
Enhanced Simplified Memory-bounded A Star (SMA*+)

Justin Lovinger and Xiaoqin Zhang

Computer and Information Science Dept,
University of Mass Dartmouth, MA

Abstract

In 1992, Stuart Russell briefly introduced a series of memory efficient optimal search
algorithms. Among which is the Simplified Memory-bounded A Star (SMA*) algorithm,
unique for its explicit memory bound. Despite progress in memory efficient A Star vari-
ants, search algorithms with explicit memory bounds are absent from progress. SMA*
remains the premier memory bounded optimal search algorithm. In this paper, we present
an enhanced version of SMA* (SMA*+), providing a new open list, simplified implemen-
tation, and a culling heuristic function, which improves search performance through a
priori knowledge of the search space. We present benchmark and comparison results with
state-of-the-art optimal search algorithms, and examine the performance characteristics of
SMA*+.

1 Introduction

Despite the effectiveness of A Star (A*) [1, 2, 3, 4, 5, 6] as an optimal heuristic search method,
large branching factor and deep solutions lead to an explosion of memory usage that cripples
any modern computer. To this end, many A* variants aim to reduce memory complexity by
addressing the need to maintain all generated nodes in memory.

Iterative Deepening A Star (IDA*) [7, 5, 6, 8, 9] solves the memory problem by combining
depth first search with incrementally increasing f-cost limits. Allowing for an optimal search that
need not maintain every node in memory. IDA* pays for its memory efficiency with increased
time complexity, by constantly re-evaluating nodes as the algorithm resets with a higher cutoff.
The addition of a transposition table [10] can enable IDA* to better utilize available memory,
for increased performance.

Simplified Memory-bounded A Star (SMA*) [11, 12] takes a different approach. Instead
of sacrificing time efficiency for minimal memory usage, SMA* recognizes that an algorithm
only needs to use as much memory as the machine has available. Available memory should be
utilized to improve the effectiveness of an algorithm. The result is a memory bound that allows
for fast search while memory is available, and falls back on memory efficient methods when the
bound is reached.

In this paper, we supply details of our enhanced SMA* (SMA*+), necessary for implemen-
tation. We describe the back-up procedure, using a forgotten successor table. We then present
the usage of two priority queues, one for selecting nodes to expand, and the other for selecting
nodes to cull. We provide a detailed SMA*+ algorithm (Algorithm 1) that can be easily trans-
lated into a program. A culling heuristic function c(n) is introduced, to help select nodes to
delete when memory is full. This culling heuristic can be developed based on the characteristics
of the problem search space. A good choice of c(n) will reduce the search effort and improve the
performance of SMA*+. Last but not the least, we provide analysis and evaluation of SMA*+.
We analyze the time complexity and space complexity of SMA*+ theoretically, we compare
SMA*+ with A*, SMA*, and IDA* on benchmark problems experimentally.

In the next two sections, we introduce the predecessor of SMA* and SMA*. In Section 4 we
explore the SMA*+ algorithm, providing details of implementation and performance analysis.



SMA*+ Lovinger and Zhang

In Section 5 we compare SMA*+ to popular optimal search algorithms. Finally, we conclude
in Section 6.

2 MA*

As the state-of-the-art in optimal heuristic search was explored, memory efficient methods
were in high demand. Although most algorithms focused on reducing the worst-case memory
complexity, some took the approach of instead bounding memory usage. The idea is simple: an
effective algorithm should utilize memory to reduce time, so long as memory does not exceed a
given limit.

Memory-bounded A Star (MA*) [13] embodies this concept. MA* matches the behavior
of A*, as long as sufficient memory remains. Once a bound is reached, MA* begins dropping
high f-cost leaf nodes, freeing memory for more promising nodes. To prevent infinite looping,
f-cost values are backed up through the tree. The result is a search method that explores the
state space very quickly while memory is available, and relies on re-expanding some nodes when
memory is limited. In practice, with many problems and a realistic memory limit, few nodes
are re-expanded. The result is an efficient search with the guarantee that complicated state
spaces will not exceed system memory.

Unfortunately, the original MA* was unnecessarily complicated, leading to the development
of SMA*.

3 SMA*

SMA* takes the concept of MA* and simplifies the implementation. SMA* uses a binary tree to
store the open list, while MA* uses a less efficient data structure. SMA* simplifies the storage
of f-cost by eliminating the need for four f-cost quantities (as in MA*), and SMA* performs
the backup procedure when a node is fully expanded, instead of once for each generated node.
SMA* also simplifies pruning by removing only enough nodes to remain below the memory
limit, instead of pruning many unpromising nodes at a time.

4 SMA*+ Algorithm

Since SMA* and SMA*+ must cull nodes to maintain the memory limit, an alternative means
of maintaining progress is required. The original SMA* uses a backup procedure that updates
the f-cost of all nodes in a branch of the search tree, every time a node is expanded. SMA*+
uses a more efficient mechanism, that only updates the f-cost of a single node, when a successor
of that node is culled. Furthermore, forgotten successors that are re-added to the open list
must receive an updated f-cost. To this end, forgotten nodes maintain their f-cost on their
parent node, in a table mapping state to f-cost. Note that action can be used instead of state,
when implementing this table. The original SMA* makes similar progress by keeping removed
nodes in memory, until their parent is removed. Our forgotten f-cost table is a more efficient
mechanism, saving more memory space, sooner.

Algorithm 1 presents comprehensive implementation details for SMA*+. The user provides
a memory limit M , and an initial node to expand. Every node contains a table mapping the
state of each forgotten successor to the f-cost of this forgotten successor.

Unlike SMA*, SMA*+ fully expands a node each iteration, instead of adding only one
successor to the open list every iteration. While adding one successor at a time may seem

2



SMA*+ Lovinger and Zhang

more efficient, the overhead required to determine which successor to add, adds unnecessary
complexity and decreases performance with minimal memory advantage.

4.1 Culling Heuristic

When the number of expanded nodes u exceeds the memory limit M , SMA*+ must remove a leaf
node from the open list O to maintain the memory limit. The original SMA* specifies: remove
the max f-cost leaf in O, ties favor lesser depth. However, Algorithm 1 specifies removing the
worst leaf node. This wording is intentionally vague. As long as the removed node is never the
best node, SMA*+ is complete and optimal. The choice of node to cull only affects performance.
As such, we present the culling heuristic c(n). When removing the worst node, we must find
the leaf node n that maximizes c(n).

In many problems, the highest f-cost node may not be least likely to lead to the best goal,
because an f-cost heuristic, h(n), must be admissible. A separate culling heuristic, that is not
constrained by the same criteria, can vastly improve performance, by minimizing re-expanded
nodes. For example, a culling heuristic based on the ratio between f-cost and depth, given as
c(n) = f(n)/ ln(d(n) + e), can improve performance on problems with many similar f-costs, if
we can reasonably assume that the goal has a high depth.

We note that, to avoid looping, a culling heuristic must never cull the best node dur-
ing any culling step. Formally, c(n) must always meet the criteria that arg maxn∈L(c(n)) 6=
arg minn∈O(f(n)), where L is the set of leaf nodes and O is the open list. However, this criteria
is very easy to verify during runtime, and a simple procedure can ensure any culling heuristic
is, for all intents and purposes, admissible. Simply compare the worst leaf to the best node,
and if they match, cull the second worst leaf, as shown in Algorithm 3.

4.2 SMA*+ Example

To clarify the SMA*+ algorithm, Figure 1 provides a step by step example with memory limit
M = 3. Until iteration 3, when the memory limit is exceeded, SMA*+ is identical to A*.

At iteration 3 the worst node, B, is culled. f(B) is then stored in the forgotten f-cost table
of A and f(A) is updated to the minimum of its forgotten children, min(f(B)) = 3. Also
in iteration 3, we see f(D) = ∞. We note that the traditional f(D) = h(D) + g(D) 6= ∞.
However, since depth d(D) ≥ M − 1, where d(D) = 2 and M − 1 = 3− 1 = 2, and D is not a
goal node, it will never reach a goal. Note that in iteration 5, f(F ) = 4 instead of ∞ because
F is a goal node.

Each new iteration expands a node, and removes the worst leaf nodes, storing the (state,
f-cost) pair on the parent of the removed node. Finally, we re-expand A, and after expanding
B, we find goal node F with the lowest f-cost at iteration 5, and are finished.

4.3 Implementing the Open List

Special consideration must be given when implementing the open list. Most optimal search
methods are concerned with only the minimization of the f-cost, or an analogous parameter.
SMA*+, by contrast, must minimize f-cost when selecting the next node to expand, and max-
imize the culling heuristic c(n) when selecting a node n to cull. This eliminates the simple use
of popular and efficient heap structures like a priority queue, because a single priority queue
cannot simultaneously select the minimum f-cost and the maximum c(n) node.

The original SMA* uses a binary tree. This approach provides O(log x) time to insert,
remove, and pop the best successor, where x is the number of nodes in the tree. However, since

3



SMA*+ Lovinger and Zhang

Algorithm 1 SMA*+ Algorithm

f(n): f-cost of n
g(n): path cost to n
h(n): heuristic value of n
s(n): state of n
d(n): depth of n

Let M be a given memory limit
O ← an empty open list . See Section 4.3 for suggestions on open list
add the initial node to O
u← 1 . u is a counter for nodes in memory
while O contains nodes do

b← min f-cost node in O
remove b from O
if b is goal then

return b
else if f(b) =∞ then

return goal not found
end if

if b has been expanded then . True when forgotten f-costs table is not empty
N ← forgotten successors of b . Can be obtained from forgotten f-costs table of b

else . b has not been expanded
expand b
N ← successors of b

end if
for node n ∈ N do

if s(n) is in forgotten f-cost table of b then
f(n)← f-value of s(n) in forgotten f-cost table of node b
remove s(n) from forgotten f-cost table of node b

else if n is not the goal and (n has no successors or d(n) ≥M − 1) then
f(n)←∞

else
f(n)← max(f(b), g(n) + h(n))

end if

add n to O
u← u + 1

end for

while u > M do
Cull worst leaf in O . See Algorithm 2

end while
end while

if O is empty then
return goal not found

end if

4



SMA*+ Lovinger and Zhang

Algorithm 2 Cull Worst Leaf

w ← worst leaf in O . See Algorithm 3 and Section 4.1 for definition of worst leaf
remove w from O

p← the parent node of w
remove w from the successor list of p
add s(w) to forgotten f-cost table of p, with value of f(w)
f(p)← min of forgotten f-costs of p . Can be calculated incrementally, in O(1) time
if p is not in O then . If necessary, nodes can remember if they are in O for O(1) time
check

add p to O
end if

u← u− 1

Algorithm 3 Safe Culling Heuristic

w ← worst leaf acc. c(n) in O
if w = best node acc. f(n) in O then

w ← second worst leaf acc. c(n) in O
end if

Figure 1: SMA*+ Example

5



SMA*+ Lovinger and Zhang

this tree must maintain all nodes with successors, instead of only leaf nodes, the worst-case time
to cull a leaf node is O(x), because we must search nodes in descending order of f-cost until a
leaf node is found. Furthermore, this structure does not support a culling heuristic other than
c(n) = f(n), since the worst leaf and best node are obtained from the same data structure.

We present an alternative approach involving two priority queues. One ordered by ascending
f-cost and containing all nodes not fully expanded, is used to select the next node to expand.
A second queue, ordered by descending c(n) and containing only leaf nodes, is used to select
the next node to cull. This approach provides O(log x) time to select and remove a node from
the open or cull list. By maintaining two lists, removal and addition must be performed on
both lists, resulting in worst-case O(2 log x) time, when all nodes in the open list are leafs.
Additionally, the position of each node in each queue should be tracked for efficiency. A naive
approach, that does not track position, requires O(x) time to find the correct node to remove
from the open list, once it is removed from the cull list, and vice versa. This time may be reduced
to O(1) using a hashtable. Empirical evidence shows this approach consistently outperforms a
binary tree.

For additional performance, the worst leafs priority queue can be created and maintained
only once the memory limit is reached. This requires a one time O(x) operation to build the
worst leafs queue from the next node queue, but requires no time to maintain the worst leafs
queue before the memory limit is exceeded. Furthermore, if the memory limit is never exceeded,
this open list has the same performance as A*.

4.4 Theoretical Performance

The greatest strength of SMA*+ comes from the ability to set an upper bound on space. Given
memory limit M , SMA*+ clearly has worst-case space complexity O(M).

Assuming M exceeds nodes generated, SMA*+ functions as A*, with the same O(bd) worst-
case performance, where b is the branching factor of the problem and d is the depth of the solu-
tion. When M is less than nodes generated, SMA*+ becomes difficult to analyze theoretically,
as performance depends on how many nodes must be re-expanded. In the best case, where no
nodes are re-expanded, worst-case performance remains O(bd), but space complexity is O(M),
a clear advantage given M < bd.

Every node re-expanded adds to the cost of SMA*+, giving a worst-case nodes generated
≥ bd. However, since the size of the open list is bound by M , the cost of adding and removing
elements from the open list is less than A*, when M is less than nodes generated. Empirical
evidence (Table 1) shows that a smaller memory limit does not significantly reduce performance,
even when nodes are re-expanded.

The empirical analysis in Section 5 shows that nodes are rarely re-expanded, even when M
is significantly less than nodes generated. As such, for many problems, SMA*+ performance is
minimally affected by M .

4.5 Completeness and Optimality

The following properties, same as SMA*, also hold for SMA*+, which prove the completeness
and optimality of SMA*+ with sufficient memory available. We cite the original SMA* [11]
paper for borrowing these properties.

Lemma 1. f-cost of removed nodes are maintained to give a correct lower bound on the cost of
solution paths through unexamined successors of a node with unexamined successors.

6



SMA*+ Lovinger and Zhang

Figure 2: (a) MC Problem Example (b) SP Example

Lemma 2. SMA*+ always expands the node that has the best lower bound on its unexamined
successors.

Theorem 1. SMA*+ is guaranteed to return an optimal solution, given an admissible heuristic,
and memory limit M ≥ d + 1, where d is the depth of an optimal solution.

Theorem 2. SMA*+ behaves identically to A* when its memory limit is greater than the
number of nodes it generates.

5 Benchmark and Comparative Analysis

The state-of-the-art in informed search is primarily dominated by A Star (A*) [2, 3, 4, 5, 6]
and Iterative Deepening A Star (IDA*) search [5, 6, 8, 9]. A* makes no attempt to optimize
memory usage, in exchange for speed, while IDA* is memory efficient, at the risk of decreased
speed. In this section, we compare the performance of SMA*+ to these popular methods, and
the original SMA*. This analysis shows that SMA*+, with even a moderate memory limit, has
the speed of A* and the memory efficiency of IDA*.

5.1 Benchmark Problems

A number of common search problems are included to aid our algorithm comparison. The
missionaries and cannibals (MC) problem is a simple problem with low branching factor and
depth. Three missionaries and three cannibals stand on one side of a river, a boat can take up
to two people, and at least 1, across the river at a time. The cannibals can never outnumber
the missionaries, on either side, and the goal is to move all individuals to the right side. An
example of state transitions for this problem is depicted in Figure 2a.

The next problem is a common game for recreation and search benchmarking: the sliding
puzzle (SP) game. This problem presents an n by n grid of numbers, 0..(n2− 1). The numbers
are initially arranged in random order, and the goal is to arrange them in ascending order for
each row, by swapping adjacent numbers. Note that our goal state has the 0 number in the
upper left corner. We present the more difficult 4 by 4 version of this problem, also known as

7



SMA*+ Lovinger and Zhang

Figure 3: Maze and Obst Problems

Problem Solution Depth Problem Breadth
MC 11 2.36
SP 41 to 45 3
Maze 1603 to 1643 2
Obst 26 to 27 3.8

Table 1: Benchmark Problems

the 15 puzzle. An example state is depicted in Figure 2b. A selection of 5 initial states from
Korf’s 100 SP instances [7] are benchmarked; instances 12, 42, 55, 79, and 97.

Finally, maze and random obstacles (Obst) pathfinding problems are included [14], depicted
in Figure 3. Both maps are a 512 by 512 grid. White pixels can be passed though, while black
pixels cannot. These maps are part of the pathfinding benchmark sets from Moving AI [15],
titled maze512-1-0 (Maze) and random512-35-0 (Obst). Maze uses 100 problem instances, given
by scenarios 4000 through 4100. Obst uses 5 problem instances, given by scenarios 65 through
70. Each scenario provides a different initial and goal position. See Moving AI for details of
these problem instances. Step costs for diagonal movements are

√
2 and cardinal movements

are 1. Agents cannot move diagonally through a wall.
Table 1 presents depth and breadth for the comparison problems. Problems with multiple

instances present range of depth. Note that, to enable a comparison with the high memory
usage A* algorithm, problems and problem instances are chosen to fit within 32gb of memory.
As such, many exceptionally difficult problem instances are excluded. Despite this limitation,
these problems represent a variety of search situations, and, as results show, many of these
problems provide sufficient challenge for the state-of-the-art.

5.1.1 Benchmark Problem Heuristics

The MC heuristic h(n) = (mn
l + cnl )/2, where mn

l is the number of missionaries on the left for
node n, and cnl is the number of cannibals on the left for node n.

8



SMA*+ Lovinger and Zhang

Problem Algorithm
Node
Limit

Nodes
Expanded

Nodes
Generated

Runtime Memory

MC

A* N/A 24 27 0.001 18448
IDA* N/A 92 110 0.002 14224
SMA* 20 27 27 0.002 53408
SMA*+ 20 24 27 0.002 42704

SP

A* N/A 186243 378218 40.281 345453680
IDA* N/A 454814 921290 23.099 59270
SMA* 100000 267814 267814 3402.57 62618062
SMA*+ ∞ 186153 378218 77.405 686098752
SMA*+ 100000 182560 369931 130.214 202568294
SMA*+ 5000 181982 367783 117.192 11023507

Maze

A* N/A 40034 40098 5.540 23230625
IDA* N/A 459967092 460947921 22947.299 11410280
SMA* 15000 89948 89948 534.837 112667149
SMA*+ ∞ 40034 40098 8.172 351221604
SMA*+ 15000 40580 40649 10.876 148238555

Obst

A* N/A 102931 221101 16.786 161488024
IDA* N/A 25324693 54139813 609.892 2182384
SMA* 100000 1561313 1561313 3064.72 437034164
SMA*+ ∞ 102931 221100 20.253 380394969
SMA*+ 100000 113193 243928 68.811 167010308
SMA*+ 50000 184538 389555 161.522 98382844

Table 2: Search Algorithm Comparison

The SP heuristic h(n) =
∑m

t=1 d(pnt , gt), where pnt is the position of tile t for node n, gt is
the position of tile t in the goal state, d is the Manhattan distance function, and m is highest
tile number. Note that we skip the 0 tile, which is necessary for an admissible heuristic.

The heuristic for all pathfinding problems h(n) =
√

(nx − gx)
2

+ (ny − gy)
2
, where nx and

ny are the x and y coordinate of node n; and gx and gy are the x and y coordinate of the goal
state. This heuristic is commonly known as euclidean, or straight line, distance.

For these problems, we do not take advantage of a custom culling heuristic c(n), instead
using the natural c(n) = f(n). Not all problems can easily benefit from a culling heuristic
other than c(n) = f(n). However, it is important to note that the choice of which node to cull
is purely a performance optimization, which does not affect the completeness or optimality of
SMA*+. The option of a custom c(n) is available should it prove beneficial.

5.2 Benchmark Results

Table 2 presents our comparison of A*, IDA*, SMA*, and SMA*+ search. Various SMA*+
memory (node) limits are tested, to examine the effect on performance. For each algorithm and
problem, the number of nodes generated and expanded, runtime in seconds, and max memory
usage in bytes are shown. These values are averaged over all instances of a problem, with the
exception of IDA* on Maze, which, due to each instance runtime exceeding 1 hour, is only the
value of scenario 4060. Note that SMA* and SMA*+ can expand the same node multiple times,
and SMA* adds only 1 node to the open list for every node expansion. All presented algorithms
avoid looping states. That is to say, node n is not added to the open list if state(n) ∈ path(p),

9



SMA*+ Lovinger and Zhang

where p is the parent of n. This optimization is necessary for A* to complete with reasonable
memory usage.

While IDA* excels on the simpler MC and SP problems, we see its performance severely lacks
on pathfinding problems, in both nodes generated and runtime, especially the high depth maze
problem. While the original SMA* has a low number of nodes generated on most problems,
the complex implementation and inefficient open list proves extremely detrimental to runtime
performance.

SMA*+ is significantly more efficient, featuring runtime performance comparable to A* on
even the high depth and breadth pathfinding problems. Note that SMA*+ uses more memory
per node than SMA*, due to the two priority queue open list. However, on each problem,
an SMA*+ node limit with memory usage comparable, or less, than SMA* is presented. Even
with a smaller node limit, SMA*+ shows significantly better runtime performance, compared to
SMA*. SMA*+ similarity outperforms IDA* on all but the SP problem, and presents runtime
comparable to the high memory usage A* on all problems. While not as memory efficient as
IDA*, modern computers can easily provide enough memory for extremely fast SMA*+ search.

6 Conclusion

In this paper, we present SMA*+, an enhanced version of the SMA* algorithm originally pre-
sented by Stuart Russell [11]. A new open list data structure is provided, implementation is
simplified, and a culling heuristic function is introduced. Our generalized culling mechanism
allows a priori problem knowledge to significantly improve performance, often providing speed
equivalent to A* with significantly reduced memory usage. Performance is analyzed, explor-
ing the computational, memory, and search performance of SMA*+ though both empirical
benchmarks and theoretical analysis.

Our algorithm comparison in Section 5 shows that memory limits easily achievable on mod-
ern hardware allow SMA*+ to achieve A* like performance with low memory usage, significantly
outperforming the state-of-the-art in low-memory heuristic search. Implementation details in
Section 4 and Algorithm 1 enable easy use of SMA*+, furthering the state-of-the-art in efficient
optimal search.

References

[1] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

[2] Hiromasa Arai, Crystal Maung, and Haim Schweitzer. Optimal column subset selection by a-star
search. In AAAI, pages 1079–1085, 2015.

[3] Imad S AlShawi, Lianshan Yan, Wei Pan, and Bin Luo. Lifetime enhancement in wireless sensor
networks using fuzzy approach and a-star algorithm. IEEE Sensors journal, 12(10):3010–3018,
2012.

[4] Frantǐsek Duchoň, Andrej Babinec, Martin Kajan, Peter Beňo, Martin Florek, Tomáš Fico, and
Ladislav Jurǐsica. Path planning with modified a star algorithm for a mobile robot. Procedia
Engineering, 96:59–69, 2014.

[5] Tristan Cazenave. Optimizations of data structures, heuristics and algorithms for path-finding on
maps. In 2006 IEEE Symposium on Computational Intelligence and Games, pages 27–33. IEEE,
2006.

10



SMA*+ Lovinger and Zhang

[6] Khammapun Khantanapoka and Krisana Chinnasarn. Pathfinding of 2d & 3d game real-time
strategy with depth direction a algorithm for multi-layer. In Natural Language Processing, 2009.
SNLP’09. Eighth International Symposium on, pages 184–188. IEEE, 2009.

[7] Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
intelligence, 27(1):97–109, 1985.

[8] Stefan Schroedl. An improved search algorithm for optimal multiple-sequence alignment. Journal
of Artificial Intelligence Research, 23:587–623, 2005.

[9] Stefan Edelkamp and Zhihao Tang. Monte-carlo tree search for the multiple sequence alignment
problem. In Eighth Annual Symposium on Combinatorial Search, 2015.

[10] Alexander Reinefeld and T. Anthony Marsland. Enhanced iterative-deepening search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16(7):701–710, 1994.

[11] Stuart Russell. Efficient memory-bounded search methods. ECAI-1992, Vienna, Austria, 1992.

[12] Stuart Jonathan Russell and Peter Norvig. Artificial intelligence: a modern approach (3rd edition),
2009.

[13] Partha Pratim Chakrabarti, Sujoy Ghose, Arup Acharya, and SC De Sarkar. Heuristic search in
restricted memory. Artificial intelligence, 41(2):197–221, 1989.

[14] N. Sturtevant. Benchmarks for grid-based pathfinding. Transactions on Computational Intelligence
and AI in Games, 4(2):144 – 148, 2012.

[15] N. Sturtevant. Moving ai, 2012. http://www.movingai.com/benchmarks/.

11

http://www.movingai.com/benchmarks/

	Introduction
	MA*
	SMA*
	SMA*+ Algorithm
	Culling Heuristic
	SMA*+ Example
	Implementing the Open List
	Theoretical Performance
	Completeness and Optimality

	Benchmark and Comparative Analysis
	Benchmark Problems
	Benchmark Problem Heuristics

	Benchmark Results

	Conclusion

