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ABSTRACT 
JAM is a hybrid intelligent agent architecture that draws upon the 
theories and ideas of the Procedural Reasoning System (PRS), 
Structured Circuit Semantics (SCS), and Act plan interlhtgua. 
Furthermore, JAM draws upon the implementation pragmatics of 
the University of Michigan’s and SRI Internatlonal’s 
implementation of PRS (UMPRS and PRS-CL, respectively). 
JAM provides rich and extensive plan and procedural 
representations, metalevel and utility-based reasoning over 
multiple simultaneous goals, and goal-driven and event-driven 
behavior that are an amalgam of all of the sources listed above. 
The JAM agent architecture also provides an agentGo primitive 
function utilizing Java’s object serialization mechanism to provide 
widely-supported mobility capabilities. 
Keywords 
Agent architecture, intelligent agent, belief-desire-intention 
architecture, procedural reasoning system, intelligent s&ware 
agent. 

1. INTRODUCTION 
We developed the JAM intelligent agent architecture as the next 
step in the evolution of pragmatic BDI-based agent architectures. 
Our approach to agent architectuml theories and design has been 
to start with a BDI-theoretic core followed by incremental 
improvements based upon incorporation or modification based on 
the research of others and our own ongoing research and 
experience. JAM combines what we believe to be the best aspects 
of several leadingedge intelligent agent frameworks, including 
the or&&al BDI (belief, desire, intention) theories and 
specification of the Procedural Reasoning System (PRS) of 
Georgeff, Lansky, Rao, and others 16, lo], the Structured Circuit 
Semantics (SCS) representation of Lee and Durfee [13], and the 
Act plan interlingua [25, 161 of Myers, Wilkins and others. In 
addition, JAM draws upon pragmatics gamered from the PRS 
implementations of the University of Michigan (called UMPRS) 
[9, 131) and SRI International (called PRS-CL) [ 171. 

Starting with a BDI-theoretic “kernel” allows us to reap the 
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benefits of a large body of research on the theory and 
implementation of, in particular, the Procedural Reasoning System 
(PRS). Explicit modeling of the concepts of beliefs, go& 
(desires), and intentions within an agent architecture provides a 
number of advantages, including facilitating use of declarative 
representations for each of these concepts. The use of declarative 
repmsentations in turn facilitates automated generatiq 
manipulation, and even communication of these mpresentations. 
Other advantages of starting with a PRS-based BDI architecture 
include a sound model of goal-driven and data-driven task 
achievement, metalevel reasoning, and procedurally-specified 
behavior.’ And although capabilities are not a central attribute of 
BDI theories, hnplemented architectums typically include explicit, 
de&rative modeling of the capabilities of the agent in the form of 
plans and primitive actions. 

Alternative agent architectures provide some, but not all of the 
advantages of the BDI-based PRS tlamework. Many “agent” 
architectums such as Aglets and Java Agent Template (JAT) from 
IBM, Agent Tel [7] from Dartmouth, and Agents for Remote 
Action (ARA) t?om the University of Kaiserslautem have little or 
no explicit representations of any of the mentalistic attributes of 
belie& intentions, capabilities, or even goals (often argued to be 
the key feature of agency). Furthermore, programmers encode the 
behavior of these agents almost completely through low-level 
hardcoding. Each of these agents provides special&d 
functionality in some focus area (e.g., ARA and Agent Tel are 
specialized to provide mobility capabilities) but do not otherwise 
provide what we consider a complete reasoning architecture. 

Agent architecmres such as SOAR 1121 and AOP-based (Agent- 
Orieuted Programming) [21] architecmres such as Agent-O [22], 
LALO, and PLACA [23] all provide significantly more complete 
representation and reasoning !&reworks than those mentioned in 
the preceding pamgraph. Soar implements a unified theory of 
cognition [ 181 and provides a wide range of desired agent 
architecture capabilities, including integrated execution, means- 
ends planning, metalevel reasoning and learning. The primary 
disadvantage of Soar is its highly unintuitive and constrained rule 
based behavior representation and reasonhrg cycle. It would 
require a significant overhaul of Soar to improve the procedural 
expressiveness of its rule representation. The AOP-based 
architectures provide explicit internal representations of 
mentalistic concepts such as beliefs and commitments but they 
emphasii social interaction capabilities over individual 

’ Note that the possible worlds model upon which PRS is formally 
based 119, 201 is only implicitly represented within any 
pragmatic implemented BDI architectures. 
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capabilities (even though PLACA does extend the AOP paradigm 
to include generative planning capabilities). 

In addition to these primarily monolithic agent architectures are a 
number of multi-level agent architectums such as 
TourhqMachines [3], Atlantis [5], and InteRRap [15]. Agent 
archim of this style vary widely in their theoretical 
foundation, internal mpresentations, architectuml components, 
and particular emphasis on specific mpresentational or behavioral 
issues or application domain. One common problem with multi- 
layer architecmres is that they require a specialized progmmn&g 
language for each layer (e.g., reactive layer language, scheduling 
layer language, planning layer language, coordination layer 
language). None of these architectums provides as mature or 
cohesive a theoretical basis as that provided by the BDI theories 
and PRS specification. Both the BDI theories and PRS 
specification have their liitations too, of course, but we believe 
they provide a much stronger starting point. 

Our msearch began with the development of UMPRS starting in 
1992 to provide us with a well-founded means of encoding 
behavior for mobile robots [13] for performing mobile robot 
research and since has been used for a number of additional 
application areas [2,8,11,24]. UMPRS implements a majority of 
the representational and behavioral concepts found in the original 
PRS specification and was extended to provide a superior, more 
structured procedural representation. UMPRS lacks a strong 
architectural conceptualixation of goals (not suffered by PRS or 
PRS-CL) however, and lacks some significant procedural 
cmstructs (e.g., parallel execution) and goal types (e.g., 
homeostatic goals). JAM does not suffer from these 
shortcomings, and provides strong goal-achievement syntax and 
semantics with support for homeostatic goals and a much richer, 
more expressive set of procedural constructs. 

The stronger, formal&d goal implementation of JAM is 
motivated by work in progress on extensions to support generative 
planning capabilities within the JAM architecture and origlnate in 
the original PRS specification and the large body of classic AI 
planning tesearch. Procedural extensions were garnered t%om the 
Sm Circuit Semantics @CS) representation [I41 and the 
Act plan interlingua [16, 251. Functional improvementa such as 
agent mobility are founded in the research tiom the Dartmouth 
and IBM mobile agent research efforts described earlier. 

JAM has aheady been used in a number of projects including 
Johns Hopkins University’s Applied Physics Laboratory and 
Otincon Corporation. JHIYAPL implemented a JAM agent as a 
plan execution monitoring agent for robotic navigation and also 
for chemical weapons attack detection and recovery advice. 
O&con Corporation is extending its Agent Workbench toolkit to 
build JAM agents in addition to UMPRS agents. 

In the remainder of the paper, we describe the JAM architectuml 
components, representations, and salient functionality and 8ttm-e 
work. 

2. JAM 
Each JAM agent is composed of five primary components: a 
world model, a plan librav, in interpreter, 8n intention structure, 
and an observer. We illustrate this in Figure 1. The world model 
is a dambase that represents the beliefs of the agent The plan 
library is a collection of plans that the agent can use to achieve its 

goals. The interpreter is the agent’s “brains” that mason about 
what the agent should do and when and how to do it. The 
intention struc@e is an internal model of the agent’s current goals 
and keeps track of the commitment to, and progress on, 
accomplishment of those goals. The observer is a user-specified 
lightweight declarative procedure that the agent interleaves 
between plan steps (in addition to the reasoning performed by the 
JAM interpreter) in order to perform 8mctionality outside of the 
scope of JAM’s normal goal/plan-based reasoning (e.g., to buffer 
incoming messages). 

The JAM execution semantics and behavior is a combination of 
that of UMPRS and SCS. Changes to the world model or posting 
of new goals triggem reasoning to search for plans that might be 
applied to the current situation. The JAM interpreter selects one 
plan from this list of applicable plans based on either metalevel 
reasoning or maxhnum utility, infer& it (i.e., commits itself to 
execution of the instantiated plan), and executes the first intention 
found with the highest utility (i.e., as if there was an SCS DO-BFST 
over all top-level goals). The remainder of this section discusses 
each of the major components of JAM in as much detail as space 

Figure 1. The JAM intelligent agent architecture. 

permits.2 

2.1 JNTERPRETER 
The JAM interpreter is responsible for selecting and executing 
plans based upon the intentions, plans, goals, and belie& about the 
current situation. Associated with the interpreter is the intention 
structure, a run-time stack (stacked based upon subgoalmg) of 
goals with and without instantiated plans. A JAM agent may have 
a possibly large number of alternative plans for accomplishing any 
single goal and the JAM interpreter reasons about all of the 
alternatives combinations of plans, goals, and variable biings 
(based on goal arguments and beliefs) before selecting the best 
alternative given the particular situation. The JAM interpreter’s 
top-level loop is shown in Figure 2. 

’ Complete details on JAM can bc found at 
http://members.home.net/marcushflRS/Jam/j. 
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The agent checks all the plans that can be applied to a goal to 
make sure they are relevant to the current situation. Those plans 
that are applicable are collected into what is called the Applicable 
Plan List (or APL). A utility value is determined for each 
instantiated plan in the APL and, if no metalevel plans are 
available to select between the APL elements, the JAM interpreter 
selects the highest utility instantiated plan (called an intention) 
and intends it to the goal. Note that neither the original PRS 
specification nor prior PRS-based implementations (such as PRC- 
CL) supports utility-based reasoning. Also, in contrast to the 
JAM interpreter, the UMPRS interpreter does not actually intend 

public int run0 { 
// loop forever until agent completes all of its goals 
while (true) { // outer, intlnite loop 
// execute the Observer procedure 
returnvalue = intentionStructure.executcPlan(observer); 
metaLeve1 = 0; 
while (true) { // metalevel loop 
// generate an Applicable Plan List (APL) if necessary 
apl = new APL(planLibrary, worldModel, 

intentionStructure, metaLeve1); 
// If the new or previous APL is not empty then add 
// entry to the World Model to trigger the next level of 
/I reasoning. 
if (apl.getSize() != 0) 
worldModel().assery”ApL”, metalevel, apl, aplsize); 

N If this APL is empty then no new level of reasoning 
if (apl.getSize() = 0) { 
if ((mtentionStructure.allGoalsDone())) 
return 0; 

// If the previous APL was empty then execute 
// something in the intention structure, otherwise 
N select something from the previous APL, intend it, 
// and then run something in the intention structure. 
if (last apl = null ii last-apl.getSize() = 0) { 
inten~onStructure.run(); 
break; 

1 
else ( 
selectedElement = last~apl.getHighestRandomUtilityo; 
intentionStructum.intend(selectedElement); 
intentionStructure.run(); 
last-apl = null; 
break, 

else { 
last-apl = apl; 
metaLevel++, 

} // Inner, metalevel loop 

// Clear the World Model of APL elements. 
getWorldModel().~APL”); 

} N Outer infinite loop 
1 

Figure 2. The JAM agent’s main interpreter loop. 

an intention if a new intention does not have a utility higher than 
all of the intentions already on the agent’s intention structure. 
Continuing with JAM’s interpreter behavior, if the goal with the 
new intention has the highest utility among all goals with 
intentions, then the new goal’s plan is executed. otherwise, a 
previous intention still has a higher utility and the interpreter 
executes that intention’s plan. 

If generation of an APL results in one or more entries, the agent 
possibly enters into metulevel reasoning. That is, it reasons about 
how to decide which of the APL elements to intend to its intention 
structure. The agent may have multiple ways (i.e., applicable 
metalevel plans) of performing this decision-makin& so that 
metalevel reasoning about its metalevel reasoning may ensue. 
Metalevel reasoning ends when the interpreter no longer generates 
a non-null APL, indicating that the agent has no higher metalevel 
means for deciding between alternatives. The JAM distribution 
comes with a number of implemented primitive actions to 
facilitate metalevel reasoning These include primitives for 
selecting an intention from an APL, tinding the goal currently 
being pursti finding the plan currently being executed, 
extracthg a plan’s attributes and attribute values, and intending an 
intention onto the Intention Structure. 

2.2 GOALS 
A JAM agent’s top-down behavior is motivated by specitj4ng top 
level goals. Goals can be given to the agent in a text form with 
the following syntax: 

goal-type goal-name parameter1 . . . parameterN 
<:UTILITY expression>; 

The god type is one of: ACHJEVE, PERFORM, and MAINTAIN. The 
goal name is a label identifying the goal relation, and the 
parameters are the goal relation’s arguments. The :WnLnY 
keyword and expression are optionsI and provide an 
opportunity to specify either a tIxed numeric value (which then 
cannot be regaded strictly as a utility but we permit such use) or 
an arbitrarily complex utility calculation (perhaps involving 
probabilistic information). As we will describe in more detail 
later, the goal’s utility is combined with the utility of an 
instantiated plan to calculate the total utility of the intention. A 
JAM agent will dynamically switch between alternative goals as 
the intention utilities change so that it is always pursuing the 
highest utility intention. In the sense that JAM agents are utility 
maximiz.ing, the JAM architecture results in strictly rational 
agents. 

One or more top-level goals are initially given to the agent at 
agent invocation. The text specification for toplevel goals are 
specified by usmg the keyword ‘QOALX” and then a list of goal 
specifications in the form specified above. An example top-level 
goal specification for a robotic agent that wanders around a 
building’s lobby greeting guests might look like: 

GOALS: 
PERFORM wander-lobby; 
ACHlEVE initialize :UTILlTY 300; 
h4AINTAIN charge level ‘20%“; 
MAINTAIN sa5e~di&nce~t+om~obstacles 50.0; 
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This list of goals can be augmented during execution tbrough 
communication with other agents, generated from internal 
reasoning on the part of the agent, or by many other means. 

Top level goals are persisfwtt. That is, they are pursued until they 
are satisfied by successful plan execution or opporumistically by 
some other means, such as another agent, or are removed 
explicitly within a plan @t-haps because the agent believes it is 
no longer capable of achieving the goal). If a plan for a top-level 
goal fails, the agent removes its commitment to that goal by 
removing its intention, but leaves the goal on the intention 
structure for later attempts at achieving the goal. With this 
operationalixation of top-level goals, agents have a level of 
cammitment to all top-level goals and an espeoially strong level of 
commitment to goals that have intentions associated with them 
(which is consistent with, for example [l] and formal BDI 
definitions). A further difference between subgoals and top-level 
goals is that subgoals are not persistent by default If a plan fails 
for a subgoal, the interpreter considers the subgoalii action to 
have failed (iust as if it were any other type of plan action). 

JAM supports a number of different types of goals, ACHIEVE, 
PERFORM, and MALNTAU$ each with distinct semantics. An 
ACHIEVE god specifies that the agent desires to achieve a goal 
state and is the goal type typically associated with BDI 
archim and generative planning systems. For ACHIEVE 
goals, the JAM interpreter checks to see whether the goal has 
aheady been accomplished before generating an APL. If the goal 
has heen accomplished, the agent does not actually establish a 
top-level goal or subgoal. JAM agents contimtally monitors for 
goal achievement. Typically, the plan selected for the subgoal 
will be the means by which the subgoal is accomplished. 
However, if the agent detects opportunistic accomplishment of the 
goal, perhaps by another agent, it will consider the subgoal action 
successll and discontimte execution of the plan. Finally, a world 
model entry indicating that the goal has been achieved is asserted 
if the plan selected for accomplishment of the AcmuvE subgoal 
completes successfully. The world model entry that is asserted is 
the goal specification for the goal just achieved. 

A PERFORM goal specifies the agent desires to perform some 
behavior. This semantics is an extension not found in typical BDI 
architectures and indicates that the agent is not interested in 
achieving a goal, per se, but merely to exhibit a particular 
behavior. PERFORM gC& differ fiOm ACHIEVE gOakin SeWId 
important aspects. The agent does not check to see whether the 
goal has already been accomplished betore selecting plans to 
perfotm the behavior. The agent does not monitor for goal 
achievement during plan execution and will execute the intended 
plan until the plan succeeds or fails. Finally, an assertion to the 
world model entry that the goal has been achieved is only 
performed if the plan that was executed has an ACHEvE goal 
specification and it completes successfully. 

A MAINTAIN goal indicates that the specified goal must be 
reattained if it ever becomes unsatisfied. A MAINTAIN goal is 
similar to an AcHIEvE goal except that a M,4u4 goal is never 
removed from the agent’s goal list automatically (i.e., it is a 
homeostatfc goal). A MAINTAIN goal can be removed from the 
agent’s intention structure only by the agent explicitly removing 
it. 

2.3 PLANS 
A JAM plan defines a procedural specification for accomplishing 
a goal, reacting to an event, or performing behavior. JAM agents 
are therefore capable of both goal-driven and data-driven 
behavior. The basic &ucture of a JAM plan is shown in Figure 3. 
Optional plan fields are surrounded with the “4 and 3” 
symbols.3 One or more plans are initially given to the agent at 
agent invocation. The text specification for plans are specified by 
usmg the keyword ‘PLANS:” and then a list of plan specifications 
in the form specified below. This list of plans can be augmented 
during execution through communication with other agents, 
generatedfrominternalreasoningonthepartoftheagenforby 
many other means. 

A plan’s applicability is limited to either a particular goal or a 
data-driven conclusion. Each plan may be further constrained to a 
particular precondition, conditions that must hold before starting 
execution of tbe plan, and context, conditions that must hold both 
before and during execution of the plan This semantic 
dif%entiation of runtime and pm-runtime conditions provides 
more flexibility to an agent programmer than does the context 

PLAN: { 
GOAL: [goal specification] 

CON&JOE [world model relation] 
NAME: [stringI 
BODY: [procedun] 
<DOCUMENTATION: [suing]> 
<PREcoNDrTIoNz [expressiou]~ 
<CONTEXT: [expression]> 
<tJTILlTYz [numeric expmssion~ 
<FAILURE: [non-subgoalmg pmcedureJ> 
43TECTS: [non-subgealmg pmcedure]~ 
<ATTRIBUTE% [string’&- 

1 
Figure 3. Anatomy of a JAM agent plan. 

semantics found in the PRS or Act specifications. 

The procedure to use to accomplish the goal is given in the plan’s 
procedural body, which can contain simple actions (e.g., execute a 
user-defined primitive function) and complex structu& 
constructs (e.g., iteration and equivalents to if-then-else). JAM 
(and UMPRS) use snuctumd programming constructs in contrast 
with previous instantiations of PRS (e.g., PRS-CL), that allow 
unstructured procedm (i.e., procedures with the equivalent of 
“goto” actions.), which we believe to represent a significant 
improvement for agent programmets. 

Each plan may include an explicitly or implicitly defined utility 
calculation, which is used to influence selection of certain 
procedures over others through the default utility-based metalevel 
reasoning mechanism of JAM. The utility calculation can be a 
fixed value or an arbitrarily complex calculation involving 
instantiated variables and possibly 

3 The full BNF grammar for JAM agents can be found at 
http://member.shome.net/marcush/IRS/Jam/Jam-man.doc. 
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specific to the particular plan. 

PerfcmIl sequelWe of actions willlou 

Another optional component is the effects field, which is a 
procedure that the JAM interpreter executes when the plan 
completes successfully. An agent programmer can use the effects 
field to perform World Model updath~g, which would result in 
behavior similar to the add/delete list in STRIPS plans [4], but can 
also use it to execute any other procedural construct other than 
subgoaling. 
A procedural specification of what the agent should do when a 
plan fails can be represented in a plan’s optional fuihre section. 
This is similar to the effects field in that it is a procedure that can 
contain any JAM plan component except subgoal@. An agent 
programmer can use the failure section to define “cleanup” code 

4 Note that UMPRS plans have a field with the same name but 
tbat the semantics of the UMPRS implementation is quite 
different. UMPRS uses the EFFECTS field in a special simulation 
mode and does not use it dting normal execution. 

Table 1. Available plan actions and constructs in JAM. The 
middle column indicates whether the item is an action (A) or a 

construct(c). 
The optional attributes plan field provides a place for a 
programmer to put information concerning plan characteristics 
that the agent can reason about during plan execution and 
metaleve1 reasoning. 
The name and documentation fields are placeholders for a unique 
identifier string and explanatory textural documentation that 
should accompany the plan, respectively. 
JAM provides many programming actions and constructs. We 
define actions to be single-line statements and constructs to be 
multiple-line statements. We list each of the built-in actions and 
constructs in Table 1. 

JAM provides many standard programming constructs such as 
iteration (represented by DO . . . WHILE and WHILE consuucts), 
conditional branching (represented in various specialized forms by 
OR, ANO, W-ALL, DO-ANY, and WHEN), and variable value setting 
(ASSIGN). A JAM agent’s beliefs can be chauged and checked 
using ASSERT, FACT, RJZTRACr, RETRIEVE and UPDATE. JAM 
provides constructs for true simultaneous parallel activity 
(PARALLEL) and a synchronizing construct (WA@. The Pm 
action provides simultaneous execution of multiple plan branches 
using sepamte Java thmads while preserving the JAM execution 
semantics of interleaving action execution with interpreter 
reasoning (including Observer execution). JAM’s WAIT con&uct 
causes plan execution to pause until a specified goal is achieved 
or a specified action retums successfblly. Execution of the plan 
continues “in place”, with the agent checking the goal or action 
every cycle through the interpreter. 

PLAN:{ 
NAMEz‘Tl~1:Gathera11djuocessinf~on” 
GOAL: ACHJEVE infomwti~~exploii Suset_que-ry Srcsult 

srecursed; 
BODY: 

EXECUTE com.irs.jam.Primitives.GctHostname.execute. 
Shostnane; 

EXECUTE print “Currently at U Shosiname ‘%I”; 
OR 
{ UChecktoseaifweared 

TEST (querySatis&lP Suser query Ssolution); 
EXFCUTE print “Done work&g on query.W’; 

I 
{//Wearenot&me,sofigureoutwlmttodonext 

EXECUTEd~NexdfoSource$uscr~query 
SnextHostname SnextPti sresutt; 

EXJXUTE agent00 SnextHostname SnextPoq 
EXJX!UTE@hcrAn- OsqucrYSresult; 

ACHIEVE in5mnaGon~exPloited $user-query Sresult 
%lMP 

1; ’ 
WHEN : TEST (= Smcursed “false”) 
{ 

sgentO0 Sbosmme Sport 
1; 

1 
Figure 4. An information gathering plan using goal-directed 
behavior and agent mobility. 
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We show an example of some simple JAM agent plans in Figure 4 
and Figure 5. Figure 4 demonstrates a goal-driven (Acumvument- 

Plan:{ 
NAME “Plan 2:Metalevel reason& 
DOWMENTATIO~ “Pcrhrm mctalevel masoning” 
CONCLUDE: APL SLBVEL SAPL SAPLSIZE; 
CONTEXT: (> SAPLSIZE 1); 
BODY: 

EXECUTE print “In me&level plan! APL isW; 
EXECUTE prilltAPI. SAPL; 

N Find lowest-cast element 
ASSIGN SCOUNT 1; 
ASSIGN SLOWESTINDEX -1; 
ASSIGN SLOWESTCOST 999999.0; 
WHILE : TEST (<= SCOUNT SAPLSIZE) 
{ 

1; 

OR 
{ 

EXECUTE @APLElement SAPL SCOUNT 
SAPW 

EXECUTE getAttributevalue SAPLELEMENT “Cost” 
SVALW, 

WHEN : TEST (< SVALUE SLOWESTCOST) 
{ 

EXECUTE print “Found new lowest cost APL 
Element at #” SCOUNT “W; 

ASSIGN SLOWESTINDEX SCOW, 
ASSIGN SLOWESTCOST SVALW 

1; 
ASSIGN SCOUNT (+ SCOUNT 1); 

TEST (I= SL4WESTlNDEX -1); 
EXECUTE print “Lowest cost APL Element is #” 

SLOWESTINDEX %I”; 
EXECUTE @APLElement $APL SLOWESTlNDEX 

sAPLl!Lmmw 

// If no lowestast element then pick randomly 
EXECUTE print “No lowest-cat element, picking 

rand0mly.W; 
EXECUTE se1 -LE1emcnt SAPL 

SAPLELEMElq 
1; 

EXECUTE print “Intending APL Elementh”; 
EXECUTE printAPLElement SAPS 
EXECUTE intelldAPLE1ement SAPLELmmIq 

EFPEcT!k 
EXECUTE print “In metalevel plan! Retmcthg WM entry for 

this 1evel.W; 
RETRACT APL SLEVEL; 
EXECUTE print “In metalevel plan! Retmcthll WM entry fix 

previous 1cvel.b”; 
RETBACT APL (- SLEVEL 1); 

FAILURE: 
EXECUTE print wnMet8levcl plan failcd!\n\n”; 

1 

Figure 5. A data-driven plan for pe&ming metalevel 
remonhlg. 

based) plan tbat employs JAM’s mobility functionality. The basic 
idea of the plan is that a parent plan establishes a subgoaJ with a 
user-based query as a parameter and the result is retumed by plans 
achieving that goal. The plan establishes the origina@ computer 
host, determines inGormation sources that the agent needs to 
gather information fi’om, processes the new information, and 
recurses. When the query is satisfactorily answered, the agent 
returns to its original computer plattbrm. Figure 5 demonstrates a 
data-driven plan that performs simple metalevel mason& and 
bases its decision on lowest cost This second plan searches 
through the plans in the Applicable Plan List (APL) and looks for 
the plan with the lowest vahte for “co&’ in the plans’ ~mmwnz 
field. The lowest-cost plan is intended if there is a single lowest- 
cost plan, otherwise a plan is randomly selected and intended Gem 
the APL. 

Agent progmmmers can augment the functionality provided with 
JAM by &w prhnitive functions in native Java code and 
several access methods to the Java code are provided by the JAM 
archi~. It is through this augmentation of primitive fimctions 
that provide JAM with application-specific (e.g., database 
interfacii) and “social” abilities (such as in&agent 
communication and collaborative). There are a number of 
predefined primitive actions included with the JAM agent 
distribution, including those providing debugging support and 
agent mobility (which we describe in more detail below). 

2.4 WORLD MODEL 
The JAM World Model holds the facts that repmsent the current 
state of the world as it is known by the agent Information that 
might be kept there includes state variables, sensory information, 
conclusions tiom deduction or inferencing, modeling information 
about other agents, etc. Each world model entry is a simple 
proposition of the form: 

relation-name wgumentl wgument2 .,. wgumentN; 

The orderhg, semantics, and typing of the arguments is 
unconstrained and is determined by the agent programmer. World 
model relation’s arguments are currently lhnited to the following 
types: strh~gs, floating point numbers, integer numbers, and native 
Java objects. Specification of an agent’s initial world model 
consists of cmating a text file containmg the keyword “FACTS:‘) 
followed by the list of world model relations. The agent parses 
the initial world model specification before execution begins and 
can make assertions, retmctions, and modification dynamically 
within plans. We show an example of an agent’s initial World 
Model below in Figure 6. 

FACTS 
FACT ON “Block5” “Block4”; 
FACT ON “Block4” “Block3”; 
FACT ON “Blockl” “Block2”; 
FACT ON “Black2” “Table”* 
FACT ON “BlockY “Table”; 
FACT CLEAR Wockl “; 
FACT CLEAR “BlockS”; 
FACT CLEAR “Table”; 
FACT inithhd “False”; 

Figure 6. Example World Model for a blocks-world domain. 
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2.5 OBSERVER 
The observer is an optional declarative procedure that the JAM 
interpreter executes between each action in a plan. The observer 
procedure itself is basically a plan with only the plan body and 
none of the other plan components and is specified in the form: 

OBSERmR: { 
[non-subgoaling procedure] 

I 
The observer represents an architectural hook which an agent 
programmer can use to implement capabilities that are more easily 
implemented outside of the scope of JAM’s normal goal/plan- 
based reasoning. Examples of such capabilities might be to check 
a buffer of incoming messages to see if any new messages have 
arrived or to see if the agent’s external vision processing 
component has buffered new images. We named this procedure 
“observd’ because of its typical use in watching for asynchronous 
events. Because the observer procedure is executed very 
t?equently, it should not be computationally intensive. 

We show an example of an agent’s Observer procedure below, in 
Figure 7. The procedure performs an initialixation function upon 
startup and periodically checks for incoming messages from other 
agents and asserts any messages to the agents world model when 
received. 

I 
RETRIEVE cycle_num SCYCLE~NW@ 
UPDATE (cycle num) (cycle-num (+ 1 SCYCLEJWM)); 
RETRJEVE hst’&m SLASTTIME, 
EXECUTE getTime $CIJRRENTTIIt@ 

WJrlEN:TJZST(=SCYCLE NUMO){ 
EXECUTE perfbrmm_initial~&ation; 

1; 

WHEN : TEST (> (. SCURREN’MTME SLAST-TIME) 5000) ( 
EXECUTE getMessages SMSGS SNUM~MSGS; 
ASSIGN $MSG~NtJM 1; 
WHILE : TEST (<= SMSG-NUM SNUM_MSGS) ( 

EXECUTE @Message SMSGS $MSG~NUM SMSG; 
ASSERT new_message $MsG; 
ASSIGN SMSG_NuM (+ I SMSG-NUM); 

1; 
UPDATE (lastTime) (lastTime SC-); 

1; 
1 

Figure 7. Example Observer procedure demonstrating 
using it for initialization and periodic checking for 
messages. 

Note that all of the functionality and behavior embedded into an 
observer procedure can be implemented in JAM’s normal BDI 
paradigm (using goals and plans) to take advantage of the 
architecmres powerful reasoning capabilities. For example, goals 
and plans can be written to determine the best time and manner in 
which to check for communication queues for new messages. It 
may not always be pragmatic to implement all activities using the 
BDI paradigm however and we have found that the observer 
paradigm is very usefiil. 

3. JAM AGENT CHECKPOINTING and 
MOBILITY 
JAM agents facilitate building applications requiring mobility 
through the use of checkpointing capabilities. That is, we have 
implemented functionality for capturing the nmtime state of a 
JAM agent in the middle of execution and functionality for 
subsequently restoring that captmed state to its execution state. 
One use Of this functionality is for periodically saving the agent’s 
state so that it can be restored in case the agent fails unexpectedly. 
This facilitates building robust applications that can restart and 
recover from otherwise catastrophic termination. Another use of 
the checkpointing functionality is to implement agent mobility, 
where the agent creates a checkpoint and restores it to execution 
on a different computer. A third possible use of this functionality 
is to clone an agent by creating a checkpoint and restoring it to an 
execution state without terminating the original agent. In all 
cases, a simple Java class is provided with JAM that performs the 
basic restoration function. Extension of this restoration class to 
provide application-specific mobility policies and similar 
fimctionality can be made as needed. 

We have simplified agent mobility by implementing an agentGo 
primitive function. This function allows an agent programmer to 
simply specify a target computer and port and, when the plan 
containing the function is executed, the agent will transfm to the 
other machine and terminate itself on the initial computer. On the 
destination machine, the JAM agent will resume execution, 
guided by its pm-existing goals and plans, from where it was 
suspended on the initial machine. Moving between computers 
therefm becomes transparent in the sense that such activity is not 
handled differently than any other activity. The example plan 
shown in Section 2.3 illustrates a plan using the agenffio 
primitive. 

4. CONCLUSIONS AND FUTURE WORK 
We believe JAM represents the current leading edge in pragmatic 
BDI-theoretic intelligent agent architectures. JAM provides rich, 
expressive procedural representations, a wide range of usell goal 
semantics, metalevel reasoning support for complex utility- 
theoretic behavior, and agent mobility support while remaining 
true to its underlying BDI theoretics. 

JAM does not represent a complete architecture yet, however, in 
that many architecmrally integrated capabilities such as plan 
generation and learning do not yet exist. Towards the end of a 
JAM architecture that includes these capabilities, we are currently 
in the middle of adding generative planning functionality to the 
JAM interpreter, so that when JAM reaches an impasse (in Soar 
terminology), it can generate a plan t?om first principles (using a 
novel hybrid HTN and partial order planning algorithm) rather 
than relying solely upon the library of preprogrammed plans as 
most BDI amhitectures (e.g., PRS-CL and UMPRS). We have 
extended the JAM plan representation to include declarative 
representations for individual primitive actions and are 
implementing partial order planning algorithms based upon the 
new representations. “Social” abilities in the form of conversation 
management and FIPA-compliant language and protocol support 
have been added to JAM as an application-specific extension, but 
we have not yet decided upon whether such capabilities will 
become an integral part of JAM at any point or if such 
functionality will be provided as a supplemental package. 
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