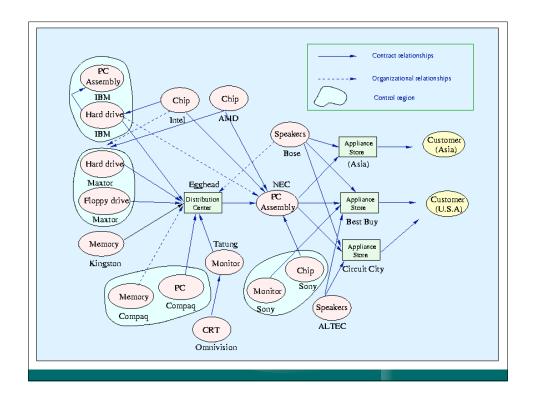

Integrative Negotiation in Complex Organizational Agent Systems

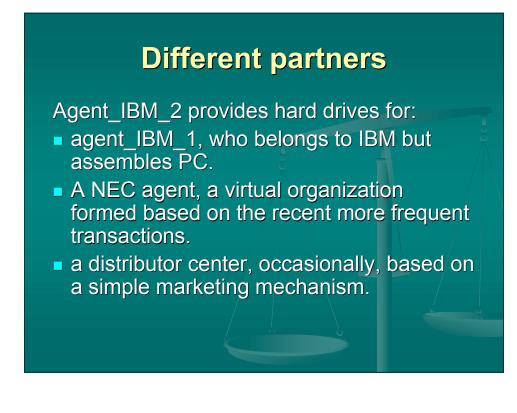
Xiaoqin Zhang University of Massachusetts at Dartmouth Victor Lesser University of Massachusetts at Amherst Tom Wagner Honeywell Laboratories

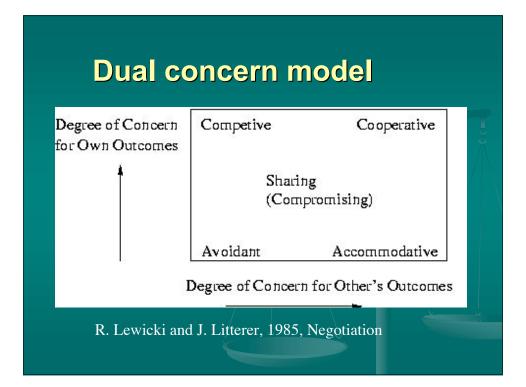
Agents and Multi-Agent Systems

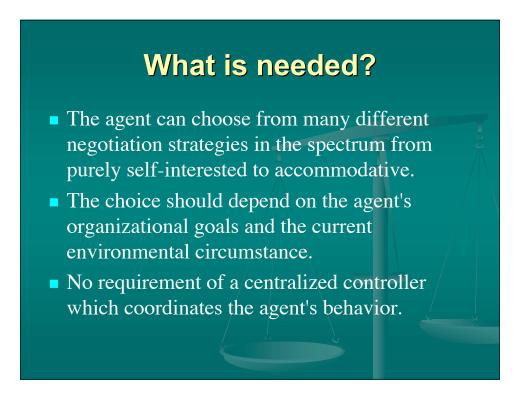
- Multi-agent system intelligent agents interacting
- Agent complex and large-grained
 - Multiple tasks scheduling
 - Complex tasks planning
 - Soft real-time concerns
- Applications
 - Agent-mediated electronic commerce
 - Supply-chain management
 - Distributed sensor network
 - Intelligent environment control

Negotiation in MAS

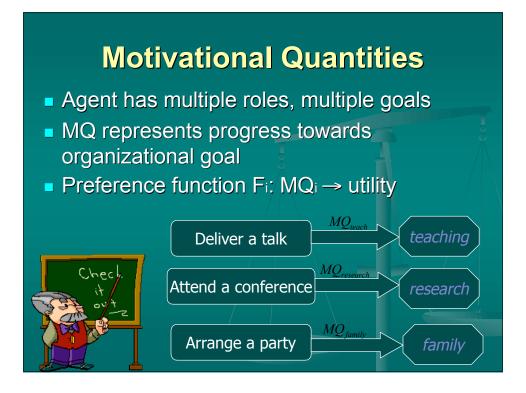

- Negotiation an interactive communication
 - Task allocation
 - Resource allocation
 - Conflict resolution
- Research on Negotiation
 - Negotiation language: communication part including primitive, semantics, protocols, and topics, etc.
 - Negotiation decision: evaluation process, how to select bids, strategies.
 - Negotiation process: negotiation behavior, models, etc.

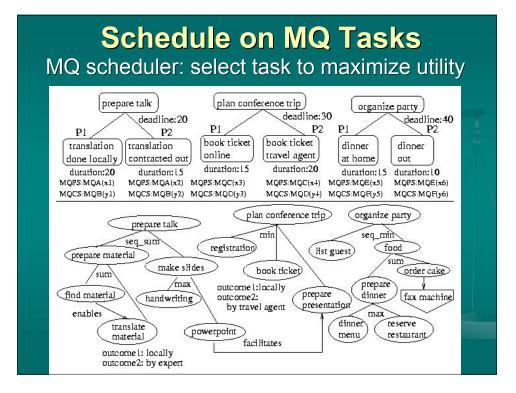

Two major trends


- Competitive negotiation
 - agents are self-interested and negotiate to maximize their own local utility
 - social welfare is not a concern
 - Example: TRACONET, leveled commitment [sandhlom & lesser,96]
- Cooperative negotiation
 - agents work to find a solution that increases their joint utility or solve conflict
 - no notion of individual agent utility
 - Example: Distributed meeting scheduling [sen96]


Organization Structures

- simple market systems
 - distributed problem solving systems
- Dynamically formed virtual organizations
- Involved concurrently with more than one virtual organization
- Pure self-interested may hurt repeated transactions
- Bounded rationality prevents fully cooperative

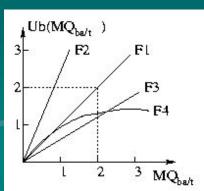



What have been done? - brownie point

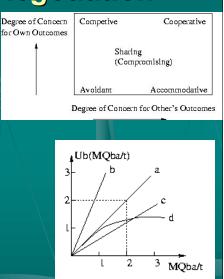
- Brownie points [Glass and Grosz 00], a measure of social consciousness
- Agent belongs to a group, receives both group tasks and outside offers.
- Agent collects brownie points by not defaulting group task.
- BP-weight: varying levels of social consciousness.
- A central mechanism controlling the assignment of group tasks according to agent's rank.

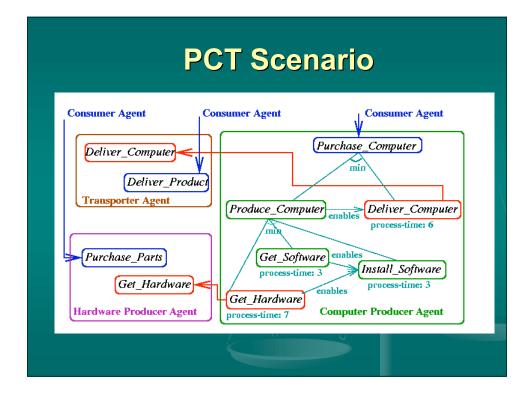
What have been done? - reciprocity

- Probabilistic reciprocity mechanism [Sen,96]
- Reciprocity: promote cooperative behavior among self-interested agents
- Probability of accepting a request depends on:
 - extra cost of this cooperation behavior
 - how much effort it owes
 - Adjustable parameters allow agent choose a specific cooperation level
- Assumes that cooperation always leads to aggregate gains for the group; no organizational structure.


Two types of MQ

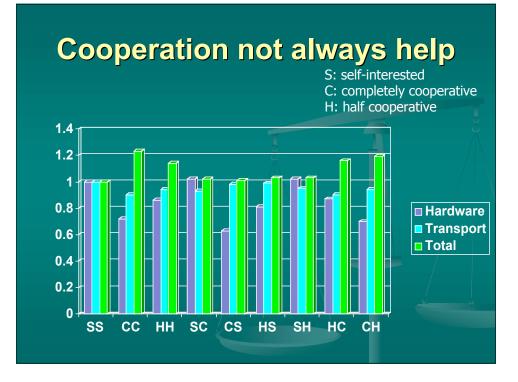
- Goal related MQ
 - Mapped into agent's utility, utility function is determined by agent designer
 - Transferred between agents who have the same organizational goal.
- Relational MQ
 - Mapped into "virtual" utility
 - Utility curve reflects the relationship between agents

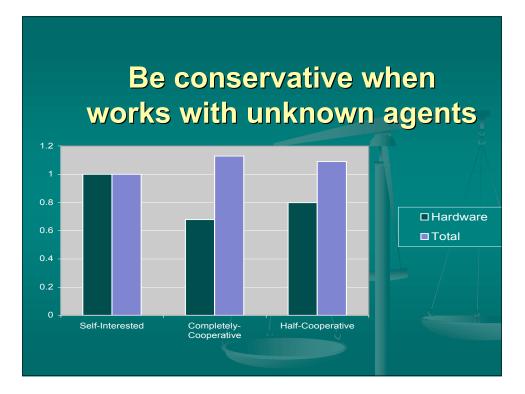

Relational MQ (*motivational quantity*)


- Transferred from agent A to B with task t
- How important task t is for agent A
- How much agent B cares
- Function F1: completely cooperative
- Function F2: accommodative (over cooperative)
- Function F3: partially cooperative (half cooperative)
- Function F4: first cooperative, then indifferent

Integrative Negotiation

- Agents negotiate
 - With agents from different organizations, different roles, authority relationships
 - Concern different issues
- Dynamic strategies
 - Wide range of selections
 - Depends on negotiation party and issue
 - Related to organizational concerns




	omputer proc Get a co		
task name	: Purchase C		
est: 10	• rurenuse_c		
deadline:	70		
reward: 2	0 units MQs	8	
	ish reward ra	te: e=0.01	
Finish ti	me: 40		
	ard: (70-40)*		
task name	Get_Hardware_A	Deliver_Computer_A	
est	10	30	
	20	40	/
deadline	20	10	
	3 units MQ _{\$}	3 units $MQ_{\$}$	
deadline			/

	Hardware agent What should I do?									
	task name	est	deadline	process time	MQPS					
	Get_Hardware_A	10	20	10	[MQ _{\$} ,3] [MQ _{hc/t} , 10]					
	Purchase_Parts_A	10	30	10	[MQ\$,4]					
	Purchase_Parts_B	10	20	10	[MQ _{\$} ,9]					
$U_{ha}(MQ_{hc/t}) = k * MQ_{hc/t}$ $\cdot k=1, completely-cooperative$										
[10, 20] Get_Hardware_A [20, 30] Purchase_Parts_A										
·k=0.5, half-cooperative (partial cooperat:										
[10, 20] Purchase_Parts_B [20, 30] Purchase_Parts_A										
• k	• k=0, self-interested									
	[10, 20] Purchase_Parts_B [20, 30] Purchase_Parts_A									

Experimental Setup

- Agent society: computer producer agent, hardware agent, transport agent
- Three attitudes: completely-cooperative (C), half-cooperative (H), and selfinterested (S)
- Nine combinations: CC, HH, SS, HC, CH, HS, SH, CS, SC
- comparison of each agent's utility and the social welfare under different situations

Uncertainty play a role

- Uncertainty comes from lack of information
 - The other agent's attitude
 - How good is its outside offer, and frequency
- Fully cooperative is impossible given complete global information is not available

Alternative view of MQ

- Another reason of uncertainty in a distributed system: uncertainty about the relationships with other agents
- MQ can be used as a means to deal with this uncertainty
 - Dynamically adjust MQ (the agent's attitude) towards another agent based on how certain/uncertain it is about the other's commitment to itself

Conclusions and Future Work

- Integrative negotiation with attitude from self-interested to complete cooperative
- In a uniform reasoning framework
- Model human society
- How should an agent select its attitude? Learning from experience?