
Chapter 6

Formal Analysis of Negotiation Protocols for
Task Allocation

Victor Lesser1 , Jiaying Shen2 , Ingo Weber3 and Xiaoqin Shelley Zhang4

1 Computer Science Department
University of Massachusetts at Amherst
Email: lesser@cs.umass.edu

2 Artificial Intelligence Center
SRI International
Email: shen@ai.sri.com

3 School of Computer Science and Engineering
University of New South Wales, Sydney, Australia
Email: ingo.weber@cse.unsw.edu.au

4 Computer and Information Science Department
University of Massachusetts at Dartmouth
Email: x2zhang@umassd.edu

Abstract. To formally understand the complex behaviors of negotiating
agents so as to design appropriate mechanisms to approximate optimal
performance, we have constructed a unified framework to model and
analyze the task allocation problem in agent societies with different
objectives. This OAR framework includes three aspects: agent’s
objective (O), it’s negotiation attitude (A) and the reward splitting (R)
among agents who cooperate to accomplish tasks. An agent’s objective
can span the spectrum from totally self-interested to completely
cooperative, and there can be a mixture of agents with varying objectives
in one agent society. This work focuses on understanding how these
different aspects interact in order to achieve individual agent’s objective
and to produce effective system performance as well. Using the
OAR framework, we develop a closed form statistical analysis to
mathematically analyze the interaction between attitude parameters and
reward splitting and their relationship with different objective functions

F. Lopes and H. Coelho (Eds.), Negotiation and Argumentation in MAS 1
All rights reserved − c© 2010 Bentham Science Publishers Ltd.

2 Lesser, Shen, Weber and Zhang

for a simple scenario. Though the scenario is simple, it does allow
us to show that being able to adjust the attitude parameter and the
reward splitting is important to an agent, whether self-interested or
cooperative, in order to optimize its objective function. We also present
a graph model and optimality graphs, which are used for visualizing
the relationships among different parameters. Additionally, we discuss
how agents expected rewards are affected by changing the local attitude
parameters, varying reward splitting, and the method of calculating the
relational reward. This work shows that we can create a formal model to
analyze interactions among agents ranging from self-interested to fully
cooperative.

6.1 Introduction

An important characteristic of the next generation of complex multi-agent
systems that operate in open environments will be the dynamic generation
of multiple, concurrent and complex tasks. These tasks will be generated in
response to emerging events in the environment, and further the character of
these events may vary considerably over time. In such systems, effective task
allocation is an important problem since it is not always the case that agents
will have sufficient resources or expertise to fully complete all the tasks that
they have generated in response to environmental events. We assume that these
complex tasks can be further decomposed into subtasks. Thus, an agent may
need to allocate some set of subtasks associated with one or more of its tasks
to other agents in order to ensure their timely completions. Those agents who
perform these subtasks refer to them as non-local tasks, as opposed to local
tasks that directly arrive at those agents, and for whose completion they are
responsible.

A centralized approach to task allocation is not always efficient or feasible
given the large scale of the system, the dynamics of the environment, and the
need to maintain the privacy of agents’ local information. In such situations,
agents often need to make decisions about how to allocate tasks in a distributed
manner through negotiation. As part of this negotiation, when the resources
do not suffice for both local tasks and the requested non-local tasks, the agent
must decide which tasks to perform and which tasks to decline. This decision
process can be complex and potentially needs to take into account both the
objectives of the local agent and of the system as a whole.

Traditionally, cooperative agents – the agents whose goal is to maximize
the social utility of a group – are assumed to always cooperate on non-local
tasks requested by other agents in the group if they see that performing the
requested task improves the social good more than if they use their resources

6. Formal Analysis of Negotiation Protocols 3

for some other tasks. On the other hand, self-interested agents whose goal
is to maximize their own local reward, are assumed to put no weight on
what reward the other agents may get if they help with non-local tasks, as
they only care about the immediate reward they receive for helping on non-
local tasks. However, recent experimental work [1, 2] has found that it is
not always beneficial for an agent to cooperate with other agents about non-
local tasks even if its goal is to achieve higher social utility solely based on
the perceived importance of the non-local task as indicated by the requesting
agent. Similarly, if an agent is interested only in its own local reward, it is
still advantageous sometimes for that agent to perform a non-local task for
another agent instead of its own local task even though the immediate reward
of performing the local task is more than that of the non-local task. In this case,
performing a non-local task that is non-optimal from a local reward perspective
can lead to additional non-local tasks being offered by the system for this
agent in the future, which would be beneficial for this agent in the long run
[3]. Both examples indicate that what is in the social good and what is the
long-term reward from doing a specific task are difficult to accurately predict
without a detailed and encompassing view of the current system state and the
likely future states. In a complex distributed system, the environment evolves
over time. Thus, it is virtually impossible for the agents to always obtain and
process all the necessary non-local information in order to achieve optimal
performance, whether their goals are to maximize the social utility or local
reward only.

6.1.1 Overview of the OAR Framework

To formally understand the complex behaviors of negotiating agents so as
to design appropriate mechanisms to approximate optimal performance, we
have constructed a unified framework to model and analyze the task allocation
problem in agent societies with different objectives. This framework, named
OAR, includes three aspects that can be varied:

1. Objective functions: specify different goals of agents involved;
2. Attitude parameters: reflect the negotiation attitude of each agent

towards another agent;
3. Reward splitting: specifies how a contractor agent divides the reward

received for finishing a specific task among itself and the agents who
perform the subtasks.

A major focus of this chapter is on understanding how these different
aspects interact in order to produce effective system performance in terms of
the objectives of the agent society.

4 Lesser, Shen, Weber and Zhang

In this formulation, agents objectives can span the spectrum from totally
self-interested to completely cooperative, and there can be a mixture of agents
with varying objectives. It is very important to model the interactions of agents
in a virtual society where their individual goals are not only focused on their
own short-term local objectives, but include the success of the virtual society
they operate in. For many multi-agent applications that we foresee, it is only
through the success of the virtual society that individual agents will be able to
optimize the level of achievement of their local objectives in the long term. An
example of such a system is a virtual organization [4, 5] dynamically formed
in an electronic marketplace [6] as illustrated in Figure 6.1. All agents within
the big rectangle form a virtual organization in order to respond to customers’
requests more efficiently. Besides performing individual tasks arriving directly
to the agent, each agent is also motivated to help with the success of this virtual
organization, because its long-term return also depends on the performance of
this virtual organization. In this scenario, the objective function O of agent i
is defined as the sum of its immediate reward gained by performing tasks and
a share of the profit made by the virtual organization: Oi = Rewardi + ri ∗
Profit(V O).

Purchase Memory
Manufacturer

Distribution
Center

PC CustomerStoreOrder HardwareOrder Chips

Producer
CPU Order PC

Memory
Producer

Transporter

Deliver Hardware Deliver PC

Order Memory (2)
Order Memory (1)

Other Tasks

Other Tasks

Other Tasks
Other Tasks

Purchase PC

Fig. 6.1 A supply chain example

Given such an organizational setting, how should the agent evaluate the
non-local task in the task allocation process? Should the agent consider not
only the immediate reward it receives but also the task’s influence on the
utility of other agents and the performance of virtual organization? When
there is conflict between a local task (which brings immediate reward) and
a non-local task (which brings immediate reward and potentially also long-
term reward), which one should the agent choose to perform? Additionally,
how should the agent divide the reward of a task among itself and other
agents who perform some subtasks of this task? The OAR framework has
been developed to study these questions and understand how these decisions
affect the utilities of individual agents and the agent society. In this framework,

6. Formal Analysis of Negotiation Protocols 5

we explicitly differentiate between the objective of an agent (which represents
where the agent is on the spectrum from cooperative to self-interested) and
its local decision process about whether to perform specific tasks requested
by other agents. We introduce the notion of self-directedness and external-
directedness for representing an agent’s attitude towards another agent’s
request in task allocation. An agent is completely self-directed when it does
not take into consideration how much utility the other agent can potentially
gain if it commits to the requested task. In contrast, an agent is completely
externally-directed if it sees the other agent’s gain as its own when negotiating.
The degree of cooperativeness/self-interestedness as defined in the agent’s
objective function represents the overall long-term goal of an agent, while
the degree of self-directedness/external-directedness is a parameter of the
local decision mechanism used to achieve the agent’s long-term goal. The
relationship between the degree of cooperativeness/self-interestedness and the
degree of self-directedness/external-directedness is similar to the connection
between a long-term strategy and short-term tactics. We represent them
separately with objective functions and attitude parameters and make this
distinction explicit. As we will show in the course of this chapter, the
relationship between the two is often not obvious.

Using the OAR framework, we develop a closed form statistical analysis to
mathematically analyze the interaction between attitude parameters and reward
splitting and their relationship with different objective functions for a simple
scenario. To make the math calculation tractable, a simple one-shot negotiation
protocol is used in this work, which potentially can be extended such as to
include de-commitment. Though the scenario is simple, it does allow us to
show that being able to adjust the attitude parameter and the reward splitting
is important to an agent, whether self-interested or cooperative, in order to
optimize its objective function.

Using OAR and the formal model built for a simple multi-agent system, we
are able to show the following.

• Reward splitting that is specific for the current environment setting is
needed in addition to attitude parameters as a local mechanism to further
improve the performance in both cooperative and non-cooperative
systems.

• How the reward calculated by the requesting agent for an agent
performing a subtask can affect overall performance.

• There are different ways to calculate relational reward, which represents
“how important a task is”. We proved that in a cooperative system,

6 Lesser, Shen, Weber and Zhang

one calculation of the relational reward is more expressive than others
because it potentially brings a higher optimal expected social utility.

The formal analysis shows us that even simple parameters (information to
transfer) can affect the optimal solution. So the meta-level control – what
information to transfer – is very important. With this model we can begin
to formally look at these issues. Though in this chapter we just consider
comparatively simple cases, it does highlight a number of issues. The hope
is that this work will encourage researchers to develop formal analysis of
negotiation in more complex situation. The formal research method is very
important in MAS community while not too much has been done yet.

6.1.2 Related Work

Research in distributed task allocation has been largely heuristic and
experimental. [7] modeled a distributed meeting scheduling problem and
is one of the first formal studies of a multi-agent system. Most formal
work on negotiation is done in systems with self-interested agents [8, 9,
10]. [11] analyzes the need for meta-level communication in constructing a
dynamic organizational structure. [12] studies the benefits of teaming and
selflessness when using multi-agent search to solve task-oriented problems.
Work on dynamic coalition formation studies the problem of finding a payoff
distribution for a given game and coalition structure such that no agent has
incentive to leave the coalition [13]. This is similar to the reward splitting
issue we study in OAR. The difference is that the agents in the coalition find
a payoff distribution through negotiation, while the reward splitting in OAR
is a mechanism that is local to the manager agent, to better achieve its goal
in the current environment. [14] introduced a model in which agents’ utilities
are linear in their own monetary income and their opponents’, controlled by a
parameter called altruism coefficient. This is similar to the calculations of both
the objective function and the virtual utility in the OAR framework. However,
their model is studied only in a competitive setting, and makes no distinction
between the goal of an agent and the mechanism that an agent may employ to
realize its goal. In OAR, we make this distinction explicit by representing
these two related but distinct concepts with two different parameters: the
objective parameter and the attitude parameter. We demonstrate that this clear
distinction is important and necessary. Additionally, OAR enables us to study
agents with different organizational goals in a unified setting by simply varying
their objective parameters. The uniqueness of OAR lies in the fact that it
represents the relationship among social welfare, agent’s goal and its local

6. Formal Analysis of Negotiation Protocols 7

negotiation mechanisms formally, which allows us to model different multi-
agent systems with it. It is the designer’s concern to design mechanisms
and different negotiation strategies in this framework and understand their
performance in various environments. This work shows that we can create
such a formal model to analyze interactions among agents ranging from self-
interested to fully cooperative.

This chapter is organized as follows. We first present the details of the OAR
model in Section 6.2, then we describe the general problem we are studying in
Section 6.3. The statistical model and analysis work are presented in Sections
6.4, 6.5, and 6.6 respectively. Applications of the OAR model are described in
Section 6.7. Finally, we conclude this work in Section 6.8.

6.2 OAR Framework

There are three components in OAR: Objective functions that specify the
agents’ goal, Attitude parameters that determine how an agent values each
task, and Reward splitting that decides the reward allocation of a task that
needs cooperation among agents.

6.2.1 Objective Functions

Traditionally, research on negotiation is categorized into two general
classes: cooperative negotiation and competitive negotiation. In competitive
negotiation, agents are self-interested and negotiate to maximize their expected
local reward. In cooperative negotiation, agents work to find a solution that
increases the sum of the expected reward of all involved agents. However there
are other types of agents, whose goal is instead to reach a balance between their
local gains and the reward of the rest of the system.

The first component of OAR is objective function, which specifies the goal
of each agent. A general form of objective function is:

Oi = wi · ERi + (1− wi)
∑
j 6=i

ERj , (6.1)

where ERi is the expected reward of agent i. wi ∈ [0, 1] is called objective
parameter and reflects how important its local reward is to Ai as compared to
the reward received by the rest of the system. For a fully cooperative agent,
wi = 0.5. Its goal is to maximize the total expected reward of the entire
system, i.e.,

∑
i ERi. A completely self-interested agent is interested only in

its own expected reward, and wi = 1. An agent with wi = 0 is altruistic and

8 Lesser, Shen, Weber and Zhang

considers the gains of the other agents only. The objective function unites the
traditionally separate views of cooperative systems and self-interested systems.
By simply varying the objective parameter, we can study agents with different
goals.

If all the agents are fully cooperative, the system is a (fully) cooperative
system, and each agent achieves its optimal performance when the total
expected reward of the entire system is maximized. If at least one of the agents
is not fully cooperative, the system is not a (fully) cooperative system, where
to maximize the total expected reward is not necessarily an objective for each
agent. In such a system, it is the designer’s concern to design mechanisms
which promote “social welfare”. For example, the system designer could adapt
a negotiation protocol that is Pareto efficient to ensure all agreements reached
by agents are Pareto optimal.

6.2.2 Attitude Parameters

The second component of OAR is the attitude parameter k, 0 6 k 6 1. It
specifies the negotiation attitude of each agent towards another agent. The
attitude parameter was previously introduced in the integrative negotiation [2]
mechanism that is briefly reviewed below.

Consider the following task allocation example. For each task t allocated
from agent A to agent B, certain rewards are transferred from agent A to agent
B. There are two types of reward that could be transferred with the successful
accomplishment of task t: real reward and relational reward. Real reward has
positive benefits to agent B’s utility, the agent collects real reward for its own
utility increase. To reflect agent B’s attitude toward agent A’s outcome, let
Rrt be the relational reward transferred from agent A to agent B when agent
B performs task t for agent A. Suppose that by having task t accomplished,
agent A’s own utility increases by 20 units, there are 20 units Rrt transferred
with task t, representing the utility agent A gained by having agent B perform
task t. Since Rrt is a relational reward, its only purpose is to express how
important the completion of task t is for agent A. The utility produced by
relational reward can be considered a virtual utility, in the sense that it does
not contribute to agent B’s local utility increase, nor is it included in the social
welfare computation. However, relational reward represents the meta-level
information which allows an agent to better understand how its decision affects
the other agent which it is negotiating with, but from a local, not a global view.
Actually, how Rrt is mapped into agent B’s virtual utility depends on how
cooperative agent B is with agent A. The utility curves of the relational reward
can be adjusted by the agent dynamically to reflect its dynamic relationships

6. Formal Analysis of Negotiation Protocols 9

II: kb =0

III: 0< kb <1

I: kb =1

Ub(Rrt)=kb* Rrt

Rrt1

1

2

2

0

Fig. 6.2 Different mapping functions of Rrt

with other agents. Figure 6.2 shows three different functions (I, II, III) for
mapping Rrt to agent B’s virtual utility. Function I, II and III are all linear
functions: Ua(Rrt) = kb ∗Rrt.

If kb = 1 (function I), Ub(Rrt) = Rrt = Ua(t), where Ua(t) denotes the
utility agent A gained by transferring t1, then agent B is completely externally-
directed towards agent A;

If 0 < kb < 1 (function III), Ub(Rrt) < Rrt = Ua(t), then agent B is
partially externally-directed towards agent A;

If kb = 0 (function II), Ub(Rrt) = 0, then agent B is completely self-
directed with respect to agent A. In this case, if agent A wants agent B to do
task t, it needs to transfer significant real reward to agent B for performing the
task.

The mapping function could also be a nonlinear function that describes a
more complicated attitude of agent B to agent A, but in this research we focus
on the linear mapping function Ub(Rrt) = kb ∗ Rrt. We choose this function
because of its simplicity in application, the investigation of other functions is
left for future work. kb is referred to as the attitude parameter that reflects
agent B’s attitude toward agent A on task t.

Though relational reward provides agents the information of how important
this task is to the other agent, this information may be inaccurate when this
task requires cooperation from more than two agents. Thus it may not always
be an accurate indicator of the effect on social welfare. In Section 6.7.3, we

1Here it is assumed that the relation reward is the same as the utility gain of agent A; there
are in fact different ways of calculating relational reward, which are discussed in Section 6.7.3.

10 Lesser, Shen, Weber and Zhang

will discuss different ways to calculate relational reward and the impact of
these choices. Also, in this work, it is assumed that agents do not lie about
relational reward; in a more realistic world where this assumption does not
hold, some reputation mechanisms [15] can be used to reduce the possibility
of transferring untruthful information.

6.2.3 Reward Splitting

When an agent needs to subcontract subtasks to other agents in order to finish
a task, it is this agent’s decision how much to offer the other agents for
accomplishing their subtasks. We call this issue reward splitting.

2T

12T

2A
3T

13T

3A1T

12T

1A

13T

Arriving
time

est Earliest
Finish time

Deadline

e dur sl

1

1

2 3

2

3

/BA tR

/ /() = •B BA t BA tU R k R
a: k = 1

c: 0 < k <1

b: k = 0

Completely
self directed

Completely
externally directed

k = 0 k = 1
Importance of external utility
increase compared to internal
utility increase

Fig. 6.3 The simplest organization structure with the necessary inter-agent interactions

Consider the example shown in Figure 6.3: in order to accomplish task
T1, agent A1 needs to sub-contract two subtasks of T1, T12 and T13, to agent
A2 and agent A3 respectively. Based on the local evaluation of A1, if task
T1 is accomplished successfully, the utility of A1 will increase by 20 units.
Assuming the two subtasks have the same contribution to T1, A1 will send
A2 a task proposal on T12 with 10 units of relational reward (Rr12), which
means the accomplishment of T12 will generate 10 units local utility for A1;
and analogous for A3 concerning T13. Besides the relational reward, Agent A1

has to figure out how much of the overall reward R1 to pay to the other agents.
The rewards for the subtasks are R12 and R13, and A1 keeps R11 for itself.
The transferred rewards R12 and R13 are referred to as “real reward”, since
they actually contribute to agent A2 and A3’s local utility increase. How to
distribute the real reward R1 among the three agents is the “reward splitting”
issue.

Since agents A2 and A3 also receive other task proposals such as T2 and
T3 from other agents, there may be resource conflicts between T2 and T12, or
between T3 and T13, which force the agents to choose one task from these two
proposals. This decision depends on the type and amount of the transferred
reward associated with each task, the relational reward from A1, and also

6. Formal Analysis of Negotiation Protocols 11

how the agent evaluates this relational reward (the mapping function for this
relational reward).

It is a commonly used technique to use real reward as an incentive to
manipulate the decisions of other agents. Similar to the use of attitude
parameters as a mechanism for the contractee agents to achieve their goals,
the reward splitting can be used as a local mechanism for the contractor
agent to improve its performance, and is the third component of the OAR
framework. The additional flexibility introduced by reward splitting is
necessary to further improve an agent’s performance, especially if its goal
is not to maximize the total expected reward. We have seen up to 36%
performance difference between different reward splitting settings for non-
cooperative agents. Detailed results are presented in Section 6.7.2.

6.3 General Problem

In the previous section we introduced the OAR framework using a small
Multi-Agent System as a conceivable example. Herein we discuss the general
problem setting under investigation. Consider a group of agents A1, A2,
. . . , An and a set of tasks T1, T2, . . . Tm. Tasks arrive at agents randomly,
Ti is not necessarily arriving at Ai. Each task has a number of parameters that
observe a distribution, such as:

• duri: the duration of the task.
• Ri: the reward associated with each task if it is successfully completed.
• ri: task arrives at an agent at time t with a probability of 1/ri.

It is assumed that each agent has one resource and the duration of the task
indicates how long the task will require exclusive access to that resource.
Each task Ti, 1 6 i 6 n can be decomposed into a set of subtasks:
Ti1, Ti2, . . . , Timi . All of the subtasks need to be completed in order for the
agent As at whom Ti arrives to collect the reward Ri. The agent can contract
out some or all of the subtasks to other agents or it can finish the task on its
own. As a special case, As can contract out the entire task Ti. Each subtask
Tij , 1 6 i 6 n, 1 6 j 6 mi has a set of parameters as well, and they have to
observe certain relationships with each other and with the original task Ti:

• durij : the duration of the subtask.
• Rij : the reward of the subtask if it is finished.

∑
j Rij+Ris = Ri, where

Ris is the net reward As gets after dispensing rewards for each subtask if
all of the subtasks are completed. The subtask contractor gets paid when
the subtask is completed though agent As only gets paid the whole task
is accomplished. Agent As may cancel the request of a subtask before

12 Lesser, Shen, Weber and Zhang

it’s execution starts if some other related subtasks were not successfully
contracted out; in this case the contractor agent for this subtask will not
get reward.
• rij : each subtask Tij is generated at time t with a probability of 1/rij ,

rij = ri.

When a task Ti arrives at agent As, As needs to do the following for each
subtask Tij :

1. Decide with which agent(s) NS(Tij) to negotiate in order to finish Tij .
NS(Tij) refers to the set of agents to negotiate with concerning subtask
Tij .

2. Start a negotiation session with the agent(s) in NS(Tij). Transmit the
related parameters durij , Rij associated with subtask Tij . In addition,
it also transmits Ris, i.e., the reward As itself will get if Ti is finished
successfully. By transmitting the information Ris, agent As informs
other agents how important the task Ti is to itself, the other agents can
take this factor into consideration when they make their local decisions.
In this way, when each agent works towards maximizing its local utility,
it can also consider other agent’s outcome, and the implication on the
organization performance it belongs to.

When agent Al receives a request from agent As to do subtask Tij , it does
the following:

1. Decide whether Tij can be fit into its own schedule or can be contracted
out (contracting out a subtask follows the afore mentioned procedure of
a regular task); if yes, reply committed.

2. If there is resource conflict with Al’s own schedule, compare the utilities
of the conflicting tasks and commit to the one with highest utility, and
de-commit from the other. When there is significant difference in task
durations, a more complex model with opportunity cost is needed to
make a more rational decision, such model is not included in this work.

There are three important questions that we need to answer for such a
system:
• What is each agent’s goal in the system? Does it want to optimize its

local reward, or the total global reward, or a combination of the two?
• If there is a conflict between tasks, how does an agent evaluate each task

and decide which to commit to?
• When an agent needs to contract out a task, how does it split the reward

between itself and the subtasks?
Section 6.2 introduces OAR, a formal framework designed to answer these
questions. In the OAR model, the utility of a subtask Tij for Al is calculated

6. Formal Analysis of Negotiation Protocols 13

as Ul(Tij) = Rij +kl ∗Rrij , where kl is Al’s attitude parameter; the relational
reward Rrij represents the importance of accomplishing task Tij ; and the
reward Rij , the “real utility” that contributes to agent Al’s local utility increase.
The “virtual utility” from kl ∗ Rrij does not contribute to agent Al’s local
utility increase, it is only being considered during the agent’s decision-making
process. We have explored different approaches to calculate Rrij , the details
are described in Section 6.7.3.

6.4 Statistical Analysis and Verification

In this section we describe an analytical process using the simple multi-agent
system depicted in Figure 6.3. This is a small agent organization with three
agents A1, A2 and A3. Three types of tasks T1, T2 and T3 arrive at A1, A2

and A3 respectively. Using this example we show in this section how one can
analyze the relationship between the attitude parameter k, the environment
parameters and the performance of the agent and the organization, given a
specific reward splitting.

1. Each task Ti arrives at agent Ai every ri time units, which is statistically
equivalent to the following statement: Ti arrives at Ai with a probability
of 1/ri at each time unit.

Arriving
time

est Earliest
Finish time

Deadline

e dur sl

Fig. 6.4 The relationship of the different parameters of a task

2. For each task Ti, there is an earliest start time esti, a deadline dli and a
duration duri. There is a relationship between esti, dli and duri. We
introduce a new variable slack time sli to represent the time difference
between the earliest possible finish time and the deadline: esti +duri +
sli = dli. ei represents the difference between the arrival time of a
task and its earliest start time esti. The relationship of the different
parameters of a task Ti is expressed in Figure 6.4. ei, duri and sli are all
uniformly distributed in a specific range (i.e. ei is uniformly distributed
in range [aei, bei]). More formally,

Pei(x) =
{ 1

bei−aei
, aei < x 6 bei

0, otherwise

14 Lesser, Shen, Weber and Zhang

Pduri
(x) =

{ 1
bdi−adi

, adi < x 6 bdi

0, otherwise

Psli(x) =
{ 1

bsi−asi
, asi < x 6 bsi

0, otherwise

3. For the two subtasks T12 and T13, we have the corresponding parameters
e1i, dur1i and sl1i, where i = 2, 3. Each of them is uniformly distributed
as well.

4. When a task T1 arrives at A1, the agent will start the negotiation
processes with both A2 and A3. Associated with each T1 is a reward
R1. Upon completion of T1, A1 will collect a part of the total reward
R11 for itself, and hand the rest R12 and R13 to A2 and A3: R1 =
R11 + R12 + R13. In order for the reward to be collected, both T12 and
T13 have to be completed.

5. During the negotiation process with agent Ai about a subtask T1i, A1

communicates some relational reward Rr1i for completing the task and
thus tells Ai about the reward that A1 itself will gain if the task is
completed. Relational reward indicates how important this task is to
the rest of the agents, and can be calculated in various ways in order to
express different issues, as discussed in Section 6.7.3. In this section, we
choose the formula Rr1i = 1

2 ·R11 assuming that the utility increase of
A1 is the only concern in the relational reward and the two subtasks
have the same importance to T1, therefore being assigned the same
relational reward. Ai has its attitude mapping function toward A1:
f(Rr1i) = ki · Rr1i. As a result, for Ai the utility of the subtask T1i is
Rni = R1i+f(Rr1i) . Currently, R1, R11, R12 and R13 are all assumed
as constants, however, they also can be dynamically adjusted if needed.

6. T2 and T3 both have rewards, R2 and R3 respectively, which are
uniformly distributed.

PRi(x) =
{ 1

bri−ari
, ari < x < bri

0, otherwise

7. On receiving a subtask (T1i) request, the agent Ai sees whether there
is a conflict between the new task and other tasks (both the previous
commitment to A1 and its local task Ti). These other tasks include the
tasks that came in before the new one and those that will come in after
it. If there is no conflict, Ai will commit to the task. Otherwise, it will
choose the task with higher reward. If the subtask T1i is not selected,
agent Ai could inform agent As about the rejection of the subtask. In the
implementation of our simulation, Agent As would cancel other relate

6. Formal Analysis of Negotiation Protocols 15

subtask requests if the execution for these subtasks have not started.
However, formally modeling such cancellation and analyzing its impact
is beyond the scope of this study and subject to future study.

The only time an agent needs to choose between tasks to execute is when
there is a conflict between tasks. Based on the above model, we can calculate
the probability of conflict. As seen in Figure 6.5, a task of type i is in conflict
with a task of type j (whether it came before task i or after) if and only if there
exists a task of type j such that the following two inequalities are both true:

dli − estj 6 duri + durj and dlj − esti 6 duri + durj (6.2)

Rewriting (6.2) in terms of est, dur and sl, we get

sli − durj 6 estj − esti 6 duri − slj (6.3)

For a task of type i that arrives at a given time, we define Pcij as the probability
of there being a task of type j that has conflict with it. Notice that for task i,
we only know its arriving time, not its other relevant parameters. In addition,
we do not know any parameter of task j.

Pcij = P (sli − durj 6 estj − esti 6 duri − slj)

=
+∞∑

z=−∞

+∞∑
y=z

(1−
y∏

x=z

(1− Pestj−esti(x)))

·Pduri−slj (y)Psli−durj
(z) (6.4)

First let us look at Pestj−esti(x), the probability of the difference between
the earliest start time of tasks Ti and Tj being x. Since the arrival time of task
i is fixed, without loss of generality, let us define the arriving time of task i as
0. As a result, esti = ei, and estj can range from −∞ to +∞. Therefore,
Pestj−esti(x) = P (estj − ei = x), i.e., the probability of there existing a task
j that satisfies estj − ei = x. We first solve the probability of there being a
task whose est is at a specified time t, which we write as P (est = t):

P (est = t) =
+∞∑

x=−∞
Pa(t− x)Pe(x) =

be∑
x=ae+1

1
r
· 1
be − ae

=
1
r

(6.5)

Then we can further calculate Pestj−esti(x):

16 Lesser, Shen, Weber and Zhang

iest

iest

jest

idl

jdl

jdl
jdur

idur

iest

jest

jest

idl

jdl

idl
jdur

idur

iest idl

jest jdl

idur

idl
jdurjest

jdur

idur

iest idl

iest
idl

(a) (b)

(c) (d)

jdur

idur

iest idl

idur

idl
jdurjest

jest jdl

Fig. 6.5 Conflicts between tasks. Two tasks are in conflict with each other when and
only when they cannot be shifted around within est and dl in order to fit both on to
the schedule.

6. Formal Analysis of Negotiation Protocols 17

Pestj−esti(x) =
+∞∑

y=−∞
Pei(y)P (estj = y + x) =

be
i∑

y=ae
i +1

1
be
i − ae

i

· 1
rj

=
1
rj

(6.6)

Now let us see what Pduri−slj (y) is.

Pduri−slj (y)

=
+∞∑

x=−∞
Pduri

(x) · Pslj (x− y)

=

bd
i−as

j−y

(bd
i−ad

i)(bs
j−as

j)
, max(ad

i − as
j , b

d
i − bs

j) < y < bd
i − as

j ;
1

bd
i−ad

i

, ad
i − as

j 6 y 6 bd
i − bs

j ;
1

bs
j−as

j
, bd

i − bs
j 6 y 6 ad

i − as
j ;

bs
j+y−ad

i

(bd
i−ad

i)(bs
j−as

j)
, ad

i − bs
j < y < min(ad

i − as
j , b

d
i − bs

j);

0, otherwise.

(6.7)

Similarly, we get

Psli−durj
(z)

=

bs
i−ad

j−z

(bs
i−as

i)(b
d
j−ad

j)
, max(as

i − ad
j , b

s
i − bd

j) < z < bs
i − ad

j ;
1

bs
i−as

i
, as

i − ad
j 6 z 6 bs

i − bd
j ;

1
bd
j−ad

j

, bs
i − bd

j 6 z 6 as
i − ad

j ;
bd
j +z−as

i

(bs
i−as

i)(b
d
j−ad

j)
, as

i − bd
j < z < min(as

i − ad
j , b

s
i − bd

j);

0, otherwise.

(6.8)

Now, we can put (6.6), (6.7) and (6.8) back to (6.4) and get the probability
of there being a conflict for a task that comes in at a given time. Please note that
this calculation of Pci,j is an approximation, since we are only considering the
probability of two tasks conflicting with each other. In reality, there might be
three or more tasks that can not be scheduled successfully at the same time
but any two of them can be. Therefore, the real probability of conflict may be
higher than our approximation.

18 Lesser, Shen, Weber and Zhang

Given the probability of conflict, we can calculate the expected reward for
each agent. For A2 and A3, there may be two types of tasks coming in at any
moment: the local task Ti and the non-local task T1i with a probability of 1/ri

respectively, where i = 2, 3. Let us look at them one by one.
When a local task Ti for Ai arrives, it accumulates reward only under one

of the following circumstances:

1. There is a conflict between it and one non-local task T1i and there is
no conflict with other local tasks. In addition, the local task reward is
greater than the utility of the non-local task that it is in conflict with, i.e.,
Ri > Rni = R1i + ki · 1

2 · R11. The part of expected reward gained by
executing the new task in this case is then:

ER
(1)
i = Pc1i,i · (1− Pcii) · E(Ri|Ri > Rni) (6.9)

where

E(Ri|Ri > Rni) =
br
i∑

x=bRnic+1

PRi(x) · x

=

ar

i +br
i +1

2 , bRnic < ar
i ;

(br
i−bRnic)(br

i +bRnic+1)
2(br

i−ar
i) , ar

i 6 bRnic < br
i ;

0, bRnic > br
i .

(6.10)

2. The only conflict caused by this task is with another local task T ′i . In
addition, the new reward is higher than that of T ′i . The expected reward
gained by executing this task under this condition is:

ER
(2)
i = (1− Pc1i,i) · Pcii · [E(Ri|Ri > R′i) +

1
2
E(Ri|Ri = R′i)]

(6.11)
where

E(Ri|Ri > R′i) =
br
i∑

y=ar
i +1

br
i∑

x=y+1

xPRi(x)PRi(y)

=
br
i∑

y=ar
i +1

br
i∑

x=y+1

x

(br
i − ar

i)2
(6.12)

and

6. Formal Analysis of Negotiation Protocols 19

1
2
E(Ri|Ri = R′i) =

br
i∑

x=ar
i +1

x(PRi(x))2 =
ar

i + br
i + 1

4(br
i − ar

i)
(6.13)

3. There is a conflict with both another local task and a non-local task. In
addition, the reward gained by the new local task is the highest.

ER
(3)
i = Pc1i,i · Pcii · [E(Ri|Ri > Rni&Ri > R′i)

+
1
2
E(Ri|Ri > Rni&Ri = R′i)] (6.14)

where

E(Ri|Ri > Rni&Ri > R′i)

=
br
i∑

y=ar
i +1

br
i∑

x=max(bRnic+1,y+1)

PRi(x)PRi(y) x

=
1

(br
i − ar

i)2

br
i∑

y=ar
i +1

br
i∑

x=max(bRnic+1,y+1)

x (6.15)

and
1
2
E(Ri|Ri > Rni&Ri = R′i)

=
1
2

br
i∑

x=bRnic+1

[PRi(x)]2 · x

=

0, bRnic > br

i ;
(br

i−bRnic)(br
i +bRnic+1)

4(br
i−ar

i)2
, ar

i 6 bRnic < br
i ;

ar
i +br

i +1
4(br

i−ar
i) , bRnic < ar

i .

(6.16)

With the above equation, it is assumed that the non-local task will be
selected if it has the same reward as the local task, i.e. when Ri =
Rni. If a different assumption is used, this equation can be adjusted
accordingly.

4. There is no conflict caused by the new task.

ER
(4)
i = (1− Pc1i,i)(1− Pcii) ·

ari + bri

2
(6.17)

20 Lesser, Shen, Weber and Zhang

Similarly, when a subtask T1i arrives at Ai, it will choose to commit to
it under four conditions, but it can accumulate this reward only when the
other agent decides to commit to the other subtask as well. The request of
subtask may be cancelled (before the execution of this subtask starts) if some of
subtasks were not successfully contracted out. Therefore the expected reward
will be:

ER
(5)
i = Pcommit2 · Pcommit3 ·R1i (6.18)

where Pcommiti is the probability of agent Ai commits to the subtask T1i

(i = 2, 3), which can be calculated as the following:

Pcommiti = Pc1i,i(1− Pc1i,1i)P (Rni > Ri)

+
1
2
Pc1i,i · Pc1i,1iP (Rni > Ri)

+
1
2
(1− Pc1i,i)Pc1i,1i + (1− Pc1i,i)(1− Pc1i,1i)

(6.19)

and

P (Rni > Ri) =
bRnic∑

x=ar
i +1

PRi(x)

=

1, bRnic > br

i
bRnic−ar

i
br
i−ar

i
, ar

i 6 bRnic 6 br
i

0, bRnic 6 ar
i

(6.20)

Now we have the expected reward that A2 or A3 collects at each time unit:

ERi =
1
ri

(ER
(1)
i + ER

(2)
i + ER

(3)
i + ER

(4)
i) +

1
r1

ER
(5)
i (6.21)

Let us have a look at the expected reward that A1 collects at each time unit.
There is only one type of task coming in to A1. The reward can be collected if
and only if both of the other two agents commit to the subtasks. As a result,

ER1 =
1
r1
·R11 · Pcommit2 · Pcommit3 (6.22)

Now that we have the expected reward for each of the agents, we can
calculate the ki that will maximize the total expected reward given the set of

6. Formal Analysis of Negotiation Protocols 21

r est dur dl R
T2 t2 14 6 26+td2*[1,3] 2+tr2*[1,3]
T3 t3 24 7 34+td3*[1,3] 2+tr3*[1,3]

sub2 15 12 7 20+[0,2] 3
sub3 15 23+[0,2] 6 35+[0,2] 3
T1 15 12 35+[0,2] 25

Table 6.1 Simulation parameter setting

3280

3290

3300

3310

3320

3330

3340

0

0.1
05

26
32

0.2
10

52
63

0.3
15

78
95

0.4
21

05
26

0.5
26

31
58

0.6
31

57
89

0.7
36

84
21

0.8
42

10
53

0.9
47

36
84

k3

G
lo

ba
l u

til
ity

Model prediction Simulation results

Fig. 6.6 Comparison of the model prediction and the simulation results. t2 = t3 = 10,
td2 = td3 = 1, tr2 = tr3 = 6.

the parameters. More formally, we set k2 and k3 to be:

arg max
k2,k3

(ER1 + ER2 + ER3).

The above description shows how this statistical model can be used to analyze
how the attitude parameter affects agent utility.

To verify this model, we have run a set of simulations, we ran a set of
simulations in the integrative negotiation framework with different parameter
settings (Table 6.1) to verify the model. We vary the arrival rate, deadline
and reward of the tasks and record the social utility generated by the system
after 950 time units for different attitude parameters k2 and k3. As seen in
Figure 6.6, the simulation results and the theoretical prediction match well
with each other, with a utility difference of around 1%. The difference in
the two curves are mainly caused by the two major differences between the
simulator and our theoretical model. First, the tasks in the simulator arrives
at the agents every ri time step instead of with a probability of 1/ri at each

22 Lesser, Shen, Weber and Zhang

step. Though these two settings are statistically equivalent, the simulator has
less chance of the same type of tasks conflicting with each other, and results
in a higher utility generated by the simulation. Second, the simulator uses
a scheduler that schedules all the tasks in a fixed time window together and
resolves the conflicts among them. Once a task is successfully scheduled, it
will not be removed from the schedule or shifted to accomodate tasks arriving
in the next time window. As a result, the simulator is not as sensitive to slight
parameter changes as the model is, which leads to the gradual drop in utility
in the theoretical model versus the step function drop in the simulator. Other
parameter settings show a similar correlation between the simulation results
and the model prediction. As tasks become less flexible (varied by r and dl),
conflicts become increasingly likely and global utitlity is reduced. The higher
a local task’s reward is compared to that of the subtask, the less likely T1 will
be finished and the more self-directed the other agent should be for the system
to collect more reward. These behaviors are both predicted and explained by
the model and the resultant equations.

This model has been extended and used in the OAR framework to analyze
the influences of different parameters, the results are described in the following
sections.

6.5 Adjusting local attitude parameters

In a real system, the environment may evolve over time. In such situations,
it is unlikely that a static organization will remain optimal as the environment
changes. Furthermore, it is impractical for the agents to always have a global
view of the system without significant communication cost. Fortunately, an
agent can often learn the other agents’ behavior through past interactions with
them. If agents can dynamically adjust their relationships with other agents
(represented by the local attitude parameters) based on observations of each
other, then the system can achieve more total expected reward than a static
system. The agents A2 and A3 can learn the probability of the reward being
actually collected from A1 by recording the interaction history between them.
From these statistics, they are able to choose their own attitude parameters (ki)
in order to maximize the total expected reward that may be collected by them
and agent A1. Expressed more formally, if agent A2 observes the probability
of A1 handing out the reward for T12 as P2, then ER

(5)
2 and ER1 are written

as follows:

ER
(5)
2 = R12 · Pcommit2 · P2 (6.23)

6. Formal Analysis of Negotiation Protocols 23

ER1 =
1
r1
·R11 · Pcommit2 · P2 (6.24)

In order to maximize the total expected reward of agent A1 and A2, as its
vision of the environment allows, A2 should set k2 as:

k2 = arg max
k2

(ER1 + ER2). (6.25)

It is analogous for A3.
There are two cases of environmental change to consider. First, there can be

changes happening at A2 or A3 which makes the corresponding agent adjust
its ki. Second, there is a change of the local parameters at A1 that leads to a
change in ki in one or both of the agents’ attitude. When such change happens,
one or both of the agents initiate the adjustment in their attitude parameters ki

in response, which leads to a change in the other agent’s observation of Pi and
further adjustment of ki. We proved the following theorem [16]:

Theorem 6.1 For the small example system described in Figure 6.3, the local
adjustment of the attitude parameters is stable, i.e., the process will converge.

Proof. If we fix the parameters other than k2 and denote the utility that A2

is trying to maximize as U2, we can write it as a function of x2 = bRn2c:
U2 = ER1 + ER2 = −a · x2

2 + (b + d · P2) · x2 + c, when ar
2 6 bRn2c 6

br
2, where a, b, c, d are all constants. Then we have the optimal bRn2c as

x2 = b+d·P2
2a . Since x2 = bRn2c = R12 + k2 · R11, the optimal k2 changes

monotonically as P2 changes (shown in Figure 6.7(a)). When A2 sets its new
k2, A3’s observation of P3 changes accordingly: P3 = e · bRn3c + f when
ar

3 6 bRn3c 6 br
3, where e and f are constants. As shown in Figure 6.7(b),

P3 changes monotonically as k2 changes.
No matter what change in the environment causes the change in local

parameter ki, the value of ki either increases or decreases. If the changes
of both agents are towards the same direction, i.e., both of them increase, both
decrease, or one of them stays the same, then as Figures 6.7(a) and 6.7(b)
show, both k2 and k3 change monotonically without oscillation. Since there
are only limited number of different values for bRnic, ki will converge to a
certain value.

On the other hand, if k2 and k3 start changing towards different directions,
they will both oscillate, as the directions of change caused by the two agents
are different. Fortunately, the oscillation is bounded by the curves of change in

24 Lesser, Shen, Weber and Zhang

0 1 2P

2k

(a)

0 1 2k

3P

(b)

2k

(c)
Fig. 6.7 (a) k2 changes monotonically as P2 changes. (b) P3 changes monotonically
as k2 changes. (c) k2 converges over time even when k2 and k3 change in different
directions at the same time.

ki in Figure 6.7(a) (as shown in Figure 6.7(c)), and the process will converge
in the end.

Theorem 6.1 tells us that it is safe for the agents to adjust their attitude
parameters locally and reach a global equilibrium. We can add a simple
learning component to each agent Ai which observes the probability of A1

handing out the reward for non-local task T1i as Pi and adjust ki to the optimal
value related to Pi dynamically. In an environment with uncertainty, the
information provided by other agents may be inaccurate and prove a distraction
for an agent’s goal [17]. [17, 18] suggest that mechanisms that appropriately
handle distraction in a complex multi-agent system are important to improving
the overall system performance. In the three agent multi-linked negotiation
system we are modeling in this chapter, there is uncertainty related to the
rewards that A1 promises to A2 and A3 and may prove distracting. P2 and P3

are good measures of this uncertainty. The proof of Theorem 6.1 shows that
the level of uncertainty in the external information received from A1 directly
affects the amount of self-directness that an agent should have in order to
optimize the total expected reward. The greater the value of Pi, the higher the
optimal ki, which means the more externally-directed Ai should be towards

6. Formal Analysis of Negotiation Protocols 25

r dur sl e R
T1 40 [20,40] [0,20] [0,20] 30
T12 40 [20,40] [0,20] - -
T13 40 [20,40] [0,20] - -
T2 50 [70,80] [0,20] [0,20] [14,18]
T3 50 [70,80] [0,20] [0,20] [14,18]

Table 6.2 Environmental parameters of Scenario 1

A1 regarding task T1i. Likewise, when there is more uncertainty related to
the external information, an agent should be more self-directed. Therefore,
the attitude parameter of an agent can be seen as an effective way to handle
distraction introduced by uncertain external information.

Unfortunately, there are cases where an attitude parameter k ∈ [0, 1]
cannot fully deal with such uncertainty and guarantee the optimal system
performance. As an example environment2, consider Scenario 3 as specified in
Table 6.4 and the case where R12 is much bigger than R2. In this situation, A3

is unlikely to commit to T13 because R3 is much bigger than R13. Therefore
there is very little chance that A2 will actually get the R12 since the reward is
awarded only if both T12 and T13 are completed. Thus A2 is much better off
ignoring the subtask and doing its local task. In this case, even if we set k2 to
its lowest 0, A2 will still choose to commit to T12 instead.

One way to deal with such uncertainty is to extend the range of the attitude
parameters: ki ∈ [aki , bki], aki 6 0, bki > 1. As shown in Figure 6.8(a),
this extended range can potentially lead to better total expected reward. This
optimality graph is produced based on Scenario 3 with ki ∈ [−1, 2]. The
square in this graph denotes the original range of ki ∈ [0, 1]. We can see that
the optimal total expected reward can be achieved only with a k3 > 1.3 and
not the original range.

6.6 Analysis Mechanism Using the OAR Framework – Numerical
Optimization Process

OAR is a formal framework that can be used to model different negotiation
mechanisms and study various negotiation strategies. When a certain

2Each environment can be modeled using the statistical model described on Section 6.4 with
a set of environmental parameters specified, as shown in Table 6.4. More explanation can be
found in the beginning of Section 6.6.

26 Lesser, Shen, Weber and Zhang

r dur sl e R
T1 40 [20,40] [0,20] [0,20] 30
T12 40 [20,40] [0,20] - -
T13 40 [20,40] [0,20] - -
T2 40 [10,20] [0,20] [0,20] [12,15]
T3 40 [10,20] [0,20] [0,20] [12,15]

Table 6.3 Environmental parameters of Scenario 2

environment is given, the issue of how to choose the local control parameters
for each agent can be described as an optimization problem. Each
environment, that can be modeled using our statistical system as described
in Section 6.4, is determined by a set of environmental parameters. These
parameters include the task arrival time, earliest start time, duration, deadline,
and reward Ri. The value of each parameter is drawn from a uniform
distribution within a specified range. Tables 6.2, 6.3, and 6.4 are examples
of scenarios given by fixed environmental parameters. Besides those
environmental parameters, there are some local control parameters that can
be adjusted by agents, such as the partial rewards for the shared task,
R11, R12, R13, and the local attitude parameters, k2, and k3.

Given a fixed set of environmental parameters, there is a mapping from the
local control parameters to the expected reward in each agent. The mapping
function is a step function, that is neither convex nor continuous, thus the
optimization problem of choosing the best values for local parameters does not
fit into standard optimization problem formulation with continuous functions.
There is an algorithm for the optimization of non-continuous functions that
works similarly and is called the sub-gradient method [19, 20]. However, it
cannot be applied to this problem since it requires the function to be convex.
Again, this cannot be guaranteed in our case.

However, we have found that for fully cooperative agents, taking samples
of the function values on each of the steps enables us to find the maxima and
their position. We have analyzed the structure of the function and developed
the mathematical mechanisms that are necessary for a seamless sampling grid,
therefore enabling a numerical optimization process [21]. Due to the discreet
nature of the expected reward function in focus, the number of points which
have to get sampled in order to guarantee capturing the optimal value, is finite
and computationally feasible. Thus, we suggest this technique and use it in the
rest of this work to evaluate and compare different outcomes.

6. Formal Analysis of Negotiation Protocols 27

r dur sl e R
T1 30 [20,40] [0,20] [0,20] 30
T12 30 [20,40] [0,20]
T13 30 [20,40] [0,20]
T2 30 [10,20] [0,20] [0,20] [2,4]
T3 50 [70,80] [0,20] [0,20] [30,50]

Table 6.4 Environmental parameters of Scenario 3

The numerical optimization process is used to find the optimal values for
parameters in order to maximize the expected utilities. Given the fact that
R1 = R11 + R12 + R13 and R1 is given and constant, there really are only
four dimensions along which the expected utilities vary: R12, R13, k2, and k3.
Within the four dimensional space spanned by k2, k3, R12, and R13, there is
typically more than one optimal solution. This is due to the fact that there is
some redundancy in the decisions, such that one optimal value of Rni (more
precisely bRnic) can be computed from a set of internal parameter choices.
One way to select an optimal value is by calculating the set of (R12, R13), for
which the optimum can be achieved by some setting of (k2, k3). From it, we
choose one (R12, R13)-pair by some metric. Then, we decide on the (k2, k3)
which maximize the objective function. That way, secondary goals can be
introduced as the metric mentioned above, e.g. fairness in the reward splitting
for the shared task. Another way to select an optimal value is by first fixing
the values of (k2, k3) such that the optimum can be reached, and then to find
an optimal reward splitting (R12, R13).

6.7 Applications of OAR Framework

In this section, we will first present a graph model, optimality graphs, which
we use for visualizing the relationships among different parameters. Then we
will discuss how agents’ expected rewards are affected by changing the local
attitude parameters, varying reward splitting, and the method of calculating the
relational reward.

6.7.1 Optimality Graphs

As we discussed in Section 6.6, the relationship between the expected reward
of an agent and the local parameters can be derived from the mathematical

28 Lesser, Shen, Weber and Zhang

model we developed using OAR. In this model, an agent’s expected reward
is affected by the attitude parameters and reward splitting settings. Those
particular settings of local control parameters which lead to the maximum
expected reward can be found using the numerical optimization process.
Oftentimes, we want to show the optimality of a setting of the attitude
parameters only, or for the reward splitting alone. An optimality graph is
designed for this purpose. Its dimensions are labeled as the different attitude
parameters or as the different reward splitting settings. Each optimality graph
has an optimization goal, which can be the expected reward of individual agent,
or the sum of all agents’ expect reward (total expected reward of the system:∑

i ERi). Figures 6.8(a) and 6.8(b) show examples of optimality graphs with
the optimization goal being the total expected reward:

∑
i ERi.

In order to examine the optimality of a certain setting of attitude parameters
in the system, we first find the global optimum by varying all the different
parameters. Then we fix the attitude parameters, vary the reward splitting and
record the maximum total expected reward calculated using the mathematical
model. If this local maximum value is the same as the global optimum, then
we call this attitude parameter setting optimal. The corresponding point of
this setting in the optimality graph is colored dark gray. If the setting is not
optimal, the corresponding point is shown in medium gray. When a setting of
attitude parameters is chosen that lies within a dark gray area, it is possible to
have a reward splitting such that the system achieves the optimal total expected
reward in the current environment. If the setting of the attitude parameters is
chosen in a medium gray area, the optimal total expected reward cannot be
achieved, regardless of the chosen reward splitting.

Similarly, an optimality graph can be plotted for reward splitting to examine
the optimality of different reward splitting settings, as depicted in Figure
6.8(b). In such optimality graphs, the dark gray areas mark reward splittings
which allow for an optimal total expected reward. That is, when a setting
of R12, and R13 is chosen within a dark gray area, it is possible to set k2

and k3 in a way that the whole multi-agent system achieves the maximal total
expected reward in the current environment. For any reward splitting in a
medium gray area, that is not the case: k2 and k3 cannot be set in a way
that makes up for the suboptimal reward splitting. The light gray area – in
optimality graphs of R12 and R13 for the system at hand this is always the area
above the diagonal – denotes reward splittings that are invalid due to a fixed
R1 with R1 = R11 + R12 + R13 and R1, R11, R12, R13 > 0.

6. Formal Analysis of Negotiation Protocols 29

(a)

(b)

Fig. 6.8 (a) An attitude parameter optimality graph for Scenario 3 in Table 6.4 showing
the need for larger attitude parameter ranges. Optimization goal:

∑3
i=1 ERi. (b)

The reward splitting optimality graph for Scenario 3 in Table 6.4. Optimization goal:∑3
i=1 ERi. The white cross denotes the setting from [16] that lies in the suboptimal

area, marked in medium gray. This shows that different reward splittings can lead to
higher total expected reward for the system. Dark gray: optimal setting. Medium
gray: sub-optimal setting. Light gray: invalid setting.

30 Lesser, Shen, Weber and Zhang

6.7.2 Varying the reward splitting and its effect

Given a set of environmental parameters, reward splitting affects each agent’s
expected reward and also the total expected reward. Figure 6.9 shows a
typical, symmetric optimality graph with the total expected reward

∑3
i=1 ERi

as the optimization goal, produced on the basis of Scenario 2 in Table 6.3.
For some environments we tested, the splitting from [16], R11 = 3

4R1 and
R12 = R13 = 1

8R1, turned out to be within the optimal region. However, in
certain environments this is not the case and the fixed strategy fails to achieve
the optimal total expected reward. For one of these environments, Figure 6.8(b)
shows the optimality graph with optimization goal as the total expected reward∑3

i=1 ERi. The underlying environment is Scenario 3 in Table 6.4.
As we can see in Figure 6.8(b), the density of optimal solutions is fairly high

which means that, in most environments, a number of reward splittings may
lead to the optimal behavior. This is particularly beneficial for a distributed
system where the agent only has a local view of the system and can decide on
the reward splitting with limited information. With the high density of optimal
settings, the agent is more likely to choose an optimal reward splitting even
with its limited local knowledge.

We could exploit this fact by introducing a secondary goal to choose among
the optimal solutions. Examples for such goals include fairness, a minimal
reward for subtasks, balanced local gains and more.

From a global, system designer’s point of view, there exists some
redundancy given that one has control over all the variables. But from a more
local, agent-bound perspective, this is not the case, since the agent has a limited
scope of influence. As a result, the agent can make an optimal local decision
for a lot of settings of the other agents’ local control parameters.

Another observation from all optimality graphs in the (R12, R13)-space
with the optimization goal

∑3
i=1 ERi is that the lower left corner element

is always dark gray, i.e. optimal. It turns out that this setting, which is
(R12, R13) = (0, 0), in fact always yields the optimum and therefore lends
itself as a canonical solution to the reward splitting – detailed proof is presented
in Appendix A. Though this solution is optimal in terms of total expected
reward, it is very inflexible when it comes to secondary goals such as fairness.
In a lot of cases it will result in a highly skewed distribution of the reward
among the agents.

6.7.3 Different Formulae for Relational Reward Calculation

By taking into account the relational reward instead of just the local reward,
an agent that is requested to do a subtask bases its decision whether to do the

6. Formal Analysis of Negotiation Protocols 31

Fig. 6.9 An optimality graph in the (R12,R13)-space for Scenario 2 in Table 6.3,
optimization goal:

∑3
i=1 ERi. The setting that would have been selected by the fixed

strategy from [16] is marked with a white cross and lies within the dark gray area.
Therefore, it would have been optimal here.

32 Lesser, Shen, Weber and Zhang

task not solely on the real reward it may receive, but also on the other agents’
rewards. We examine three different ways to calculate the relational reward
and their expressiveness.

In the example from Fig. 6.3, A1 needs to complete task T1 in order to
collect a reward of R1 and asks A2 to complete one of its subtasks. It promises
a real reward of R12 and a relational reward of Rr12. If all the subtasks of T1

are finished successfully, A1 itself can collect R11 after handing out all the real
rewards. Rr12 can be calculated in one of the following three ways:

• Rr
(1)
12 = 1

2R11;

• Rr
(2)
12 = R11;

• Rr
(3)
12 = R1 −R12.

Each of the three calculations has its own motivation. Using Rr
(2)
12 as the

relational reward, A2 considers the reward A1 may receive if it commits to the
subtask. The motivation behind Rr

(1)
12 is that A2 alone committing to the task

is not going to get A1 the reward, but only with some probability, and 1
2 is a

fair estimate. On the other hand, R1 − R12 is a more accurate measure of the
reward the rest of the system would get if A2 chooses to do the subtask. As a
result, by using Rr

(3)
12 , k2 would be reflecting A2’s attitude towards the rest of

the system instead of its attitude towards A1 alone.

The choice of relational reward calculation depends on the goal of the agent
as well as the control mechanisms available to the system. If the goal is
to maximize the total expected reward in the system, one calculation of the
relational reward is more expressive than another when it potentially allows a
higher optimal total expected reward. We have the following proposition about
the expressiveness of the three relational reward calculations in a cooperative
system. Its formal proof is presented in Appendix B, based on the close form
mathematical model we developed in [21].

Proposition 6.1 With the goal to maximize the total expected reward, when
the reward splitting is fixed and attitude parameter k2 can be varied between 0
and 1, Rr

(3)
12 is at least as expressive as Rr

(2)
12 , and Rr

(2)
12 is at least as expressive

as Rr
(1)
12 . If the reward splitting is adjustable as well, then the expressiveness

of Rr
(2)
12 × Rr

(2)
13 (denotes Rr12 = R11 and Rr13 = R11) and Rr

(3)
12 × Rr

(3)
13

(denotes Rr12 = R1 − R12 and Rr13 = R1 − R13) are the same, while
Rr

(1)
12 ×Rr

(1)
13 (denotes Rr12 = 1

2R11 and Rr13 = 1
2R11) is less expressive.

6. Formal Analysis of Negotiation Protocols 33

6.8 Conclusion

In this chapter we introduced OAR, a formal framework to study different
issues related to negotiation. It is designed to answer the question of how
agents should interact in an evolving environment in order to achieve their
different goals. There are three components in OAR. Objective functions
specify different goals of the agents involved in a negotiation. Attitude
parameters reflect the negotiation attitude of each agent towards another
agent. Reward splitting specifies how a contractor agent divides the reward
between the subtasks it needs to contract out. The traditional categorization
of self-interested and cooperative agents is unified by adopting a utility
view. Both attitude parameters and reward splitting can be used as effective
local mechanisms for the agents to realize their goals. We proved that
it is safe to adjust agents’ local attitude parameters since the process will
converge. We also examined the effect of varying the reward splitting among
agents. We studied different ways to calculate relational reward and their
expressiveness. The goal of this work is not to find how to set a particular
local control parameter – the optimization process is based on the knowledge
of other agents’ control parameters and the environmental parameters, which
are not generally available in real applications. The main focus of this
work is to understand the limitation and efficiency of a specific negotiation
mechanism, and whether it pays off to use more complicated mechanisms. For
example, how important is it to choose an appropriate reward splitting? Is
it worthwhile to introduce relational reward into negotiation, and how should
it be calculated? Given a particular objective, how to choose the negotiation
mechanism? Such questions are asked more from the system/agent designer’s
perspective, who needs to decide what kind of negotiation mechanism should
be adopted for an agent.

In our future work, we intend to use OAR to model and evaluate different
systems with various negotiation strategies. Specifically, we are currently
studying the role of de-commitment penalty as a new parameter in OAR.
Another topic of interest is how the dynamic adjustment of local parameters
may play out in a non-cooperative system. The study of such issues will help
us to understand the behavior of a system with complex agent interactions and
guide us in the design process. In OAR, the objective function represents the
goal of each agent from a local perspective. We are looking into explicitly
representing other criteria that may be used to measure a system’s overall
performance such as fairness and load balancing. We are also interested to
explore whether the same optimization process can be used for agents who
have a non-cooperative objective function.

34 Lesser, Shen, Weber and Zhang

Appendix A

To see why the total expected reward is always maximized with this solution,
we have to take a look into the image space of the relational rewards:
(Rn2, Rn3). As described above, we use the formula Rni = R1i + kiR11

with the following constraints: ki ∈ [0, 1], R1, R11, R12, R13 > 0, and
R1 = R11 + R12 + R13.

Hypothesis 1: The (Rn2, Rn3)-space with the free variables
R11, R12, R13, k2, and k3 is [0, R1]× [0, R1].

Hypothesis 2: The assignment R11 = R1, R12 = R13 = 0 with k2 and
k3 as free variables allows the (Rn2, Rn3)-space to be [0, R1] × [0, R1], too,
and thus always allows for the optimal result.

Proof of Hypothesis 2: If R1 = 0, the (Rn2, Rn3)-space collapses to
(0, 0), because R1, R11, R12, R13 > 0 and R1 = R11 + R12 + R13 together
allow only R11 = R12 = R13 = 0. For any arbitrary value of ki, Rni =
R1i + kiR11 = 0 + ki · 0 = 0.

If R1 > 0 and we set R11 = R1, R12 = R13 = 0, the relational
reward formula reduces to Rni = kiR1. Therefore, Rn2 and Rn3 can be
set independently to any value between 0 and R1 by choosing ki respectively.

In all cases, the setting of R11 = R1, R12 = R13 = 0 results in the space
of (Rn2, Rn3) being [0, R1]× [0, R1].

�

Proof of Hypothesis 1: The above proof includes the statement that the
(Rn2, Rn3)-space is at least [0, R1] × [0, R1]. We still have to show that it is
not bigger for other settings. Again, for R1 = 0, that is apparent and the same
arguments as above hold true.

For R1 > 0, Rni still can never be negative, because it results from
multiplication and summation of non-negative terms. At the same time, Rni

cannot be larger than R1, due to the assignment R11 = R1, R1i = R1j = 0,
and ki = 1 results in Rni = R1, and any allowed change to this assignment at
most decreases Rni:

• Increasing R1j does not change anything.
• Increasing R1i does not change anything, since at the same time we

decrease R11 and there is the constraint R1 = R11 + R12 + R13.
• Increasing R11 is impossible, because of R1 = R11 + R12 + R13 and

R11, R12, R13 > 0.
• ki ∈ [0, 1] and therefore can only be decreased. Doing so decreases Rni.

Altogether, we can summarize the above as Rni > 0 and Rni 6
R1. Combined with the inclusion from the proof of Hypothesis 2, that the
(Rn2, Rn3)-space is at least [0, R1]× [0, R1], this is equal to Hypothesis 1.

6. Formal Analysis of Negotiation Protocols 35

�

Due to Hypotheses 1 and 2, any optimal (Rn2, Rn3) can be achieved with
R11 = R1 and R12 = R13 = 0. Therefore, this setting is a canonical optimal
solution. Using it, the optimization problem can be reduced to two dimensions
only: k2 and k3. However, it might not be favorable under other criteria to not
pay A2 and A3 anything, even when the main focus is on maximizing the total
expected reward. Although it can be used, we would encourage other, more
sophisticated approaches.

Appendix B

Hypothesis
There is an order between the image sets of the ways to calculate Rni and

thus their expressiveness.
Say, I(T) is the (infinite) set of values that can be expressed with the term

T , its mathematical image. With control over the ki only, we denote Rn
(l)
i as

Rn
(l)
i (ki), and get the following relationship

∀R1,R11, R1i, R1j > 0 s.t. R1 = R11 + R1i + R1j with ki ∈ [0, 1] :

I(Rn
(1)
i (ki)) ⊂ I(Rn

(2)
i (ki)) ⊂ I(Rn

(3)
i (ki)) (6.26)

When having control over the reward splitting as well, namely R11, R1i,
and R1j within certain bounds, the relations change. Since here the relational
rewards for agents A2 and A3 are not independent of each other anymore, we
have to look at both of them at the same time, resulting in the two-dimensional
space spanned by Rn2 and Rn3. We denote Rn

(l)
i as Rn

(l)
i (p1, p2, ...) where

pm are the relevant parameters for this term. The altered relationships are the
following:

∀ R1 > 0, with k2, k3 ∈ [0, 1] and R11, R12, R13 > 0
s.t. R1 = R11 + R12 + R13 :

I(Rn
(1)
2 (k2, R11, R12)×Rn

(1)
3 (k3, R11, R13))

⊂ I(Rn
(2)
2 (k2, R11, R12)×Rn

(2)
3 (k3, R11, R13))

≡ I(Rn
(3)
2 (k2, R11, R12, R13)×Rn

(3)
3 (k3, R11, R12, R13)) (6.27)

In general, the subset relations are proper subsets, but for some
environments the images can be equal.

36 Lesser, Shen, Weber and Zhang

Proof
We will first prove hypothesis (6.26), by showing I(Rn

(1)
i (ki)) ⊆

I(Rn
(2)
i (ki)) and I(Rn

(2)
i (ki)) ⊆ I(Rn

(3)
i (ki)). In particular,

I(Rn
(1)
i (ki)) ⊆ I(Rn

(3)
i (ki)) can be concluded from the transitivity of the

relation⊆, which we will not prove here. Then, we will show that the relations
are strict subsets in general. Next, we will prove hypothesis (6.27), by assuring
I(Rn

(1)
2 ×Rn

(1)
3) ⊆ I(Rn

(2)
2 ×Rn

(2)
3),

I(Rn
(1)
2 ×Rn

(1)
3) 6⊃ I(Rn

(2)
2 ×Rn

(2)
3),

I(Rn
(2)
2 ×Rn

(2)
3) ⊆ I(Rn

(3)
2 ×Rn

(3)
3), and

I(Rn
(2)
2 ×Rn

(2)
3) ⊇ I(Rn

(3)
2 ×Rn

(3)
3)

In order to keep this list legible, we omitted the parameters. We will continue
to do so occasionally, when appropriate. In the rest of this proof, we will write
k

(l)
i to refer to the ki in Rn

(l)
i (ki). For the R1i we will use the analogous

notation, but only when we have control over it.
Proof of I(Rn

(1)
i (ki)) ⊆ I(Rn

(2)
i (ki)):

For any arbitrary but fixed assignment of k
(1)
i , R1, R11, R1i, and R1j such that

R1, R11, R1i, R1j > 0, k
(1)
i ∈ [0, 1] and R1 = R11 +R1i +R1j , we can prove

Rn
(1)
i (ki) ∈ I(Rn

(2)
i (ki)).

That is, ∃k(2)
i ∈ [0, 1] : Rn

(1)
i (ki) = R1i + 1

2k
(1)
i R11 = Rn

(2)
i (ki) = R1i +

k
(2)
i R11 and we can find this k

(2)
i .

Rn
(1)
i (ki) = Rn

(2)
i (ki)

R1i +
1
2
k

(1)
i R11 = R1i + k

(2)
i R11

1
2
k

(1)
i R11 = k

(2)
i R11

Since R11 > 0, there are two cases.
Case 1: R11 = 0

Then, for any arbitrary k
(2)
i the statement is true:

0 = 0

Case 2: R11 > 0

1
2
k

(1)
i = k

(2)
i (6.28)

6. Formal Analysis of Negotiation Protocols 37

Since k
(1)
i ∈ [0, 1] and 1

2k
(1)
i = k

(2)
i , it is obvious that k

(2)
i ∈ [0, 0.5] ⊂

[0, 1], where any valid setting for k
(2)
i has to obey k

(2)
i ∈ [0, 1].

Proof of I(Rn
(2)
i (ki)) ⊆ I(Rn

(3)
i (ki)):

For any arbitrary but fixed assignment of k
(2)
i , R1, R11, R1i, and R1j such that

R1, R11, R1i, R1j > 0, k
(2)
i ∈ [0, 1] and R1 = R11 +R1i +R1j , we can prove

Rn
(2)
i (ki) ∈ I(Rn

(3)
i (ki)).

That is, ∃k(3)
i ∈ [0, 1] : Rn

(2)
i (ki) = R1i + k

(2)
i R11 = Rn

(3)
i (ki) = R1i +

k
(3)
i (R11 + R1j) and we can find this k

(3)
i .

Rn
(2)
i (ki) = Rn

(3)
i (ki)

R1i + k
(2)
i R11 = R1i + k

(3)
i (R11 + R1j)

k
(2)
i R11 = k

(3)
i (R11 + R1j)

Since R11, R1j > 0, there are two cases.

Case 1: R11 = R1j = 0
Then, for any arbitrary k

(3)
i the equality is established:

0 = 0

Case 2: R11 > 0 ∨R1j > 0

k
(3)
i = k

(2)
i

R11

R11 + R1j
(6.29)

We can be certain that k
(3)
i ∈ [0, 1]: In case 1, we can choose k

(3)
i

arbitrarily, in particular within the desired interval. In case 2, we have to prove
that R11

R11+R1j
∈ [0, 1]. However, we know: R11, R1j > 0 ∧ (R11 > 0 ∨R1j >

0).
If R11 = 0, then R1j > 0 and R11

R11+R1j
= 0

R1j
= 0.

If R1j = 0, then R11 > 0 and R11
R11+R1j

= R11
R11

= 1.

If R11 > 0 ∧R1j > 0, then R11
R11+R1j

> 03 and R11
R11+R1j

< R11
R11

= 1.

3In the limit, R11
R11+R1j

−−−−−−−→
R1j →∞

0.

38 Lesser, Shen, Weber and Zhang

Now that we can be certain of R11
R11+R1j

∈ [0, 1] and k
(2)
i ∈ [0, 1], we can

conclude that k
(3)
i = k

(2)
i

R11
R11+R1j

∈ [0, 1].
In order to show that the image sets are not completely equal, we have to

show that certain values can be achieved by the one formula but not the other.
It is sufficient to pick exactly one such value per pair of formulae. Since the
6⊃ relation is not necessarily transitive, we will conduct the proof for all three
pairs.

Proof of I(Rn
(1)
i (ki)) 6⊃ I(Rn

(2)
i (ki)):

For an arbitrary but fixed setting of R11 and R1i, and a k
(2)
i > 0.5, Rn

(2)
i (ki) =

R1i + k
(2)
i R11 takes on a value that cannot be the outcome of Rn

(1)
i (ki) =

R1i + 1
2k

(1)
i R11, with a k

(1)
i ∈ [0, 1].

One specific instance: Let R11 = 10, R1i = 10, and k
(2)
i = 1. Then,

Rn
(2)
i (ki) = R1i + k

(2)
i R11 = 10 + 1 · 10 = 20. In order to construct a

k
(1)
i , such that 20 = R1i + 1

2k
(1)
i R11 = 10 + 1

2k
(1)
i 10, k

(1)
i would have to

be 2, with violates the constraint k
(1)
i ∈ [0, 1]. Thus, there is an element in

I(Rn
(2)
i (ki)) which is not in I(Rn

(1)
i (ki)).

Proof of I(Rn
(2)
i (ki)) 6⊃ I(Rn

(3)
i (ki)):

For an arbitrary but fixed setting of R11, R1i, and R1j , k
(3)
i can be set in a

way that causes Rn
(3)
i (ki) = R1i + k

(3)
i (R11 + R1j) to take on a value which

cannot be the outcome of Rn
(2)
i (ki) = R1i + k

(2)
i R11, with a k

(2)
i ∈ [0, 1].

One specific instance: Let R11 = 10, R1i = 10, R1j = 10, and k
(3)
i = 1.

Then, R1i + k
(3)
i (R11 + R1j) = 10 + 1 · (10 + 10) = 30. In order to construct

a k
(2)
i , such that 30 = R1i + k

(2)
i R11 = 10 + k

(2)
i 10, k

(2)
i would have to

be 2, with violates the constraint k
(2)
i ∈ [0, 1]. Thus, there is an element in

I(Rn
(3)
i (ki)) which is not in I(Rn

(2)
i (ki)).

Proof of I(Rn
(1)
i (ki)) 6⊃ I(Rn

(3)
i (ki)):

Above, we have shown that I(Rn
(1)
i (ki)) 6⊃ I(Rn

(2)
i (ki)) and I(Rn

(2)
i (ki)) ⊆

I(Rn
(3)
i (ki)). Therefore, we can conclude that the specific element of

I(Rn
(2)
i (ki)) which is not in I(Rn

(1)
i (ki)), is in I(Rn

(3)
i (ki)). Thus, there

is at least one elements of I(Rn
(3)
i (ki)) which is not in I(Rn

(1)
i (ki)).

Proof of I(Rn
(1)
2 (k2, R11, R12)×Rn

(1)
3 (k3, R11, R13))

⊆ I(Rn
(2)
2 (k2, R11, R12)×Rn

(2)
3 (k3, R11, R13)):

6. Formal Analysis of Negotiation Protocols 39

For each R1 > 0 and an arbitrary but fixed setting of k
(1)
2 , k

(1)
3 ∈

[0, 1], R(1)
11 , R

(1)
12 , R

(1)
13 > 0 with R1 = R

(1)
11 + R

(1)
12 + R

(1)
13 , we can find a

valid assignment of k
(2)
2 , k

(2)
3 , R

(2)
11 , R

(2)
12 , R

(2)
13 , such that (Rn

(1)
2 , Rn

(1)
3) =

(Rn
(2)
2 , Rn

(2)
3). The assignment strategy here is rather simple: R

(2)
11 =

R
(1)
11 , R

(2)
12 = R

(1)
12 , R

(2)
13 = R

(1)
13 , k

(2)
2 = 1

2k
(1)
2 , k

(2)
3 = 1

2k
(1)
3 . As

shown above (equation (6.28) and the proofs around it), the resulting
values are the same: Rn

(1)
i = Rn

(2)
i for i ∈ {2, 3}. Thus,

every element in I(Rn
(1)
2 (k2, R11, R12) × Rn

(1)
3 (k3, R11, R13)) is also in

I(Rn
(2)
2 (k2, R11, R12)×Rn

(2)
3 (k3, R11, R13))

Proof of I(Rn
(1)
2 (k2, R11, R12)×Rn

(1)
3 (k3, R11, R13))

6⊃ I(Rn
(2)
2 (k2, R11, R12)×Rn

(2)
3 (k3, R11, R13)):

In order to prove the above statement, we have to provide one element of
I(Rn

(2)
2 × Rn

(2)
3) which is not in I(Rn

(1)
2 × Rn

(1)
3). Note that for R1 = 0,

the image sets are equal: {0}. But for a fixed arbitrary value of R1 > 0, we set
k

(2)
2 = k

(2)
3 = 1, R

(2)
11 = R1, and R

(2)
12 = R

(2)
13 = 0. This assignment satisfies

the constraints k
(2)
2 , k

(2)
3 ∈ [0, 1] and R1 = R

(2)
11 + R

(2)
12 + R

(2)
13 . The result is

I(Rn
(2)
2 ×Rn

(2)
3) = (R1, R1).

For now, let us assume that (R1, R1) ∈ I(Rn
(1)
2 (k2, R11, R12) ×

Rn
(1)
3 (k3, R11, R13)). In particular, that means R1 = Rn

(1)
2 (k2, R11, R12) =

R
(1)
12 + 1

2k
(1)
2 R

(1)
11 . Since k

(1)
2 has to be in [0, 1] and R1 = R

(1)
11 + R

(1)
12 + R

(1)
13

has to be fulfilled, that means essentially that we have to set R
(1)
12 = R1 and

thus R
(1)
11 = R

(1)
13 = 0, where k

(1)
2 can be set arbitrarily. No other possible

reward splitting than the above one would satisfy R1 = Rn
(1)
2 (k2, R11, R12).

But then, Rn
(1)
3 (k3, R11, R13) = R

(1)
13 + 1

2k
(1)
3 R

(1)
11 = 0 + 1

2k
(1)
3 · 0 = 0,

specifically R1 > 0 = Rn
(1)
3 (k3, R11, R13). Thus, our assumption had to be

false and we can conclude that (R1, R1) is not in I(Rn
(1)
2 (k2, R11, R12) ×

Rn
(1)
3 (k3, R11, R13)).

Proof of I(Rn
(2)
2 (k2, R11, R12)×Rn

(2)
3 (k3, R11, R13))

⊆ I(Rn
(3)
2 (k2, R11, R12, R13)×Rn

(3)
3 (k3, R11, R12, R13)):

For each R1 > 0 and an arbitrary but fixed setting of k
(2)
2 , k

(2)
3 ∈

[0, 1], R(2)
11 , R

(2)
12 , R

(2)
13 > 0 with R1 = R

(2)
11 + R

(2)
12 + R

(2)
13 , we can find a

40 Lesser, Shen, Weber and Zhang

valid assignment of k
(3)
2 , k

(3)
3 , R

(3)
11 , R

(3)
12 , R

(3)
13 , such that (Rn

(2)
2 , Rn

(2)
3) =

(Rn
(3)
2 , Rn

(3)
3). The assignment strategy here, again, is rather simple:

R
(3)
11 = R

(2)
11 , R

(3)
12 = R

(2)
12 , R

(3)
13 = R

(2)
13 , k

(3)
2 = k

(2)
2

R
(2)
11

R
(3)
11 +R

(3)
13

, k
(3)
3 =

k
(2)
3

R
(2)
11

R
(3)
11 +R

(3)
12

. As shown above (equation (6.29) and around it), the

resulting values are the same: Rn
(2)
i = Rn

(3)
i for i ∈ {2, 3}. Thus,

every element in I(Rn
(2)
2 (k2, R11, R12) × Rn

(2)
3 (k3, R11, R13)) is also in

I(Rn
(3)
2 (k2, R11, R12, R13)×Rn

(3)
3 (k3, R11, R12, R13)).

Proof of I(Rn
(2)
2 (k2, R11, R12)×Rn

(2)
3 (k3, R11, R13))

⊇ I(Rn
(3)
2 (k2, R11, R12, R13)×Rn

(3)
3 (k3, R11, R12, R13)):

For R1 = 0, both image sets only contain the element (0, 0). Specifically,
the statement is true. For an arbitrary but fixed R1 > 0 and an arbitrary but
fixed setting of k

(3)
2 , k

(3)
3 ∈ [0, 1], R(3)

11 , R
(3)
12 , R

(3)
13 > 0 with R1 = R

(3)
11 +

R
(3)
12 +R

(3)
13 , we can find a valid assignment of k

(2)
2 , k

(2)
3 , R

(2)
11 , R

(2)
12 , R

(2)
13 , such

that (Rn
(3)
2 , Rn

(3)
3) = (Rn

(2)
2 , Rn

(2)
3). The assignment strategy here is the

following: R
(2)
11 = R1, R

(2)
12 = R

(2)
13 = 0, k

(2)
2 = Rn

(3)
2

R1
, k

(2)
3 = Rn

(3)
3

R1
. This

setting of k
(2)
i is valid, due to Rn

(3)
i = R

(3)
1i + k

(3)
i (R(3)

11 + R
(3)
1j) and k

(3)
i ∈

[0, 1]. Therefore, Rn
(3)
i ∈ [R1i, R1], because R1 = R

(3)
11 + R

(3)
12 + R

(3)
13 . Thus,

Rn
(3)
i

R1
∈ [0, 1]. Given the assignment above, the resulting values are the same:

Rn
(2)
i = R

(2)
1i + k

(2)
i R

(2)
11 = 0 + Rn

(3)
i

R1
R1 = Rn

(3)
i for i ∈ {2, 3}. Thus, every

element in I(Rn
(3)
2 (k2, R11, R12, R13)×Rn

(3)
3 (k3, R11, R12, R13)) is also in

I(Rn
(2)
2 (k2, R11, R12)×Rn

(2)
3 (k3, R11, R13)).

�

References

1. H. Jung, M. Tambe, and S. Kulkarni, “Argumentation as distributed constraint
satisfaction: Applications and results,” in Proceedings of the International
Conference on Autonomous Agents, 2001.

2. X. Zhang, V. Lesser, and T. Wagner, “Integrative negotiation among agents
situated in organizations,” IEEE Transactions on Systems, Man, and Cybernetics:
Part C, Special Issue on Game-theoretic Analysis and Stochastic Simulation of
Negotiation Agents, vol. 36, no. 1, pp. 19–30, January 2006.

6. Formal Analysis of Negotiation Protocols 41

3. A. Glass and B. Grosz, “Socially conscious decision-making,” in Proceedings of
Agents 2000 Conference, Barcelona, Spain, June 2000, pp. 217 – 224.

4. E. Oliveira and A. P. Rocha, “Agents advanced features for negotiation in
electronic commerce and virtual organisations formation processes,” in Agent
Mediated Electronic Commerce, The European AgentLink Perspective., C. Sierra
and F. Dignum, Eds. London, UK: Springer-Verlag, 2001, pp. 78–97.

5. Q. Zheng and X. Zhang, “Automatic formation and analysis of multi-agent virtual
organization,” Journal of the Brazilian Computer Society: Special Issue on Agents
Organizations, vol. 11, no. 1, pp. 74–89, July 2005.

6. T. J. Norman, A. Preece, S. Chalmers, N. R. Jennings, M. Luck, V. D. Dang,
T. D. Nguyen, V. Deora, J. Shao, A. Gray, and N. Fiddian, “Conoise: Agent-based
formation of virtual organisations,” Int. J. Knowledge Based Systems, vol. 17, no.
2-4, pp. 103–111, 2004.

7. S. Sen and E. H. Durfee, “A formal study of distributed meeting scheduling,”
Group Decision and Negotiation, vol. 7, pp. 265–289, 1998.

8. T. Sandholm, S. Sikka, and S. Norden, “Algorithms for optimizing leveled
commitment contracts,” in Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), Stockholm, Sweden, 1999, pp. 535–540.

9. S. Sen, “Believing others: Pros and cons.” in Artificial Intelligence,, 2002, pp.
142(2):179–203.

10. S. Saha, S. Sen, and P. S. Dutta, “Helping based on future expectations,” in
Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems. Melbourne, Australia: ACM Press, 2003, pp. 289–296.

11. K. Decker and V. Lesser, “An Approach to Analyzing the Need for Meta-Level
Communication,” International Joint Conference on Artificial Intelligence, vol. 1,
January 1993. [Online]. Available: http://mas.cs.umass.edu/paper/29

12. J. M. Vidal, “The effects of cooperation on multiagent search in task-oriented
domains,” Journal of Experimental and Theoretical Artificial Intelligence,
vol. 16, no. 1, pp. 5–18, 2004.

13. M. Klusch and A. Gerber, “Dynamic coalition formation among rational agents,”
IEEE Intelligent Systems, vol. 17, no. 3, pp. 42–47, 2002.

14. D. K. Levine, “Modeling altruism and spitefulness in experiments,” Review of
Economic Dynamics, vol. 1, pp. 593–622, 1998.

15. W. T. L. Teacy, N. R. J. J. Patel, S. C. M. Luck, N. Oren, T. J. Norman,
A. Preece, P. M. D. Gray, G. Shercliff, P. J. Stockreisser, J. Shao, W. A. Gray,
N. J. Fiddian, and S. Thompson, “Monitoring, policing and trust for grid-based
virtual organisations,” in Proc. 4th UK e-Science Meeting, Nottingham, 2005.

16. J. Shen, X. Zhang, and V. Lesser, “Degree of Local Cooperation and its
Implication on Global Utility,” Proceedings Of Third International Joint
Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2004), July
2004.

17. M. H. Chia, D. E. Neiman, and V. R. Lesser, “Poaching and distraction
in asynchronous agent activities,” in Proceedings of the Third International
Conference on Multi-Agent Systems, 1998, pp. 88–95.

18. V. R. Lesser and L. D. Erman, “Distributed interpretation: A model and an
experiment,” vol. C-29, no. 12, pp. 1144–1163, Dec. 1980.

19. S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient Methods.
Stanford University, October 1, 2003.” [Online]. Available:
http://www.stanford.edu/class/ee392o/subgrad method slides.pdf

20. A. Nedic and D. Bertsekas, “Incremental Subgradient Methods for
Nondifferentiable Optimization,” Report LIDS-P-2460, Dec. 2000, SIAM

42 Lesser, Shen, Weber and Zhang

J. on Optimization, Vol. 12, pp. 109–138, 2001. [Online]. Available:
http://web.mit.edu/dimitrib/www/Increm LIDS.pdf

21. I. Weber, J. Shen, and V. Lesser, “Modeling and analyzing cooperation
parameters in a multi-agent system,” Computer Science Department, University
of Massachusetts, Amherst, Tech. Rep. 05-29, 2005.

