an airspace management problem.

(1) GILA sometimes gave uneven solutions, for example 35001 ft instead of 35000 ft. Novices
can infer from the expert trace that 35000 is the convention. It seems that the human reasoning
process uses a piece of common knowledge that is missing from GILA’s knowledge base.

(2) Overall, novices lacked the ability to manage more than one piece of information. As the com-
plexity of the conflicts increased, they started to forget factors (e.g., which ACM, which method
to change, etc.) that needed to be taken into account. GILA demonstrated a clearly higher level
of information management ability in working with multiple conflicts at the same time.

The last three columns of Table III show the percentage of contribution made by each ILR in
the final solution output by GILA. Note that the 4DCLR is not in this list because it does not pro-
pose conflict resolutions, but only checks safety constraint violations. On average, the SPLR clearly
dominates the performance by contributing 70% of the final solution, followed by the CBLR which
contributes 24%, and finally the DTLR, which contributes 6%. One reason why SPLR’s perfor-
mance is so good is that its rule language, which is based on taxonomic syntax, is very natural and
appropriate for capturing the kind of rules that people seem to be using. Second, its lower-level value
function captures nuanced differences between different parameter values for the ACM modifica-
tion operators. Third, it does a more exhaustive search during the performance phase than the other
ILRs – to find the best possible ACM modifications. The CBLR does well when its training cases
are similar to the test cases, and otherwise does poorly. In the reported test cases, it is found to make
poor geometry decisions. The DTLR suffers from its approximate search and coarse discretization
of the search space. Although it uses the same cost function as the SPLR to search for the solution,
its solutions are often suboptimal because it discretizes the parameter space more coarsely than the
SPLR. Because of this, it sometimes completely fails to find a solution that passes muster by the
4DCLR, although such solutions do exist in the search space.

6.3. Effect of Collaborations Among Components
To test the importance of the collaboration among various ILRs, we performed two additional sets
of experiments. The first set is to run GILA with only one ILR for solving conflicts. The second set
is to evaluate the influence of the 4DCLR on GILA’s performance.

6.3.1. GILA Versus Single ILRs for Solving Conflicts. In this set of experiments, GILA ran with
only one ILR for solving conflicts. However, in all these experiments, the DTLR was still used for
providing cost information for the MRE, and the 4DCLR was used for internal simulation and safety
constraint checking. The hypothesis to test here is:

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:27

Table IV: Comparison of GILA and Single ILRs for Conflict Resolution (Test Scenario: EFG)

GILA SPLR CBLR DTLR
Conflict Solved 14 14 7 5
Quality Score 95.40 81.2 N/A N/A

HYPOTHESIS 2. No single ILR (for generating deconflicting solutions) can perform as well
as GILA.

Table IV shows that the DTLR is able to solve 5 conflicts out of 14 total conflicts, while the
CBLR is able to solve 7 of them. Though the SPLR is able to solve all 14 conflicts, the quality
score of its solution (81.2) is significantly lower than the score achieved by GILA as a whole (95.4).
The lower score for the SPLR-only solution is caused by some large altitude and time changes,
including moving the altitude above 66000. Though there are multiple alternatives to resolving a
conflict, usually an action that minimizes change is preferred over those with larger changes. Such
large-change actions were not in the solution produced using all ILRs because other ILRs proposed
alternative actions, which were preferred and chosen by the MRE. Although the DTLR is unable to
solve some conflicts because of its incomplete search, it learns a cost function used by the MRE to
guide the overall problem solving process. The CBLR fails to solve conflicts if its case library does
not contain similar conflicts. The above results support Hypothesis 2 positively. These experiments
verify that the collaboration of multiple ILRs is indeed important to solve problems with high-
quality solutions.

6.3.2. Performance of the 4DCLR. The performance improvement gained by including the
4DCLR in GILA has been experimentally tested. Here, we summarize the results; for details see
[Rebguns et al. 2008]. Specifically, we did an experimental investigation of the following hypothe-
sis:

HYPOTHESIS 3. GILA with the 4DCLR generates airspace-deconfliction steps that are more
similar to those of the expert than GILA without the 4DCLR.

Two performance metrics were applied in testing this hypothesis. The first, more general, metric
used was:2

Metric 1: Compare all airspaces moved by GILA and the expert by grouping them as
true positives, i.e., those moves performed by both GILA and the expert, false positives,
i.e., those moves that were only done by GILA but not the expert, and false negatives,
i.e., those that were done by the expert but not by GILA.

The score of GILA, with versus without the 4DCLR, was provided by the following formula:

TP

TP + FP + FN
,

where TP , FP and FN are the number of true positives, false positives and false negatives in an
experiment, respectively. The maximum possible score was 1.0, corresponding to complete agree-
ment between GILA and the expert. The lowest score, 0.0, occurred when GILA and the expert
chose completely disjoint sets of airspace modifications.

2See [Rebguns et al. 2008] for the more specific second metric.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:28 X. Zhang, S. Yoon, P. DiBona et al.

Across five experimental cases, the system generated the following results with the 4DCLR:
TP = 30, FP = 18 and FN = 22. Based on this outcome, GILA’s score using the first metric was
0.429 when the 4DCLR was included. The score of the system dropped to 0.375 when the 4DCLR
was excluded, with the following results: TP = 27, FP = 20 and FN = 25. Based on the above
results, it can be concluded that the 4DCLR is helpful for GILA’s improved performance.

6.4. Effect of Demonstration Content On GILA’s Performance
Though GILA has achieved quite a good performance score after learning from the expert’s demon-
stration, there is a remaining question of how important the expert’s demonstration is. In other
words, is GILA solving the problem mainly based on its built-in domain knowledge? (Although
this prior domain knowledge was minimized, its presence could affect the performance.) To answer
this question, we designed the following two sets of experiments.

6.4.1. Performance Without Learning. The hypothesis being tested here is:

HYPOTHESIS 4. GILA performs much worse without learning from the ex-
pert’s demonstration.

In this set of experiments, we have both GILA and human novices perform on two scenarios,
without learning from the expert’s demonstration. As shown in Figure 8, GILA’s performance time
increases significantly (about 10 times slower) when it has to solve the same problem without learn-
ing. This is due to the fact that GILA has to rely on brute force search to solve the problem. Also,
without learning, GILA performs poorly on some of the harder subproblems. The difference in the
solution quality score does not seem to be significant; however, small differences in score can mean
big differences to the mission. As the SME explains, “An unacceptable altitude in one conflict only
brought that conflict resolution’s score down to 4.5 [of 5.0]. Put this in the mix for the entire 14 con-
flicts, and the overall score would change from 4.83 down to 4.81.... yet this could begin a snowball
effect that negatively impacted the entire day’s ATO.” The above analysis of results support Hypoth-
esis 4 positively. Additionally, an analysis of GILA’s solutions shows that the improved scores are
due to learning. With learning, GILA’s solution is nearly identical to the expert’s solution.

In addition, we have compared novices and GILA, with and without learning, on two matched
settings:

— Setting 1: perform on Scenario E without learning and on G with learning;
— Setting 2: perform on Scenario G without learning and on E with learning

As illustrated in Figure 8, when learning was not a part of the task, novices also showed a similar
drop in performance in both settings. Without learning, novices took a little bit longer to solve the
problem, but not as much as GILA. This is because humans often rely on common sense rather than
excessive search to solve problems.

6.4.2. Learning from a Biased Expert Trace. To verify that GILA is actually learning what the
expert demonstrates, we designed the following bias test. As we described in Section 3, in order to
resolve a conflict, there are three types of changes an expert can make to an ACM: altitude change,
geometry change and time change. In our bias test, GILA learned from three different expert traces:

(1) An expert trace that contains only altitude changes
(2) An expert trace that contains only altitude and geometry changes
(3) An expert trace that contains all three types of changes

We observed how GILA performed after learning from each of above traces. The hypothesis that
was tested is:

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:29

0.25 
0.93 

0.37 
1.48 

0.38 

11.87 

0.5 

8.98 

0 

2 

4 

6 

8 

10 

12 

Novice: 
Setting 1 

GILA:    
Setting 1 

Novice: 
Setting 2 

GILA:    
Setting 2 

With Learning 
Without Learning 

(a) Performance Time

95.2  95 

76 

95.8 
93 

87.2 

71.6 

91.4 

60 

65 

70 

75 

80 

85 

90 

95 

100 

Novice: 
Setting 1 

GILA:    
Setting 1 

Novice: 
Setting 2 

GILA:    
Setting 2 

With Learning 

Without Learning 

(b) Solution Quality Score

Fig. 8: Comparison of the impact of learning on novices and GILA

Table V: ILRs’ Proposed Actions After Learning From Bias Trace

Altitude Altitude. Geometry Altitude. Geometry, Time
PSTEP Demo

Trace
CB
LR

SP
LR

DT
LR

Demo
Trace

CB
LR

SP
LR

DT
LR

Demo
Trace

CB
LR

SP
LR

DT
LR

SetACMMinAltitude 9 24 35 12 7 6 11 7 4 3 11 5
SetACMMaxAltitude 10 29 35 8 7 7 11 4 6 5 11 4

SetACMPoint - - - 54 10 8 12 - 5 3 14 -
SetStartTime - - - 1 - - - 2 2 1 - 2
SetEndTime - - - 1 - - - 2 1 - - 2
SetRadius - - - 14 - - - - - - - -

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:30 X. Zhang, S. Yoon, P. DiBona et al.

HYPOTHESIS 5. The content of the demonstration has substantial impact on how each ILR
solves the problem.

Table V shows how many times each ILR proposed a certain type of change after learning from
a specific demonstration trace. Notice that the actions (PSTEPs) for altitude change are SetACM-
MinAltitude and SetACMMaxAltitude, actions for geometry change are SetACMPoint and SetRa-
dius, and actions for time change are SetSatrtTime and SetEndTime. Both the CBLR and the SPLR
learned to strongly prefer the action choices demonstrated by the expert, and they did not generate
any choice that they had not been seen in the demonstration. However, biased demonstrations led
the DTLR to propose a more diverse set of changes. This was due to the DTLR’s unique learning
and reasoning mechanism. The DTLR always internally considers all possible changes. If there are
only altitude changes in the demonstration, and they do not resolve conflicts during the DTLR’s
internal search, then it proposes other changes. The above results support Hypothesis 5 positively.

6.5. Effects of Practice
To study the effect of the internal practice phase, we compared GILA’s performance score on six
scenarios, A, B, C, E, F and G, with and without practice. The average score is 0.9156 with practice,
and 0.9138 without practice. The improvement due to practice is small, which shows that GILA has
not taken full advantage of practice. In fact, given the limited time working on this project, the
following questions have not been addressed thoroughly in the practice phase:

— How should an ILR learn from the pseudo expert trace generated by practice? Currently, the
pseudo expert trace is treated as another expert trace, and an ILR learns from it exactly as it learns
from the original expert trace. However, this solution does not properly deal with the potentially
inconsistent knowledge learned from these two traces.

— How should an ILR share its learned knowledge more actively with other ILRs? A pseudo expert
trace actually provides more feedback to ILRs about what they have learned. By analyzing the
pseudo expert trace an ILR can see, for each subproblem, whether its proposed solution has been
selected. If not selected, the ILR can learn from the reason why it is not selected, and also learn
from the actual selected solution.

Though the above questions have not been answered, even now practice shows good promise
for improving solutions. For example, without practice, GILA moves an airspace across the FEBA
(Forward Edge of the Battle Area) over into enemy territory, which is not safe. With practice, GILA
finds a better way to solve the same conflict – by changing the altitude of one ACM involved in the
conflict. Hence we are confident that the practice phase provides a good opportunity for GILA to
exercise its learned knowledge and to improve its solution quality.

7. RELATED WORK
GILA is one of two efforts in the DARPA Integrated Learning Program to integrate multiple learn-
ing paradigms for learning a complex task from very few examples. The other effort is POIROT
(Plan Order Induction by Reasoning from One Trial) [Burstein et al. 2008]. POIROT is an inte-
grated framework for combining machine learning mechanisms to learn hierarchical models of web
services procedures. Individual learners in POIROT share a common language (LTML – Learnable
Task Modeling Language) in which to express their hypotheses (generalizations) and other infer-
ences from the demonstration traces. LTML is based on ideas from OWL and PDDL. Modules
can also formulate learning goals for other modules. There is a Meta-Controller that manages the
learning goals following the goal-driven learning paradigm [Ram and Leake 1995]. The hypothe-
ses generated are merged together into a single hypothesis, using a computational analogy-based
method. POIROT incorporates ReSHOP, an HTN planner capable of interpreting planning domains
in LTML, generating plans and executing them by invoking web service calls. While GILA’s in-

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:31

tegration approach is “Independent learning with collaborative performance,” POIROT’s is closer
to “Collaborative learning and performance.” In fact, GILA’s modules (ILRs) are capable of both
learning and solving problems; in POIROT, on the other hand, modules only have learning capa-
bilities. Thus, they collaborate during learning, whereas performance is accomplished by a separate
module. In machine learning terms, we could see POIROT as using the different modules to ex-
plore the same generalization space using different biases, whereas in GILA, each module explores
a different generalization space.

The MABLE system [Mailler et al. 2009] developed in the DARPA Bootstrapped Learning effort
also uses heterogeneous learners that learn with very limited training (not just example based) and
perform using their own representations and mechanisms. This system was developed later than
GILA. Unlike GILA, the hierarchical breakdown of the overall learning into subproblems (“con-
cepts”) is provided to MABLE and the training associated with each concept is identified directly
and the concepts are taught and tested in precedence order. MABLE faces challenges of identifying
which learners (“learning strategies”) are appropriate for the training “method” (“by example,” “by
telling,” etc.) provided for a concept and extremely limited graded testing available to identify if a
concept has been learned successfully.

FORR (For the Right Reason) [Epstein 1994] is another domain-independent ensemble learning
architecture. This architecture assumes initial broad domain knowledge, and gradually specializes
it to simulate expertise for individual problem classes. FORR contains multiple heuristic agents
called “advisors” that collaborate on problem-solving decisions. A FORR-based program learns
both from the performance of an external expert and from practice in its domain. This architecture
has been implemented for game playing. The major difference between the FORR architecture and
the GILA architecture is that FORR contains one single learner, and all advisors perform based on
the same learned knowledge, whereas GILA contains multiple ILRs, and each learns using its own
methods and proposes solutions based on its own internal learned knowledge. We believe that mul-
tiple diverse learning methods can be advantageous for capturing knowledge from various sources,
especially when the expert demonstration examples are very few.

In addition to POIROT, MABLE and FORR, our work on GILA is related to several areas of
research on the integration of learning methods (ensemble learning and multiagent learning) and on
learning from demonstration. The rest of this section outlines the connections between GILA and
those areas.

Ensemble learning focuses on constructing a set of classifiers and then solving new problems
by combining their predictions [Dietterich 2000a]. Ensemble learning methods, such as Bagging
[Breiman 1996] or Boosting [Freund and Schapire 1996], improve classification accuracy versus
having an individual classifier, given that there is diversity in the ensemble. Thus, the focus on
ensemble learning is to increase the classification accuracy. Moreover, except for a few exceptions,
ensemble learning methods focus on creating multiple classifiers using the same learning method,
but providing different training or feature sets. GILA, however, focuses on integrating different
learning paradigms in order to reduce the number of training examples required to learn a complex
task. Moreover, ensemble learning techniques have been studied for classification and regression
tasks, whereas GILA operates on a planning task.

GILA’s ILRs could be considered “agents.” Multiagent learning (MAL) studies multiagent sys-
tems from a machine learning perspective [Stone and Veloso 2000]. Most recent work in MAL
focuses on multiagent reinforcement learning. GILA, however, is closely related to work on dis-
tributed learning [Davies and Edwards 1995], where groups of agents collaborate to learn and solve
a common problem. Work in this area focuses on both the integration of inductive inferences during
learning [Davies 2001] (closely related to the POIROT project), and on the integration of solutions
during problem solving [Ontañón and Plaza 2007] (which is closely related to the GILA project).

Learning from Demonstration, sometimes called “programming by demonstration” (PBD) or
“imitation learning,” has been widely studied in robotics [Bakker and Kuniyoshi 1996], and of-
fers an alternative to manual programming. Lau et. al. [Lau 2001] proposed a machine learning
approach for PBD based on Version Space algebra. The learning is conducted as a search in a Ver-

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:32 X. Zhang, S. Yoon, P. DiBona et al.

sion Space of hypotheses, consistent with the demonstration example. Human demonstrations have
also received some attention to speed up reinforcement learning [Schaal 1996], and as a way of
automatically acquiring planning knowledge [Hogg et al. 2008], among others. Könik and Laird
present a Relational Learning from Observation technique [Könik and Laird 2006] able to learn
how to decompose a goal into subgoals, based on observing annotated expert traces. Könik and
Laird’s technique uses relational machine learning techniques to learn how to decompose goals,
and the output is a collection of rules, thus showing an approach to learning planning knowledge
from demonstrations. The main difference between GILA and these learning from demonstration
techniques is that GILA analyzes expert demonstrations using multiple learning modules in order
to learn as much knowledge as possible, and thus increase its sample efficiency.

8. CONCLUSIONS AND FUTURE WORK
In this article, we presented an ensemble architecture for learning to solve an airspace management
problem. Multiple components, each using different learning/reasoning mechanisms and internal
knowledge representations, learn independently from the same expert demonstration trace. A meta-
reasoning executive component directs a collaborative performance process, during which it posts
subproblems and selects partial solutions from the ILRs to explore. During this process, each ILR
contributes to the problem-solving process without explicitly transferring its learned knowledge.
This ensemble learning and problem-solving approach is efficient, as the experimental results show
that GILA matches or exceeds the performance of human novices after learning from the same ex-
pert demonstration. The collaboration among various learner-reasoners is essential to success, since
no single ILR can achieve the same performance as the GILA system. It has also been verified
that the successful performance of GILA is primarily due to learning from an expert’s demon-
stration rather than from knowledge engineered within the system, distinguishing GILA from a
hand-engineered expert system.

The ensemble learning and problem-solving architecture developed in this work opens a new path
for learning to solve complex problems from very few examples. Though this approach is tested
within the domain of airspace management, it is primarily domain-independent. The collaborative
performance process directed by the MRE is domain-independent, with the exception of the ap-
proach used to decompose the problem into subproblems. The learning and reasoning mechanisms
inside each ILR are generally domain-independent, i.e., they can be transferred to other problem
domains. Each ILR can be transferred to other domains as described below.

— The SPLR is specifically designed to be domain neutral. The policy language bias is “automati-
cally” generated from any input domain; thus, transporting the SPLR to other domains would be
a straightforward process with minimal human intervention.

— Whereas the CBLR case structure is domain-specific, the learning and reasoning components are
domain-independent. Transferring the CBLR to another domain would require the identification
of the most important features that would be used to represent a case in the new domain along
with the representation of the set of steps used to solve a problem in the new domain. A similarity
metric and adaptation rules that would operate on these features in the new domain would also
be needed. The hierarchical relationships among case libraries would need to match the structure
of the new domain.

— The learning algorithm of the DTLR is similarly domain-independent, whereas the features are
domain-specific. To transfer to a different domain, the following three things need to be rede-
fined: (1) a joint-feature function that gives the features defined on both input x and output y to
successfully exploit the correlations between inputs and outputs, (2) a loss function that gives a
discrepancy score between two outputs y and y’ for a given input x, and (3) an argmax solver,
which is an oracle that gives the best output ŷ for a given input x according to the cost function.

— In terms of task generality, the 4DCLR is easily applicable to any physical-world application that
involves physical constraints. Only the ontology and specific domain knowledge would need to

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:33

be replaced; the algorithms would remain the same. Generalization of the 4DCLR to abstract
(non-physical) tasks is a topic for future investigation.

The GILA system can be extended in several ways. For example, GILA could be extended to
eliminate the assumption that the expert’s demonstration is perfect and that there is no disagreement
among experts. Several experts may disagree on similar situations. Each ILR could be enhanced
to handle this new challenge. For example, SPLR learning allows negative coverage. For priority
and choice learning, the SPLR would choose to learn from the actions of the majority of experts.
For margin learning, the SPLR would learn the average margins among experts. The CBLR can
currently learn cases from multiple experts who agree or disagree. At performance time, a set of
cases that are most similar to the current problem being solved are retrieved, and this set may
contain two or more cases with radically different solutions. The CBLR will apply these solutions
one at a time, and submit the solution that results in the highest quality airspace deconfliction (i.e.,
the lowest number of conflicts in the airspace). In the case of an imperfect expert (resulting in a
learned case with an incorrect solution) the most similar case will be adapted and applied, and the
resulting solution tested. In future work, in order to improve CBLR performance, a case that results
in an incorrect solution would be identified, and another case would be adapted and applied in its
place. We would also incorporate an introspective module that will reason about the quality of the
cases learned, based on the solutions that they produce over time, and either remove lower quality
cases or flag them so that they are only applied when higher quality cases are not successful. The
DTLR can be improved by learning search control heuristics and an informed search algorithm that
helps find higher quality solutions to its subproblems. The 4DCLR does not currently consider the
situation of multiple experts who disagree, thereby resulting in inconsistent expert traces. In the
future, we would like to extend the 4DCLR to address this, by weighting each expert’s inputs based
on his/her assessed level of expertise.

Another future direction is to introduce further collaboration among the different ILRs. How can
each ILR learn from other ILRs more actively? In the work presented in this article, components
are coordinated only by the meta-reasoning module at performance time. As part of our future
work, we are exploring the possibility of coordinating the components at learning time by following
ideas from goal-driven learning (GDL) [Ram and Leake 1995] (see [Radhakrishnan et al. 2009] for
preliminary results). We can also provide feedback on each ILR’s solution, including an explanation
of why its solution was not selected, thereby allowing it to learn from solutions provided by other
ILRs. Such collaborations would enhance the performance of the entire GILA system.

ACKNOWLEDGMENTS

Distribution Statement (Approved for Public Release, Distribution Unlimited). This material is based upon work supported
by DARPA through a contract with Lockheed Martin (prime contract #FA8650-06-C-7605). Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of
DARPA, Lockheed Martin or the U.S. Government.

REFERENCES
AAMODT, A. AND PLAZA, E. 1994. Case-based reasoning: Foundational issues, methodological variations, and system

approaches. Artificial Intelligence Communications 7, 1, 39–59.
BAKIR, G. H., HOFMANN, T., SCHLKOPF, B., SMOLA, A. J., TASKAR, B., AND VISHWANATHAN, S. V. N., Eds. 2007.

Predicting Structured Data. MIT Press, Cambridge, MA.
BAKKER, P. AND KUNIYOSHI, Y. 1996. Robot see, robot do: An overview of robot imitation. In AISB96 Workhsop on

Learning in Robots and Animals. 3–11.
BLUM, A. AND MITCHELL, T. 1998. Combining labeled and unlabeled data with co-training. In Annual Conference on

Learning Theory(COLT).
BREIMAN, L. 1996. Bagging predictors. Machine Learning 24, 2, 123–140.
BURSTEIN, M. H., LADDAGA, R., MCDONALD, D., COX, M. T., BENYO, B., ROBERTSON, P., HUSSAIN, T. S., BRINN,

M., AND MCDERMOTT, D. V. 2008. POIROT - integrated learning of web service procedures. In AAAI. 1274–1279.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

00:34 X. Zhang, S. Yoon, P. DiBona et al.

CENDROWSKA, J. 1987. PRISM: an algorithm for inducing modular rules. International Journal for Man-Machine Stud-
ies 27, 4, 349–370.

CHOCKLER, H. AND HALPERN, J. Y. 2004. Responsibility and blame: A structural-model approach. Journal of Artificial
Intelligence Research (JAIR) 22, 93–115.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press.
DAUMÉ III, H., LANGFORD, J., AND MARCU, D. 2009. Search-based structured prediction. Machine Learning Jour-

nal 75, 3, 297–325.
DAUMÉ III, H. AND MARCU, D. 2005. Learning as search optimization: approximate large margin methods for structured

prediction. In Proceedings of the 22nd International Conference on Machine Learning(ICML).
DAVIES, W. AND EDWARDS, P. 1995. Distributed learning: An agent-based approach to data-mining. In Working Notes of

the ICML ’95 Workshop on Agents that Learn from Other Agents, D. Gordon, Ed. Tahoe City, CA.
DAVIES, W. H. E. 2001. The communication of inductive inference. Ph.D. thesis, University of Aberdeen.
DIETTERICH, T. 2000a. Ensemble methods in machine learning. In First International Workshop on Multiple Classifier

Systems, J. Kittler and F. Roli, Eds. Lecture Notes in Computer Science. Springer Verlag, 1 – 15.
DIETTERICH, T. G. 2000b. An experimental comparison of three methods for constructing ensembles of decision trees:

Bagging, boosting, and randomization. Machine Learning 40, 2, 139–157.
EPSTEIN, S. L. 1994. For the right reasons: The FORR architecture for learning in a skill domain. Cognitive Science Volume

18, Issue 3, July-September 1994, Pages 479-511 18, 3, 479–511.
ERMAN, L. D., HAYES-ROTH, F., LESSER, V. R., AND REDDY, D. R. 1980. The HEARSAY-II speech understanding

system: Integrating knowledge to resolve uncertainty. Computing Surveys 12, 2, 213–253.
FREUND, Y. AND SCHAPIRE, R. E. 1996. Experiments with a new boosting algorithm. In Proceedings of the 13th Interna-

tional Conference on Machine Learning. Morgan Kaufmann, 148–156.
FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. 1998. Additive logistic regression: a statistical view of boosting. Annals

of Statistics 28, 2000.
HOGG, C. M., MUÑOZ-AVILA, H., AND KUTER, U. 2008. HTN-MAKER: Learning htns with minimal additional knowl-

edge engineering required. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence(AAAI). 950–956.
HUANG, Y., SELMAN, B., AND KAUTZ, H. 2000. Learning declarative control rules for constraint-based planning. In

Proceedings 17th International Conference on Machine Learning(ICML). 337–344.
KAUTZ, H. AND SELMAN, B. 1999. Unifying SAT-based and graph-based planning. In Proceedings of the International

Joint Conference on Artificial Intelligence(IJCAI). 318–325.
KHARDON, R. 1999. Learning action strategies for planning domains. Artificial Intelligence Journal 113, 1-2, 125–148.
KÖNIK, T. AND LAIRD, J. E. 2006. Learning goal hierarchies from structured observations and expert annotations. Machine

Learning 64, 1-3, 263–287.
LAU, T. 2001. Programming by demonstration: a machine learning approach. Ph.D. thesis, University of Washington.
MAILLER, R., BRYCE, D., SHEN, J., AND O’REILLY, C. 2009. Mable: a framework for learning from natural instruction. In

Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems - Volume 1. AAMAS
’09. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 393–400.

MARTIN, M. AND GEFFNER, H. 2000. Learning generalized policies in planning domains using concept languages. In
Proceedings of Seventh International Conference on Principles of Knowledge Representation and Reasoning.

MCALLESTER, D. AND GIVAN, R. 1993. Taxonomic syntax for first order inference. JACM 40, 2, 246–283.
MICHAELIS, J. R., DING, L., AND MCGUINNESS, D. L. 2009. Towards the explanation of workflows. In Proceedings of

the IJCAI 2009 Workshop on Explanation Aware Computing (ExaCt).
MINTON, S. AND CARBONELL, J. 1987. Strategies for learning search control rules: An explanation-based approach. In

Proceedings of the International Joint Conference on Artificial Intelligence(IJCAI). 228–235.
MUÑOZ-AVILA, H. AND COX, M. 2007. Case-based plan adaptation: An analysis and review. IEEE Intelligent Systems.
ONTAÑÓN, S. AND PLAZA, E. 2007. Learning and joint deliberation through argumentation in multiagent systems. In

Proceedings of the 2007 International Conference on Autonomous Agents and Multiagent Systems. 971–978.
PARKER, C., FERN, A., AND TADEPALLI, P. 2006. Gradient boosting for sequence alignment. In Proceedings of the 21st

National Conferenceo on Artificial Intelligence(AAAI). AAAI Press.
RADHAKRISHNAN, J., ONTAÑÓN, S., AND RAM, A. 2009. Goal-driven learning in the GILA integrated intelligence archi-

tecture. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 1205–1210.
RAM, A. AND LEAKE, D. 1995. Goal-Driven Learning. The MIT Press.
REBGUNS, A., GREEN, D., LEVINE, G., KUTER, U., AND SPEARS, D. 2008. Inferring and applying safety constraints

to guide an ensemble of planners for airspace deconfliction. In Proceedings of CP/ICAPS COPLAS’08 Workshop on
Constraint Satisfaction Techniques for Planning and Scheduling Problems.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

An Ensemble Architecture for Learning Complex Problem-Solving From Demonstration 00:35

REBGUNS, A., GREEN, D., SPEARS, D., LEVINE, G., AND KUTER, U. 2009. Learning and verification of safety parame-
ters for airspace deconfliction. University of Maryland Technical Report CS-TR-4949/UMIACS-TR-2009-17.

RIVEST, R. L. 1987. Learning decision lists. Machine Learning 2, 3, 229–246.
SCHAAL, S. 1996. Learning from demonstration. In Advances in neural information processing systems (NIPS). 1040–1046.
STONE, P. AND VELOSO, M. M. 2000. Multiagent systems: A survey from a machine learning perspective. Autonomous

Robots 8, 3, 345–383.
WANG, W. AND ZHOU, Z. 2007. Analyzing co-training style algorithms. In Proceedings of European Conference on Ma-

chine Learning(ECML).
WEISS, G., Ed. 2000. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press.
WETTSCHERECK, D., AHA, D. W., AND MOHRI, T. 1997. A review and empirical evaluation of feature weighting methods

for a class of lazy learning algorithms. Artificial Intelligence Review 11, 273–314.
XU, Y., FERN, A., AND YOON, S. 2007. Discriminative learning of beam-search heuristics for planning. In Proceedings of

the International Joint Conference on Artificial Intelligence(IJCAI).
YOON, S., FERN, A., AND GIVAN, R. 2002. Inductive policy selection for first-order MDPs. In Proceedings of Eighteenth

Conference in Uncertainty in Artificial Intelligence(UAI).
YOON, S. AND KAMBHAMPATI, S. 2007. Hierarchical strategy learning with hybrid representations. In Proceedings of

AAAI 2007 Workshop on Acquiring Planning Knowledge via Demonstration.
ZHANG, X., YOON, S., DIBONA, P., APPLING, D., DING, L., DOPPA, J., GREEN, D., GUO, J., KUTER, U., LEVINE, G.,

MACTAVISH, R., MCFARLANE, D., MICHAELIS, J., MOSTAFA, H., ONTAÑÓN, S., PARKER, C., RADHAKRISHNAN,
J., REBGUNS, A., SHRESTHA, B., SONG, Z., TREWHITT, E., ZAFAR, H., ZHANG, C., CORKILL, D., DEJONG, G.,
DIETTERICH, T., KAMBHAMPATI, S., LESSER, V., AND ET AL. 2009. An ensemble learning and problem-solving
architecture for airspace management. In Proceedings of Twenty-First Annual Conference on Innovative Applications
of Artificial Intelligence (IAAI-09). Pasadena, CA, 203–210.

Received March 2011; revised July 2011; accepted November 2011

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 00, Publication date: 20XX.

