
JAM: A BDI-theoretic Mobile Agent Architecture
Marcus J. Huber

Intelligent Reasoning Systems

4976 Lessen Drive
Oceanside, CA 92056

marcush@home.com

ABSTRACT
JAM is a hybrid intelligent agent architecture that draws upon the
theories and ideas of the Procedural Reasoning System (PRS),
Structured Circuit Semantics (SCS), and Act plan interlhtgua.
Furthermore, JAM draws upon the implementation pragmatics of
the University of Michigan’s and SRI Internatlonal’s
implementation of PRS (UMPRS and PRS-CL, respectively).
JAM provides rich and extensive plan and procedural
representations, metalevel and utility-based reasoning over
multiple simultaneous goals, and goal-driven and event-driven
behavior that are an amalgam of all of the sources listed above.
The JAM agent architecture also provides an agentGo primitive
function utilizing Java’s object serialization mechanism to provide
widely-supported mobility capabilities.
Keywords
Agent architecture, intelligent agent, belief-desire-intention
architecture, procedural reasoning system, intelligent s&ware
agent.

1. INTRODUCTION
We developed the JAM intelligent agent architecture as the next
step in the evolution of pragmatic BDI-based agent architectures.
Our approach to agent architectuml theories and design has been
to start with a BDI-theoretic core followed by incremental
improvements based upon incorporation or modification based on
the research of others and our own ongoing research and
experience. JAM combines what we believe to be the best aspects
of several leadingedge intelligent agent frameworks, including
the or&&al BDI (belief, desire, intention) theories and
specification of the Procedural Reasoning System (PRS) of
Georgeff, Lansky, Rao, and others 16, lo], the Structured Circuit
Semantics (SCS) representation of Lee and Durfee [13], and the
Act plan interlingua [25, 161 of Myers, Wilkins and others. In
addition, JAM draws upon pragmatics gamered from the PRS
implementations of the University of Michigan (called UMPRS)
[9, 131) and SRI International (called PRS-CL) [171.

Starting with a BDI-theoretic “kernel” allows us to reap the

Permission to make digital or hard copies of all or part ofthis work for
personal or classroom ue is granted without fee pro\i&d that copies
arc ~nnt made or dlstrihutcd for prolit or commercial advantage and that
topics bear this notice and the full citation on the first page. To copy
otherwise. to republish. to post on servers or to redistribute to lists,
require, prior specific permission ancib a fee.

Autonomous Agents ‘99 Seattle WA GA
Copyright ACM 1999 l-581 13-066-d99/05...$5.00

benefits of a large body of research on the theory and
implementation of, in particular, the Procedural Reasoning System
(PRS). Explicit modeling of the concepts of beliefs, go&
(desires), and intentions within an agent architecture provides a
number of advantages, including facilitating use of declarative
representations for each of these concepts. The use of declarative
repmsentations in turn facilitates automated generatiq
manipulation, and even communication of these mpresentations.
Other advantages of starting with a PRS-based BDI architecture
include a sound model of goal-driven and data-driven task
achievement, metalevel reasoning, and procedurally-specified
behavior.’ And although capabilities are not a central attribute of
BDI theories, hnplemented architectums typically include explicit,
de&rative modeling of the capabilities of the agent in the form of
plans and primitive actions.

Alternative agent architectures provide some, but not all of the
advantages of the BDI-based PRS tlamework. Many “agent”
architectums such as Aglets and Java Agent Template (JAT) from
IBM, Agent Tel [7] from Dartmouth, and Agents for Remote
Action (ARA) t?om the University of Kaiserslautem have little or
no explicit representations of any of the mentalistic attributes of
belie& intentions, capabilities, or even goals (often argued to be
the key feature of agency). Furthermore, programmers encode the
behavior of these agents almost completely through low-level
hardcoding. Each of these agents provides special&d
functionality in some focus area (e.g., ARA and Agent Tel are
specialized to provide mobility capabilities) but do not otherwise
provide what we consider a complete reasoning architecture.

Agent architecmres such as SOAR 1121 and AOP-based (Agent-
Orieuted Programming) [21] architecmres such as Agent-O [22],
LALO, and PLACA [23] all provide significantly more complete
representation and reasoning !&reworks than those mentioned in
the preceding pamgraph. Soar implements a unified theory of
cognition [181 and provides a wide range of desired agent
architecture capabilities, including integrated execution, means-
ends planning, metalevel reasoning and learning. The primary
disadvantage of Soar is its highly unintuitive and constrained rule
based behavior representation and reasonhrg cycle. It would
require a significant overhaul of Soar to improve the procedural
expressiveness of its rule representation. The AOP-based
architectures provide explicit internal representations of
mentalistic concepts such as beliefs and commitments but they
emphasii social interaction capabilities over individual

’ Note that the possible worlds model upon which PRS is formally
based 119, 201 is only implicitly represented within any
pragmatic implemented BDI architectures.

236

capabilities (even though PLACA does extend the AOP paradigm
to include generative planning capabilities).

In addition to these primarily monolithic agent architectures are a
number of multi-level agent architectums such as
TourhqMachines [3], Atlantis [5], and InteRRap [15]. Agent
archim of this style vary widely in their theoretical
foundation, internal mpresentations, architectuml components,
and particular emphasis on specific mpresentational or behavioral
issues or application domain. One common problem with multi-
layer architecmres is that they require a specialized progmmn&g
language for each layer (e.g., reactive layer language, scheduling
layer language, planning layer language, coordination layer
language). None of these architectums provides as mature or
cohesive a theoretical basis as that provided by the BDI theories
and PRS specification. Both the BDI theories and PRS
specification have their liitations too, of course, but we believe
they provide a much stronger starting point.

Our msearch began with the development of UMPRS starting in
1992 to provide us with a well-founded means of encoding
behavior for mobile robots [13] for performing mobile robot
research and since has been used for a number of additional
application areas [2,8,11,24]. UMPRS implements a majority of
the representational and behavioral concepts found in the original
PRS specification and was extended to provide a superior, more
structured procedural representation. UMPRS lacks a strong
architectural conceptualixation of goals (not suffered by PRS or
PRS-CL) however, and lacks some significant procedural
cmstructs (e.g., parallel execution) and goal types (e.g.,
homeostatic goals). JAM does not suffer from these
shortcomings, and provides strong goal-achievement syntax and
semantics with support for homeostatic goals and a much richer,
more expressive set of procedural constructs.

The stronger, formal&d goal implementation of JAM is
motivated by work in progress on extensions to support generative
planning capabilities within the JAM architecture and origlnate in
the original PRS specification and the large body of classic AI
planning tesearch. Procedural extensions were garnered t%om the
Sm Circuit Semantics @CS) representation [I41 and the
Act plan interlingua [16, 251. Functional improvementa such as
agent mobility are founded in the research tiom the Dartmouth
and IBM mobile agent research efforts described earlier.

JAM has aheady been used in a number of projects including
Johns Hopkins University’s Applied Physics Laboratory and
Otincon Corporation. JHIYAPL implemented a JAM agent as a
plan execution monitoring agent for robotic navigation and also
for chemical weapons attack detection and recovery advice.
O&con Corporation is extending its Agent Workbench toolkit to
build JAM agents in addition to UMPRS agents.

In the remainder of the paper, we describe the JAM architectuml
components, representations, and salient functionality and 8ttm-e
work.

2. JAM
Each JAM agent is composed of five primary components: a
world model, a plan librav, in interpreter, 8n intention structure,
and an observer. We illustrate this in Figure 1. The world model
is a dambase that represents the beliefs of the agent The plan
library is a collection of plans that the agent can use to achieve its

goals. The interpreter is the agent’s “brains” that mason about
what the agent should do and when and how to do it. The
intention struc@e is an internal model of the agent’s current goals
and keeps track of the commitment to, and progress on,
accomplishment of those goals. The observer is a user-specified
lightweight declarative procedure that the agent interleaves
between plan steps (in addition to the reasoning performed by the
JAM interpreter) in order to perform 8mctionality outside of the
scope of JAM’s normal goal/plan-based reasoning (e.g., to buffer
incoming messages).

The JAM execution semantics and behavior is a combination of
that of UMPRS and SCS. Changes to the world model or posting
of new goals triggem reasoning to search for plans that might be
applied to the current situation. The JAM interpreter selects one
plan from this list of applicable plans based on either metalevel
reasoning or maxhnum utility, infer& it (i.e., commits itself to
execution of the instantiated plan), and executes the first intention
found with the highest utility (i.e., as if there was an SCS DO-BFST
over all top-level goals). The remainder of this section discusses
each of the major components of JAM in as much detail as space

Figure 1. The JAM intelligent agent architecture.

permits.2

2.1 JNTERPRETER
The JAM interpreter is responsible for selecting and executing
plans based upon the intentions, plans, goals, and belie& about the
current situation. Associated with the interpreter is the intention
structure, a run-time stack (stacked based upon subgoalmg) of
goals with and without instantiated plans. A JAM agent may have
a possibly large number of alternative plans for accomplishing any
single goal and the JAM interpreter reasons about all of the
alternatives combinations of plans, goals, and variable biings
(based on goal arguments and beliefs) before selecting the best
alternative given the particular situation. The JAM interpreter’s
top-level loop is shown in Figure 2.

’ Complete details on JAM can bc found at
http://members.home.net/marcushflRS/Jam/j.

237

The agent checks all the plans that can be applied to a goal to
make sure they are relevant to the current situation. Those plans
that are applicable are collected into what is called the Applicable
Plan List (or APL). A utility value is determined for each
instantiated plan in the APL and, if no metalevel plans are
available to select between the APL elements, the JAM interpreter
selects the highest utility instantiated plan (called an intention)
and intends it to the goal. Note that neither the original PRS
specification nor prior PRS-based implementations (such as PRC-
CL) supports utility-based reasoning. Also, in contrast to the
JAM interpreter, the UMPRS interpreter does not actually intend

public int run0 {
// loop forever until agent completes all of its goals
while (true) { // outer, intlnite loop
// execute the Observer procedure
returnvalue = intentionStructure.executcPlan(observer);
metaLeve1 = 0;
while (true) { // metalevel loop
// generate an Applicable Plan List (APL) if necessary
apl = new APL(planLibrary, worldModel,

intentionStructure, metaLeve1);
// If the new or previous APL is not empty then add
// entry to the World Model to trigger the next level of
/I reasoning.
if (apl.getSize() != 0)
worldModel().assery”ApL”, metalevel, apl, aplsize);

N If this APL is empty then no new level of reasoning
if (apl.getSize() = 0) {
if ((mtentionStructure.allGoalsDone()))
return 0;

// If the previous APL was empty then execute
// something in the intention structure, otherwise
N select something from the previous APL, intend it,
// and then run something in the intention structure.
if (last apl = null ii last-apl.getSize() = 0) {
inten~onStructure.run();
break;

1
else (
selectedElement = last~apl.getHighestRandomUtilityo;
intentionStructum.intend(selectedElement);
intentionStructure.run();
last-apl = null;
break,

else {
last-apl = apl;
metaLevel++,

} // Inner, metalevel loop

// Clear the World Model of APL elements.
getWorldModel().~APL”);

} N Outer infinite loop
1

Figure 2. The JAM agent’s main interpreter loop.

an intention if a new intention does not have a utility higher than
all of the intentions already on the agent’s intention structure.
Continuing with JAM’s interpreter behavior, if the goal with the
new intention has the highest utility among all goals with
intentions, then the new goal’s plan is executed. otherwise, a
previous intention still has a higher utility and the interpreter
executes that intention’s plan.

If generation of an APL results in one or more entries, the agent
possibly enters into metulevel reasoning. That is, it reasons about
how to decide which of the APL elements to intend to its intention
structure. The agent may have multiple ways (i.e., applicable
metalevel plans) of performing this decision-makin& so that
metalevel reasoning about its metalevel reasoning may ensue.
Metalevel reasoning ends when the interpreter no longer generates
a non-null APL, indicating that the agent has no higher metalevel
means for deciding between alternatives. The JAM distribution
comes with a number of implemented primitive actions to
facilitate metalevel reasoning These include primitives for
selecting an intention from an APL, tinding the goal currently
being pursti finding the plan currently being executed,
extracthg a plan’s attributes and attribute values, and intending an
intention onto the Intention Structure.

2.2 GOALS
A JAM agent’s top-down behavior is motivated by specitj4ng top
level goals. Goals can be given to the agent in a text form with
the following syntax:

goal-type goal-name parameter1 . . . parameterN
<:UTILITY expression>;

The god type is one of: ACHJEVE, PERFORM, and MAINTAIN. The
goal name is a label identifying the goal relation, and the
parameters are the goal relation’s arguments. The :WnLnY
keyword and expression are optionsI and provide an
opportunity to specify either a tIxed numeric value (which then
cannot be regaded strictly as a utility but we permit such use) or
an arbitrarily complex utility calculation (perhaps involving
probabilistic information). As we will describe in more detail
later, the goal’s utility is combined with the utility of an
instantiated plan to calculate the total utility of the intention. A
JAM agent will dynamically switch between alternative goals as
the intention utilities change so that it is always pursuing the
highest utility intention. In the sense that JAM agents are utility
maximiz.ing, the JAM architecture results in strictly rational
agents.

One or more top-level goals are initially given to the agent at
agent invocation. The text specification for toplevel goals are
specified by usmg the keyword ‘QOALX” and then a list of goal
specifications in the form specified above. An example top-level
goal specification for a robotic agent that wanders around a
building’s lobby greeting guests might look like:

GOALS:
PERFORM wander-lobby;
ACHlEVE initialize :UTILlTY 300;
h4AINTAIN charge level ‘20%“;
MAINTAIN sa5e~di&nce~t+om~obstacles 50.0;

238

This list of goals can be augmented during execution tbrough
communication with other agents, generated from internal
reasoning on the part of the agent, or by many other means.

Top level goals are persisfwtt. That is, they are pursued until they
are satisfied by successful plan execution or opporumistically by
some other means, such as another agent, or are removed
explicitly within a plan @t-haps because the agent believes it is
no longer capable of achieving the goal). If a plan for a top-level
goal fails, the agent removes its commitment to that goal by
removing its intention, but leaves the goal on the intention
structure for later attempts at achieving the goal. With this
operationalixation of top-level goals, agents have a level of
cammitment to all top-level goals and an espeoially strong level of
commitment to goals that have intentions associated with them
(which is consistent with, for example [l] and formal BDI
definitions). A further difference between subgoals and top-level
goals is that subgoals are not persistent by default If a plan fails
for a subgoal, the interpreter considers the subgoalii action to
have failed (iust as if it were any other type of plan action).

JAM supports a number of different types of goals, ACHIEVE,
PERFORM, and MALNTAU$ each with distinct semantics. An
ACHIEVE god specifies that the agent desires to achieve a goal
state and is the goal type typically associated with BDI
archim and generative planning systems. For ACHIEVE
goals, the JAM interpreter checks to see whether the goal has
aheady been accomplished before generating an APL. If the goal
has heen accomplished, the agent does not actually establish a
top-level goal or subgoal. JAM agents contimtally monitors for
goal achievement. Typically, the plan selected for the subgoal
will be the means by which the subgoal is accomplished.
However, if the agent detects opportunistic accomplishment of the
goal, perhaps by another agent, it will consider the subgoal action
successll and discontimte execution of the plan. Finally, a world
model entry indicating that the goal has been achieved is asserted
if the plan selected for accomplishment of the AcmuvE subgoal
completes successfully. The world model entry that is asserted is
the goal specification for the goal just achieved.

A PERFORM goal specifies the agent desires to perform some
behavior. This semantics is an extension not found in typical BDI
architectures and indicates that the agent is not interested in
achieving a goal, per se, but merely to exhibit a particular
behavior. PERFORM gC& differ fiOm ACHIEVE gOakin SeWId
important aspects. The agent does not check to see whether the
goal has already been accomplished betore selecting plans to
perfotm the behavior. The agent does not monitor for goal
achievement during plan execution and will execute the intended
plan until the plan succeeds or fails. Finally, an assertion to the
world model entry that the goal has been achieved is only
performed if the plan that was executed has an ACHEvE goal
specification and it completes successfully.

A MAINTAIN goal indicates that the specified goal must be
reattained if it ever becomes unsatisfied. A MAINTAIN goal is
similar to an AcHIEvE goal except that a M,4u4 goal is never
removed from the agent’s goal list automatically (i.e., it is a
homeostatfc goal). A MAINTAIN goal can be removed from the
agent’s intention structure only by the agent explicitly removing
it.

2.3 PLANS
A JAM plan defines a procedural specification for accomplishing
a goal, reacting to an event, or performing behavior. JAM agents
are therefore capable of both goal-driven and data-driven
behavior. The basic &ucture of a JAM plan is shown in Figure 3.
Optional plan fields are surrounded with the “4 and 3”
symbols.3 One or more plans are initially given to the agent at
agent invocation. The text specification for plans are specified by
usmg the keyword ‘PLANS:” and then a list of plan specifications
in the form specified below. This list of plans can be augmented
during execution through communication with other agents,
generatedfrominternalreasoningonthepartoftheagenforby
many other means.

A plan’s applicability is limited to either a particular goal or a
data-driven conclusion. Each plan may be further constrained to a
particular precondition, conditions that must hold before starting
execution of tbe plan, and context, conditions that must hold both
before and during execution of the plan This semantic
dif%entiation of runtime and pm-runtime conditions provides
more flexibility to an agent programmer than does the context

PLAN: {
GOAL: [goal specification]

CON&JOE [world model relation]
NAME: [stringI
BODY: [procedun]
<DOCUMENTATION: [suing]>
<PREcoNDrTIoNz [expressiou]~
<CONTEXT: [expression]>
<tJTILlTYz [numeric expmssion~
<FAILURE: [non-subgoalmg pmcedureJ>
43TECTS: [non-subgealmg pmcedure]~
<ATTRIBUTE% [string’&-

1
Figure 3. Anatomy of a JAM agent plan.

semantics found in the PRS or Act specifications.

The procedure to use to accomplish the goal is given in the plan’s
procedural body, which can contain simple actions (e.g., execute a
user-defined primitive function) and complex structu&
constructs (e.g., iteration and equivalents to if-then-else). JAM
(and UMPRS) use snuctumd programming constructs in contrast
with previous instantiations of PRS (e.g., PRS-CL), that allow
unstructured procedm (i.e., procedures with the equivalent of
“goto” actions.), which we believe to represent a significant
improvement for agent programmets.

Each plan may include an explicitly or implicitly defined utility
calculation, which is used to influence selection of certain
procedures over others through the default utility-based metalevel
reasoning mechanism of JAM. The utility calculation can be a
fixed value or an arbitrarily complex calculation involving
instantiated variables and possibly

3 The full BNF grammar for JAM agents can be found at
http://member.shome.net/marcush/IRS/Jam/Jam-man.doc.

239

specific to the particular plan.

PerfcmIl sequelWe of actions willlou

Another optional component is the effects field, which is a
procedure that the JAM interpreter executes when the plan
completes successfully. An agent programmer can use the effects
field to perform World Model updath~g, which would result in
behavior similar to the add/delete list in STRIPS plans [4], but can
also use it to execute any other procedural construct other than
subgoaling.
A procedural specification of what the agent should do when a
plan fails can be represented in a plan’s optional fuihre section.
This is similar to the effects field in that it is a procedure that can
contain any JAM plan component except subgoal@. An agent
programmer can use the failure section to define “cleanup” code

4 Note that UMPRS plans have a field with the same name but
tbat the semantics of the UMPRS implementation is quite
different. UMPRS uses the EFFECTS field in a special simulation
mode and does not use it dting normal execution.

Table 1. Available plan actions and constructs in JAM. The
middle column indicates whether the item is an action (A) or a

construct(c).
The optional attributes plan field provides a place for a
programmer to put information concerning plan characteristics
that the agent can reason about during plan execution and
metaleve1 reasoning.
The name and documentation fields are placeholders for a unique
identifier string and explanatory textural documentation that
should accompany the plan, respectively.
JAM provides many programming actions and constructs. We
define actions to be single-line statements and constructs to be
multiple-line statements. We list each of the built-in actions and
constructs in Table 1.

JAM provides many standard programming constructs such as
iteration (represented by DO . . . WHILE and WHILE consuucts),
conditional branching (represented in various specialized forms by
OR, ANO, W-ALL, DO-ANY, and WHEN), and variable value setting
(ASSIGN). A JAM agent’s beliefs can be chauged and checked
using ASSERT, FACT, RJZTRACr, RETRIEVE and UPDATE. JAM
provides constructs for true simultaneous parallel activity
(PARALLEL) and a synchronizing construct (WA@. The Pm
action provides simultaneous execution of multiple plan branches
using sepamte Java thmads while preserving the JAM execution
semantics of interleaving action execution with interpreter
reasoning (including Observer execution). JAM’s WAIT con&uct
causes plan execution to pause until a specified goal is achieved
or a specified action retums successfblly. Execution of the plan
continues “in place”, with the agent checking the goal or action
every cycle through the interpreter.

PLAN:{
NAMEz‘Tl~1:Gathera11djuocessinf~on”
GOAL: ACHJEVE infomwti~~exploii Suset_que-ry Srcsult

srecursed;
BODY:

EXECUTE com.irs.jam.Primitives.GctHostname.execute.
Shostnane;

EXECUTE print “Currently at U Shosiname ‘%I”;
OR
{ UChecktoseaifweared

TEST (querySatis&lP Suser query Ssolution);
EXFCUTE print “Done work&g on query.W’;

I
{//Wearenot&me,sofigureoutwlmttodonext

EXECUTEd~NexdfoSource$uscr~query
SnextHostname SnextPti sresutt;

EXJXUTE agent00 SnextHostname SnextPoq
EXJX!UTE@hcrAn- OsqucrYSresult;

ACHIEVE in5mnaGon~exPloited $user-query Sresult
%lMP

1; ’
WHEN : TEST (= Smcursed “false”)
{

sgentO0 Sbosmme Sport
1;

1
Figure 4. An information gathering plan using goal-directed
behavior and agent mobility.

240

We show an example of some simple JAM agent plans in Figure 4
and Figure 5. Figure 4 demonstrates a goal-driven (Acumvument-

Plan:{
NAME “Plan 2:Metalevel reason&
DOWMENTATIO~ “Pcrhrm mctalevel masoning”
CONCLUDE: APL SLBVEL SAPL SAPLSIZE;
CONTEXT: (> SAPLSIZE 1);
BODY:

EXECUTE print “In me&level plan! APL isW;
EXECUTE prilltAPI. SAPL;

N Find lowest-cast element
ASSIGN SCOUNT 1;
ASSIGN SLOWESTINDEX -1;
ASSIGN SLOWESTCOST 999999.0;
WHILE : TEST (<= SCOUNT SAPLSIZE)
{

1;

OR
{

EXECUTE @APLElement SAPL SCOUNT
SAPW

EXECUTE getAttributevalue SAPLELEMENT “Cost”
SVALW,

WHEN : TEST (< SVALUE SLOWESTCOST)
{

EXECUTE print “Found new lowest cost APL
Element at #” SCOUNT “W;

ASSIGN SLOWESTINDEX SCOW,
ASSIGN SLOWESTCOST SVALW

1;
ASSIGN SCOUNT (+ SCOUNT 1);

TEST (I= SL4WESTlNDEX -1);
EXECUTE print “Lowest cost APL Element is #”

SLOWESTINDEX %I”;
EXECUTE @APLElement $APL SLOWESTlNDEX

sAPLl!Lmmw

// If no lowestast element then pick randomly
EXECUTE print “No lowest-cat element, picking

rand0mly.W;
EXECUTE se1 -LE1emcnt SAPL

SAPLELEMElq
1;

EXECUTE print “Intending APL Elementh”;
EXECUTE printAPLElement SAPS
EXECUTE intelldAPLE1ement SAPLELmmIq

EFPEcT!k
EXECUTE print “In metalevel plan! Retmcthg WM entry for

this 1evel.W;
RETRACT APL SLEVEL;
EXECUTE print “In metalevel plan! Retmcthll WM entry fix

previous 1cvel.b”;
RETBACT APL (- SLEVEL 1);

FAILURE:
EXECUTE print wnMet8levcl plan failcd!\n\n”;

1

Figure 5. A data-driven plan for pe&ming metalevel
remonhlg.

based) plan tbat employs JAM’s mobility functionality. The basic
idea of the plan is that a parent plan establishes a subgoaJ with a
user-based query as a parameter and the result is retumed by plans
achieving that goal. The plan establishes the origina@ computer
host, determines inGormation sources that the agent needs to
gather information fi’om, processes the new information, and
recurses. When the query is satisfactorily answered, the agent
returns to its original computer plattbrm. Figure 5 demonstrates a
data-driven plan that performs simple metalevel mason& and
bases its decision on lowest cost This second plan searches
through the plans in the Applicable Plan List (APL) and looks for
the plan with the lowest vahte for “co&’ in the plans’ ~mmwnz
field. The lowest-cost plan is intended if there is a single lowest-
cost plan, otherwise a plan is randomly selected and intended Gem
the APL.

Agent progmmmers can augment the functionality provided with
JAM by &w prhnitive functions in native Java code and
several access methods to the Java code are provided by the JAM
archi~. It is through this augmentation of primitive fimctions
that provide JAM with application-specific (e.g., database
interfacii) and “social” abilities (such as in&agent
communication and collaborative). There are a number of
predefined primitive actions included with the JAM agent
distribution, including those providing debugging support and
agent mobility (which we describe in more detail below).

2.4 WORLD MODEL
The JAM World Model holds the facts that repmsent the current
state of the world as it is known by the agent Information that
might be kept there includes state variables, sensory information,
conclusions tiom deduction or inferencing, modeling information
about other agents, etc. Each world model entry is a simple
proposition of the form:

relation-name wgumentl wgument2 .,. wgumentN;

The orderhg, semantics, and typing of the arguments is
unconstrained and is determined by the agent programmer. World
model relation’s arguments are currently lhnited to the following
types: strh~gs, floating point numbers, integer numbers, and native
Java objects. Specification of an agent’s initial world model
consists of cmating a text file containmg the keyword “FACTS:‘)
followed by the list of world model relations. The agent parses
the initial world model specification before execution begins and
can make assertions, retmctions, and modification dynamically
within plans. We show an example of an agent’s initial World
Model below in Figure 6.

FACTS
FACT ON “Block5” “Block4”;
FACT ON “Block4” “Block3”;
FACT ON “Blockl” “Block2”;
FACT ON “Black2” “Table”*
FACT ON “BlockY “Table”;
FACT CLEAR Wockl “;
FACT CLEAR “BlockS”;
FACT CLEAR “Table”;
FACT inithhd “False”;

Figure 6. Example World Model for a blocks-world domain.

241

2.5 OBSERVER
The observer is an optional declarative procedure that the JAM
interpreter executes between each action in a plan. The observer
procedure itself is basically a plan with only the plan body and
none of the other plan components and is specified in the form:

OBSERmR: {
[non-subgoaling procedure]

I
The observer represents an architectural hook which an agent
programmer can use to implement capabilities that are more easily
implemented outside of the scope of JAM’s normal goal/plan-
based reasoning. Examples of such capabilities might be to check
a buffer of incoming messages to see if any new messages have
arrived or to see if the agent’s external vision processing
component has buffered new images. We named this procedure
“observd’ because of its typical use in watching for asynchronous
events. Because the observer procedure is executed very
t?equently, it should not be computationally intensive.

We show an example of an agent’s Observer procedure below, in
Figure 7. The procedure performs an initialixation function upon
startup and periodically checks for incoming messages from other
agents and asserts any messages to the agents world model when
received.

I
RETRIEVE cycle_num SCYCLE~NW@
UPDATE (cycle num) (cycle-num (+ 1 SCYCLEJWM));
RETRJEVE hst’&m SLASTTIME,
EXECUTE getTime $CIJRRENTTIIt@

WJrlEN:TJZST(=SCYCLE NUMO){
EXECUTE perfbrmm_initial~&ation;

1;

WHEN : TEST (> (. SCURREN’MTME SLAST-TIME) 5000) (
EXECUTE getMessages SMSGS SNUM~MSGS;
ASSIGN $MSG~NtJM 1;
WHILE : TEST (<= SMSG-NUM SNUM_MSGS) (

EXECUTE @Message SMSGS $MSG~NUM SMSG;
ASSERT new_message $MsG;
ASSIGN SMSG_NuM (+ I SMSG-NUM);

1;
UPDATE (lastTime) (lastTime SC-);

1;
1

Figure 7. Example Observer procedure demonstrating
using it for initialization and periodic checking for
messages.

Note that all of the functionality and behavior embedded into an
observer procedure can be implemented in JAM’s normal BDI
paradigm (using goals and plans) to take advantage of the
architecmres powerful reasoning capabilities. For example, goals
and plans can be written to determine the best time and manner in
which to check for communication queues for new messages. It
may not always be pragmatic to implement all activities using the
BDI paradigm however and we have found that the observer
paradigm is very usefiil.

3. JAM AGENT CHECKPOINTING and
MOBILITY
JAM agents facilitate building applications requiring mobility
through the use of checkpointing capabilities. That is, we have
implemented functionality for capturing the nmtime state of a
JAM agent in the middle of execution and functionality for
subsequently restoring that captmed state to its execution state.
One use Of this functionality is for periodically saving the agent’s
state so that it can be restored in case the agent fails unexpectedly.
This facilitates building robust applications that can restart and
recover from otherwise catastrophic termination. Another use of
the checkpointing functionality is to implement agent mobility,
where the agent creates a checkpoint and restores it to execution
on a different computer. A third possible use of this functionality
is to clone an agent by creating a checkpoint and restoring it to an
execution state without terminating the original agent. In all
cases, a simple Java class is provided with JAM that performs the
basic restoration function. Extension of this restoration class to
provide application-specific mobility policies and similar
fimctionality can be made as needed.

We have simplified agent mobility by implementing an agentGo
primitive function. This function allows an agent programmer to
simply specify a target computer and port and, when the plan
containing the function is executed, the agent will transfm to the
other machine and terminate itself on the initial computer. On the
destination machine, the JAM agent will resume execution,
guided by its pm-existing goals and plans, from where it was
suspended on the initial machine. Moving between computers
therefm becomes transparent in the sense that such activity is not
handled differently than any other activity. The example plan
shown in Section 2.3 illustrates a plan using the agenffio
primitive.

4. CONCLUSIONS AND FUTURE WORK
We believe JAM represents the current leading edge in pragmatic
BDI-theoretic intelligent agent architectures. JAM provides rich,
expressive procedural representations, a wide range of usell goal
semantics, metalevel reasoning support for complex utility-
theoretic behavior, and agent mobility support while remaining
true to its underlying BDI theoretics.

JAM does not represent a complete architecture yet, however, in
that many architecmrally integrated capabilities such as plan
generation and learning do not yet exist. Towards the end of a
JAM architecture that includes these capabilities, we are currently
in the middle of adding generative planning functionality to the
JAM interpreter, so that when JAM reaches an impasse (in Soar
terminology), it can generate a plan t?om first principles (using a
novel hybrid HTN and partial order planning algorithm) rather
than relying solely upon the library of preprogrammed plans as
most BDI amhitectures (e.g., PRS-CL and UMPRS). We have
extended the JAM plan representation to include declarative
representations for individual primitive actions and are
implementing partial order planning algorithms based upon the
new representations. “Social” abilities in the form of conversation
management and FIPA-compliant language and protocol support
have been added to JAM as an application-specific extension, but
we have not yet decided upon whether such capabilities will
become an integral part of JAM at any point or if such
functionality will be provided as a supplemental package.

242

5. ACKNOWLEDGEMENTS
We would like to thank Jaeho Lee for his help in implementing
portions of the original version of JAM and for many discussions
regarding PRS and BDI architectures. We would also like to
acknowledge the Johns Hopkins University’s Applied Physics
Laboratory which supported some of the development of JAM.

6.
Ul

PI

131

141

151

WI

VI

PI

[91

REFERENCES
P. R. Cohen, and H. J. Levesque. Intention, = Choice +
commitment. In Proceedings of the Sixth National
Conference on Art#cial Intelligence, Seattle, Washington,
410415,1987.

E. H. Durfee, M. J. Huber, M. Kumow, and J. Lee.
TAIPE: Tactical Assistants for Interaction Planning and
Execution. In Proceedings of the First International
Conference on Autonomous Agents, 443-450, Marina de1
Rey, CA, 1997.

I. A. Ferguson. TouringMachines: An Architecture for
Dynamic, Rational Mobile Agents. Ph.D. Thesis, University
of Cambridge, UK, 1992.

R. E. F&es and N. J. Nilsson. STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving.
In Artificial Intelligence Journal, Vol2, 189-208, 1971.

E. Gat. Integrating Planning and Acting in a Hetetogeneous
Asynchronous Architecture for Controlling Real-World
Mobile Robots. In Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 809-817, San
Jose, CA, 1992.

M. Georgeff and A. L. Lansky. Reactive Reasoning and
Planning. In Proceedings of the Sixth National Conference
on Artificial Intelligence, 677-682, Seattle, Washington,
1987.

R. S. Gray, D. Katz, G. Cybenko, and D. Rus. Agent Tel.
In W. Cockayne and M. Zyda editors, Mobile Agents,
Manning Publishing, 1997.

M. J. Huber and T. Hadley. Multiple Roles, Multiple
Teams, Dynamic Environment: Autonomous Netrek Agents.
In Proceedings of the First International Conference on
Autonomous Agents, pages 332-339, Marina de1 Rey, CA,
1997.

M. J. Huber, J. Lee, P. Kenny, and E. H. Durfee, UM-
PRS Programmer and User Guide, The University of
Michigan, Ann Arbor MI 48109, 1993. [See
http://members.home.net/marcush/IRS].

[lo] F. Ingrand, M. Georgeff, and A. Rao. An Architecture for
Real-Time Reasoning and System Control. IEEE Expert,
7(6):34-44, 1992.

[l l] P. G. Kenny, E. H. Dur&, and K. C. Kluge. Mission
Planning and Coordinated Execution for Unmanned
Vehicles. In Proceedings of the Sixth Computer Generated
Forces and Behavioral Representation Conference, 329-335,
19%.

[12] J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR: An
Architecture for General Intelligence. AI Journal, l-64,
1987.

[131 J. Lee, M. J. Huber, E. H. Durfw, and P. G. Kenny.
UM-PRS: An Implementation of the Procedural Reasoning
System for Multirobot Applications. In Conference on
Intelligent Robotics in Field, Factoy, Service, and Space
(CIRFFSY’94), 842-849, Houston, Texas, 1994.

[14] J. Lee and E. H. Durfs. Structured Circuit Semantics for
Reactive Plan Execution Systems. In Proceedings of the
&elJth National Conference on ArtiJcial Intelligence, 1232-
1237,1994.

[151 J. P. Muller and M. Pischel. Integrating Agent Interaction
into a Planner-Reactor Achitecture. In Proceedings of the
1994 Distributed AI Workshop, pages 250-264, Lake Quinalt,
WA, 1994.

[16] K. L. Myers and D. E. Wilkins. The Act Formalism,
Version 2.2. SRI International Artificial Intelligence Center
Technical Report, Menlo Park, CA, 1997.

[171 K. L. Myers, User Guide for the Procedural Reasoning
System, SRI In&national AI Center Technical Report, SRI
International, Menlo Park, CA, 1997.

[18] A. Newell. Unified Theories of Cognition, Harvard
University Press, 1990.

[191 A. S. Rao and M. P. GeorgetX Modeling Rational Agents
Within a BDI-architecture. In Proceedings of the Second
International Conference on Principles of Knowledge
Representation and Reasoning, Morgan Kaufhtann
Publishers, San Mateo, CA, 1991.

[20] A. S. Rao and M. P. Georgeff. A Model-Theoretic
Approach to the Verification of Situated Reasoning Systems.
In Proceedings of the Xkirteenth International Joint
Conference on Artiificial Intelligence, 3 18-324, Chambery,
France, 1993.

[21] Y. Shoham. Agent-oriented Programming. ArtSficial
Intelligence, 60(1):51-92. 1993.

[22] Y. Shoham. AGENTO: A Simple Agent Language and Its
lnteqwe$er. In Proceedings of the Ninth National Conference
on Artificial Intelligence, 704-709, Anaheim, California,
1991.

[23] R. S. Thomas. The PLACA Agent Programming Language.
In Intelligent Agents - Theories, Architectures, and
Languages, pages 356-370, Michael Wooldridge and
Nicholas R Jennings editors, Springer-Vet@, 1995.

[24] J. M. Vidal and E. H. Durfee. Task Planning Agents in
the UMDL. In Proceedings of the 1995 CIKM Intelligent
Information Agents Workshop, 1995.

[25] D. E. Wilkins and K. L. Myers. A Common Knowledge
Representation for Plan Generation and Reactive Execution.
In Journal of Logic and Computation, vol. 5, number 6,73 l-
761, 1995.

243

