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Abstract

A large number of interdependent issues in complex
contract negotiation poses a significant challenge for
current approaches, which becomes even more appar-
ent when negotiation problems scale up. To address this
challenge, we present a structured anytime search pro-
cess with an agenda management mechanism using a
hierarchical negotiation model, where agents search at
various levels during the negotiation with the guidance
of a mediator. This structured negotiation process in-
creases computational efficiency, making negotiations
scalable for large number of interdependent issues. To
validate the contributions of our approach, 1) we de-
veloped our proposed negotiation model using a hierar-
chical problem structure and a constraint-based prefer-
ence model for real-world applications; 2) we defined a
scenario matrix to capture various characteristics of ne-
gotiation scenarios and developed a scenario generator
that produces test cases according to this matrix; and 3)
we performed an extensive set of experiments to study
the performance of this structured negotiation protocol
and the influence of different scenario parameters, and
investigated the Pareto efficiency and social welfare op-
timality of the negotiation outcomes. The experimental
result supports the hypothesis that this hierarchical ne-
gotiation approach greatly improves scalability with the
complexity of the negotiation scenarios.

Introduction
When groups need to decide, for example, on the design of
a car or an air traffic control system, on the elements of a
peace treaty or a piece of legislation, or on the management
of a transportation network or electric grid, they typically
need to bring hundreds of agents to agreements concerning
thousands of interdependent issues. In such scenarios, the
presence of self-interested elements makes centralized opti-
mization approaches or distributed optimization approaches
such as DCOP inapplicable, because participants would de-
viate from any optimal solution in which they have not taken
part of. Negotiation is for self-interested entities to reach
agreement. However, such real-word negotiations must deal
with huge contract spaces and highly complex utility func-
tions with multiple local optima(Bar-Yam 1997). This poses
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a significant challenge over most existing negotiation tech-
niques, which are focused on simple problems involving rel-
atively small number of agents and a few independent issues,
usually assuming linear utility functions.

To meet this challenge, we present a scalable approach
for complex contract negotiation using structured anytime
search and agenda management. By “agenda management”
we mean a process by which agents decide which issues to
negotiate about and in what order. By “structured”, we mean
that we rely on a hierarchical decomposition of the negotia-
tion problem to perform this agenda management. By ”any-
time”, we mean that the agents can keep looking for better
agreements after reaching an agreement if time allows.

Hierarchical structure, including multiple-level decompo-
sition, is commonly used in human-design systems to re-
duce system management complexity. We adopt a hierar-
chical model for negotiation problems proposed in (Zhang
and Klein 2012). In this model, the system/problem in ne-
gotiation is represented as a decomposition of a set of sub-
systems, which reflects the interdependency relationships
among negotiation attributes (hereinafter, used interchange-
ably as issues): the attributes that belong to the same sub-
system are highly interdependent, while the interdependency
level across different sub-systems is much weaker.

Our structured search with agenda management approach
can be summarized as follows. The mediator first collects
meta-level information about the interdependency of all at-
tributes at the top level from each agent . Using this informa-
tion, the attributes on the same level are clustered in different
groups (highly interdependent issues are grouped together).
The agenda-based mechanism then guides the agents to ne-
gotiate agreements for each cluster. These sub-agreements
can then be combined into a single provisional high-level
contract and refined by further negotiations to take into ac-
count whatever weak inter-cluster dependencies may exist.
The result of this process is a top-level agreement, which sets
the context for negotiations over the remaining levels. For
example, given a constraint if x > 5 then y < 4, a higher-
level agreement with x = 6 then constrains the lower level
searching for y to values less than 4. This process is repeated
until all issues have been considered and a fully-specified
agreement is reached. The anytime search continues looking
for better agreements when resource is available.

This hierarchical search process reduces the computa-



tional effort significantly. By dividing the search into multi-
ple levels and also clustering attributes into smaller groups,
the combinatorics involved in making complex contracts is
radically reduced. Additionally, each high-level agreement
defines the context for further search and eliminates a large
part of the remaining search space. This hierarchical ap-
proach may potentially find better negotiation outcomes, if
the system decomposition is done in a way that the higher-
level attributes constrain the search space the most, and the
search is effectively directed to the most promising area.

Our hierarchical search and agenda management ap-
proaches opens a new avenue of research in multi-attribute
negotiation. In most research work so far, negotiation is con-
sidered as a “package deal”: a fully-specified contract is pro-
posed, modified, accepted or rejected (Klein et al. 2003;
Zheng et al. 2013). Combinatorial auctions (Nisan et al.
2007) is another “package deal” approach for negotiation
with large number of issues. This type of negotiation can be
seen as a flat plane search, since it relies on finding a point
in the solution space (a fully specified contract) to maximize
a predefined utility function. The biggest concern of such
flat-plane search models is the computational scalability.
Several approaches have been proposed in the literature to
deal with this scalability concern. In (Ito, Hattori, and Klein
2007; Marsa-Maestre et al. 2009), agents approach agree-
ments by posting increasingly narrow constraints (regions
on the space of possible agreements), over multiple rounds.
Computational complexity is reduced, but they were only
able to handle negotiations of moderate scales.

There are some works dealing with separate issue nego-
tiation, where each issue is negotiated either sequentially
or in parallel (Fatima, Wooldridge, and Jennings 2004;
Inderst 2000). Sequential negotiation agenda management
(Pendergast 1990) has been studied for simple contracts
(Fatima, Wooldridge, and Jennings 2004) where indepen-
dence is assumed among multiple issues or where negotia-
tion problems are restricted (e.g. resource allocation(Fatima
and Wooldridge 2013) or service-level agreements (Abe-
din et al. 2009)). Research work also has been performed
on managing concurrent one-to-many negotiations, which
also may improve scalability by parallelization (Mansour,
Kowalczyk, and Wosko 2012; Sim and Shi 2010). In this
context, (Abedin et al. 2009; Luncean 2011; Zhang and
Lesser 2007) exchange meta-level information to arrange
the negotiation agenda. (Dang and Huhns 2006) and (An,
Lesser, and Sim 2011) each proposes a multi-round nego-
tiation protocol for concurrent negotiations, (Aknine 2011)
proposes a control model to manage overlapping negotia-
tions. However, all these works assume the negotiation is-
sues are on the same information detail level, which does not
allow for the significant reduction of the search space that hi-
erarchical structured agendas provide. Hierarchical negotia-
tion is proposed in (Bruns and Cortes 2011) and (Karaenke
and Kirn 2010), but agenda management in this context is
not explored. The study the management of hierarchically
structured multiple interrelated negotiation issues with dy-
namic negotiation agenda, as presented in this paper, is in
great need of research attention (Hujala and Kurttila 2010).

In the rest of this paper, we first review the hierarchi-

cal model proposed in (Zhang and Klein 2012). We then
present a mediator-facilitated anytime search process using
this model. We will also describe the scenario matrix used to
model the problem structure, present the experiment setting
and discuss the results obtained. Finally, we conclude and
outline future lines of research.

Hierarchical System Representation

In most complex negotiation scenarios, whether the prob-
lem under negotiation is a process, a system, or a compo-
nent, it can be decomposed into a hierarchical structure us-
ing domain knowledge abstractions. A hierarchical repre-
sentation for negotiation problems presented in (Zhang and
Klein 2012) is summarized here. A complex negotiation sys-
tem/problem S can be further decomposed as a set of sub-
systems (components) {S1, S2,...,Sn}, and each sub-system
Si can be further decomposed as {Si1 , Si2 ,...,Sin}. There
are a set of attributes (issues) associated with each system S
and sub-system.

User preference profiles are represented as sets of con-
straints. Each constraint represents a goal of the agent, and
a rank (or weight) value associated with it represents the
relative importance of this goal. When a constraint is sat-
isfied, its weight is added to the overall contract utility. This
qualitative preference model has been widely used in the
literature to represent multi-attribute preferences (Hindriks,
Jonker, and Visser 2009; Marsa-Maestre et al. 2009), and
has the advantage of removing the need to acquire a utility
function specifying a numeric value for each possible out-
come (Hindriks, Jonker, and Visser 2009). A constraint is in
fact a hyper-volume that describes compatible issue values,
and thus a high-utility portion of the contract space.

Constraints are placed into different levels according to
where its involved attributes belong. If a constraint’s in-
volved attributes belong to different levels, the constraint is
placed at the highest level. During hierarchal negotiation,
agents only consider constraints placed at the current level.
The choice of the attribute values at a higher level further
restrains the domain of lower-level attributes involved in the
same constraints. Hence the lower-level search is performed
only within the context imposed by the decisions made at
higher-levels in the hierarchy. Next, we will present more
details about this hierarchical negotiation search process.

Hierarchal Negotiation Search Process

The hierarchal negotiation search process involves a media-
tor and a set of agents. Each agent represents a user (a stake-
holder in the system) and negotiates on behalf of this user.
The preference information provided by the user is kept pri-
vate by the agent. The system decomposition knowledge is
public to all agents and to the mediator. The negotiation pro-
cess is conducted in a top-to-bottom order (i.e. starting with
the highest level). At each level, there is a meta-negotiation
session to determine the negotiation agenda followed by a
regular negotiation session to select the preferred common
choices (CC) based on agents’ bids.



Meta-negotiation: determining negotiation agenda
A decision group contains a number of (highly) interdepen-
dent issues, and a negotiation agenda is a partial ordering of
a set of decision groups {DGi}. An agenda is represented as
a directed acyclic graph. A link from DGi to DGj specifies
that the negotiation of DGi should be performed before the
negotiation of DGj . Having such an agenda allows nego-
tiation to be conducted for each DG separately, and reduces
the search space for bidding generation and evaluation, since
each DG only encompasses a subset of the issues.

The agenda selection process works as follows. First, each
agent submits meta-level information about the dependency
relationships among all the attributes {Xi} at the current
level l. The agent infers the dependency relationships from
the constraints provided by the user. Attributes involved in
the same constraint are considered dependent. The more
constraints these attributes share, and the more important
these constraints are, the stronger the dependency is. The de-
pendency relationship is computed based on the rank/weight
information of the constraints, and is classified as strong,
weak or none. More specifically, each agent Am submits a n
by n matrix Dm, where n is the number of attributes at the
current level, Dm[i, j] represents the dependency relation-
ship between attributes Xi and Xj for agent Am. The medi-
ator then creates a global dependency matrix GD based on
the matrix Dm submitted by all agents:

GD[i, j] = max1≤m≤agentNumDm[i, j]

According to GD, the mediator then clusters all attributes
into three types of groups: strongly dependent groups (all
attributes inside are strongly dependent); weakly dependent
groups (all attributes inside are weakly dependent) and in-
dependent attributes. The clustering mechanism is a graph
traversal process using depth-first search with GD as the
graph adjacent matrix. A preferred group size limit parame-
ter can be used to influence group formation.

The mediator then sends the group divisions to all agents,
and each agent submits its preferences about the ordering of
these decision groups in negotiation (agenda). Since the lat-
ter issues will be negotiated in the context of the previous
negotiation results, the agenda actually affects the negotia-
tion process and thus potentially impacts the negotiation out-
come. The decision groups with the biggest potential impact
on the outcome utility should be negotiate earlier.

An agent evaluates the impact of group DGi as:

utilityImpact(DGi) =
∑
γ∈∆i

weight(γ),

where ∆i is the set all constraints over DGi. All decision
groups are sorted based on their utility impact in decreasing
order (i.e. highest impact group first). A numeric precedence
value is assigned to each decision group corresponding to
its utility impact with normalization. This ordered decision
group list is returned to the mediator. Each agent may (very
likely) have different views of the importance of those DGs.
Though agents could lie about the dependency relationships
among attributes and/or their true preferences, it may not be
computationally feasible to lie efficiently (Bartholdi, Tovey,
and Trick 1989). It is our future work to study how agents
can lie to guarantee benefit in such a multi-level clustered
negotiation setting, and how to discourage such lying.

Finally, the mediator computes an impact value for each
decision group by summing the agent precedence values for
each group. A global directed acyclic graph is generated
based on both the dependent relationships and the impact
values of all decision groups. This is the negotiation agenda
for the current level.

Negotiation as a tree search process
With the negotiation agenda available at each level, the me-
diator conducts a tree search process in the structured agenda
space. As illustrated in Figure 1, each node represents a par-
tially specified state (partial contract). To expand a node n at
depth l, the mediator executes the negotiation agenda at the
next level l + 1, by requesting bids for each DG according
to the specified order in the agenda. The request is accom-
panied by the bidding context information Γ, as recorded in
node n, which describes the attributes in previous decision
groups (on the path from the root to node n) with assigned
value ranges (r). This represents the restrictions that previ-
ous higher-level agreements impose in the current-level ne-
gotiation. The mediator also informs the agent the limit of
number of bids to submit, BL.

Upon receiving a bidding request for the decision group
DGi and the given context Γ, each agent submits its most
preferred BL bids (choices) for all attributes in DGi. Each
bid has an associated preference value, which is the sum of
the weights of all constraints satisfied by this bid. Agents use
the following iterative search procedure to generate bids:

∆← all constraints over DGi ∪ Γ;
bid set Θ← ∅;
BL← bids limit provided by the mediator;
while ∆ 6= ∅ ∧ |Θ| < BL do

newBids = findBids(∆);
for all B ∈ newBids do
preference(B) =

∑
γ∈∆∧Sat.(B,γ)

weight(γ);
end for
Θ← newBids ∪Θ;
γmin← arg minγ∈∆weight(γ)
remove γmin from ∆;

end while
The findBids(∆) currently adopts the max-product algo-

rithm (Marsa-Maestre et al. 2009), using message-passing
to solve the constraint satisfaction problem formulated as a
maximum weight independent set (MWIS) problem.

The mediator selects the τ top preferred common choices
(CC) by finding the intersections among the bids submitted
by all agents. A valid common choice of bid Bm = {Xi =
rmi

: 1 ≤ i ≤ k} and Bn = {Xi = rni : 1 ≤ i ≤ k} is
the non-empty intersection of these bids, and its preference
value is the sum of the preference values of different agents:
CCmn = Bm ∩Bn = {Xi = rmi ∩ rni 6= ∅ : 1 ≤ i ≤ k},
and its preference value is the sum of the preference val-
ues of different agents. A complete search of all possible
combinations takes O(BLn) time for n agents, which is
not computationally feasible for large BL and n. To in-
crease the possibility of finding valid combined bids with
limited computational cost, the value for the bid limit BL
is chosen based on |DG|. In the current implementation,
L is set as 2|DG|, bounded by two constant parameters



Root

CCG1-4
depth: 1
context: CCG1-4
g: achieved utility 
h: expected utility

CCG1-1
depth: 1
context: CCG1-1
g: achieved utility
h: expected utility

CCG1-3
depth: 1
context: CCG1-3
g: achieved utility 
h: expected utility

Expand 
at level 2

Expand current node at level 1:
1. Call for bids on each DG at current level
2. Select most preferred CCs for each DG
3. Select most preferred CCGs
for all decision groups
4. Create a child node for each CCG

CCG2-1
depth: 2
context: CCG1-2, CCG2-1
g and h

CCG1-2
depth: 1
context: CCG1-2
g: achieved utility 
h: expected utility

Expand
at Level 1

CCG2-2
depth: 2
context: CCG1-2, CCG2-2
g and h

CCG2-3
depth: 2
context: CCG1-2, CCG2-3
g and h

Expand 
at level 2

Expand 
at level 2 Expand 

at level 2

Expand 
at level 3

Figure 1: Negotiation Search Tree

[minBidsNum, maxBidsNum]. When no valid bid com-
bination is found, the mediator will double the value of
BL and repeat the bid requesting process until BL reaches
maxBidsLimit (a constant parameter, value 20 is used cur-
rently for hierarchical negotiation).

After the negotiation for all decision groups has been
finished, the mediator has a set of ordered preferred com-
mon choices {CCj1 , CCj2 , ..., CCjτ } for each decision
group DGi. A common choice group CCGl is a group
of common choices {CC1l , CC2l , ..., CCgl}, each for one
decision group at the current level l. The preference of
a CCG is the sum of preference values for all com-
mon choices included in this group: preference(CCGl) =∑

CCil
∈CCGl

preference(CCil). The mediator then selects
the most preferred χ common choice groups and create a
new node for each CCG, and this CCG is the state of the
corresponding node and then becomes part of the context
of any further search continuing from this node. These new
nodes are inserted into the open list.

As the next step, the best node is selected from the open
list and examined; if it is not a complete solution (i.e. a solu-
tion found at the bottom level where all attributed have been
negotiated and decided upon) then the node is expanded.
This process is repeated until a complete solution is found.
Evaluation function f(n) = w ∗ g(n) + (1 − w) ∗ h(n) is
used to evaluate each node n, where w is a parameter with a
value between 0 and 1 and g(n) represents the achieved util-
ity of node n. In our negotiation search, it is the preference
value of the current context of node n, which measures the
sum of weights of all constraints all already considered and
satisfied by the context. h(n) is the heuristic function to esti-
mate the expect utility that may be achieved with the current
context. It is a challenge to develop a good h function. We
have considered the following two approaches:

• ha(n) is the sum of weights of all un-evaluated constraints that
potentially can be satisfied when extends the context CCG in
node n. It requires additional computational cost to evaluate all
constraints below current level.

• hb(n) is the sum of weights of all un-evaluated constraints. It’s

easy to obtain but not very informative.

Using the aforementioned function, we implement an
anytime search procedure for the mediator, as follows:
1. Using w = 1, meaning f(n) = w∗g(n), the mediator conducts

a greedy search until a first solution S1 is found.
2. Update w, w = 0.5.
3. Using the solution quality of S1, g(S1), to prune the open list,

removing all nodes with f∗(n) = 0.5 ∗ g(n) + 0.5 ∗ h(n) less
than g(S1).

4. Continue search until the termination condition is met. Adjust
w depending on the size of open list and the search progress to
direct the search in either deepening direction (finding a solution
quicker) or broadening direction (find a better solution).

This anytime approach allows finding a solution quickly and
then continue to find better solutions within available com-
putational resources, which is very helpful for dealing with
large-size negotiation problems.

Problem Structure
The way that this hierarchical negotiation approach works
is dependent on the problem structure. To better understand
the influence of the input problem structure on the perfor-
mance of this protocol, we defined five parameters to cap-
ture the topological and the interdependent characteristic of
the problem structure, which is modeled as a tree, where the
parent-children relationship represents the decomposition of
a component as sub-components:
1. NumIssues: number of issues (attributes) in the negotiation.

Since all issues have the same domain (integers from 0 to 9),
this parameter directly determines problem size. We generated
scenarios with 50 and 100 issues.

2. ShapeBias: controls the shape of the tree. A bigger value of
shape bias produces wider and shallower trees, a small value
results in narrower and deeper trees. We generated two different
types of trees according to ShapeBias, narrow (0) and wide (10).

3. WeightBias: controls how quickly constraint weights decrease
with depth. It is assumed that the constraints at each level have
different importance, the higher the WeightBias is, the more im-
portant the higher level constraints are. Two values 0.3 and 0.7
are used.



Table 1: Scenario Characteristics
name min max

# levels 2 8
# attributes 50 100

# constraints per agent 250 500

4. ScopeProbs: describes the issue dependency structure. It is ex-
pressed as relative frequency of having constraints with different
scopes (e.g. involving issues at different levels). Two different
settings were used in the current experiments:
• tight = ((Component 80) (Sibling 10) (Child 10)). For all

involved attributes of any constraint created, there is 80%
probability that these attributes belong to the same compo-
nent, 10% probability that they belong to sibling components
and 10% probability that they belong to one component and
its sub-components.
• loose = ((Component 50) (Sibling 25) (Child 25)), where

there is a higher chance to find constraints which involve
attributes belonging to different components and at different
levels.

5. DimProbs: describes the order dependency, expressed as the rel-
ative frequency of constraints with different number dimensions.
Two settings were used in the current experiments:
• low = ((1 50) (2 50)). Half of the constraints involve 1 at-

tribute and the other half involve 1 attributes.
• high = ((1 20) (2 20) (3 20) (4 20) (5 20)). There is equal

chance (20% of probability) for a constraint to have 1, 2, 3,
4, or 5 attributes.

The above parameters describe the topological structure
of the system tree, the interdependency between attributes,
the complexity of the constraints and the relative importance
of constraints at different levels. In the next Section, we
study the influence of these parameters on the performance
of the hierarchical negotiation mechanisms.

Experimental Studies
Using the five parameters described in previous section with
two different categories per parameter, 10 scenarios were
generated for each setting, for a total of 320 different test-
ing scenarios, with characteristics measured as in Table 1.
For each negotiation scenario, we ran negotiations compar-
ing three different approaches:

1. Hierarchical Negotiation - Anytime (HNA). Negotiation is con-
ducted using our hierarchical structured anytime search with
agenda management approach. Multiple solutions may be found
within the given time limit and the best one is reported.

2. Hierarchical Negotiation - Greedy (HNG). As above, negotia-
tion is conducted taking advantage of the hierarchical structure,
but the mediator conducts a greedy search, which terminates af-
ter one solution is found or a given search limit is reached.

3. Flat Negotiation (Flat). All attributes and constraints are put into
a single decision group for negotiation. The same heuristic bid
generation mechanism based on MWIS with a very large bid
limit value is used here, hence the Flat approach cannot guar-
antee finding the optimal solution. The usage of the same ba-
sic mechanism allows the focus on studying the impact of the
structured negotiation agenda by comparing the hierarchical ap-
proach and traditional one-level approach. We have performed
other experiments to evaluate the solution optimality.
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The data below shows the results from running each of
the three algorithms once on each of 320 scenarios. For each
scenario, we record the solution found by each approach and
the computational time spent on finding that solution. Each
data point shows the average value of the results form 10
different scenarios generated with the same five parameter
values. We did not perform large number of repetitions over
the same scenario because our approach is primarily deter-
ministic, the only randomness happens when choosing from
bids or solutions with the exactly same preference values.
We did two repetitions over each scenario and the result are
very similar, so only one of them is presented here.

Lesson 1 Learned: HNG finds better solutions compared
to the Flat approach, and its advantage becomes more sig-
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nificant as #levels increases, supported by Figure 2. This is
coherent with our expectations, because the hierarchal ap-
proach exploits the system hierarchy structure while the flat
approach does not.

Lesson 2 Learned: HNG’s advantage over Flat becomes
considerably noteworthy as #constraints increases, consid-
ering scenarios with more than two levels, supported by Fig-
ure 3. WeightBias has much less impact over the algorithms’
relative performances than #levels or #constraints. Data is
not shown here due to space limitation.

Lesson 3 Learned: HNG is more efficient, it spends much
less time than Flat negotiation as # levels increases, sup-
ported by Figure 4. These results show that our hierarchical
negotiation approach greatly improves scalability with #lev-
els and #constraints.
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To investigate the social welfare and Pareto optimality of
this hierarchical approach, we used the benchmarking tools
provided at Negowiki (Marsa-Maestre et al. 2011) to find the
social welfare maximum and the Pareto front for each sce-
nario we tested. We consider these findings are quite reliable
because they have been cross verified by different non-linear
negotiation mechanisms, and there is no computational lim-
itation applied. Using these findings as benchmark, for each
solution found by HNG or Flat approach, we compute its
social welfare optimality percentage (SWOP) and Pareto op-
timality percentage (POP). In order to compute the SWOP
and POP, the original range solutions found by HNG and
Flat is converted to point solutions by selecting a middle
value from each range (referred as mid-point solution).

Lesson 4 Learned: The solutions found by HNG are su-
perior than Flat both in social welfare optimality and Pareto
optimality, and the advantage of HNG becomes more evident
as #levels increases, supported by Figures 5 and 6.

Finally, we compare the HNA approach and the HNG ap-
proach. HNA spends much more time (10 times on aver-
age) than HNG. Figure 7 shows that HNA (with the quicker
heuristic function hb(n)) does find better solutions (by de-
sign), and the margin of gain seems also to increase as the
number of levels increase. However, this margin of gain is
not very significant, thus hardly justifying the remarkable
extra time spend by HNA. We tested both ha(n) and hb(n)
described in Section , neither one seems to be very effective.

Lesson 5 Learned: In order to improve the performance
of HNA, we need to develop more informative heuristics
functions that can better predict the expected final quality
of a partial solution. This is a very interesting direction for
future research.

Conclusion and Future Work
In this paper we present a hierarchically structured negotia-
tion search process with agenda management based on meta-
negotiation. Different subsets of issues are negotiated at each
level and the agreements made on the higher levels prunes
the search space that has to be considered at lower levels.
This approach shows promising results, significantly reduc-
ing the computational effort and the potential of finding bet-
ter negotiation outcomes for complex problems with large
number of interdependent attributes. We formally defined a
set of parameters to capture the topological and the inter-
dependent characteristic of the problem structure. We have
conducted extensive experimental work to study the impact
of different scenario parameters on the performance of vari-
ous negotiation algorithms, and investigated the Pareto effi-
ciency and social welfare optimality using benchmark func-
tions from Negowiki. There are a lot of important and inter-
esting issues that need to be studied in the future, including:
investigating the impact of negotiation agenda on negotia-
tion performance, intelligently navigating in the hierarchical
search space with better-informed and more efficient heuris-
tic functions, improving the Pareto efficiency, fairness and
incentive compatibility of this negotiation protocol, and ex-
ploring the possibilities for automatic system decomposition
into a hierarchical structure.
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