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Motivation
• Imperative from Mellor and Shlaer (1994):

“The ability to execute the application analysis model is a sine qua 
non for any industrial-strength method because analysts need to 
verify the behavior of the model with both clients and domain 
experts”

• Software development:
- orthogonality between pragmatics and theory - pragmatics 
attributes and theory attributes are/should be mutually independent; 
i.e. it is possible to develop software systems with/without theory
- pragmatics attributes: modularity, readability, reusability
- theory attributes: formal analysis of software properties, model’s
executability
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Introduction

• Object-Oriented Design:
– well established design techniques with classes, responsibilities, and 

collaboration graphs being result of some OOD method
– lacks analysis, verification and validation (V/V) methods of the designed 

system
– lacks formal specification of concurrency and partial ordering of events
– support for inheritance, polymorphism, and dynamic binding
– UML modeling provides Message Sequence Chart (MSC) for 

interactions and ordering of objects; some actions may constitute co-
regions, i.e. they remain unordered
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Introduction, ctnd.
• Petri Nets:

– well-defined formalism of parallel/distributed system modeling with 
graphical and algebraic representation

– conflict representation and resolution (as a mechanism of choice)
– confusion representation and its algorithmic detection (as co-existence of 

concurrency and conflict)
– time representation (delay and duration) and time annotations as part of 

arc/transition inscriptions
– resource allocation explicit representation
– support for abstraction and refinement using vicinity preserving and 

general Petri net morphisms - elements of hierarchical structuring 
– weak support for composition of Petri net-based models
– lacks clear and effective specification of system design techniques
– strong analysis, verification and validation techniques and broadly 

available CASE tools
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Integration of Object-Orientedness 
and Petri Nets

• Three approaches of integration of Petri nets with object-
oriented concepts:
- giving a formal basis to an object-oriented language or methodology
- extending Petri nets by the use of complex data types for tokens
- using object-oriented concepts directly in the Petri net formalism

• Integration of objects with Petri nets is difficult because 
modeling and structuring power of objects is often in 
conflict with the proving facilities of Petri nets (examples: using 
of complex data types for tokens, support for inheritance and polymorphism)

• rapid prototyping of PDSS - modeling, analysis, V/V, and 
performance evaluation of the designed system
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Integration of Object-Orientedness 
and Petri Nets

• OO and Petri nets are complementary methodologies
• Goal:

– use Object-Oriented methodology/technology on the design stage
– use Petri Nets on the analysis and Verification/Validation stage

• Approach #1: “Objects inside Petri Nets”
– increases token’s intelligence
– represents a designed system as a single, large Petri Net  
– does not contribute to abstraction of Petri Nets

• Approach #2: “Petri Nets inside Objects”
– to model the inner behavior of objects (as sequential or concurrent)
– very valuable starting point for the abstraction of Petri Nets
– usually Object-Based rather than Object-Oriented
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Integration of Object-Orientedness 
and Petri Nets

• Petri Nets First - Top-down Approach:
– start with a Petri Net and represent a system by means of PN
– objects are tokens or sub-nets
– beneficial for verification (PNs support V/V)
– abstraction is used to relate objects to tokens and sub-nets

• Object Orientedness First - Bottom-up Approach:
– start with a result of some kind of OOD
– Petri Nets represent classes and object interactions
– beneficial for design (full power of design method can be utilized)
– single, large Petri Net; no abstraction
– object = (data structures, operations, object’s behavior)
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Integration of Object-Orientedness 
and Petri Nets, ctnd.

• Sibertin-Blanc & Bastide - Petri Nets with Objects (PNO) - tokens contain 
references to OO data structures and Cooperative Objects (COO) - objects 
with Object Control Structure (OBCS) - CASE tool SYROCO

• Lakos - Object Petri Nets (OPN) developed from Colored Petri nets through 
a serious of formal transformations that make Object Petri Nets
behaviorally equivalent to Colored PNs - CASE tool LOOPN

• Buchs & Guelfi - Concurrent Object-Oriented Petri Nets; an object has an 
internal behavior defined by an algebraic net - CASE tool CO-OPN/2

• Valk - Relating Different Semantics of Object Petri Nets, Report, 2000, Petri
Nets as Dynamic Objects; Communicating OPNs

• Moldt - Object CPN - an extension of CPNs
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Integration of Object-Orientedness 
and Petri Nets - the hybrid approach

VerificationDesign

PN

OO

OO/PN
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Abstract Node

• Symmetry and Abstraction Constructs:
– asymmetry of existing abstraction constructs (Lakos, Petri)
– non-unified constructs (abstract places/abstract transitions; do not emphasize 

the duality of places and transitions)
– unified abstraction construct - Abstract Node (AN)

• Abstract Node:
– AN as an abstract place and AN as an abstract transition
– constructed by connecting a place (AN-place) and a transition (AN-transition) 

by two arcs with parametrizing inscriptions in a loop
– duality between sets {1,2} and {3,4} of arcs as duality between abstract places 

and abstract transitions
– if arcs {1,2} are used for embedding an abstract node into the net then it 

behaves like abstract place; if arcs {3,4} are used then it behaves as an abstract 
transition 
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Abstract Node versus Abstract Places 
and Abstract Transitions

• Natural Extension of Places and Transitions to Abstract 
Places and Abstract Transitions:
– abstract places may store but not modify tokens
– abstract transitions may modify but not store tokens

• Desired Solution:
– abstract places need to modify tokens (with token conservation)
– abstract transitions may store tokens with some restrictions applied 

(atomicity of internal actions)
– AN-place can store tokens and AN-transition can modify them
– the modification of tokens by AN (that acts as abstract place) is done by 

firing AN-transition, which results in a change of color of the token of 
the AN-place
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Abstract Node versus Abstract Places 
and Abstract Transitions, ctnd.

• the internal state of AN (that acts as abstract transition) is 
stored in the AN-place; AN-transition can modify an internal 
state and synchronizes the actions associated with its external 
incident arcs (arcs 3 and 4)

• AN can be constructed using regular CPNs without any 
modifications or additions; the level of abstraction can be varied 
by changing inscriptions of abstract node’s arcs (AN-arcs) and a 
color set of AN-place

• AN is the highest level of object abstraction which is refined 
to interfaces and implementations
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Abstract Node and Objects

• Abstract Node as an Object:
– AN encapsulates both data and actions (tasks)
– AN is the highest level abstraction of an object
– single object level is not the highest possible level of abstraction for a 

system

• Object Composition:
– objects can be combined to form aggregates
– aggregate is an object, thus can be represented by a single AN
– aggregation is application specific but it is supported by AN formalism 
– semantics of aggregation is supported by AN syntax
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Abstract Node and Objects
• AN are used to represent objects
• AN-place:

– serves as a message depository (incoming arcs)
– serves as a place for retrieving results (outgoing arcs)

• Distinguishing Between Message Tokens (Requests) and Result Tokens 
(Results):
– message color set: (object ID, message type, arguments)
– result color set: (object ID, message type, result)

• Object ID:
– unique object ID for all instances (objects) in the system
– inter-object concurrency (instances can execute concurrently among themselves)

• Message type used to:
– distinguish between those actions within a particular object
– intra-object concurrency (concurrency between messages)
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Abstract Node and Objects
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Interface - First Level Refinement

• One Object as an AN is Too Abstract
• Interface Refines AN in Two Ways:

– it splits AN-place into two places: the message depository place and the 
place for retrieving results

– it splits AN-transition to as many transitions as the number of messages 
the object accepts

• Each Transition (I-transition) Represents One Action of an 
Object

• Further Refinement of each I-transition is called an 
Implementation
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Interface - First Level Refinement
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Method Implementations -
Second Level Refinement

• Implementations Provide the Most Detailed Representation 
of an Object

• Each Implementation Refines One Message Response:
– as sequential
– as parallel; intra-object concurrency
– as problem specific

• Multiple Implementations:
– first implementation solid blue
– second implementation dotted red

• Binding and Arc Inscriptions:
– by arc inscriptions: arc 1 and arc 2 - can be static or dynamic (polymorphism 

and dynamic behavior of objects)
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Method Implementations -
Second Level Refinement
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Inheritance versus Delegation
• Inheritance. Effects on the Methods at a Class Level:

– include the method of a parent class without changes into a subclass
– do not include the method of a parent class into a subclass
– modify the method of a parent class in the subclass
– add a new method to a subclass

• Delegation. Object Level - Instances of Classes:
– messages that are processed without changes in a subclass are delegated to 

a parent class (the message is passed to a parent class)
– messages that are not processed in a subclass do not have implementation
– modified methods have new implementation and if needed can call a 

parent class
– new methods have a new entry for both interface and implementation
– both single and multiple inheritance can be implemented in this manner
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Inheritance Anomaly
• Single and multiple inheritance require careful attention to avoid incorrect 

behavior of inherited class instances being a result of class interference on 
dynamics (behavior) of new inherited classes

• three types of corrective actions to avoid inheritance anomaly:
- state partitioning
- state modification
- history sensitiveness

• all three types of inheritance anomaly can be cured with modified pre-
conditions and post-actions of methods and with proper changes in 
dynamic behavior of objects (modified state diagrams or modified OBCS)

• inheritance anomaly can be assimilated into the method of OOD and PN 
integration by a modified implementation of methods with modified guards 
and modified effects of methods
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Polymorphism and 
Dynamic Behavior of Objects

• Objects have an interface and one or more implementations of each method
• Interfaces, Java Interfaces, Abstract Classes:

– multiple implementations of methods are viewed as multiple 
implementations of an interface (or abstract class)

• Polymorphism:
– by doing the binding by the object ID we enrich the method with 

polymorphism of methods where object ID is unique number
– Object ID has two fields: (unique class number, unique for each class 

instance number)
– polymorphism is a binding by class number

• Dynamic behavior:
– binding based on some variable in the arc inscription that is changed during 

the execution of an object
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Conclusions
• OO an PN are used without major modifications:

– method is just a set of rules and modeling with Petri nets
– rules are expressed by means of Colored Petri Nets
– rules can be expressed as a set of templates (being part of CASE tool)
– library of commonly used objects can be another objective
– SYROCO and LOOPN CASE tools were used to test this approach

• Objects can be Created and Verified Separately:
– design/verification of single object level
– design/verification of object interaction level
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Future Work

• testing the method using average size example such as ATM 
System from Wirfs-Brock, Wilkerson, Wiener, Designing 
Object-Oriented Software, 1990

• using Petri net vicinity preserving or general morphisms that 
preserve certain structural and behavioral properties to provide
abstraction and refinement building mechanisms during system 
specification by PNs (as a set of template transformations)
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The ATM Machine

• The ATM Class OBCS Diagrams: 
• - The Root ATM OBCS
• - The ATMInit Service OBCS
• The BankCardReader Class OBCS Diagrams:
• - The Input() Service
• - The Eject() Service
• The Form Class OBCS Diagram
• The Menu Class OBCS
• The User Message Class OBCS:
• - The InsertValidCard Service
• - The RemoveCard Service
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