
UMass Dartmouth Slide 1

Integrating Object-Oriented Design
and High-Level Petri Nets

in Development of Concurrent
Software Systems

Boleslaw Mikolajczak
with contributions by D. Mukhin, Ch. Sefranek, H. Hsueh, A. Cabeza, Z. Wang, B. Bauskar

Computer and Information Science Department
College of Engineering

University of Massachusetts Dartmouth

Computer Science Seminar Series

April 18, 2003

UMass Dartmouth Slide 2

Contents
• Motivation and Introduction
• Integration of Object-Orientedness and Petri Nets
• Applying Colored Petri Nets to Object-Oriented Design:

– Abstract Node - High Level Abstraction of an Object
– Interface - First Level Refinement
– Method Implementation - Second Level Refinement
– Inheritance versus Delegation - for Classes and Objects
– Inheritance Anomaly and Methods of Its Resolution
– Polymorphism and Dynamic Behavior of Objects

• Conclusions
• References
• Future Work

UMass Dartmouth Slide 3

Motivation
• Imperative from Mellor and Shlaer (1994):

“The ability to execute the application analysis model is a sine qua
non for any industrial-strength method because analysts need to
verify the behavior of the model with both clients and domain
experts”

• Software development:
- orthogonality between pragmatics and theory - pragmatics
attributes and theory attributes are/should be mutually independent;
i.e. it is possible to develop software systems with/without theory
- pragmatics attributes: modularity, readability, reusability
- theory attributes: formal analysis of software properties, model’s
executability

UMass Dartmouth Slide 4

Introduction

• Object-Oriented Design:
– well established design techniques with classes, responsibilities, and

collaboration graphs being result of some OOD method
– lacks analysis, verification and validation (V/V) methods of the designed

system
– lacks formal specification of concurrency and partial ordering of events
– support for inheritance, polymorphism, and dynamic binding
– UML modeling provides Message Sequence Chart (MSC) for

interactions and ordering of objects; some actions may constitute co-
regions, i.e. they remain unordered

UMass Dartmouth Slide 5

Introduction, ctnd.
• Petri Nets:

– well-defined formalism of parallel/distributed system modeling with
graphical and algebraic representation

– conflict representation and resolution (as a mechanism of choice)
– confusion representation and its algorithmic detection (as co-existence of

concurrency and conflict)
– time representation (delay and duration) and time annotations as part of

arc/transition inscriptions
– resource allocation explicit representation
– support for abstraction and refinement using vicinity preserving and

general Petri net morphisms - elements of hierarchical structuring
– weak support for composition of Petri net-based models
– lacks clear and effective specification of system design techniques
– strong analysis, verification and validation techniques and broadly

available CASE tools

UMass Dartmouth Slide 6

Integration of Object-Orientedness
and Petri Nets

• Three approaches of integration of Petri nets with object-
oriented concepts:
- giving a formal basis to an object-oriented language or methodology
- extending Petri nets by the use of complex data types for tokens
- using object-oriented concepts directly in the Petri net formalism

• Integration of objects with Petri nets is difficult because
modeling and structuring power of objects is often in
conflict with the proving facilities of Petri nets (examples: using
of complex data types for tokens, support for inheritance and polymorphism)

• rapid prototyping of PDSS - modeling, analysis, V/V, and
performance evaluation of the designed system

UMass Dartmouth Slide 7

Integration of Object-Orientedness
and Petri Nets

• OO and Petri nets are complementary methodologies
• Goal:

– use Object-Oriented methodology/technology on the design stage
– use Petri Nets on the analysis and Verification/Validation stage

• Approach #1: “Objects inside Petri Nets”
– increases token’s intelligence
– represents a designed system as a single, large Petri Net
– does not contribute to abstraction of Petri Nets

• Approach #2: “Petri Nets inside Objects”
– to model the inner behavior of objects (as sequential or concurrent)
– very valuable starting point for the abstraction of Petri Nets
– usually Object-Based rather than Object-Oriented

UMass Dartmouth Slide 8

Integration of Object-Orientedness
and Petri Nets

• Petri Nets First - Top-down Approach:
– start with a Petri Net and represent a system by means of PN
– objects are tokens or sub-nets
– beneficial for verification (PNs support V/V)
– abstraction is used to relate objects to tokens and sub-nets

• Object Orientedness First - Bottom-up Approach:
– start with a result of some kind of OOD
– Petri Nets represent classes and object interactions
– beneficial for design (full power of design method can be utilized)
– single, large Petri Net; no abstraction
– object = (data structures, operations, object’s behavior)

UMass Dartmouth Slide 9

Integration of Object-Orientedness
and Petri Nets, ctnd.

• Sibertin-Blanc & Bastide - Petri Nets with Objects (PNO) - tokens contain
references to OO data structures and Cooperative Objects (COO) - objects
with Object Control Structure (OBCS) - CASE tool SYROCO

• Lakos - Object Petri Nets (OPN) developed from Colored Petri nets through
a serious of formal transformations that make Object Petri Nets
behaviorally equivalent to Colored PNs - CASE tool LOOPN

• Buchs & Guelfi - Concurrent Object-Oriented Petri Nets; an object has an
internal behavior defined by an algebraic net - CASE tool CO-OPN/2

• Valk - Relating Different Semantics of Object Petri Nets, Report, 2000, Petri
Nets as Dynamic Objects; Communicating OPNs

• Moldt - Object CPN - an extension of CPNs

UMass Dartmouth Slide 10

Integration of Object-Orientedness
and Petri Nets - the hybrid approach

VerificationDesign

PN

OO

OO/PN

UMass Dartmouth Slide 11

Abstract Node

• Symmetry and Abstraction Constructs:
– asymmetry of existing abstraction constructs (Lakos, Petri)
– non-unified constructs (abstract places/abstract transitions; do not emphasize

the duality of places and transitions)
– unified abstraction construct - Abstract Node (AN)

• Abstract Node:
– AN as an abstract place and AN as an abstract transition
– constructed by connecting a place (AN-place) and a transition (AN-transition)

by two arcs with parametrizing inscriptions in a loop
– duality between sets {1,2} and {3,4} of arcs as duality between abstract places

and abstract transitions
– if arcs {1,2} are used for embedding an abstract node into the net then it

behaves like abstract place; if arcs {3,4} are used then it behaves as an abstract
transition

UMass Dartmouth Slide 12

Abstract Node

4

31

2

UMass Dartmouth Slide 13

Abstract Node versus Abstract Places
and Abstract Transitions

• Natural Extension of Places and Transitions to Abstract
Places and Abstract Transitions:
– abstract places may store but not modify tokens
– abstract transitions may modify but not store tokens

• Desired Solution:
– abstract places need to modify tokens (with token conservation)
– abstract transitions may store tokens with some restrictions applied

(atomicity of internal actions)
– AN-place can store tokens and AN-transition can modify them
– the modification of tokens by AN (that acts as abstract place) is done by

firing AN-transition, which results in a change of color of the token of
the AN-place

UMass Dartmouth Slide 14

Abstract Node versus Abstract Places
and Abstract Transitions, ctnd.

• the internal state of AN (that acts as abstract transition) is
stored in the AN-place; AN-transition can modify an internal
state and synchronizes the actions associated with its external
incident arcs (arcs 3 and 4)

• AN can be constructed using regular CPNs without any
modifications or additions; the level of abstraction can be varied
by changing inscriptions of abstract node’s arcs (AN-arcs) and a
color set of AN-place

• AN is the highest level of object abstraction which is refined
to interfaces and implementations

UMass Dartmouth Slide 15

Abstract Node and Objects

• Abstract Node as an Object:
– AN encapsulates both data and actions (tasks)
– AN is the highest level abstraction of an object
– single object level is not the highest possible level of abstraction for a

system

• Object Composition:
– objects can be combined to form aggregates
– aggregate is an object, thus can be represented by a single AN
– aggregation is application specific but it is supported by AN formalism
– semantics of aggregation is supported by AN syntax

UMass Dartmouth Slide 16

Abstract Node and Objects
• AN are used to represent objects
• AN-place:

– serves as a message depository (incoming arcs)
– serves as a place for retrieving results (outgoing arcs)

• Distinguishing Between Message Tokens (Requests) and Result Tokens
(Results):
– message color set: (object ID, message type, arguments)
– result color set: (object ID, message type, result)

• Object ID:
– unique object ID for all instances (objects) in the system
– inter-object concurrency (instances can execute concurrently among themselves)

• Message type used to:
– distinguish between those actions within a particular object
– intra-object concurrency (concurrency between messages)

UMass Dartmouth Slide 17

Abstract Node and Objects

res

mes

res

mes

UMass Dartmouth Slide 18

Interface - First Level Refinement

• One Object as an AN is Too Abstract
• Interface Refines AN in Two Ways:

– it splits AN-place into two places: the message depository place and the
place for retrieving results

– it splits AN-transition to as many transitions as the number of messages
the object accepts

• Each Transition (I-transition) Represents One Action of an
Object

• Further Refinement of each I-transition is called an
Implementation

UMass Dartmouth Slide 19

Interface - First Level Refinement

r e s

m e s

r e s Nr e s 1

r e s 2

m e s 2

m e s Nm e s 1

UMass Dartmouth Slide 20

Method Implementations -
Second Level Refinement

• Implementations Provide the Most Detailed Representation
of an Object

• Each Implementation Refines One Message Response:
– as sequential
– as parallel; intra-object concurrency
– as problem specific

• Multiple Implementations:
– first implementation solid blue
– second implementation dotted red

• Binding and Arc Inscriptions:
– by arc inscriptions: arc 1 and arc 2 - can be static or dynamic (polymorphism

and dynamic behavior of objects)

UMass Dartmouth Slide 21

Method Implementations -
Second Level Refinement

12

UMass Dartmouth Slide 22

Inheritance versus Delegation
• Inheritance. Effects on the Methods at a Class Level:

– include the method of a parent class without changes into a subclass
– do not include the method of a parent class into a subclass
– modify the method of a parent class in the subclass
– add a new method to a subclass

• Delegation. Object Level - Instances of Classes:
– messages that are processed without changes in a subclass are delegated to

a parent class (the message is passed to a parent class)
– messages that are not processed in a subclass do not have implementation
– modified methods have new implementation and if needed can call a

parent class
– new methods have a new entry for both interface and implementation
– both single and multiple inheritance can be implemented in this manner

UMass Dartmouth Slide 23

Inheritance Anomaly
• Single and multiple inheritance require careful attention to avoid incorrect

behavior of inherited class instances being a result of class interference on
dynamics (behavior) of new inherited classes

• three types of corrective actions to avoid inheritance anomaly:
- state partitioning
- state modification
- history sensitiveness

• all three types of inheritance anomaly can be cured with modified pre-
conditions and post-actions of methods and with proper changes in
dynamic behavior of objects (modified state diagrams or modified OBCS)

• inheritance anomaly can be assimilated into the method of OOD and PN
integration by a modified implementation of methods with modified guards
and modified effects of methods

UMass Dartmouth Slide 24

Polymorphism and
Dynamic Behavior of Objects

• Objects have an interface and one or more implementations of each method
• Interfaces, Java Interfaces, Abstract Classes:

– multiple implementations of methods are viewed as multiple
implementations of an interface (or abstract class)

• Polymorphism:
– by doing the binding by the object ID we enrich the method with

polymorphism of methods where object ID is unique number
– Object ID has two fields: (unique class number, unique for each class

instance number)
– polymorphism is a binding by class number

• Dynamic behavior:
– binding based on some variable in the arc inscription that is changed during

the execution of an object

UMass Dartmouth Slide 25

Conclusions
• OO an PN are used without major modifications:

– method is just a set of rules and modeling with Petri nets
– rules are expressed by means of Colored Petri Nets
– rules can be expressed as a set of templates (being part of CASE tool)
– library of commonly used objects can be another objective
– SYROCO and LOOPN CASE tools were used to test this approach

• Objects can be Created and Verified Separately:
– design/verification of single object level
– design/verification of object interaction level

UMass Dartmouth Slide 26

References
• C. Girault, R. Valk, Petri Nets for Systems Engineering, A Guide to Modeling,

Verification and Applications, Springer, 2003.
• G. Agha, F. De Cindio, G. Rozenberg, Concurrent Object-Oriented

Programming and Petri Nets, State of the Art Survey, Advances in Petri Nets,,
LNCS 2001, Springer, 2001.

• D. Mukhin, B. Mikolajczak, A Method of Concurrent Object-Oriented Design
Using High-Level Petri Nets, 1998 IEEE

• M. Ceska, V. Janousek, T. Vojnar, PNtalk - A Computerized Tool for Object
Oriented Petri Nets Modeling, LNCS, v. 1333, Springer, 1997.

• A. Cabeza, UMD, Master Thesis, 1999
• H. Hsueh, UMD, Master Thesis and Project, 2000
• Ch. Sefranek, UMD, Master Project, 2000
• B. Mikolajczak, Z.Wang, Structural and Behavioral Properties of Petri Net

Morphisms, Springer-Physica, Advances in Soft Computing, Springer, 2003

UMass Dartmouth Slide 27

Future Work

• testing the method using average size example such as ATM
System from Wirfs-Brock, Wilkerson, Wiener, Designing
Object-Oriented Software, 1990

• using Petri net vicinity preserving or general morphisms that
preserve certain structural and behavioral properties to provide
abstraction and refinement building mechanisms during system
specification by PNs (as a set of template transformations)

UMass Dartmouth Slide 28

The ATM Machine

• The ATM Class OBCS Diagrams:
• - The Root ATM OBCS
• - The ATMInit Service OBCS
• The BankCardReader Class OBCS Diagrams:
• - The Input() Service
• - The Eject() Service
• The Form Class OBCS Diagram
• The Menu Class OBCS
• The User Message Class OBCS:
• - The InsertValidCard Service
• - The RemoveCard Service

UMass Dartmouth Slide 29

