
MANAGING THE EVOLUTION OF

OBJECT�ORIENTED SYSTEMS

A Thesis

Presented to the Faculty of the Graduate School

of the College of Computer Science

of Northeastern University

in Partial Ful�llment of the Requirements for the Degree of

Doctor of Philosophy

by

Paul L� Bergstein

June ����

c� Paul L� Bergstein� ����

ALL RIGHTS RESERVED

ii

Abstract

Class organizations �schemas� evolve over the life cycle of object�oriented systems for

a variety of reasons� This issue has recently been a subject of increasing attention in the

literature of both object�oriented languages and object�oriented database systems�

One of the most common forms of evolution involves the extension of an existing system

by addition of new classes of objects or the addition of attributes to the original objects�

Sometimes class structures are reorganized even when the set of objects is unchanged� In

this case the reorganization might represent an optimization of the system� or just a change

in the users	 perspective� At the other extreme� a class reorganization might re
ect not only

the extension and reclassi�cation of existing objects� but also structural changes �other than

addition of attributes� in the original objects�

This work provides a mathematical treatment of a calculus of class transformations�

Three kinds of transformations that commonly occur in the evolution of class structures are

considered� object�extending� object�preserving� and language�preserving� For each kind of

transformation� methods for automating the maintenance of systems based on the evolving

class structure are discussed�

The language�preserving transformations are a special case of transformations that

change the structure of existing objects� If an object schema is decorated with concrete

syntax� it de�nes not only a class structure� but also a language for describing the objects�

When two schemas de�ne the same language but di�erent classes� the language may be

used to guide the discovery of analogies between the classes� The resulting analogies may

then be used to transport functionality between domains�

iii

Acknowledgments

I would like to thank my advisor� Karl Lieberherr� for his generous support� guidance�

and feedback� I would also like to thank my wife� Vickie� for her constant encouragement

and understanding without which this work would not have been possible�

iv

Contents

Abstract iii

Acknowledgments iv

� Introduction �

��� Schema extension �

�� Class reorganization �

��� Object restructuring �

� Data Model �

�� Motivation for object example notation �

� Motivation for class notation �

�� Class dictionary graphs �

���� Legality conditions ��

��� Programming with class dictionary graphs � � � � � � � � � � � � � � � ��

�� Object graphs ��

�� Related work �

� Extending a class organization ��

��� A simple example of incremental class dictionary graph learning � � � � � �

�� Basic Learning �

��� Correctness of Basic Learning �

��� Incremental Learning �

��� Optimum class dictionary graph learning ��

��� Extending a class dictionary graph based on object examples � � � � � � � � ��

��� Training set ��

v

��� Related work ��

� Object preserving transformations ��

��� Primitive Object�Preserving Transformations � � � � � � � � � � � � � � � � � ��

�� Primitive Transformations ��

��� Proofs ��

����� Correctness ��

���� Completeness ��

����� Minimality ��

��� Related work ��

� Class dictionary graph optimization ��

��� Practical applications of the object�preserving transformations � � � � � � � ��

����� Elimination of redundant parts ��

���� Removal of singleton alternation vertices � � � � � � � � � � � � � � � � ��

����� Complete Cover ��

����� Partial Cover ��

����� MI Minimization ��

�� Metrics for class organizations ��

��� Minimizing construction edges ��

����� CNF Rule ��

��� Minimizing alternation edges ��

��� Fast algorithms for optimization ��

����� Single�inheritance hierarchies ��

���� Common normal form ��

����� Minimizing alternation edges ��

��� Related work ��

� Maintaining Behavioral Consistency ��

��� Features of language models ��

�� The extension relation �

��� Class dictionary graph Extension Transformations � � � � � � � � � � � � � � ��

��� Structural Consistency ��

��� Code Transformations ��

vi

����� Untyped Language Model ��

���� Typed Language Model ��

��� Discussion ��

��� Related work ��

� Object grammars ���

��� Extended data model ���

����� Extended class dictionary graphs ���

���� Extended object graphs ���

�� Working with extended graphs ���

���� Learning extended class dictionary graphs � � � � � � � � � � � � � � � ���

��� Object�preserving transformations ���

��� A Simple Object�oriented Programming Language � � � � � � � � � � � � � � ���

����� Overview ���

���� Methods� Messages� and Expressions � � � � � � � � � � � � � � � � � � ���

����� Built�ins ���

� Program Evolution by Analogy ��	

��� Problem Description ���

�� Transforming a CDG Program ���

��� Primitive Language�Preserving Transformations � � � � � � � � � � � � � � � � ���

����� Object�preserving transformations ���

���� Renaming of vertices and edges ���

����� Nesting of parts ���

����� Unnesting of parts ���

����� Addition of lambda parts ���

����� Deletion of lambda parts ���

����� Addition of lambda alternative ���

����� Deletion of lambda alternative ���

����� Insertion of singleton construction ��

������ Deletion of singleton construction ��

������ Attribute to subclass ��

����� Subclass to attribute ��

��� Justi�cation for the primitive transformations � � � � � � � � � � � � � � � � � ��

vii

����� Regular class dictionary graphs �

���� Axiom systems for regular expressions � � � � � � � � � � � � � � � � � ��

����� Completeness proof ��

��� CDG Program Transformations ��

����� The object�preserving transformations � � � � � � � � � � � � � � � � � ���

���� Renaming of vertices and edges ���

����� Nesting of parts ���

����� Unnesting of parts ��

����� Addition of lambda parts ��

����� Deletion of lambda part ��

����� Addition of lambda alternative ��

����� Deletion of lambda alternative ���

����� Insertion of singleton construction ���

������ Deletion of singleton construction ���

������ Attribute to subclass ���

����� Subclass to attribute ���

��� Examples of CDG program transformations � � � � � � � � � � � � � � � � � � ���

��� Search algorithms ���

����� Regular languages ���

���� Context free languages ���

��� Related Work ��

����� Structure Mapping Theory ��

���� Graph Transformations in Analogical Reasoning � � � � � � � � � � � ���

����� Analogical Program Synthesis Guided by Correctness Proofs � � � � ���

Bibliography ���

viii

List of Tables

� Standard interpretation of class dictionary graphs � � � � � � � � � � � � � � � �

 Standard interpretation for object graphs ��

� Extended Interpretation ���

ix

List of Figures

� Lawnmower object �

 Construction class �

� Alternation class �

� Common parts �

� Satellites ��

� Child ��

� List ��

� Forbidden subgraphs ��

� Pre�x expression class dictionary graph ��

�� Pocket calculator C�� implementation ��

�� Legality Rule ��

� Class dictionary graph� �� and legal object graph� �� � � � � � � � � � � � � � ��

�� Fruit class dictionary graph ��

�� Fruit object graphs ��

�� Fruit basket objects �

�� Fruit basket class dictionary graphs �

�� Class dictionary graph and object graph for incremental evolution � � � � � ��

�� Class dictionary graph after incremental evolution � � � � � � � � � � � � � � ��

�� A class dictionary graph de�ning � di�erent A objects � � � � � � � � � � � � ��

� The training set ��

� Class Dictionary Graph �� ��

 Class Dictionary Graph �� ��

� Addition of Useless Alternations ��

� Distribution of Common Parts ��

� Part Replacement �

x

� Abstraction of Common Parts ��

� Elimination of redundant parts ��

� Removal of singleton alternation vertex ��

� Complete Cover ��

�� Partial cover ��

�� MI minimization ��

� Before transformation to CNF ��

�� After transformation to CNF ��

�� After change of weight composition ��

�� Matrix representation of alternation subgraph � � � � � � � � � � � � � � � � � ��

�� Original class dictionary graph ��

�� After factoring weight and position ��

�� After factoring width� height� and length �

�� Inventing new alternations ��

�� Covering existing alternations ��

�� Original class dictionary graph ��

� Object�equivalent class dictionary graph ��

�� Extended class dictionary graph ��

�� Steps in the object�preserving transformation � � � � � � � � � � � � � � � � � ��

�� Steps in the object�extending transformation � � � � � � � � � � � � � � � � � ��

�� Program A ���

�� Language�equivalent Class Dictionary Graphs � � � � � � � � � � � � � � � � � ���

�� Program B ���

�� Nesting of parts ���

�� Addition of lambda alternative ���

�� Insertion of singleton construction ��

� Attribute to subclass ��

�� Closure operator �

�� Solution of equations ��

�� �a� �b� c�� � ��a� b� � c� ��

�� �a � �b � c�� � ��a � b� � c� ��

�� �a� b� � �b� a� ��

�� �a � �b� c�� � ��a � b� � �a � c�� ��

xi

�� ��a� b� � c� � ��a � c� � �b � c�� ��

�� �a� a� � a ��

�� �a � �� � a ��

� �a�� � ��� �a � �a���� ��

�� �a�� � ���� a��� ���

�� Program C ���

�� Program D ���

�� Program E ���

�� Program to calculate weight of brick pile ���

�� After adding balloons to the pile ���

xii

Chapter �

Introduction

Class organizations �schemas� evolve over the life cycle of object�oriented systems for a

variety of reasons� This issue has recently been a subject of increasing attention in the

literature of both object�oriented languages and especially object�oriented database systems�

�Opd�� Ber�� Ber��� Cas��� CPLZ��� DZ��� Bar��� LH��� AH��� BKKK��� PS��� SZ����

One of the most common forms of evolution involves the extension of an existing schema

by addition of new classes of objects or the addition of attributes to the original objects�

Sometimes class structures are reorganized even when the set of objects is unchanged� In

this case the reorganization might represent an optimization of the system� or just a change

in the users	 perspective� At the other extreme� a class reorganization might re
ect not only

the extension and reclassi�cation of existing objects� but also structural changes �other than

addition of attributes� in the original objects�

��� Schema extension

Chapter � addresses the structural aspects of schema extension� In particular� we consider

how a schema can be automatically updated to accommodate new objects based on exam�

ples� The problem of updating the original objects �e�g� persistent instances in a database�

so that they remain consistent with the new schema has been addressed by others� but a

simple solution is presented in Chapter ��

In Chapter �� we return to the problem of schema extension to address the issue of

behavioral consistency� It is shown that once a schema has been extended� it is possible

to automate the modi�cations of methods so that programs based on the schema will

�

CHAPTER �� INTRODUCTION

exhibit behavior identical to that which was exhibited before the extension� This problem is

examined using both strongly typed �C��� and untyped �CLOS� language models� and it

is shown how the type system of strongly typed languages can complicate the maintenance

of evolving object�oriented systems�

The algorithms developed in Chapter � are also useful in contexts other than evolution�

In class�based object�oriented languages� the user has to de�ne classes before objects can

be created� For the novice as well as for the experienced user� the class de�nitions are a

non�trivial abstraction of the objects� The evolution algorithm can be used to automate

the abstraction simply by starting with an �empty� schema and extending it by presenting

the algorithm with a set of example objects�

��� Class reorganization

In another common form of schema evolution� the class structures are reorganized but

the set of objects is unchanged� Consider� for example� the set of objects� fmotorboat�

sailboat� automobile� bicycleg� In one context it might be desirable to classify these

objects as either water�vehicles or land�vehicles� In another context� however� it might

make more sense to classify the objects as either motorized or non�motorized� A small

set of primitive transformations that can be used to achieve any reorganization of classes

that preserves the set of objects is presented in Chapter �� A constructive proof of the

completeness of the set of primitives is presented� Since the proof is constructive� there is

an algorithm to determine whether two arbitrary class organizations de�ne the same set of

objects� and if they do� to �nd a sequence of primitives to transform one organization to

the other�

Chapter � discusses some metrics for schema design� and presents an algorithm for op�

timizing a class organization based on the the primitive object�preserving transformations�

In Chapter � the problem of class reorganization is reexamined with the focus on behavior�

in the same manner as for the schema extension case�

CHAPTER �� INTRODUCTION �

��� Object restructuring

While the schema extension and class reorganization are mainly concerned with the orga�

nization of objects into classes� object restructuring is concerned primarily with the orga�

nization of attributes� or �parts�� into objects� Here the concern is how to modify the code

of an object�oriented program if the class de�nitions are changed so that the same data is

organized into a di�erent object structure� If the new objects hold the same data as the

original objects� the class structures can be considered in some way analogous� The problem

is to �nd a mapping of the code �methods� from the old class structure to the new one�

In Chapter � the data model presented in Chapter is extended by decorating the

schema with concrete syntax� In the extended model� the schema de�nes both a set of

objects and a language for representing the objects textually� The concept of a part is

extended to mean either another object or a text string� An interesting class of transfor�

mations investigated in Chapter � are those that change the structure of the objects� but

preserve the language de�ned by the schema� If the concrete syntax speci�ed in a schema is

meaningful and a transformation preserves the de�ned language� it is reasonable to hypoth�

esize that the objects are intended to represent the same data in the transformed schema

as in the original� Therefore� we can expect to �nd a mapping of the methods from the old

class structure to the new one which will preserve the behavior of the system�

Chapter �

Data Model

��� Motivation for object example notation

The importance of objects extends beyond the programmer concerns of data and control

abstraction and data hiding� Rather� objects are important because they allow the program

to model some application domain in a natural way� In �MMP���� the execution of an

object�oriented program is viewed as a physical model consisting of objects� each object

characterized by parts and a sequence of actions� It is the modeling that is signi�cant�

rather than the expression of the model in any particular programming language� We have

devised a programming language independent object example notation to describe objects

in any application domain�

The objects in the application domain are naturally grouped into classes of objects

with similar subobjects� For our object example notation it is important that the designer

names those classes consistently� Each object in the application domain has either explicitly

named or numbered subobjects� It is again important for our object example notation that

the explicitly named parts are named consistently� This consistency in naming classes and

subparts is not di�cult since it is naturally implied by the application domain�

An object is described by giving its class name� followed by the named parts� The

parts are either physical parts of the object �e�g�� wheels of a lawnmower� or attributes

or properties �e�g� model number�� An object example is in Figure � which de�nes a

lawnmower object with � parts� � physical parts �legs and motor� and one attribute� model�

The object example also indicates that the four wheels have no parts and that the motor is

a gasoline engine object with one part called fuelTank�

�

CHAPTER �� DATA MODEL �

Ident

model

LawnMower motor fuelTank

GasTankGasolineEngine

w2 w3

WheelWheelWheelWheel

w4w1

Figure �� Lawnmower object

GasolineEngine

GasTank

model motor

LawnMower

Ident w1 w2 w3 w4

Wheel

fuelTank

Figure � Construction class

��� Motivation for class notation

We use a class notation which uses two kinds of classes� construction and alternation

classes�� A construction class de�nition is an abstraction of a class de�nition in a typical

statically typed programming language �e�g�� C���� A construction class does not reveal

implementation information� We view a part as a high�level concept which might be imple�

mented as a method� not necessarily as an instance variable� An example of a construction

class corresponding to the object in Figure � is in Figure �

Each construction class inductively de�nes a set of objects which can be thought of

being elements of the direct product of the part classes� When modeling an application

domain� it is natural to take the union of object sets de�ned by construction classes� For

example� the motor of a lawnmower can be either a gasoline engine or an electric motor�

So the objects we want to store in the motor part of the lawnmower are either gasoline

�In practice we use a third kind� called repetition classes� which can be expressed in terms of construction
and alternation �Lie����

CHAPTER �� DATA MODEL �

GasolineEngine

Electric

Motor

Figure �� Alternation class

DriveShaft GasolineEngine

Number Electric

Motorshaft

horsepower

Figure �� Common parts

engine or electric motor objects� We use alternation classes to de�ne such union classes�

An example of an alternation class is in Figure �� GasolineEngine and Electric are called

alternatives of the alternation class� Often the alternatives have some common parts� For

example� each motor has a drive shaft� We use the notation in Figure � to express such

common parts�

Alternation classes have their origin in the variant records of Pascal� Because of the

delayed binding of function calls to code in object�oriented programming� alternation classes

are easier to use than variant records�

Parts which are common to more than one class may be implemented by inheritance

from an alternation class� In Figure �� GasolineEngine and Electric inherit from Motor� Class

Motor has methods and�or instance variables to implement the parts shaft and horsepower�

Construction and alternation classes correspond to the two basic data type constructions

in denotational semantics� cartesian products and disjoint sums� They also correspond to

the two basic mechanisms used in formal languages� concatenation and alternation�

CHAPTER �� DATA MODEL �

��� Class dictionary graphs

To describe multiple inheritance class libraries with part�of and inheritance relationships

we use graphs with construction and alternation vertices and edges� The information stored

in class dictionary graphs is considered to be essential for object�oriented design� as Booch

writes �Boo���� �We have found it essential to view a system from both perspectives� seeing

its �kind�of� hierarchy as well as its �part�of� hierarchy��

The concept of a part class and a part object which is used throughout the text needs

further explanation� A part object does not have to be a physical part� any attribute of an

object is a part of it� We say that object o� is a part of object o�� if �o� knows about o���

Therefore� our part�of relation is a generalization of the aggregation relation which only

describes physical containment� For example� a car is part of a wheel if the wheel knows

about the car� The concept of a part�class is a high�level concept which does not reveal

implementation detail� the parts might be implemented by operations�

Class dictionary graphs focus only on part�of and inheritance relations between classes�

One notably absent relation is the �uses� relation between class operations �see e�g�� �LG�����

The call relationships between classes describe important design information� e�g�� for check�

ing the Law of Demeter �LHR���� However� we �nd that class dictionary graphs as presented

here are a useful design abstraction which can be debugged independently� Only in later

design stages do we augment class dictionary graphs with other information such as opera�

tions�

We call a class S a supplier class to a class C� if in C we use the functions of class S� The

part classes of a class C are one important kind of supplier classes of C� If a design follows

the Law of Demeter� then there are only two other kinds of supplier classes �which are not

considered in a class dictionary graph�� argument classes of functions of C and classes of

objects which are created in functions of C� It is an important insight of our approach that

it is very worthwhile for a �rst design step to consider only a limited set of supplier classes

�the part classes� and inheritance�

In database terminology� a class dictionary graph is an object base schema with only a

minimal set of integrity constraints� Class dictionary graphs can be viewed as an adaptation

of extended entity�relationship diagrams for object�oriented design �TYF���� More recently�

graphs have been used to model object�oriented data bases in �LRV��� GPG����

CHAPTER �� DATA MODEL �

Graph Object-oriented Design
Vertex Class

Edge Class Relationship

construction instantiable class with members
defined by construction edges
(including “inherited” edges)

alternation abstract class with subclasses
defined by alternation edges

construction part-of relationship, “uses”,
“knows”, — labels are part
names

alternation inheritance relationship,
specialization, classification

Table �� Standard interpretation of class dictionary graphs

The de�nition of a class dictionary graph is motivated by the interpretation in object�

oriented design given in Table �� During the programming process� the alternation classes

serve to de�ne interfaces �i�e�� they serve the role of types� and the construction classes

serve to provide implementations for the interfaces�

De
nition ���� A class dictionary graph�� �� is a directed graph� � � �V��� EC�EA��

with �nitely many vertices V � � is a �nite set of labels� There are two de�ning relations�

EC�EA� EC is a ternary relation on V � V � �� called the �labeled� construction edges�

�v l�� w� � EC i� there is a construction edge with label l from v to w� EA is a binary

relation on V � V � called the alternation edges� �v �� w� � EA i� there is an alternation

edge from v to w�

Next the set of vertices is partitioned into two subclasses� called the construction and

alternation vertices�

De
nition ����

�The class dictionary graphs described here are a specialization of the class dictionaries described in
�Lie���� �LR���� The class dictionary graphs contain all the information necessary for many applications�
however they omit� terminal classes� concrete syntax� ordering of parts� For presenting design algorithms�
e�g�� we are not concerned with the grammar aspects of class dictionaries since they would only clutter the
presentation of the algorithms� We also omit optional and repeated part�of relationships since they can be
easily expressed in terms of the primitives given here�

CHAPTER �� DATA MODEL �

� The construction vertices are de�ned by�

VC � fv j v � V� 	w � V � �v �� w�
� EAg�

In other words� the construction vertices have no outgoing alternation edges�

� The alternation vertices are de�ned by�

VA � fv j v � V� �w � V � �v �� w� � EAg�

In other words� the alternation vertices have at least one outgoing alternation edge�

Sometimes� when we want to talk about the construction and alternation vertices of a

class dictionary� it is more convenient to describe a class dictionary graph as a tuple which

contains explicit references to VC and VA� � � �VC�VA���EC�EA��

In standard object�oriented terminology we describe here the accepted programming

rule� �Inherit only from abstract classes� �JF���� This rule can be exploited to derive an

analogy between class dictionary graphs and grammars�

We use the following graphical notation� based on �TYF���� for drawing class dictionary

graphs� squares for construction vertices� hexagons for alternation vertices� thin arrows for

construction edges and wide arrows for alternation edges�

Example ���� Figure � shows a class dictionary graph for satellites� Satellites can either

be military or civilian and they also can be either low orbit or geosynchronous� Military

satellites belong to a country and have a contract number assigned� Civilian satellites are

described by a manufacturer� For geosynchronous satellites we store their position while for

orbiting satellites we represent their path� For further illustration we give the components

of the formal de�nition� i�e��

V � � Satellite� Orbit� Low�orbit� Geosynchronous�

Military� Civilian� Country� Position� Manufacturer� Path��

VC � � Low�orbit� Geosynchronous� Military� Civilian� Country�

Contract� Position� Manufacturer� Path�

VA � � Satellite� Orbit ��

EC � � �Satellite� Orbit� orbit�� �Low�orbit� Path� p��

�Geosynchronous� Position� p�� �Military� Contract� c��

�Military� Country� country�� �Civilian� Manufacturer� m� ��

EA � � �Satellite� Military�� �Satellite� Civilian��

�Orbit� Low�orbit�� �Orbit� Geosynchronous� ��

CHAPTER �� DATA MODEL ��

p

orbit

c

PathLow-Orbit

PositionGeosynchronous

MilitaryCivilian

CountryContractManufacturer

country

Satellite Orbit

p

m

Figure �� Satellites

� � �c� country� m� orbit� p ��

The de�nition of VC implies that EA � VA�V � since an alternation edge cannot start

at a construction vertex� We use V��VC��VA� etc� to refer to the components of class

dictionary graph ��

When we draw a class dictionary graph� the vertices are labeled so that we can conve�

niently refer to particular vertices in our discussion� The standard interpretation implies

that the labels on construction vertices are signi�cant� Consider two isomorphic class dic�

tionary graphs each with only a single construction vertex and no edges� If the construction

vertex of one graph is labeled Integer and the vertex of the other graph is labeled String�

then the two class dictionary graphs de�ne di�erent sets of objects in the standard interpre�

tation� On the other hand� changing the labels of the alternation vertices �names of abstract

classes in the standard interpretation� does not e�ect the de�ned objects� Therefore� we

adopt the following convention for labeling the vertices of class dictionary graphs� Labels

of alternation vertices are local to the class dictionary graph in which they occur� labels of

construction vertices are global� That is� if two class dictionary graphs have construction

vertices with the same label� it means that the same vertex �same class under the standard

interpretation� belongs to both graphs� However� we may in general assume that di�erent

class dictionary graphs have disjoint sets of alternation vertices regardless of their labels�

CHAPTER �� DATA MODEL ��

mother

Person

name

Number

father
Name

SonDaughter

ssn

Child

Figure �� Child

The same semantics apply when we denote the sets of vertices in a class dictionary graph

textually� The identi�ers we use to denote alternation vertices are of local scope whereas

the identi�ers we use to denote construction vertices have global scope�

Later we give conditions which make a class dictionary graph into a legal class dictionary

graph� The interpretation in Table � is only one possible interpretation which we call

the standard interpretation� The motivation behind the abstract alternation�construction

terminology is that there are several useful interpretations of class dictionary graphs� In

one of those interpretations� a construction vertex is interpreted as an operation� We

sometimes use the standard interpretation to give intuitive explanations of relationships

and algorithms�

The graphical notation presented above is useful for understanding class structures� but

a textual notation may be more suitable for implementation purposes� Therefore� we also

use a textual notation for class dictionary graphs which serves as an easy to learn� terse

input notation for the Demeter CASE tool� To describe class dictionary graphs textually

we use an adjacency representation which gives the successors for each vertex� For example�

the vertex Child in the graph in Figure � is described by�

Child 	

 two alternation edges

Daughter � Son

�common�

 two construction edges

father� Person

mother� Person�

CHAPTER �� DATA MODEL �

and the construction vertex Person is described by�

Person �

 two construction edges

name� Name

ssn� Number�

A �

� introduces a comment line and �common� is syntactic sugar to separate the

alternation edges from the construction edges�

Please note that the syntax for an alternation vertex�abstract class� although very

natural from a graph�theoretic point of view� appears unnatural from the point of view of

today	s programming languages� In most programming languages which support the object�

oriented paradigm� the inheritance relationships are described in the opposite way� Each

class indicates from where it inherits� Of course� we can easily generate this information

from class dictionary graphs� but we feel that the Demeter notation is easier to use for

design purposes� One reason is that the design notation shows the immediate subclasses of

a class and therefore promotes proper abstraction of common parts� Another reason is that

a class does not contain information about where it inherits from and therefore the class

can be easily reused in other contexts�

Example ���� The following text describes the class dictionary graph in Figure ��

List 	 Empty � Nonempty �common��

Empty � �

Nonempty � first� Element rest� List�

Element � �

The two edges leaving from List are alternation edges� The labeled edges are construction

edges� In this example we have the following class dictionary graph�

V � �Empty� Nonempty� Element� List��

VC � �Empty� Nonempty� Element��

VA � �List��

EC � ��Nonempty� List� rest�� �Nonempty� Element� first���

EA � ��List� Nonempty�� �List�Empty���

� � �first� rest��

CHAPTER �� DATA MODEL ��

List

Nonempty Element

first

Empty

rest

Figure �� List

De
nition ���� In a class dictionary graph� � � �V��� EC�EA�� a vertex w � V is

alternation�reachable from vertex v � V �we write v
�

�� w��

� via a path of length �� if v � w

� via a path of length n��� if �u � V such that �v �� u� � EA and u
�

�� w via a path

of length n�

In other words� the alternation�reachable relation is the re
exive� transitive closure

of the EA relation�

In the standard interpretation� �v
�

�� w� means that either w inherits from v or w � v�

Sometimes when we want to discuss the inheritance hierarchy� it is convenient to refer

to the alternation subgraph of a class dictionary graph� The alternation subgraph contains

all of the alternation vertices and alternation edges plus the construction vertices that have

incoming alternation edges�

De
nition ���� The alternation subgraph of a class dictionary graph�

� � �VC�VA��� EC�EA�� is a directed acyclic graph �DAG�� G � �V ��EA��

where V � � VAfv � VC j�u � �u �� v� � EAg�

It is often helpful to think of each alternation vertex as representing a set of associated

construction vertices� This set� A�v�� consists of all the construction vertices which are

alternation reachable the vertex� v� If v is an alternation vertex with an incoming construc�

tion edge� �u l�� v�� the construction vertices in A�v� represent the concrete classes which

might be used to instantiate the l part of u objects� If v has an outgoing construction edge�

�v l�� w�� the construction vertices in A�v� represent the concrete classes which inherit the

l part from v�

CHAPTER �� DATA MODEL ��

De
nition ���� The associated classes of a vertex� v� in a class dictionary graph� � �

�VC�VA��� EC�EA�� is the set of all construction vertices which are alternation	reachable

from v�

A�v� � fv�jv
�

�� v� and v� � VCg

����� Legality conditions

A legal class dictionary graph is a structure which satis�es independent conditions�

De
nition ���� A class dictionary graph � � �V��� EC�EA� is legal if it satis�es the

following two conditions�

� Cycle	free alternation condition�

There are no cyclic alternation paths� i�e��

f�v� w� j v� w � V� v
� w� and v
�

�� w
�

�� vg � ��

�� Unique labels condition�

	u� v� v�� w� w� � V� l � � such that �v
�

�� u�� �v�
�

�� u�� and �v� w�
� �v�� w�� �

f�v l�� w�� �v� l�� w��g
� EC

When we refer to a class dictionary graph in the following we mean a legal class dictio�

nary graph� unless we speci�cally mention illegality�

The cycle�free alternation condition is natural and has been proposed by other re�

searchers� e�g�� �PBF���� page ����� �Sno��� page ���� Class names may not depend on

themselves in a circular fashion involving only �alternation� class productions�� The condi�

tion says that a class may not inherit from itself�

The unique labels condition guarantees that �inherited� construction edges are uniquely

labeled and excludes class dictionary graphs which contain the patterns shown in Figure ��

Other mechanisms for uniquely naming the construction edges could be used� e�g�� the

renaming mechanism of Ei�el and the overriding of part classes �Mey���� The theory does

not seem to be a�ected signi�cantly by small changes such as this�

����� Programming with class dictionary graphs

To motivate the usefulness of class dictionary graphs further� we show with a simple example

how we use them to simplify programming� We have developed a CASE tool for C��

CHAPTER �� DATA MODEL ��

p1

p2

w

x

y

l

l

p1 p2x y

w

l l

Figure �� Forbidden subgraphs

Exp

Compound

Addsym Mulsym

Op
op

arg2

arg1

Number

Simple

numValue

Figure �� Pre�x expression class dictionary graph

�Str���� the C�� Demeter System �LR���� which maps class dictionary graphs into a C��

class library which is then enhanced manually with C�� member functions implementing

the application� To each construction vertex corresponds a C�� class with a constructor

and to each alternation vertex corresponds an abstract C�� class�

Consider the class dictionary graph in Figure �� We want to implement a pocket cal�

culator which evaluates the object equivalent of expressions such as �� �� � �� � ����

�� � �� � ���� The complete C�� program which has to be written by the user is given

in Figure ��� The missing parts of the C�� program are generated from the class dictionary

graph in Figure � by the Demeter System�

CHAPTER �� DATA MODEL ��

int Exp		eval�� � ��

 pure virtual

int Simple		eval��

� return numvalue��eval��� �

int Number		eval��

� return val� �

int Compound		eval��

� return op��apply�op�arg���eval��� arg���eval���� �

int Op		apply�op�int n��int n�� � ��

 pure virtual

int Addsym		apply�op�int n��int n��

� return n� � n�� �

int Mulsym		apply�op�int n��int n��

� return n� � n�� �

�user�written�

Figure ��� Pocket calculator C�� implementation

CHAPTER �� DATA MODEL ��

��� Object graphs

We have de�ned the concept of a class dictionary graph which mathematically captures

some of the structural knowledge which object�oriented programmers use� Next we de�ne

object graphs and their relation to class dictionary graphs� An object graph de�nes a

hierarchical object and is motivated by the interpretation of an object graph� called the

standard interpretation� given in Table �

Graph Object-oriented Design
vertex object

immediate successor immediate subpart or component

edge label part name

Table � Standard interpretation for object graphs

De
nition ���� An object graph� �� is a directed graph � � �W�S���� E� �� where�

� W is a �nite set of vertices�

� S is an arbitrary �nite set�

� �� is a set of labels�

� E is a ternary relation on W �W � ��� If �v l�� w� � E we call l the label of the

edge �v l�� w�� No two edges outgoing from the same vertex may have the same label�

That is� 	v� w� w� � W� l � �� such that w
� w� � f�v l�� w�� �v l�� w��g
� E

� � �W � S is a function that maps each vertex of � to an element of S�

Normally� the set S is a subset of the construction vertices of some class dictionary

graph� In the standard interpretation� the function � maps each object in an object graph

to the class of which it is an instance� We use a graphical notation for object graphs similar

to that for class dictionary graphs� Vertices are represented by circles and edges by labeled

arrows� The vertices are labeled with their class names �their mapping under ��� In case

we wish to distinguish more than one instance of a class� the labels may be pre�xed with

an instance name followed by a ����

CHAPTER �� DATA MODEL ��

l

v

w

λ

λ λ

λ(v)

(w)

l

’v

’w

*

*

Figure ��� Legality Rule

A

B C
bc

b c

b

bc

c

i1:A

i4:C

i2:B i3:C

Figure �� Class dictionary graph� �� and legal object graph� ��

Not every object graph with respect to a class dictionary graph is legal� intuitively� the

object structure has to be consistent with the class de�nitions� Each object can only have

parts as prescribed in the class de�nition and the parts prescribed in the class de�nitions

must appear in the objects �see Figure ����

De
nition ���� An object graph� � � �W�S���� E� ��� is legal with respect to a class

dictionary graph� � � �VC�VA��� EC�EA�� i� for each vertex� v � W �

� ��v� � VC

� 	w� l where �v l�� w� � E � ��r l�� s� � EC such that r
�

�� ��v� and s
�

�� ��w�

� 	�r l�� s� � EC where r
�

�� ��v� � �w � W such that �v l�� w� � E

Example ���� Consider the graphs in Figure
�� The object graph� �� is legal with respect

to the class dictionary graph� �� The object graph is given by� W � fi�� i� i�� i�g� E �

f�i� b�� i�� �i� c�� i��� �i bc�� i��g� �� � fb� bc� cg� � � fi�� A� i� B� i� � C� i��

Cg�

CHAPTER �� DATA MODEL ��

Numberweight

Fruit

Apple Cherry

kernel stone

StoneKernel

Figure ��� Fruit class dictionary graph

NumberStone

weightstone

Apple

weight

Apple

kernel

CherryKernel

Figure ��� Fruit object graphs

CHAPTER �� DATA MODEL �

Example ���� Consider object graphs in Figure
� which are illegal with respect to the class

dictionary graph in Figure
� The �rst object graph is illegal since apples don�t contain

stones and the second because Cherry is not alternation	reachable from Number�

De
nition ��	� The set of all legal object graphs with respect to a class dictionary graph�

�� is called Objects����

The graphical notation for object graphs is useful for understanding object structures�

but a textual notation may be more suitable for implementation purposes� Therefore� we

also use a textual notation for object graphs� To describe object graphs textually we use

an adjacency representation which also shows the mapping of object graph vertices to class

dictionary graph vertices�

inst�	v��

successor�� inst�	v�� ��� �

successor�� inst�	v�� ��� �

���

successorn� instn	vn� ��� ��

The vertices correspond to the instance names� The name after the instance name is

preceded by a ��� and gives the label assigned by �� The edge labels are between the and

� signs�

For describing shared objects� we also use the notation�

inst�	v��

successor�� inst��

where inst� is an object identi�er de�ned elsewhere� Each object identi�er has to be de�ned

once� Vertices which are not shared need not be named explicitly� Therefore the instance

name and ��� may be omitted�

Example ���� The object graph in Figure
� can be represented textually as�

i�	A�

b� i�	B�

bc� i�	C���

c� i�	C���

CHAPTER �� DATA MODEL �

The de�nitions above relate a class dictionary graph with a set of object graphs� In

object�oriented programming language terminology� a class dictionary graph corresponds

to a set of class de�nitions and the object graphs correspond to the objects which can be

created calling �constructor� functions of the classes� In some languages� e�g�� C��� the

class de�nitions considerably restrict the objects which can be created� The de�nitions

above demand even more discipline than C���

In the context of evolution� we often wish to discuss object graphs that are not legal with

respect to the current class dictionary graph� We sometimes refer to these object graphs as

object example graphs since our goal is often to modify a class dictionary graph so that it

will become compatible with a new set of objects based on examples�

��� Related work

The axiomatic model which is used in this paper is new but similar data models exist in

the literature� In particular� the notions of �alternation� and �construction� appear as

�classi�cation� and �aggregation� in both Hull and Yap	s Format Model �HY��� and Kuper

and Vardi	s LDM �KV���� Ait�Kaci	s feature structures �AKN��� are also related to the

Demeter kernel model� Our abstraction algorithms presented in Chapter � can be adapted

to abstract feature structures from examples�

Other related work in the data base �eld is described in� �AH��� BMW��� TL���

Chapter �

Extending a class organization

In class�based object�oriented languages� the user has to de�ne classes before objects can be

created� For the novice as well as for the experienced user� the class de�nitions are a non�

trivial abstraction of the objects� We claim it is easier to initially describe certain example

objects and to get a proposal for an optimal set of class de�nitions generated automatically

than to write the class de�nitions by hand�

In this section an algorithm for learning a class dictionary graph from a set of object

examples is presented� This algorithm learns a correct �but not optimal� class dictionary

graph from a list of object example graphs� An algorithm for learning class dictionary graphs

incrementally is also presented� The ability to expand a class dictionary incrementally as

new object examples are presented is an important consideration in software engineering�

The algorithm is then extended to incrementally learn an optimal class dictionary graph

when the optimum is a single inheritance class dictionary�

��� A simple example of incremental class dictionary graph

learning

Example ���� Consider the two object example graphs in Figure
� which represent a

basket containing two apples and a basket with an orange� respectively�

After seeing the �rst object example graph� the learning algorithm generates the class

dictionary graph in Figure
�a� Now when the second object example is presented� the

algorithm will learn the class dictionary graph in Figure
�b�

CHAPTER �� EXTENDING A CLASS ORGANIZATION �

Basket

OneOrMore

Apple

OneOrMore

Apple

None

contents

one

more

one

more

Basket

OneOrMore

Apple

OneOrMore

Apple

None

contents

one

more

one

more

weight

Number

weight

Number

�a�

 Basket

 OneOrMore

 contents
 one

 more

 weight

 Number

 None

 Orange

�b�

Figure ��� Fruit basket objects

CHAPTER �� EXTENDING A CLASS ORGANIZATION �

Apple

Basket
contents

OneOrMore
one

SeveralFruit

None

Number

weight

more

�a�

Basket one

SeveralFruit

weight

Number

contents
OneOrMore

None

more

Orange

Apple

Fruit

�b�

Figure ��� Fruit basket class dictionary graphs

Notice that the algorithm �invents� two abstract classes� SeveralFruit and Fruit� Since

both subclasses of Fruit have a weight part� that part is attached to the Fruit class and is

inherited in the Apple and Orange classes�

A sample program to calculate the weight of a fruit basket is given below� All of the user

written code is shown� The class de�nitions and remaining code are generated automatically

from the class dictionary by the Demeter System CASE tool�

 Basket � contents� SeveralFruit�

Number Basket		get�weight��

� return contents��get�weight��� �

CHAPTER �� EXTENDING A CLASS ORGANIZATION �

 SeveralFruit 	 None � OneOrMore�

virtual Number SeveralFruit		get�weight��

��

 OneOrMore � one� Fruit more� SeveralFruit�

Number OneOrMore		get�weight��

� return �one��get�weight�� � more��get�weight���� �

 None � �

Number None		get�weight��

� return Number���� �

 Fruit 	 Apple � Orange �common� weight� Number�

Number Fruit		get�weight��

� return �weight� �

��� Basic Learning

Given a list of object example graphs� the basic learning algorithm� will learn a class

dictionary graph� �� such that the set of objects de�ned by � includes all of the examples�

Furthermore� the algorithm insures that the set of objects de�ned by the learned class

dictionary graph is a subset of the objects de�ned by any class dictionary graph that

includes all of the examples� Intuitively� we learn a class dictionary graph that only de�nes

objects that are �similar� to the examples�

Formally� given a legal list of object example graphs� ��� ��� ���� �n� we learn a legal

class dictionary graph� �� such that Objects��� � f��� ��� ���� �ng� and for all legal class

dictionary graphs� ��� where Objects���� � f��� ��� ���� �ng� Objects��� � Objects�����

If there is no legal class dictionary graph that de�nes a set of objects that includes all

of the examples� we say that the list of object example graphs is not legal� The following

de�nition gives the conditions under which a list of object example graphs is legal�

De
nition ���� A list of object example graphs ��� ���� �n is legal if all vertices which have

�An informal description of the algorithm appears in �LBSL�	��

CHAPTER �� EXTENDING A CLASS ORGANIZATION �

the same element s � S as label �under ��i for some i� � � i � n� have either outgoing

edges with the same labels �under E for �i� or no outgoing edges at all�

A legal list of object example graphs ��� ���� �n of the form � � �W�� S�����E�� ��� is

translated into a class dictionary graph � � �V��� EC�EA� as follows�

�� � �
�

��i�n

��i

The construction edges of the class dictionary graph are given the same labels as the

edges in the object example graph�

� VC � fr j r � ��i�v� and v � W�i where � � i � ng

We interpret � as a function that maps objects to their classes� For each class that

appears in an object example� we generate a construction class which is represented

as a construction vertex in the class dictionary graph�

�� VA � f�r� l� j r � VC� l � �� �i� j� v�� v� w�� w � �v� l�� w�� � E�i �

�v l�� w� � E�j � ��i�v�� � ��j�v� � r� ��i�w��
� ��j�w�g

When we learn that objects of class r have a part labeled l that is not always of the

same class� we create an abstract class represented in the class dictionary graph as an

alternation vertex �r� l�� In step �� we will make each of the part	s possible classes a

subclass of the new abstract class�

�� V � VC VA

The vertices of the class dictionary graph are given by the union of the construction

vertices and alternation vertices�

�� EC � f�r l�� s� j r� s � V� �i� v� w � �v l�� w� � E�i � ��i�v� � r� ��i�w� � s�

�r� l�
� VAg f�r l�� �r� l�� j r � V� �r� l� � VAg

If an object of class r has a part of class s with label l� then we create a construction

edge from the construction vertex representing r to the construction vertex represent�

ing s with label l� But if the part can have more than one class� in which case an

alternation vertex representing all of the possible classes was created in step �� we

instead create a construction edge to that alternation vertex�

CHAPTER �� EXTENDING A CLASS ORGANIZATION �

�� EA � f��r� l� �� s�j�r� l� � VA� s � V� �i� v� w � �v l�� w� � E�i �

��i�v� � r� ��i�w� � sg

Finally� we create an alternation edge from each alternation vertex �representing an

abstract class� to each vertex which represents a subclass�

The following example serves to illustrate the operation of the algorithm�

Example ����

��� a��A�hxi b��B�hyi a�A��

� W � fa�� a� b�g

� S � fA�Bg

a2:Ab1:Ba1:A

x y

� � � fx� yg

� E � f�a�� b�� x�� �b�� a� y�g

� �W � fa�� A� a� A� b�� Bg

��� a��A�hxi c��C���

� W � fa�� c�g

� S � fA�Cg

a1:A

x

c1:C� � � fxg

� E � f�a�� c�� x�g

� �W � fa�� A� c�� Cg

CHAPTER �� EXTENDING A CLASS ORGANIZATION �

� �

� � � fx� yg

x

B C

y

A

(A,x)

� VC � fA�B�Cg

� VA � f�A� x�g

� V � fA�B�C� �A� x�g

� EC � f�B�A� y�� �A� �A� x�� x�g

� EA � f��A� x�� B�� ��A�x�� C�g

��� Correctness of Basic Learning

In this section we prove that the set of objects de�ned by a class dictionary graph� �� learned

from a legal list of object example graphs� ��� ��� ����n� is a subset of the objects de�ned by

any class dictionary graph that includes all of the examples��

Consider the construction vertices in � and note that r � VC� i� there is some �i for

� � i � n with a vertex� v � E�i � such that r � ��v��

Next� consider the construction edges in �� First� note that every construction edge

has a construction vertex as its source �step ��� Second� a construction vertex� r� has an

outgoing construction edge� �r l�� s�� with label l i� there is at least one �i in the list

with an edge� �v l�� w� where ��v� � r �step ��� Finally� note that the set of construction

vertices� A�s�� which are alternation reachable from the target� s� of a construction edge�

�r l�� s� � EC�� is the union of all vertices� ��w�� where �v l�� w� � E�i � � � i � n� and

��v� � r �steps �������

Let �� be a class dictionary graph such that Objects��� � Objects���� � f��� ��� ����ng�

and let � � Objects��� but �
� Objects����� Since � is not legal with respect to ��� one of

the following conditions must hold �by de�nition �����

A� �v � W� such that ��v�
� VC��

B� �v � W�� �v
l�� w� � E� such that 	�r l�� s� � EC�� � r

�
�� ��v� or s

�
�� ��w�

C� �v � W�� �r
l�� s� � EC�� such that r

�
�� ��v� and 	w � W� � �v l�� w�
� E��

�It follows directly from de
nition ���� that each �i� � � i � n� is included in Objects���

CHAPTER �� EXTENDING A CLASS ORGANIZATION �

Case A� Since � is legal with respect to �� ��v� � VC�� so there must be some �i� � �

i � n� which contains a vertex� v� such that ��v�� � ��v�
� VC�� � But �i is legal with

respect to ��� so ��v�� � VC�� � a contradiction�

Case B� Since � is legal with respect to �� ��r l�� s� � EC� such that r � ��v� and

s
�

�� ��w�� Therefore� there must be some �i� � � i � n� such that �v� l�� w�� � E�i�

��v�� � ��v�� ��w�� � ��w�� But �i is legal with respect to ��� so ��r l�� s� � EC��

such that r
�

�� ��v�� � ��v� and s
�

�� ��w�� � ��w�� a contradiction�

Case C� Since � is legal with respect to �� there must exist some �i� � � i � n� which

contains a vertex� v� � W�i � such that ��v� � ��v��� Since �i and � are both legal

with respect to ��

� 	w�� l where �v� l�� w�� � E�i � ��r
l�� s� � EC� such that r � ��v�� � ��v��

� 	�r l�� s� � EC� where r
�

�� ��v� � �w � W� such that �v l�� w� � E��

Therefore�

� 	w�� l where �v� l�� w�� � E�i � �w � W� such that �v l�� w� � E��

But �i is also legal with respect to ��� so 	�r l�� s� � EC�� where r
�

�� ��v�� � �w� �

W�i such that �v� l�� w�� � E�i and therefore �w � W� such that �v l�� w� � E�� a

contradiction�

��� Incremental Learning

Given a class dictionary graph� �� and an object example graph� �� the incremental learning

algorithm will learn a class dictionary graph� ��� such that the set of objects de�ned by ��

includes � and all of the objects de�ned by �� Furthermore� the algorithm insures that the

set of objects de�ned by �� is a subset of the objects de�ned by any class dictionary graph

that includes � and all of the objects de�ned by �� Intuitively� we extend the set of objects

de�ned by � only enough to include objects �similar� to ��

Formally� given a class dictionary graph� ��� and an object example graph� �� we learn

a legal class dictionary graph� ��� such that Objects���� � Objects���� �� and for all

legal class dictionary graphs� �� where Objects���� � Objects���� � � Objects���� �

Objects�����

CHAPTER �� EXTENDING A CLASS ORGANIZATION ��

If there is no legal class dictionary graph that de�nes a set of objects that includes � and

all of the objects de�ned by �� we say that the object example graph � is not incrementally

legal with respect to ��

De
nition ���� An object example graph � is incrementally legal with respect to a

class dictionary graph � if there exists a legal class dictionary �� such that Objects���� �

Objects��� ��

If a list of object example graphs ��� ���� �n is legal� then each �i in the list must be

incrementally legal with respect to the class dictionary graph learned from ��� ���� �i���

Therefore a class dictionary graph can be learned incrementally from a legal list of object

example graphs�

Denote the intermediate class dictionary learned from ��� ��� ���� �m by �m� and let

�� � ��� �� �� ��� Then �m is learned from �m�� and �m� where � � m � n� as follows�

�� � � ��m��
 ��m

For each edge in the object example graph there is a construction edge in the class

dictionary graph with the same label�

� VC � VC�m��
fr j �v � W�m � ��m�v� � rg

We interpret � as a function that maps objects to their classes� For each new class that

appears in the object example graph� we add a construction class which is represented

as a construction vertex in the class dictionary graph�

�� VA � VA�m��

f�r� l� j r � VC� l � �� �v�� v� w�� w� W�m �

��m�v�� � ��m�v� � r� ��m�w��
� ��m�w��

�v� l�� w��� �v l�� w� � E�mg

 f�r� l� j r � VC� l � �� �v� w � W�m � s � VC �

��m�v� � r� ��m�w�
� s� �v l�� w� � E�m � �r
l�� s� � EC�m��

g

The �rst term represents the alternation vertices already learned in �m��� The second

term adds the alternations we learn from �m alone �this is the same term as in the

Basic Algorithm� where �i � �j � �m�� The last term adds alternations that are

learned in the Basic Algorithm when �i
� �j � In the case of incremental learning we

rely on the fact that the edges of ��� ���� �m�� are recorded in �m�� as construction

edges�

CHAPTER �� EXTENDING A CLASS ORGANIZATION ��

�� V � VCVA

The vertices of the class dictionary graph are given by the union of the construction

vertices and alternation vertices�

�� EC � �EC�m��
�f�r l�� s� j �r� l� � �VA�VA�m��

�g�

 f�r l�� �r� l�� j �r� l�� �VA�VA�m��
�g

 f�r l�� s� j r� s � V� �v� w � W�m �

��m�v� � r� ��m�w� � s� �v l�� w� � E�m � �r� l�
� VAg

We start with the construction edges in �m��� but if we learned a new abstract

class� represented by �r�l�� we remove any construction edges to vertices representing

subclasses of the new abstract class ��rst term� and replace them with construction

edges to �r�l� �second term�� Finally� the third term adds new construction edges

learned from �m�

�� EA � EA�m��

f��r� l� �� s�j�r� l�� VA� s � V� �v� w � W�m �

��m�v� � r� ��m�w� � s� �v l�� w� � E�mg

 f��r� l� �� s�j�r� l� � VA� s � V� �r l�� s� � EC�m��
g

Here we start with the alternation edges from the previous class dictionary graph and

add edges learned from �m alone� and from �m and �m��� The three terms correspond

to the three terms used to learn the alternation vertices in step ��

The following theorem can be easily proven by induction on the length of the object

example graph list�

Theorem ���� A class dictionary graph learned incrementally is identical to the class dic	

tionary graph learned using the basic learning algorithm�

��� Optimum class dictionary graph learning

The learning algorithms presented in sections �� and ��� produce class dictionary graphs

that are correct but not optimal� There are two major problems with the learned class

dictionary graphs� The �rst problem is that alternation vertices are never reused� For each

part that can be instantiated by objects of more than one construction class� a new alter�

nation vertex is generated that has each of the construction classes as immediate successors

CHAPTER �� EXTENDING A CLASS ORGANIZATION �

in the inheritance hierarchy� In other words� each alternation vertex has only one incom�

ing construction edge and no incoming alternation edges� The result is a class dictionary

graph with too many alternation vertices� too many alternation edges� and an inheritance

hierarchy with great deal of unnecessary multiple�inheritance�

The second problem is that parts are never inherited� instead� they are attached directly

to each construction class� In other words� none of the alternation vertices have any outgoing

construction edges� The result is a class dictionary graph with too many construction edges�

Class dictionary graph optimization is discussed formally in Chapter � and algorithms

for optimizing the class dictionary graphs produced by the learning algorithms are devel�

oped� In this section� we discuss informally how the incremental learning algorithm can

be extended to learn optimal single�inheritance class dictionary graphs� Consideration of

the optimization problem leads to some important observations regarding class dictionary

design�

Informally� we say that a class dictionary graph is in common normal form �CNF� if

it has no redundant parts� If two di�erent vertices� v and v�� in a class dictionary graph

have outgoing construction edges with the same label� l� and the same target� w� then we

say that the part� l� is redundant in classes v and v�� We observe that we can always avoid

redundant parts by introducing additional inheritance� That is� we only need to de�ne the

part l once in a common superclass of v and v�� It may be necessary to add a new abstract

class if v and v� do not already have a suitable common superclass� and the addition may

cause the introduction of multiple inheritance�

Sometimes� we can avoid multiple inheritance by introducing redundant parts� but other

times we can not eliminate multiple inheritance while maintaining object equivalence� When

faced with a choice� multiple inheritance will generally produce the better class dictionary

graph since redundant parts hide the commonalities between classes and often lead to poor

software organization and duplication of code�

In Chapter � an e�cient algorithm is presented for abstracting optimum single�inheritance

class dictionary graphs from class dictionary graphs learned using the basic learning algo�

rithm �section �� It is shown that a class dictionary graph with no redundant parts �i�e�� it

is in class dictionary common normal form� or CNF�� no unnecessary alternation vertices�

and with a single�inheritance hierarchy is guaranteed optimal�� An alternation vertex is

unnecessary if it is a singleton �i�e� has only one outgoing alternation edge� or if it has no

�according to the metrics introduced in Chapter �

CHAPTER �� EXTENDING A CLASS ORGANIZATION ��

incoming or outgoing construction edges�

Therefore� an incremental learning algorithm will produce an optimum single�inheritance

class dictionary graph if with each new example the algorithm maintains a class dictionary

graph that has a single�inheritance hierarchy with no unnecessary alternation vertices and no

redundant parts� We de�ne the Incremental Single�Inheritance Optimum Class Dictionary

Learning problem as follows�

Instance

An optimum single�inheritance class dictionary graph� �� and an object example

graph� �� where � is incrementally legal with respect to ��

Problem

Find an optimum single�inheritance class dictionary graph� ��� such thatObjects���� �

�Objects��� ���

It is always possible to avoid unnecessary alternation edges� If an alternation vertex�

v� has no incoming or outgoing construction edges it can be deleted after transferring its

outgoing alternation edges to its predecessor in the inheritance hierarchy� If there is no

predecessor� the outgoing alternation edges can just be deleted� A singleton can be similarly

removed after �rst transferring any incoming or outgoing construction edges to its successor

in the inheritance hierarchy�

Clearly� however� it is not always possible to maintain a single�inheritance hierarchy�

particularly with the added constraint that no redundant parts are introduced� After elimi�

nating unnecessary alternation vertices� each remaining alternation vertex� v� can be thought

of as representing a set of construction classes� A�v�� If the alternation vertex has an in�

coming construction edge� it represents the set of classes that can be used to instantiate a

part� If it has an outgoing construction edge� it represents the set of classes that share a

common part� In an optimal class dictionary graph� �� these sets of construction classes are

called the ConstructionClusters���� If the vertices of � are arranged in a single�inheritance

hierarchy� there must only be one vertex for each element of ConstructionClusters��� and

each pair of elements must either be disjoint or in a superset�subset relation�

Consider an instance of the Incremental Single�Inheritance Optimum Class Dictionary

Learning problem with class dictionary graph� � and object example graph� � and assume

CHAPTER �� EXTENDING A CLASS ORGANIZATION ��

there is a solution� ��� Since � is optimal� we can easily compute ConstructionClusters����

Next� consider the changes that will need to be made in ConstructionClusters��� when

we learn the new objects in �� Some of the sets in ConstructionClusters��� need to be

expanded when we learn a new possibility for the kind of object that can instantiate a part�

We will also need to expand �or add� sets when we learn that there are additional classes

that share a common part� The Incremental Single�Inheritance Optimum Class Dictionary

Learning problem has a solution only if the conditions for a single�inheritance hierarchy still

hold after making the necessary changes to ConstructionClusters���� That is� there is a

solution if each pair of elements is still either disjoint or in a superset�subset relation�

It is easy to see how the incremental learning algorithm presented in Section ��� can

be extended to produce optimum single�inheritance class dictionaries� Only one alternation

vertex is created for each set of construction classes that needs to be represented� Alter�

nation vertices are created not only to express the di�erent possibilities for instantiating a

part� but also to implement inheritance of parts common to more than one class� Each new

alternation vertex is inserted into the inheritance�hierarchy according to the order imposed

by the superset�subset relations�

��� Extending a class dictionary graph based on object

examples

The algorithms presented in sections �� and ��� are useful for object�oriented design� es�

pecially when used in combination with the optimization techniques of Section ��� and

Chapter �� However� even the incremental learning algorithm is not ideal for use in the

context of schema evolution� The algorithm can learn new classes and can learn an ex�

panded set of classes that can instantiate a part� but it cannot learn new parts for existing

classes�

If an object example graph� � � �W�S���� E� ��� contains an edge �v l�� w� � E�

and the existing class dictionary graph contains vertex v� � ��v� but v� does not already

have an l part� then � is not incrementally legal with respect to � since there is no class

dictionary graph� ��� such that Objects���� � Objects����

One solution is to expand the data model to allow classes to have optional parts� That is�

di�erent instances of the same class may be allowed to di�er in their number of attributes�

This is the approach that we took in implementing the Demeter case tool� With the addition

CHAPTER �� EXTENDING A CLASS ORGANIZATION ��

of optional parts to the data model� every object example graph is incrementally legal with

respect to every class dictionary graph� If the object example graph� � � �W�S���� E� ���

contains an edge �v l�� w� � E� and the class dictionary graph� � � �VC�VA��� EC�EA��

contains vertex v� � ��v� � VC but v� does not already have an l part� then an optional l

part is added� If � contains an edge� �v� l�� w��� and the object example graph contains

a vertex� v� such that v�
�

�� ��v� but there is no outgoing edge from v with label l in ��

then the l part is made optional in ��

A second solution is to simply drop the legality requirement and reformulate the learning

problem� That is the approach taken in this section� The incremental evolution problem

is formulated as follows�

Instance

A legal class dictionary graph� � � �VC�VA��� EC�EA�� and a legal object example

graph� � � �W�S���� E� ���

Problem

Find a class dictionary graph� ��� such that every element of Objects��� � is a

subgraph of an element of Objects���� and every element of Objects���� is similar to

the objects Objects��� ��

De
nition ���� An object example graph� � � �W�S���� E� ��� is similar to a set of

object example graphs� O � f��� ��� ����ng� if for each edge �v l�� w� � E there exists an

element of O� �i� such that� �v� l�� w�� � Ei� ��v� � �i�v
��� ��w� � �i�w

���

Intuitively� we add only those classes and parts that are warranted by the object example

graph� Unlike the incremental learning problem� the instance is not constrained by an

incremental legality requirement� We accept any legal class dictionary graph and any legal

object example graph as input�

In this approach we change our interpretation of object example graphs� The graphs

are considered examples of partial objects� That is� the examples need not show all of the

parts of the objects� The incremental evolution algorithm is identical to the incremental

learning algorithm given in Section ���� Only the interpretation changes�

Example ���� Consider the class dictionary graph and object example graph shown in

Figure
�� The Student object is not legal with respect to the class dictionary graph for

two reasons� It has an advisor part and is missing the gpa part� When the incremental

CHAPTER �� EXTENDING A CLASS ORGANIZATION ��

Number

gpa

major
Student

CS History

Major

advisor

major

English

Professor

Student

Figure ��� Class dictionary graph and object graph for incremental evolution

major

Number Professor

Major

advisorgpa

Student

EnglishHistory CS

Figure ��� Class dictionary graph after incremental evolution

learning algorithm is applied the missing gpa part is ignored� the advisor part is added to

the Student de�nition� and the major part is extended as expected� The new class dictionary

graph shown in Figure
� is exactly what is desired for incremental evolution�

In Chapter � we de�ne a complete set of primitive transformations that are useful for

extending a class dictionary graph�

��� Training set

Class dictionary graph learning requires only a small easily generated training set� To learn

a class dictionary graph that de�nes the same objects as a given class dictionary graph� ��

we need to see examples for each construction class with all possible parts� But since we

can vary the parts simultaneously� we need at most jVC j examples for each construction

class� and jVC j� examples to learn the whole class dictionary graph�

Example ���� Consider the class dictionary graph in Figure
�� Class A has three parts

and there are three alternatives for each part� so there are a total of �� di�erent combinations

CHAPTER �� EXTENDING A CLASS ORGANIZATION ��

y

D F

x z

A

B C E G H I J

X Y Z

Figure ��� A class dictionary graph de�ning � di�erent A objects

D G JEB H C F I

x y z

A

x y z

A

x y z

A

Figure �� The training set

that could occur in object graphs� Even so� the class dictionary graph can be learned from

just the three examples shown in Figure �� where the parts are varied simultaneously�

��	 Related work

The problem of learning classes from object examples has been studied earlier in AI �e�g��

�SM���� �CF����� Clustering algorithms have been applied to build a tree of mutually

exclusive classes from a given object set� Our work extends this earlier work since we have

more structure in our classes� e�g�� the capability to de�ne a language� Related work has

been done in the area of learning context�free grammars from examples and syntax trees

�AS����

Winston	s work �Win��� is concerned with learning visual concepts in a world of ��

dimensional structures comprised of bricks� wedges� and other simple objects� A scene is

represented by a semantic net with relations such as has�part� supported�by� in�front�of�

a�kind�of� has�property�of� etc�

CHAPTER �� EXTENDING A CLASS ORGANIZATION ��

There are several ways in which objects can be grouped� The most relevant to our

work are by common properties and by identi�cation with a known model� The following

example serves to illustrate the di�erences�

Example ���� Consider the world with objects A� B� C� X� Y� and Z with the following

properties�

A	 has�part X� has�part Y� has�part Z

B	 has�part X� has�part Y

C	 has�part X� has�part Z

In our notation�

A�x� X y� Y z� Z�

B�x� X y� Y�

C�x� X z� Z�

A� B� and C are candidates for a group since they all have the same �has	part� relation	

ship to X�

In Winston�s work� a program would learn the new object�

A�B�a� A b� B�

In our system� we learn �after optimization� three new abstract classes�

AorB�or�AorC 	 AorB � AorC �common� x� X�

AorB 	 A � B �common� y� Y�

AorC 	 A � C �common� z� Z�

and remove all the parts from classes A� B� and C�

Another major di�erence is that Winston	s work deals with properties that describe

the relationships between objects other than �part�of� relations� That is� where we might

learn an abstract class based on the information that two objects share parts �length� and

�width�� Winston would be concerned with whether or not two objects had the same values

for their properties �length� and �width��

Since Winston needs to learn relations other than part�of� his system is necessarily much

more complex than ours� �Winston presents a lot of ideas about learning� but no formal

CHAPTER �� EXTENDING A CLASS ORGANIZATION ��

algorithms�� Another complicating factor is that Winston wants a system that� given some

examples of a type of object �class�� builds a model that can recognize objects of that type

even if they have properties that are di�erent from any of the examples�

For example� given an example of an �arch� that has two uprights supporting a brick�

and a second example of an arch that has two uprights supporting a wedge� the system

should recognize an object consisting of two uprights supporting some other type of object

as an arch�

In �LM��� several ways in which conceptual database evolution can occur through learn�

ing are discussed� One of these� the expansion of a type into subtypes� is similar to the

introduction of alternation vertices which occurs during the basic learning phase of our

algorithm� Another� the generalization of types to form supertypes� is a special case of our

technique for removing redundant parts discussed in Chapter ��

A major di�erence in our work is that we focus on learning from examples� while in

�LM��� the emphasis is on learning from observation of instances �e�g�� noticing that some

of the instances of a type object have null values for a given attribute�� Our examples are

more general than instances since we don	t supply values for attributes�

Chapter �

Object preserving transformations

Reorganization of classes for object�oriented programming and object�oriented database

design has recently received considerable attention in the literature� �BCG����� �LBSL����

�LBSL���� �AH���� �BMW���� �Cas���� �Cas���� �LM���� �Pir���� �PW���� A number of

researchers have suggested algorithms and hueristics to produce �good� class organizations�

A �good� class organization may be variously de�ned as one which promotes e�cient reuse

of code� one with a minimum of multiple�inheritance� a minimum of repeated�inheritance�

or some other characteristics depending on the author	s point of view�

In any case� it is often desirable that reorganization of a class hierarchy should not change

the set of objects which the classes de�ne� that is� the reorganization should be object�

preserving� For object�oriented database design� this means that the database does not

need to be repopulated� For object�oriented programming� this means that programs will

still accept the same inputs and produce the same outputs� Furthermore� methods need

not be rewritten �although they may need to be attached to di�erent classes��

In this chapter a small set of primitive transformations is presented which forms an

orthogonal basis for object�preserving class organizations� This set is proven to be correct�

complete� and minimal� The primitive transformations help form a theoretical basis for

class organization and are useful in proving characteristics of particular organizations�

��� Primitive Object�Preserving Transformations

An informal de�nition of object�preserving has already been given in the introduction�

For a formal de�nition we �rst need a de�nition of object�equivalence�

��

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

De
nition ���� Two class dictionary graphs� �� and ��� are object�equivalent if the set

of legal object graphs with respect to �� is the same as the set of legal object graphs with

respect to ��� that is� Objects���� � Objects�����

The following theorem provides a convenient means for mechanically checking two class

dictionary graphs for object�equivalence�

Theorem ���� Given a class dictionary graph � � �VC�VA��� EC�EA�� for v � V let

PartClusters��v� � f�l�A�w�� j �v� � v�
�

�� v and �v�� w� l� � ECg�

where A�w� � fw�jw
�

�� w� and w� � VCg

Then� class dictionary graphs �� and �� are object�equivalent i��

� VC�� � VC��

� 	v � VC �

PartClusters���v� � PartClusters�� �v��

Intuitively� two class dictionary graphs are object�equivalent if they de�ne sets of corre�

sponding construction classes with the same names� and for each construction class de�ned

by one class dictionary graph the parts are the same as those de�ned for the corresponding

class in the other class dictionary graph�

The proof of theorem ���� is straightforward�

�� The conditions of theorem ���� are necessary�

� Let �� and �� be class dictionary graphs such that VC��
� VC�� � Now construct

an object graph� � � �W�VC�� ��� E� ��� as follows� For each vertex� v � VC�� �

we place a corresponding vertex� v� in W � and map v� to v by adding �v�� v� to ��

For each construction edge� �v l�� w� in ��� add an outgoing construction edge

�v� l�� w�� from each vertex� v� in � where v
�

�� ��v�� to some vertex w� such

that w
�

�� ��w��� The resulting object graph� �� is legal with respect to �� but

not with respect to ��� so the class dictionary graphs are not object�equivalent�

� Let �� and �� be class dictionary graphs such that VC�� � VC�� � but for some

v � VC� there exists �l� S� such that �l� S� � PartClusters���v� but �l� S�
�

PartClusters���v�� Now construct an object graph as before� but when adding

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS �

outgoing edge� �v� l�� w��� to the vertex� v�� corresponding to v �under �� choose

w� such that there is no �l� S� � PartClusters�� �v� where ��w�� � S� The

resulting object graph� �� is legal with respect to �� but not with respect to ���

so the class dictionary graphs are not object�equivalent�

� The conditions of theorem ���� are su�cient�

� Let �� and �� be class dictionary graphs such that VC�� � VC�� and for all

vertices� v � VC� PartClusters���v� � PartClusters���v�� Now assume that

there exists an object graph� � � �W�S���� E� ��� such that � is legal with

respect to �� but not with respect to ���

By the de�nition of legality for object graphs� each vertex� v in �� has one

outgoing edge� �v l�� w� for each corresponding construction edge� �v� l�� w��

in ��� where v
� �
�� ��v�� such that w� �

�� ��w�� There can be no other outgoing

edges from v�

But there must be some vertex� v� in � which either has an outgoing edge�

�v l�� w�� with no corresponding edge in ��� or else has no outgoing edge

corresponding to a construction edge in ��� In either case� PartClusters���v�
�

PartClusters���v�� a contradiction�

Example ����

The two class dictionary graphs in �gures �
 and ��� �� and ��� are object	equivalent since�

VC�� � VC��

� fUndergrad� Grad� Prof� TA� Admin asst� Coach� Num� Real Numg

PartClusters�� �Undergrad�

� PartClusters���Undergrad�

� f�ssn� fNumg�� �gpa� fReal Numg�g

PartClusters�� �Grad�

� PartClusters���Grad�

� f�ssn� fNumg�� �gpa� fReal Numg�g

PartClusters�� �TA�

� PartClusters���TA�

� f�ssn� fNumg�� �salary� fReal Numg�� �assigned� fCourse� Committeeg�g

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

PartClusters�� �Prof�

� PartClusters���Prof�

� f�ssn� fNumg�� �salary� fReal Numg�� �assigned� fCourse� Committeeg�g

PartClusters�� �Admin asst�

� PartClusters���Admin asst�

� f�ssn� fNumg�� �salary� fReal Numg�g

PartClusters�� �Coach�

� PartClusters���Coach�

� f�ssn� fNumg�� �salary� fReal Numg�g

PartClusters�� �Course�

� PartClusters���Course� � �

PartClusters�� �Committee�

� PartClusters���Committee� � �

PartClusters�� �Real Num�

� PartClusters���Real Num� � �

PartClusters�� �Num�

� PartClusters���Num� � �

One �nal formulation of the object�equivalence criteria is provided by theorem ����

Theorem ���� Two class dictionary graphs� �� and ��� are object�equivalent i��

� VC�� � VC��

� 	v� w � VC ��
��v�

l�� w�� � EC�� � v�
�

�� v� w�
�

�� w
�

��
�
��v�

l�� w�� � EC�� � v�
�

�� v� w�
�

�� w
�

That is� v can have w as an l part in �� i� v can have w as an l part in ���

The second condition in theorem ��� is equivalent to the second condition in theo�

rem ����� and the proof is essentially the same�

Now we can formally de�ne object�preserving class dictionary graph transformations�

De
nition ���� A class dictionary graph transformation� T � is a rule which de�nes an

allowable modi�cation of class dictionary graphs� Let

RT � f���� ���j�� can be obtained from �� by a single application of Tg

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

Univ_student

Num

Real_Num

Univ_employee

CoachAdmin
asst

ProfTA

assignedassigned

Undergrad

Course

Committee

Faculty_Assignment

gpa

ssn ssn

salary

Grad

Figure �� Class Dictionary Graph ��

Then T is called object�preserving if �� is object	equivalent to �� for all ���� ��� � RT �

��� Primitive Transformations

The following �ve primitive transformations form an orthogonal basis for object�preserving

transformations�

�� Deletion of �useless� alternation� An alternation vertex is �useless� if it has no

incoming edges and no outgoing construction edges� If an alternation vertex is useless

it may be deleted along with its outgoing alternation edges�

Intuitively� an alternation vertex is useless if it is not a part of any construction class�

and it has no parts for any construction class to inherit�

� Addition of �useless� alternation� An alternation vertex� v� can be added along

with outgoing alternation edges to any set of vertices already in the class dictionary

graph� This is the inverse of transformation ��

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

gpa salary

Real_Num

ssn

CoachAdmin
asst

Occupation

Num

EmployeeStudent

GradUndergrad

Course

Committee

Assignment TA Prof

Faculty

assigned

Figure � Class Dictionary Graph ��

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

�� Abstraction of common parts� If �v� w� l such that 	v�� where �v �� v�� � EA �

�v� l�� w� � EC� then all of the edges� �v� l�� w�� can be deleted and replaced with

a new construction edge� �v l�� w��

Intuitively� if all of the immediate subclasses of class C have the same part� that part

can be moved up the inheritance hierarchy so that each of the subclasses will inherit

the part from C� rather than duplicating the part in each subclass�

�� Distribution of common parts� An outgoing construction edge� �v l�� w� can be

deleted from an alternation vertex� v� if for each �v �� v�� � EA a new construction

edge� �v� l�� w�� is added�

This is the inverse of transformation ��

�� Part replacement� If the set of construction vertices which are alternation�reachable

from some vertex� v � V � is equal to the set of construction vertices alternation�

reachable from another vertex� v� � V � then any construction edge �w l�� v� � EC

can be deleted and replaced with a new construction edge� �w l�� v���

Intuitively� if two class C� and C have the same set of instantiable �construction�

subclasses then the de�ned objects do not change when C� is replaced by C in a part

de�nition� Note that the inverse of part replacement is just another instance of the

transformation�

The set of primitive object�preserving transformation given in this section is correct� i�e�

any sequence of primitive transformations preserves object�equivalence� complete� i�e� for

any two object�equivalent class dictionary graphs� ��� ��� there is a sequence of primitive op�

erations which transforms �� to ��� and minimal� i�e� none of the primitive transformations

can be derived from any set of the others�

��� Proofs

����� Correctness

Each primitive operation preserves object�equivalence� This fact follows directly from the�

orem ���� �PartClusters��

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

����� Completeness

Given two arbitrary object�equivalent class dictionary graphs� �� � �VC�VA����� EC��EA��

and �� � �VC�VA����� EC��EA��� it is possible to transform �� to �� using only primi�

tive operations� Before transforming ��� we record the original graph for reference� i�e�� let

�� � �VC�VA����� EC��EA�� � ��� Now �� is transformed to �� as follows�

�� Assume� without loss of generality� that the sets of alternation vertices of �� and ��

are disjoint� that is� VA� �VA� � �� Let T � v�� v�� ���vn be a topological sorting of

the alternation subgraph of ��� such that if vi
�

�� vj in �� then i � j�

For j � � to n�

� If vj � VA� then VA� � VA�fvjg

� EA� � EA� f�vj �� w�j�vj �� w� � EA�g

by addition of useless alternation�

Since w is either an alternation vertex or a construction vertex that has an incoming

alternation edge� w must be included in T � Furthermore since vj
�

�� w� w � vi for

some i � j� Therefore w must already be a vertex in ���

Now EA� � EA� EA� and VA� � VA�VA��

� While ��v l�� w� � EC� such that v � VA��

� Select one such edge� �v l�� w�� Delete that edge and for every vertex v� such

that �v �� v�� � EA� add an edge �v� l�� w�� by distribution of common parts�

�� Consider each construction edge� �v�
l�� w�� � EC� such that w� � VA�� Note that

v� � VC since all common parts have been distributed� There must be an edge �v�
l��

w�� � EC� such that v�
�

�� v� and A���w�� � A���w�� since PartClusters���v�� �

PartClusters���v��� Furthermore� A���w�� � A���w�� after step �� Replace each

�v�
l�� w�� with �v�

l�� w�� in EC� by part replacement�

�� Consider the construction edges that would be obtained if distribution of common

parts was applied exhaustively to ��� They are exactly the construction edges that

we now have in �� after distribution of common parts and part replacement� Since

each step in the sequence of distribution of common parts operations is reversible by an

abstraction of common parts operation� there is a sequence of abstraction of common

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

part operations to transform EC� to EC�� Abstraction of common parts is applied to

move construction edges up the inheritance hierarchy until they are attached to the

same vertices as in ���

Now we have EC� � EC�� EA� � EA� EA�� and VA� � VA�VA�� All that remains

is to remove the original alternation vertices� VA�� and alternation edges� EA��

�� After steps and �� there are no construction edges �either incoming or outgoing�

attached to any of the original alternation vertices� that is� f�v l�� w�jv � VA� or w �

VA�g � �� Also� there are no cycles in the alternation subgraph of ��� and �� has no

alternation edges from the new alternation vertices �VA�� to the original alternation

vertices �VA��� Therefore� if �VA��VA��
� �� then at least one of the elements

of VA��VA� must be �useless�� The �useless� alternation vertex is deleted from ��

along with its outgoing alternation edges� This step is repeated until �VA��VA�� � ��

Now VA� � VA�� But since outgoing alternation edges were deleted along with the

useless alternation vertices and every alternation edge in EA� had a vertex in VA� as

its source� all the edges in EA� are deleted from �� and EA� � EA�� so �� � ���

In summary� a class dictionary graph� �� can be transformed to an arbitrary object�

equivalent class dictionary graph� �� as follows�

�� Use addition of useless alternation to �superimpose� the alternation subgraph of ��

onto ���

� Exhaustively apply distribution of common parts until all outgoing construction edges

have been removed from the original alternation vertices in �� and are attached di�

rectly to construction vertices�

�� Use part replacement to move any construction edge with an �old� alternation vertex

as its target so that its target corresponds to the proper vertex in ���

�� Use abstraction of common parts to move construction edges up the �new� inheritance

hierarchy in �� until they are all attached to vertices corresponding to the vertices

where they are attached in ���

�� Use deletion of useless alternation to remove the �old� alternation subgraph from ���

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

����� Minimality

No primitive transformation can be derived from any set of the others since�

� No sequence of primitive operations can reduce the number of alternation vertices

without deletion of useless alternations�

� No sequence of primitive operations can increase the number of alternation vertices

without addition of useless alternations�

� No sequence of primitive operations can reduce the number of construction edges

without abstraction of common parts�

� No sequence of primitive operations can increase the number of construction edges

without distribution of common parts�

� No sequence of primitive operations can change the construction edge in�degree of a

vertex from � to � or from � to � without part replacement�

Example ���� This example illustrates the construction of the completeness proof with the

class dictionary graphs of �gures �
 and ��� Note that although the labels on construction

vertices are signi�cant� the labels on the alternation vertices are only provided as a means

of referring to particular vertices in the following discussion�

Addition of Useless Alternations� In �� there are three alternation vertices which

have outgoing alternation edges only to construction vertices� Faculty� Assignment� and

Student� These are added to �� along with their outgoing alternation edges� Next� the

Employee vertex is added with its outgoing alternation edges� including an edge to Faculty�

Finally� the Occupation vertex is added along with its edges to Student and Employee� At

this point �� has been transformed to the class dictionary graph shown in Figure ��

Distribution of Common Parts� The ssn and gpa parts are distributed from class

Univ student to classes Undergrad and Grad where they are inherited� Similarly� parts ssn

and salary are distributed from Univ employee to TA� Prof� Admin asst� and Coach�

The result is the class dictionary graph shown in Figure �� In a deeper inheritance hierar�

chy some parts might need to be distributed repeatedly until they are attached directly to

construction classes�

Part Replacement� The �old� alternation vertex Faculty Assignment still has incoming

construction edges from the new construction vertices TA and Prof� In �� the corresponding

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

gpa salary

ssnssn

Undergrad Grad

Univ_student

Num

Real_Num

Univ_employee

CoachAdmin
asst

ProfTA

assigned
assigned

Faculty

Employee

Student
Assignment

Occupation

Faculty_Assignment

Course

Committee

Figure �� Addition of Useless Alternations

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

Student
Assignment

Real_Num
salary

salary

Num

Univ_employeeUniv_student

Undergrad Grad TA Prof Admin
asst

Coach

Employee

Faculty

Faculty_Assignment

Course

Committee

Occupation

salary
salary

ssn

ssn
ssn

ssn

ssn
ssn

gpa

gpa

assigned
assigned

Figure �� Distribution of Common Parts

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS �

Student
Assignment

Real_Num
salary

salary

Num

Univ_employeeUniv_student

Undergrad Grad TA Prof Admin
asst

Coach

Employee

Faculty

Faculty_Assignment

Course

Committee

Occupation

salary
salary

ssn

ssn
ssn

ssn

ssn
ssn

gpa

gpa

assigned

assigned

Figure �� Part Replacement

edges are to vertex Assignment� so the edges are moved accordingly in ��� This is allowed

since the set of construction vertices alternation reachable from Assignment is equal to the

set alternation reachable from Faculty Assignment� Such a part replacement must always

be possible since �� is object�equivalent to ��� The result is shown in Figure ��

Abstraction of Common Parts� Parts ssn and gpa are abstracted from Undergrad and

Grad to Student� Next� parts ssn� salary� and assigned are abstracted from TA and

Prof to Faculty� Parts ssn and salary are then abstracted from Faculty� Admin asst�

and Coach to Employee� Finally� part ssn is abstracted from Employee and Student to

Occupation� The result is shown in Figure ��

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

Faculty_Assignment Employee

Occupation

Assignment

assigned

Univ_employeeUniv_student

Undergrad Grad TA Prof Admin
asst

Coach

Faculty

Course

Committee

Student

gpa

salary

Num

ssn

Real_Num

Figure �� Abstraction of Common Parts

CHAPTER �� OBJECT PRESERVING TRANSFORMATIONS ��

Deletion of Useless Alternations� The alternation vertices Faculty Assignment�

Univ student� and Univ employee are now �useless� since they have no incoming edges

and no outgoing construction edges� These vertices and their outgoing alternation edges

are deleted� and the transformation from �� to �� is complete�

��� Related work

Opdyke and Johnson �OJ��� Opd�� are investigating methods for refactoring object�oriented

systems to support reuse� Refactorings are de�ned as restructuring plans and can be applied

by performing a small set of basic refactorings�

Casais �Cas��� Cas��� Cas��� introduces global and incremental class hierarchy reorga�

nization algorithms� Those algorithms di�er from our work in a number of ways�

� The models used are di�erent� Casais uses general graphs while we use graphs with

a special structure which has to satisfy three axioms needed for data modeling� For

example� we distinguish between abstract and concrete classes�

� The goal of Casais	 algorithms is to restructure class hierarchies to avoid explicit

rejection of inherited properties� In our work we currently avoid rejected properties�

Wegner describes informally the idea of a class dictionary transformation in his section

on transformations of concept hierarchies in �Weg���� He writes� �Such a calculus has

interesting possibilities as an object�oriented design technique ���� We agree with Wegner

and give a mathematical treatment of a calculus of class transformations�

Chapter �

Class dictionary graph

optimization

��� Practical applications of the object�preserving transfor�

mations

There are many useful rules which can be derived from the primitive transformations and

are therefore guaranteed object�preserving� The examples in this section show how object�

preserving transformations can be used to improve class organization by reducing the num�

ber of construction edges� the number of alternation edges� or the degree of multiple inheri�

tance in a class dictionary graph� Later� we introduce formal metrics and methods for class

dictionary graph optimization�

����� Elimination of redundant parts

If a vertex� v� has two incoming construction edges with the same label� �u l�� v� and

�u� l�� v�� then those edges should be replaced by a single edge �w l�� v� where w is an

alternation vertex with exactly u and u� as alternation successors� by abstraction of common

parts� If necessary� w is �rst introduced by addition of useless alternation� �See Figure ���

����� Removal of singleton alternation vertices

If an alternation vertex� v� has only one outgoing alternation edge� �v �� w�� then that

vertex should be removed� Incoming construction edges �u l�� v�� and alternation edges�

��

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

l

l

u’

v

u

u’

w

l
v

u

Figure �� Elimination of redundant parts

l’l

u

v

x

c
c

w

l

c
u w

l’

c

x

Figure �� Removal of singleton alternation vertex

�u �� v�� are replaced by edges �u l�� w� and �u �� w� respectively� Outgoing construc�

tion edges� �v l�� x�� are replaced by edges �w l�� x�� The incoming construction edges

can be moved by part replacement and the outgoing construction edges by distribution of

common parts� Moving the incoming alternation edges can be accomplished by alternation

replacement which is analogous to part replacement but is not primitive� It is easy to see how

alternation replacement can be accomplished using only primitive transformations� Finally�

the vertex v is deleted by deletion of useless alternation� �See Figure ���

����� Complete Cover

If a subset� S� of the outgoing alternation edges from a vertex� u� completely cover the

alternatives of another alternation vertex� v� then replace the edges in S with a single

alternation edge to v� We say the alternatives of an alternation vertex� v� are completely

covered by a set of edges� S� if every vertex which is the target of an outgoing alternation

edge from v is also the target of an edge in S� This rule can be derived from the primitive

transformations using a construction similar to that given in Section ����� �See Figure ���

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

u

x
c1

c3 c4 c5 c6

v

c2
y

x

y

c1

c2 c3v

u

c6c5c4

Figure �� Complete Cover

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

����� Partial Cover

This rule applies if two alternation vertices� u and v� cover a common set of alternatives�

but neither contains a subset of outgoing alternation edges that completely covers the

alternatives of the other� In this case� a new alternation vertex� w� is created with an

outgoing alternation edge to each of the vertices that is a target of outgoing alternation

edges from both u and v� and incoming alternation edges �u �� w� and �v �� w�� For

each edge �w �� x� which is added� the corresponding edges �u �� x� and �v �� x� are

deleted� �See Figure ����

����� MI Minimization

If there are alternation edges� �u �� w� and �v �� w� such that for all other alternation

edges from v� �v �� w��� w� is alternation reachable from u� then replace the edge �u �� w�

with the edge �u �� v�� This rule reduces the amount of multiple inheritance without

changing the edge size� However� it introduces repeated inheritance� �See Figure ����

��� Metrics for class organizations

We propose a metric �minimizing the number of edges� for measuring class hierarchies

�LBSL���� We propose to minimize the edge	size of a class dictionary graph while keeping

the set of objects invariant�

De
nition ���� The edge�size of a class dictionary graph� � � �VC�VA���EC�EA�� is

de�ned by�

size� � jEC j� ���jEA j

The edge�size is the number of construction edges plus one quarter of the number of

alternation edges� Note that the ��� constant is arbitrary� Any constant c � �� would

be appropriate� We want alternation edges to be cheaper than construction edges since

alternation edges express commonality between classes explicitly and lead to better software

organization through better abstraction and less code duplication�

This metric is quite rough� we just minimize the number of edges� We could mini�

mize other criteria� such as the amount of multiple inheritance or the amount of repeated

inheritance� A class B has repeated inheritance from class A� if there are two or more

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

y

u

c1

c3 c4 c5 c6 c7

v

c2

x

y

c1

x

u v

c2

c7c3

c6c5c4

Figure ��� Partial cover

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

yx

c1

u v

c2

c3w

a1

c4

x

y

c1

u

va1

c4 c3 w

c2

Figure ��� MI minimization

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

edge�disjoint alternation paths from A to B� The study of other metrics is left for future

research�

��� Minimizing construction edges

The only way that the number of construction edges in a class dictionary graph can be

reduced without changing the set of de�ned objects is by introducing additional inheritance�

Two classes have a part in common if each class has a part with the same name� and that

part may be instantiated by the same set of objects in instances of each class� If two

or more classes share a common part which is not inherited from a common superclass�

the number of construction edges may be reduced by introducing such inheritance� A

class dictionary graph where all common parts are implemented through inheritance from

common superclasses is said to be in common normal form� �CNF�� Formally� a class

dictionary graph is de�ned to be in common normal form if each equivalence class of the

part�equivalence relation has only one member�

De
nition ���� For class dictionary graph � � �VC�VA��� EC�EA� with edges �v l��

w�� �v� l�� w�� � EC� �v l�� w� is part�equivalent to �v� l�� w�� i� A�w� � A�w���

where A�x� � fx�jx
�

�� x�� x� � VCg�

Of course� none of the equivalence classes of the part�equivalent relation can be elimi�

nated from a class dictionary graph without changing the set of de�ned objects� Therefore

a class dictionary graph in common normal form must have the minimum number of con�

struction edges� Minimization of the construction edges can be accomplished in polynomial

time using the primitive object�preserving transformations by exhaustive application of the

CNF Rule�

����� CNF Rule

The CNF Rule says that if a class dictionary graph has equivalence classes of the part�

equivalence relation with more than one member�

�� Select an equivalence class� R� such that jRj � ��

�The concept of a common normal form free of redundant parts was
rst introduced informally by Ignacio
Silva�Lepe�

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION �

� Choose one edge� �v l�� w� � R� and replace every other edge� �v� l�� w�� � R� with

an edge �v� l�� w� by part	replacement�

�� Introduce a new alternation vertex� v�� and for each �v l�� w� � R introduce an

alternation edge �v� �� v� by addition of useless alternation� Then replace all edges

�v l�� w� � R with the single new edge �v� l�� w� by abstraction of common parts�

When the CNF Rule is applied with an equivalence class� R� of size n� n new alternation

edges are added and n � � construction edges are eliminated� The total number of edges

increases by one� but the edge�size decreases since �n � �� � �n � � � n���� Thus� the

��� constant in the edge�size de�nition guarantees that a class dictionary graph with a

minimum edge�size also has the minimum number of construction edges� That is� it is never

possible to decrease the edge�size by eliminating alternation edges at the expense of adding

construction edges�

The minimization technique depends upon the consistent use of part names in a class

dictionary graph� If the input does not contain the structural key abstractions of the

application domain then the optimized hierarchy will not be useful either� following the

maxim� garbage in � garbage out�

However if the input uses names consistently to describe either example objects or a

class dictionary graph then our metric is useful in �nding �good� hierarchies� However� we

don	t intend that our algorithms be used to restructure class hierarchies without human

control� We believe that the output of our algorithms makes valuable proposals to the

human designer who then makes a �nal decision�

Even simple functions cannot be implemented properly if a class dictionary graph is not

in CNF� By properly we mean with resilience to change�

Consider the class dictionary graph shown in Figure �� which is not in CNF� Suppose we

implement a print function for Coin and Brick� Now assume that several hundred years have

passed and that we �nd ourselves on the moon where the weight has a di�erent composition�

a gravity and a mass� We then have to rewrite our print function for both Coin and Brick�

After transformation to CNF we get the class dictionary graph in Figure ��� Now we

implement the print function for Coin�

void Coin		print�� �

radius �� print��� Weight�related		print����

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

Coin Brick

width

height

weight

length
Numberweight

radius

Figure �� Before transformation to CNF

length

width

height

weight

Coin Brick Number

Weight_related

Figure ��� After transformation to CNF

After the change of the weight composition� we get the class dictionary graph in Fig�

ure ��� We reimplement the print function for this new class and no change is necessary for

classes Brick and Coin�

In summary� if the class dictionary graph is in CNF and the functions are written

following the strong Law of Demeter �LHR���� the software is more resilient to change� The

strong Law of Demeter says that a function f attached to class C should only call functions

of the immediate part classes of C� of argument classes of f� including C� and of classes

mass

gravity

Coin Brick Number

length

width

height

Weight_related

Figure ��� After change of weight composition

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

which are instantiated in f�

��� Minimizing alternation edges

A class dictionary graph with a minimal edge�size may be obtained by �rst minimizing the

number of construction edges� and then minimizing the number of alternation edges while

holding the number of construction edges constant� In this section a procedure for mini�

mizing the alternation edges �i�e� computing an optimal alternation subgraph� is developed

which provides the means for overall optimization� The problem of minimizing the alterna�

tion edges is NP�hard�� but algorithms for achieving a fast approximation to the optimum

are provided in the next section� In the next section we also present a fast algorithm for an

exact solution in the special case where the minimum is a single�inheritance hierarchy�

An optimal class dictionary graph cannot have any more alternation edges than any

object�equivalent class dictionary graph which is in CNF� Since each application of the CNF

rule adds only one alternation edge for each construction edge in some part�equivalence class�

conversion to CNF adds jEC j alternation edges in the worst case� and the total number

of alternation edges in the optimal class dictionary graph is bounded by jEA j � jEC j�

But every alternation vertex in an optimal class dictionary graph must have at least two

outgoing alternation edges� so the number of alternation vertices in an optimal solution is

bounded by ���jEA j � jEC j� and the total number of vertices �including construction

vertices� is bounded by ���jEA j� jEC j� � jVC j� In other words� the size of the solution

is linearly related to the size of the input�

We can represent any optimal inheritance graph by a binary s � s matrix� M � where

s � ���jEA j� jEC j�� jVC j� If there is an alternation edge from vertex vi to vertex vj the

value of Mi�j is �� otherwise it is �� The total number of alternation subgraphs to consider

must therefore be bounded by s
�

� In fact� the upper bound is signi�cantly lower� Since

the alternation subgraph is a directed acyclic graph� let v�� v�� ���vm� vm��� vm��� ���vs where

m � jVC j� be a topological sorting of vertices such that if ai
�

�� aj then i � j� Then we

need not consider elements of the matrix Mi�j where i � j� Since the construction vertices

have no outgoing alternation edges� and each vi� �� � i � m�� must be a construction

vertex� we can also disregard elements of the matrix� Mi�j � where i � m� If there are m

construction vertices and n alternation vertices in the matrix� then the upper bound is

�See �LBSL��� for a formal proof due to Ignacio Silva�Lepe�

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

 c1 c2 c3 ... cm a1 a2 a3 ... an
c1

c2

c3...
cm

a1

a2

a3...
an

m = |VC|

n = (|EA| + |EC|) / 2

Figure ��� Matrix representation of alternation subgraph

reduced from s
�

� n
���nm�m�

to n
����nm as shown by the shaded portion of Figure ���

In order to compute an optimal alternation subgraph� we need to be able to determine

if a given alternation subgraph contains all of the alternation vertices and edges which are

required to place the class dictionary graph in CNF� We can think of each alternation vertex

as representing �or covering� a set of construction vertices� This set� A�v�� consists of all

the construction vertices which are alternation reachable from the alternation vertex� v� If

an alternation vertex� v� has an incoming construction edge� �u l�� v�� the construction

vertices in A�v� represent the concrete classes which might be used to instantiate the l part

in u objects� If v has an outgoing construction edge� �v l�� w�� the construction vertices

in A�v� represent the concrete classes which inherit the l part from v�

For each construction edge� �v l�� w� in the optimal class dictionary graph� we must be

able to represent the set of classes associated with the source of the edge� A�v�� and the set

of classes associated with the target of the edge� A�w�� An optimal inheritance hierarchy

meets this requirement with the minimum number of alternation edges�

The only primitive object�preserving transformation that changes the target of a con�

struction edge is part replacement� but part replacement does not change the set of classes

associated with the target� Therefore� the sets of classes associated with construction edge

targets in the optimal class dictionary graph can be calculated from any object�equivalent

class dictionary graph�

In any class dictionary graph with a minimal number of construction edges� there is

exactly one edge in each part�equivalence class� Furthermore� if an edge� �v l�� w�� in

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

one class dictionary graph with a minimum number of construction edges is part�equivalent

to an edge� �v� l�� w��� in an object�equivalent class dictionary graph which also has a

minimum number of construction edges� then the vertices v and v� must have the same set

of associated classes� The part represented by the equivalent edges must be inherited in

exactly the same set of construction classes in each case since the class dictionary graphs are

object�equivalent� Therefore� the sets of classes associated with edge sources in the optimal

class dictionary graph can be calculated from the class dictionary graph that results from

transformation to common normal form� As long as the number of construction edges is

kept minimal these sets remain constant� In practice� it is not necessary to actual convert

to CNF in order to perform the computation� The following algorithm can be used to

compute the sets of classes� T � associated with the targets of construction edges and the

sets of classes� S� associated with the sources of construction edges in an optimal solution�

Algorithm to compute sets of associated classes

�� Let T � �� �Target sets�

� Let S � �� �Source sets�

�� For each edge� �u l�� v� � EC �

�a� Let T�u�v�l� � fv� j v� � VC and v
�

�� v�g

�we associate T�u�v�l� with edge �u l�� v��

�b� T � T fT�u�v�l�g

�� For each element� t � T �

�a� Let et � f�u l�� v� � EC j T�u�v�l� � tg�

�b� For each label� l� such that ��u l�� v� � et� S � S ffu� j u� � VC and

��u l�� v� � et � u
�

�� u�gg�

�we associate this element of S with edges �u� v� l��

Now we have an algorithm to �nd an optimal inheritance hierarchy�

�� Compute the sets classes associated with targets and sources of construction edges in

the optimal class dictionary� T and S�

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

� Let m � jVC j� n � ���jEA j� jEC j��

For k � � to n consider� in turn� each inheritance graph� g� with one of the�
� n�� � nm

k

�
A combinations of k edges�

� If for each set� r � S T � there exists a vertex v in g such that A�v� � r then

stop and return g�

Note that there may be more than one optimal solution� that is� there may be more than

one inheritance graph with the same minimum number of edges that contains the required

vertices� In such cases� we arbitrarily return the �rst one we �nd�

An arbitrary class dictionary graph� �� can be optimized by computing an optimal

inheritance hierarchy and then following the construction of the completeness proof for the

object�preserving transformations�

�� Compute an optimal alternation subgraph�

� Superimpose the optimal alternation subgraph on the old class dictionary graph �by

addition of useless alternation��

�� Apply distribution of common parts exhaustively �until all parts are attached directly

to construction vertices��

�� Apply part replacement to insure that the target of every construction edge is in the

optimum inheritance hierarchy�

�� Delete the old inheritance hierarchy �by deletion of useless alternation��

�� Apply abstraction of common parts exhaustively �until there is only one edge in each

part�equivalence class��

��� Fast algorithms for optimization

����� Single�inheritance hierarchies

There is a fast algorithm to minimize the alternation edges in a class dictionary graph when

the solution is a single�inheritance hierarchy �LBSL���� Given a class dictionary graph� ��

in CNF� delete all useless alternation vertices and consider the associated classes� A�v�� for

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

each remaining alternation vertex� v� We say that � has the tree property if 	v� v� � VA one

of the following conditions holds�

� A�v�� A�v�� � �

� A�v�� A�v�� � A�v�

� A�v�� A�v�� � A�v��

When a class dictionary graph has the tree property� we can restructure the alternation

subgraph as a tree by inspecting the containment relationship between the sets of associated

vertices�� Finally� the tree is collapsed by eliminating any singleton alternation vertices

�Section ����� and any alternation vertices with no incoming or outgoing construction edges�

Now there is only one alternation vertex for each set of classes that must be represented

in the class dictionary graph� Furthermore� since the result is a tree� each set is optimally

expressed in terms of subsets� so the result has the minimum number of alternation edges�

����� Common normal form

We give a fast algorithm� called �ACP� �for abstraction of common parts�� for transforming

to common normal form� This algorithm is not as simple as applying the CNF rule but it

behaves well in practice in combination with the �consolidation of alternatives� algorithm

�below� for minimizing alternation edges�

Algorithm ACP �Abstraction of Common Parts�

�� Add to the original class dictionary graph an alternation vertex� v� which has as

alternatives all vertices of the original class dictionary graph which do not have any

incoming alternation edges� This insures that every vertex in the class dictionary

graph is alternation�reachable from v�

� Call AR�v� to compute for each vertex the set of alternation�reachable construction

vertices�

�� Call ACP�Vertex�v��

�� If there are no construction edges outgoing from v� delete vertex v and all of its

outgoing edges �v �� w� � EA�

�If two alternation vertices have the same set of associated classes� so that there is no proper containment
relationship� one of them can be eliminated if its attached edges are transferred to the other�

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

Algorithm AR�v� �Alternation Reachable�

�� If v is marked �AR�DONE�� return Sv�

� If v � VC then Sv � fvg�

Else

�a� Sv � �

�b� For each w� where �v �� w� � EA� Sv � Sv AR�w�

�� Mark v �AR�DONE� and return Sv�

Algorithm ACP�Vertex�v�

�� If v
� VA or v is marked �ACP�DONE�� return�

� For each w� where �v �� w� � EA� call ACP�Vertex�w�

�� While there is a label l and a set of construction classes� S� such that 	�v �� w� �

EA � ��w l�� u� � EC such that A�u� � S �we say the part �l� u� is redundant in

every alternative of v�� replace one such construction edge� �w l�� u�� with the new

construction construction edge �v l�� u�� and delete all other such construction edges�

�� While there is a part that is redundant in two or more alternatives of v�

�a� Select a part� �l� u�� which is redundant in at least as many alternatives as any

other part�

�b� Introduce a new alternation vertex� v� and add construction edge �v� l�� u� and

alternation edge �v �� v���

�c� For each w
� v� such that �v �� w� � EA and �w l�� u�� � EC where

A�u� � A�u��� delete edges �w l�� u�� and �v �� w� and add the alternation

edge �v� �� w��

�d� Call ACP�Vertex�v���

�� While there is a part �l� u� which is redundant in two or more vertices which are

alternation�reachable from v�

�a� Introduce a new alternation vertex� v� and add construction edge �v� l�� u��

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

position

weight

length

contents

weight

Element

Vector

position

Coin Brick Box

ElementList

Number

Ident
length

height height

widthwidth

weight

color

Figure ��� Original class dictionary graph

�b� For each w alternation�reachable from v where �w l�� u�� � EC such that

A�u� � A�u��� delete edge �w l�� u�� and add the alternation edge �v� �� w��

If w is an alternative of v� then also replace the alternation edge �v �� w� with

�v �� v���

�c� Call ACP�Vertex�v���

�� Mark v �ACP�DONE� and return�

Example ���� We demonstrate the normal form transformation by algorithm ACP with

the class dictionary graph in Figure �� This class dictionary graph is not in common

normal form since weight and position are redundant in Coin� Brick and Box� Therefore we

factor them� i�e��

Element 	 Coin � Brick � Box

�common� weight� Number position� Vector�

The resulting class dictionary graph� which is still not in common normal form� is shown

in Figure �� We introduce a new class�

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

contents

position

Number

Element Vector

ElementList
length

widthwidth

height height

length

color
Coin

Ident

weight

Brick Box

Figure ��� After factoring weight and position

QuadrangularElement 	 Brick � Box

�common� width� Number height� Number length� Number�

The resulting class dictionary graph� shown in Figure �� is now in common normal

form�

����� Minimizing alternation edges

The algorithm presented in this section is fast but only provides an approximate solution

for minimizing the alternation edges�

There are two aspects to minimizing alternation edges�

� Inventing new alternations� We try to �nd new alternation vertices which allow us

to decrease the number of outgoing alternation edges of existing alternation vertices�

This leads to a deepening of the inheritance hierarchy� For example �cf� Figure ����

A� 	 A � B � C � D � E�

B� 	 A � B � C�

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION �

position

QuadrangularElement

width

contents

BoxBrick

Coin

VectorElement

Number

weight

height length

Ident

color

ElementList

Figure ��� After factoring width� height� and length

C� 	 A � B � D�

D� 	 A � B � E�

can be abbreviated to�

A� 	 N� � C � D � E�

B� 	 N� � C�

C� 	 N� � D�

D� 	 N� � E�

N� 	 A � B�

� Using alternations for �covering� existing alternations� We try to express a given

alternation in terms of existing alternations� For example �cf� Figure ����

Cover 	 A � B � C � D � E�

A� 	 A � C � E�

B� 	 B � D �

can be abbreviated to

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

A1 D1

EDCBA

B1 C1

Example inheritance hierarchy

A1

EDC

N1
A

B

D1C1B1

Deepened inheritance hierarchy

Figure ��� Inventing new alternations

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

Cover 	 A� � B��

A� 	 A � C � E�

B� 	 B � D �

In this example multiple inheritance is removed since we found an �exact cover� of

Cover with A� and B��

The algorithm �Consolidate� we give next is better at introducing new alternations than

at optimally reusing existing alternations�

Algorithm Consolidate Alternatives

The algorithm considers for all alternation vertices the set of all possible unordered pairs

of alternatives de�ned by the same alternation vertex�

If there are pairs that are de�ned by two or more alternation vertices�

�� Select the pair of alternatives ����� ����� de�ned by the most alternation vertices�

� Create a new alternation vertex ��� Create two new alternation edges with source

vertex �� and target vertices �� and ��� respectively�

�� For each alternation vertex �i that de�nes the pair�

� Delete the two outgoing alternation edges with targets �� and �� and source �i�

� Add a new alternation edge with source �i and target ���

�� Consolidate alternatives in the new class dictionary graph� �Call this algorithm re�

cursively��

For each alternation vertex �j in the class dictionary graph�

� If �j has only one incoming alternation edge with source vertex �k and no incoming

or outgoing construction edges then�

�� Make �k the source vertex of each and every outgoing alternation edge of �j �

� Delete the alternation edge ��k��j��

�� Delete the alternation vertex �j �

Example ���� The following example shows how the algorithm recognizes common triples�

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

DBECA

Cover

A1 B1

�a�

B1

A E DBC

A1

Cover

�b�

Figure ��� Covering existing alternations

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

Z 	 A � B � C � D�

Y 	 A � B � C � E�

X 	 A � B � C � F�

The algorithm �rst learns�

AOrB 	 A � B�

Z 	 AOrB � C � D�

Y 	 AOrB � C � E�

X 	 AOrB � C � F�

Then�

AOrBOrC 	 AOrB � C�

AOrB 	 A � B�

Z 	 AOrBOrC � D�

Y 	 AOrBOrC � E�

X 	 AOrBOrC � F�

Now� AOrB is eliminated�

AOrBOrC 	 A � B � C�

Z 	 AOrBOrC � D�

Y 	 AOrBOrC � E�

X 	 AOrBOrC � F�

Analysis

� Running time

If we start out with p alternation vertices the algorithm might add O�p�� alternation

vertices� In the worst case we have to look at all pairs of alternatives and therefore

the running time of the algorithm is O�Size�input����

� Correctness

The algorithm does not change the set of objects de�ned by the class dictionary graph�

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

We now turn to class dictionary graph minimization in general�

A useful approximation algorithm is to �rst use algorithm ACP followed by algorithm

Consolidate Alternatives�

Consider the following non�minimal class dictionary graph�

Occupation 	

Undergrad�student � TA � Professor � Adm�assistant

�common� ssn� Number�

Student 	 Undergrad�student � TA �common� gpa� Real�

Faculty 	 Professor � TA �common� course�assigned� Course�

Professor � �

TA � �

Adm�assistant � �

Course � �

Undergrad�student � major� Area�

Area 	 Economics � Comp�sci�

Economics � �

Comp�sci � �

University�employee 	 TA � Professor � Adm�assistant

�common� salary� Real�

Change the class de�nitions for Occupation and University employee to

Occupation 	 Student � University�employee �common� ssn� Number�

University�employee 	 Faculty � Adm�assistant �common� salary� Real�

We have now reduced the number of alternation edges by � at the expense of adding

repeated inheritance� By repated inheritance we mean that a class is inherited several times

in the same class� In the above example� class Occupation is inherited twice in class TA�

Occupation �� University�employee �� Faculty �� TA

�� Student �� TA

However� not only alternation edges are reduced� also the amount of multiple inheri�

tance� which we propose as another metric to produce �good� schemas from the software

engineering point of view�

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

Repeated inheritance is undesirable under certain situations� For example� when we

implement the class hierarchy in C�� using virtual base classes� we can no longer cast an

Occupation object to a TA object�

Another indication that our class dictionary graph optimization algorithm MCDL is

useful is that it succeeds in �nding single�inheritance solutions� We can prove the follow�

ing statement� If we give a class dictionary graph which is object�equivalent to a single�

inheritance class dictionary graph to the optimization algorithm MCDL� it will return such

a single�inheritance class dictionary graph� From a software engineering standpoint� a single

inheritance hierarchy is simpler than a multiple�inheritance hierarchy and our optimization

algorithm will �nd such a hierarchy� if there is one�

��� Related work

Automatic structuring of classes is studied in �Pir���� Cardelli �Car��� proposes a tech�

nique for inferring multiple inheritance from objects �records�� But he does not deal with

the optimality question addressed in this paper� what is the optimum way of inferring

inheritance�

Pun and Winder �PW��� discuss automatic class hierarchy construction� They describe

the process of factoring out common parts from an existing set of classes to form super�

classes� but do not include a learning component to obtain the initial set of classes�

Instead of providing algorithms� Pun and Winder suggest that a factorization engine

could be built based on an existing computer algebra system� A �normalized class hierarchy�

is obtained when there are no more common parts to factor� Thus� the factorization engine

performs an operation similar to the CNF transformation�

The CNF transformation presented in this chapter extends the work of Pun and Winder

in several ways� First� our model allows composite objects including recursion while Pun

and Winder allow only objects with a
at list of attributes� Second� we give an algorithm

for the CNF transformation and show that the time complexity is a polynomial of low

degree� Finally� we introduce the concept of object�equivalence which de�nes the legal

transformations on a class hierarchy�

Pun and Winder propose construction of a �normalized expression �lter� to produce a

�most desirable� normalized class hierarchy� The �lter would be constructed as an expert

system allowing users to input rules and constraints which might� for example� specify the

CHAPTER �� CLASS DICTIONARY GRAPH OPTIMIZATION ��

priority of certain parts in the factorization process� In contrast� we introduce the concept

of an optimal class dictionary and show how the optimization can be fully automated� We

further show that the time complexity for optimization is in P for the single inheritance

case� but that the multiple inheritance case is NP�hard�

In software engineering� program reorganization based on the degree of coupling has

been used in �KK��� LH��� Cas���� Inductive inference techniques are reported in �DJ����

In the relational database �eld various algorithms for deriving schemas in normal form have

been developed to help the application builder to pin�point design
aws �Lie����

Chapter �

Maintaining Behavioral

Consistency

Most of the recent work on schema� evolution and transformations� �Opd�� Ber�� Ber���

Cas��� CPLZ��� DZ��� Bar��� LH��� AH��� BKKK��� PS��� SZ���� has been done from the

object�oriented database point of view where the focus is naturally on the structural� rather

than behavioral� aspects of the evolving schema� Systems such as ORION �BKKK����

GemStone �PS���� and OTGen �LH��� update the persistent instances in a database to

guarantee structural consistency with a transformed schema� However� none them considers

code updates on existing programs to restore behavioral consistency�

In this chapter� the problem of behavioral consistency is considered for an important

subset of possible class dictionary graph transformations� The transformations in this sub�

set are the object�preserving transformations de�ned in chapter � plus three additional

transformations �LHX��� that do not preserve objects�

These transformations have three desirable properties� First� the transformed class

dictionary graph	s consistency with the old objects either is maintained or can be easily

restored� For object�oriented database design� this means that the database does not need

to be repopulated� or that the repopulation can be easily automated� Second� the extension

transformations are powerful enough to allow the learning and incremental extension of class

dictionary graphs de�ned in Chapter � and the optimizations de�ned in Chapter � as well

as other transformations that commonly occur in practice� Third� they can be decomposed

�Class dictionary graphs are one model of object schemas
�The work in this chapter was completed in collaboration with Walter H�ursch and
rst appears in �BH����

��

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

into a sequence of primitive transformations�

Our strategy for solving the behavioral consistency problem relies heavily on the third

property� A given extension is decomposed into a sequence of primitives� and the problem

is solved for each of the primitives in turn�

We consider �informally� two very di�erent language models� strongly typed and un�

typed� We compare solutions to the behavioral consistency problem in the two models using

C�� and CLOS �Common Lisp Object System�� respectively� as representative examples�

As one might expect� the problem is much more di�cult for the strongly typed model� For

simplicity� we consider the class de�nitions and the methods of a class separately� although

some languages might require forward declarations of methods in the class de�nitions�

A class dictionary graph is essentially a language�independent set of class de�nitions�

and the translation to a particular programming language is a straight�forward process�

The kind�of relations de�ned by the class dictionary graph are implemented by declaring a

corresponding inheritance relation in the class de�nitions� In most languages� this means

that if there is an alternation edge from A to B� then class B is declared to inherit from

class A in the de�nition of class B� Part�of relations are implemented by instance variables�

For each part of a class� an instance variable is declared whose name is the same as the part

name� In the case of a typed language� the part	s type is declared to be the corresponding

class� For example� the class de�nition for ShapeList from the class dictionary graph in

Figure �� would be written in C�� or CLOS as�

C�� Version CLOS Version

class ShapeList � public List � �defclass ShapeList �List�

protected� �firstShape restShapes��

Shape� firstShape�

List� restShapes�

��

��� Features of language models

Our two language models share several common features�

� The parts of an object are implemented as references�

� Any object can send another object any message for which the receiving object has a

corresponding method� In C�� terminology� all methods are �public��

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY �

� Each method is attached to exactly one class� In CLOS terminology� each method

has exactly one �specialized parameter�� i�e� there are no �multi�methods��

� Any method available to an alternation class is also available to each of its alternatives

through inheritance�

� Inherited methods may be overriden �specialized� in a subclass� In C�� terminology

all methods are �virtual��

� Every object has access �through its methods� to all of its own parts� and to the

parts of other objects of the same class� This level of encapsulation is equivalent to

�protected� instance variables in C���

��� The extension relation

For the following discussion it is important to remember that all alternation classes are

abstract and only instances of construction classes can be assigned to a part� Thus� even if

a construction edge points to an alternation class A� the only objects that can be assigned

to the part are instances of construction classes that are subclasses of A�

Informally� two class dictionary graphs �� and �� are object�equivalent if they both

de�ne the same set of objects� Consequently� �� and �� must satisfy these conditions� ���

�� and �� have the same set of construction classes� �� A construction class A of �� has

a �inherited or direct� part b if and only if its corresponding class in �� has a �inherited or

direct� part b � ��� An instance can be assigned to part b of class A in �� if and only if the

instance can also be assigned to part b of class A in ���

As an example of two class dictionary graphs in an object�equivalence relation� consider

Figures �� and �� Note that both class dictionary graphs contain the same construction

classes� Furthermore� each construction class has the same parts and to each part one

can assign the same instances� In particular� in both class dictionary graphs� instances of

classes RectTool� OvalTool� and SelectTool can be assigned to part inputTool attached to

class Screen�

Two class dictionary graphs �� and �� are in an extension relation� such that ��

extends ��� if they satisfy these conditions� ��� The set of construction classes of �� is a

superset of the set of construction classes of ��� �� If a construction class A of �� has a

�inherited or direct� part b� then its corresponding class in �� has a �inherited or direct�

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

next

inputTool

position

first

canvas

window

DrawWindow

List

ShapeList EmptyList

Position

ShapeTool

Mouse-
Interface

interface

RectTool OvalTool SelectTool Rectangle Oval

Screen

shapes

Original

Figure ��� Original class dictionary graph

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

next

inputTool

position

first

canvas

window

DrawWindow

List

ShapeList EmptyList

Shape

Mouse-
Interface

interface

Screen

shapes

RectTool OvalTool

Object-equivalent

CanvasTool

DrawingTool

SelectTool Rectangle Oval

Position

Figure �� Object�equivalent class dictionary graph

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

inputTool first

DrawWindow

List

ShapeList EmptyList

Shape

Mouse-
Interface

interface

shapes

RectTool OvalTool

CanvasTool

DrawingTool

Position

Color

color

position

Printer

window

canvas
OutputDevice

Extended

next

Rectangle OvalSelectTool

Screen

Figure ��� Extended class dictionary graph

part b � ��� If an instance can be assigned to part b of class A in ��� then the instance can

also be assigned to part b of class A in ��� An example of two class dictionary graphs in an

extension relation is given in Figures � and ���

As a consequence of the above de�nitions the following relationship holds between ex�

tension and object�equivalence� Class dictionary graph �� is object�equivalent to class

dictionary graph �� if and only if �� is extended by �� and �� is extended by ���

��� Class dictionary graph Extension Transformations

This section informally reviews the class dictionary graph extension transformations� The

�rst �ve of these are the object�preserving transformations that were formally de�ned in

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

Chapter �� The last three are not object�preserving and are presented here for the �rst

time� Together� the eight primitive transformations comprise the class dictionary graph

extension transformations as summarized below�

Deletion of useless alternation �DUA� An alternation class is �useless� if it has no

incoming edges and no outgoing construction edges� In other words� an alternation

class is useless if it is not a part of any class� and de�nes no parts for any class to

inherit� If an alternation class is useless it may be deleted by the DUA primitive� An

example of a DUA operation is the deletion of the alternation class Tool shown in the

transition from the partially drawn class dictionary graph in Figure ���PRP to the

class dictionary graph in Figure ���

Addition of useless alternation �AUA� This is the inverse operation of DUA� An al�

ternation class can be added to a class dictionary graph along with outgoing alterna�

tion edges to any other classes� An example of an AUA operation is the addition of the

two alternation classes DrawingTool and CanvasTool �Figure �� to Figure ���AUA��

Abstraction of common parts �ACP� If Bi �� � i � n� are all the alternatives of an

alternation class A and each of them has a part c of class C� then ACP deletes all the

construction edges Bi
c�� C �� � i � n� and replaces them with a new construction

edge A c�� C� Intuitively� if all of the immediate subclasses of a class A have the same

part� that part is moved up the inheritance hierarchy so that each of the subclasses

will inherit it from A� An example of the ACP operation is the abstraction of the

common part interface from the classes RectTool� OvalTool� SelectTool to their common

superclass CanvasTool �Figure ���DCP to Figure ���ACP��

Distribution of common parts �DCP� This is the inverse of ACP� DCP deletes an

outgoing construction edge A c�� C from an alternation class� A� and adds for each

alternative Bi of A� a new construction edge Bi
c�� C� An example of DCP is the

distribution of the part interface from class Tool to its subclasses RectTool� OvalTool�

SelectTool �Figure ���AUA to Figure ���DCP��

Part replacement �PRP� If the set of construction classes that are subclasses of an

alternation class A is the same as the set that are subclasses of another alternation

class A�� then PRP may delete any construction edge X a�� A and replace it with a

new construction edge X a�� A�� Intuitively� if two classes A and A� have the same

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

AUA

Mouse-
Interface

interface

RectTool OvalTool

inputTool

CanvasTool

Screen

Tool

SelectTool

DrawingTool

RectTool OvalTool SelectTool

DrawingTool

CanvasTool

inputTool

Screen

Tool

interface

Interface
Mouse-

PRP Screen

inputTool

interface

Tool

OvalTool SelectToolRectTool

CanvasTool
Mouse-

Interface

DrawingTool

ACP

OvalTool

inputTool

interface

DCP Screen

SelectTool

CanvasTool

DrawingTool

Interface
Mouse-

Tool

RectTool

Figure ��� Steps in the object�preserving transformation

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

Shape

Rectangle Oval

window

DrawWindow

Printer Screen

Position

Color

position

canvas

CAD

Shape

Rectangle Oval

window

DrawWindow

Printer

OutputDevice

Screen

Position

Color

position

canvas

AUA

Shape

Rectangle Oval

window

DrawWindow

Printer

OutputDevice

Screen

Position

Color

color

position

canvas

PAD

Shape

Rectangle Oval

window

DrawWindow

Printer

OutputDevice

Screen

Position

Color

color

position

canvas

PGN

Figure ��� Steps in the object�extending transformation

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

set of instantiable �construction� subclasses then the de�nable objects do not change

when A is replaced by A� in the de�nition of a part� An example of PRP is the

rerouting of edge inputTool from class Tool to class CanvasTool �Figure ���ACP to

Figure ���PRP��

Class addition �CAD� CAD adds to the existing class dictionary graph a single new

construction class with no incoming or outgoing edges� Examples of CAD are the

addition of the classes Printer and Color to the class dictionary graph in Figure � as

shown in the partially drawn class dictionary graph in Figure ���CAD�

Part addition �PAD� If the classes A and B already exist in a class dictionary graph�

then PAD adds a new construction edge A b�� B� that is� the class A obtains a new

part b of class B� An example of PAD is the addition of the part color to the class

Shape �Figure ���AUA to Figure ���PAD��

Part generalization �PGN� If a class C is a subclass of some alternation class B� then

PGN reroutes a construction edge A
p
�� C to A

p
�� B� In other words� PGN

generalizes the domain of part p� An example of PGN is the generalization of part

canvas from class Screen to the class OutputDevice �Figure ���PAD to Figure ���

PGN��

Each of the primitive transformations de�nes a relation on class dictionary graphs� To�

gether� the eight primitive relations comprise the object�extension relation� The primitives

have been shown to be correct� minimal and complete �Ber��� LHX���� The completeness

guarantees that for any two class dictionary graphs in an object�extending relation there

exists a sequence of primitive transformations that transforms the original into the extended

class dictionary graph� Since the completeness proofs are constructive� there also exists an

algorithm to �nd the sequence� The primitive class dictionary graph transformations will

be used in the subsequent section to determine their impact on the behavioral consistency

of a program�

��� Structural Consistency

Each of the primitive transformations� except part addition� maintains the structural con�

sistency of the object base� that is� all the objects remain consistent with the transformed

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

class dictionary graph� When a part is added to a class A by a part addition� then structural

consistency must be restored by adding an instance of that part	s class to every instance

of class A� The added object can either be some default object or speci�ed by an object

transformation function de�ned by the user�

��� Code Transformations

In this section we discuss how application code can be automatically updated after a class

dictionary graph has been transformed or extended� The approach we take is to �rst reduce

the transformation to a sequence of primitives� We then update the code incrementally� in

steps that parallel the primitive transformations� Reduction to a sequence of primitives can

be easily accomplished by following the constructions of the completeness proofs given in

�LHX��� and �Ber����

For each primitive transformation� we consider the rules that should be followed to

update the application code so that it will meet all of the original requirements� Of course�

if we wish to extend� rather than simply maintain the original functionality� it will be

necessary to hand code some of the extension� Even so� a maintenance tool based on the

primitive transformations could be used to do most of the work and generate hints for code

that should be modi�ed by hand�

����� Untyped Language Model

In the untyped language model the code transformations are very simple� Consider the

example of the transformation of the class dictionary graph in Figure �� to the extended

class dictionary graph in Figure ���

Addition of useless alternation classes

The �rst primitives in the sequence obtained by reducing the transformation are addition

of the �useless� alternation classes DrawingTool and CanvasTool �Figure ���AUA�� The

addition of these abstract classes does not require any modi�cation of the code�

Distribution of common parts

In the next step �Figure ���DCP�� the interface part of the Tool class is distributed down

the inheritance hierarchy to the classes RectTool� OvalTool� and SelectTool� Once again�

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

there is no need to modify the code� Note that there may be methods attached to class

Tool that refer to the interface part� In a strongly typed language such as C��� the method

would no longer compile� since the part would be unde�ned within the scope of the method�

In an untyped language such as CLOS� however� the symbol interface is bound at run time

when the method is invoked in response to a message to a RectTool� OvalTool� or SelectTool

object� Since Tool is abstract� the method can never be invoked in response to a message

to a Tool object� and no run time errors occur�

Part replacement

In the next step� the part class of Screen	s inputTool is changed from Tool to CanvasTool by

part replacement �Figure ���PRP�� Of course� every object that instantiates the inputTool

part of a Screen must still be an instance of one of the three construction classes� RectTool�

OvalTool� and SelectTool� Therefore any message that was sent to inputTool in the original

code will still be understood after the class transformation and� once again� there is no need

to modify existing code�

Abstraction of common parts

When the part is moved up the new inheritance hierarchy to the CanvasTool class �Figure ���

ACP� by abstraction of common parts� there is still no need to modify the code� Every

reference to interface in the RectTool� OvalTool� and SelectTool classes is still valid due to

inheritance�

Deletion of useless alternations

Now that the Tool class has no incoming edges and no outgoing construction edges� it

is considered �useless�� and may be deleted� Note that the �useless� designation is only

relevant from a data modeling point of view� since the class may have important methods

attached� If the class is deleted to produce the class dictionary graph in Figure �� the

functionality of the methods attached to the class must be preserved� In the simplest case�

we consider only primary methods and don	t allow a method to explicitly call a method

de�ned in a superclass �i�e� call�next�method in CLOS�� In this case each method can be

copied to each of the immediate subclasses that does not override it� Now every object will

respond to messages in the same way after the �useless� class is deleted�

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY �

Suppose� for example� that the Tool class has a method called getPosition which is

inherited in each of its subclasses�

�defmethod getPosition ��self Tool��

�getPosition �slot�value self �interface���

In this case� the getPosition method is copied from the Tool class to the RectTool� OvalTool�

and SelectTool classes�

�defmethod getPosition ��self RectTool��

�getPosition �slot�value self �interface���

�defmethod getPosition ��self OvalTool��

�getPosition �slot�value self �interface���

�defmethod getPosition ��self SelectTool��

�getPosition �slot�value self �interface���

If there is another alternation class that covers the same set of construction classes as the

�useless� alternation� the method could just be copied to that class instead� In the example�

we could just copy the getPosition method from the Tool class to the CanvasTool class� so

that the three methods above would be replaced with�

�defmethod getPosition ��self CanvasTool��

�getPosition �slot�value self �interface���

If we wish to allow �before� and �after� methods� then any before method in the �useless�

class can be prepended to the before method in each subclass or the primary method if

the subclass has no before method� After methods are appended to the after methods in

each subclass� or the primary method if there is no after method� If we allow �call�next�

method�� then in each subclass� every occurrence of call�next�method can be removed and

the �next�method� de�ned in the �useless� class inlined in its place�

Class and part addition

Extension of a class dictionary graph by class addition or part addition does not require any

modi�cation of existing code� In the current example� addition of the classes OutputDevice�

Printer� and Color �Figure ��� does not e�ect the application code� When the color part

is added to the Shape class� existing code will continue to provide the same functionality�

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

In this case� however� it is likely that methods attached to the Shape� Rectangle� and Oval

classes would be extended to make use of the new color information� For example� if there

are methods attached to these classes for drawing the shapes in black and white� they will

still function properly� but the additional code required to produce color renderings would

have to be added by hand�

Part generalization

Part generalization causes a problem similar to� but more serious than� part addition�

When the part class of DrawWindow	s canvas part is generalized from Screen to OutputDevice

�Figure ���� the original code will continue to function properly as long as every DrawWindow

continues to use a Screen as its output device� This is the case for all DrawWindow objects

that were present in the old object store and possibly updated subsequently by an object

transformation �see Section ���� after the class dictionary graph transformation� However�

if new DrawWindow objects are introduced that use Printer output devices� messages to the

canvas part will not be understood� Since it is not possible� in general� to automatically

generate correct methods for the new part classes� warnings should be added to the code

wherever a DrawWindow method accesses its canvas part to indicate that the part has been

generalized�

����� Typed Language Model

For the discussion of code transformations in the typed language model� illustrated for the

example of C��� we assume that the code conforms to our data and language models�

In particular� make the following simplifying assumptions� ��� All parts are de�ned as

protected data members� �� All alternation classes are mapped to abstract superclasses�

��� All member functions of alternation classes are de�ned as virtual member functions� ���

All data members are de�ned as pointers or references�

Addition of useless alternation classes

As for the untyped language model� the change in class de�nitions due to the addition of a

useless alternation class requires no modi�cation to the methods�

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

Distribution of common parts

As we have seen� in the untyped language model the distribution of a part from a superclass

to its subclasses does not require any change in the methods� However� in the strongly typed

model methods that access a distributed part will no compile� since the part is not de�ned

within the scope of the superclass�

To restore behavioral consistency� every superclass method that accesses the part must

be distributed� along with the part� to each subclass where the method is not overridden�

Since instances of the subclasses may be declared with the static type of the superclass� we

must replace the original method with a �pure virtual� method so that messages to those

instances will be understood�

Constructor and destructor methods in C�� may be treated much like the distribution

of before and after methods in deletion of useless alternation classes in the untyped model

since their behavior is similar� The body of a superclass constructor accessing a distributed

part is inlined at the beginning of each subclass constructor and replaced with an empty

body� The body of a superclass destructor accessing a distributed part is inlined at the end

of each subclass destructor and replaced with an empty body�

Consider� for example� what happens when the interface part of the Tool class is dis�

tributed down the inheritance hierarchy to the classes RectTool� OvalTool� and SelectTool

�Figure ���DCP�� Suppose that the Tool class de�nes the method�

Position �Tool		getPosition�� � return interface �� getPosition��� �

Then Tool��getPosition is replaced by a pure virtual function� and the following new methods

are added�

Position �RectTool		getPosition�� � return interface��getPosition��� �

Position �OvalTool		getPosition�� � return interface��getPosition��� �

Position �SelectTool		getPosition�� � return interface��getPosition��� �

Part replacement

In the untyped language model� part replacement does not require any modi�cation of the

code since the objects that can be assigned to the replaced part are unchanged� However� in

a typed language� there are two problems that occur as a result of the implied change in the

type declaration of the part� First� messages sent to the part might no longer be understood

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

since there may be no such method known to the part	s new class� Second� wherever the part

is involved in an assignment statement� function call �as a passed parameter�� or function

return �as the returned value�� the part	s new type will no longer be compatible�

The �rst problem can be solved by supplying a pure virtual function in the part	s new

class for each corresponding method de�ned in the part	s old class� Since each of the

instantiable �construction� subclasses now inherits both the original method and the �new�

pure virtual method� it must supply its own method to resolve the ambiguity by calling its

original �possibly inherited� method�

The second problem requires that objects be converted to the appropriate type in as�

signment statements� function calls� and function returns� Unfortunately� simple casting

will not work in C�� under multiple inheritance�

Consider what happens when the part class of Screen	s inputTool is changed from Tool

to CanvasTool by part replacement� Suppose that the following methods were originally

de�ned�

void Tool		handleMouseClick�DrawWindow �win� � ��

void Screen		handleMouseClick�DrawWindow �win�

� inputTool �� handleMouseClick�win��

void Screen		Screen�Tool �t� � inputTool � t� �

To solve the �rst problem� we de�ne a pure virtual function in the CanvasTool class and a

disambiguating method in each construction subclass�

void CanvasTool		handleMouseClick�DrawWindow �win� � ��

void RectTool		handleMouseClick�DrawWindow �win�

�Tool		handleMouseClick�win�� �

void OvalTool		handleMouseClick�DrawWindow �win�

�Tool		handleMouseClick�win�� �

void SelectTool		handleMouseClick�DrawWindow �win�

�Tool		handleMouseClick�win�� �

To solve the second problem� we generate methods to transform the type of objects from

Tool to CanvasTool and from CanvasTool to Tool� Wherever inputTool either occurs on the

right hand side of an assignment� or is passed as a parameter to a function� or is returned

from a function� it is �rst converted to its original type �Tool�� Wherever inputTool occurs

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

on the left hand side of an assignment statement� the expression on the right hand side is

converted to its new type �CanvasTool��

Tool �CanvasTool		CT�to�T�� � ��

CanvasTool �Tool		T�to�CT�� � ��

Tool �RectTool		T�to�CT�� � return this� �

CanvasTool �RectTool		CT�to�T�� � return this� �

Tool �OvalTool		T�to�CT�� � return this� �

CanvasTool �OvalTool		CT�to�T�� � return this� �

Tool �SelectTool		T�to�CT�� � return this� �

CanvasTool �SelectTool		CT�to�T�� � return this� �

void Screen		Screen�Tool �t� � inputTool � t �� T�to�CT��� �

Abstraction of common parts

As in the untyped model� no changes are required by abstraction of common parts� Any

class that accesses a part that has been abstracted to a superclass will still have access to

the part through inheritance since data members are de�ned to be protected in our language

model�

Deletion of useless alternation classes

As in the case of the untyped language model� one problem with deleting a �useless� alter�

nation class is that there may be methods attached to the class� There is the additional

problem that the class name may be used in the static type declarations of objects�

Methods �including constructors and destructors� attached to the useless alternation

class� A� are distributed to subclasses in the same manner as when required by distribution

of common parts� Since objects of static type A may be sent messages� we must either keep

a class de�nition of A and attach pure virtual methods� or else �nd a substitute type� If

there is an alternation class B with the same set of associated construction classes as for A�

B can serve as a substitute type for A� In this case� all the member functions which were

de�ned for A are now declared as pure virtual functions in class B� and class A is deleted�

Wherever class A appeared in a type declaration� class B is substituted� Note that in

conjunction with the part replacement transformation there is always such a corresponding

class B�

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

If there is no such corresponding class B� then A can not be deleted since it must

continue to be used in type declarations� In this case� class A is preserved� but contains

only pure virtual member functions and no data members� We regard A as a type rather

than as a class�

If anywhere in the program an explicit call is made through the scope resolution operator

���� to a method A ��m� we create a new method with a unique name� say A m� de�ned for

each of A	s immediate subclasses� The implementation for A m is the same as for A �� m�

Then� every occurrence of an explicit call to A ��m is replaced with a call to A m�

As an example� consider what happens when the Tool class is deleted in the transfor�

mation from Figure ���PRP to Figure �� Suppose the methods declared in class Tool are

these�

virtual void handleMouseClick� DrawWindow � � � ��

virtual Position getPosition�� � ��

virtual CanvasTool �T�to�CT�� � ��

All the methods happen to be pure virtual� so there are no implementations to be dis�

tributed� Furthermore� class CanvasTool quali�es as an equivalent substitute type for class

Tool� For each method declared in class Tool a pure virtual method is declared in class

CanvasTool� Everywhere that class Tool is used in a type declaration it is replaced with

class CanvasTool� Finally class Tool can be deleted�

Class and part addition

As in the untyped language case� no changes are necessary for the method implementations�

Part generalization

The problem that occurs with part generalization is similar to one of the problems that

occurs with part replacement� If the part class C of some part is generalized to a superclass

of C� say B� then we must insure that for every method in class C there is a corresponding

method de�ned in class B so that messages sent to the generalized part will be understood�

This is done by de�ning empty virtual functions in B wherever necessary� In this case we

use an empty �default� method rather than a pure virtual method since subclasses of B

other than C may not have suitable methods� Note that the part generalization indicates

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

that behavior extension �supplying methods for the other subclasses of B� is in order� but

our goal is simply to ensure behavior preservation�

As for part replacement� wherever the part is involved in an assignment statement�

function call �as a passed parameter�� or function return �as the returned value�� the part	s

new type will no longer be compatible� In this case� however� a simple cast will su�ce since

the new class is a superclass of the original�

The above transformation achieves the goal of preserving behavior� but the resulting

code is not desirable from a software engineering point of view� The inserted cast operations

are therefore seen as a hint to the programmer as to where the behavior of the program

should be extended�

��� Discussion

When comparing the update operations necessary in the two language models� the di�er�

ences are striking� While in the untyped language model almost no updates to method

implementations are necessary� the programmer working in the typed language model is

faced with numerous problems� For the untyped language model� we have shown that a

class dictionary graph extension can always be propagated to the method implementations

such that the behavior of the program is preserved� However� for the typed language model

a behavior preserving update mechanism could only be outlined and is far from being satis�

factory� The major reason for this is that the type system poses severe restrictions on how

updates can be performed� Without semantic information on what the update	s intentions

are� it is not always possible to change the typing speci�cations in a reasonable way�

The above comparison underlines the popularity of untyped languages for prototyping

purposes� Their ability to
exibly adapt themselves to di�erent class structures gives them

a major advantage over typed languages in environments where structural changes occur

frequently� For typed languages� the propagation pattern approach �LXSL��� LHSLX��

achieves the same
exibility by decoupling the programs from the class structure� Conse�

quently� any change in the class structure a�ects the propagation pattern only marginally�

CHAPTER �� MAINTAINING BEHAVIORAL CONSISTENCY ��

��� Related work

Opdyke and Johnson �OJ��� Opd�� have investigated the refactoring of object�oriented

systems for reuse� They de�ne refactorings as restructuring plans which are useful in the

iterative design of an application framework� As in our approach� refactorings preserve

behavior and can be performed by applying a small set of basic refactorings�

The Integrity Consistency Checker �ICC� is a tool designed by Delcourt and Zicari

�DZ��� which ensures structural consistency while performing schema updates� The ICC

does not allow any update which would introduce structural inconsistency� However� it

allows behavioral inconsistencies that do not result in run�time errors� Our methods� in

contrast� guarantee behavioral consistency by automatically adapting programs to the trans�

formed schema�

Chapter �

Object grammars

In this chapter� the data model of Chapter is extended so that a class dictionary graph

may de�ne not only a set of objects� but also a language for representing the objects

textually� The concept of a �part� is extended to mean either another object or a token of

concrete syntax� The parts are ordered and an object	s textual representation is obtained

by concatenation of the concrete syntax as it is encountered during a depth �rst traversal

of the object	s parts�

��� Extended data model

����� Extended class dictionary graphs

De
nition ���� An extended class dictionary graph� �� is a directed graph

� � �V�VS��� EC�EA�ES�Ord� where the de�nitions of V � �� EC� and EA are the same

as for class dictionary graphs� VS is a set of strings called the syntax vertices� ES is a

binary relation on V � VS called the syntax edges� �v � w� � ES i� there is a syntax edge

from v to w� Ord � �ECES� � N is a function that maps each construction and syntax

edge to a natural number�

The set of vertices� V � is partitioned into construction and alternation vertices� VC and

VA� respectively� for extended class dictionary graphs as it is for class dictionary graphs�

Sometimes� it is more convenient to describe an extended class dictionary graph as a tuple

which contains explicit references to VC and VA� � � �VC�VA�VS���EC�EA�ES�Ord��

���

CHAPTER �� OBJECT GRAMMARS ���

Graph Object-oriented Design Context Free Language
Vertex Class Symbol

Edge Class Relationship Operator

construction instantiable class with members
defined by construction edges
(including “inherited” edges)

Concatenation of languages
defined by construction and
syntax edges (including
“inherited” edges)

alternation abstract class with subclasses
defined by alternation edges

union of languages defined by
alternation edges

syntax no meaning terminal

construction part-of relationship, “uses”,
“knows”, — labels are part
names

concatenation — numbers
define order

alternation inheritance relationship,
specialization, classification

union

syntax no meaning concatenation — numbers
define order

Table �� Extended Interpretation

A legal extended class dictionary graph must satisfy the the cycle	free alternation con	

dition and the unique labels condition� Additionally� it must satisfy the unique numbering

condition�

De
nition ���� The unique numbering condition states that�

	u� v� v� � V and e� e� � �ECES� where v
�

�� u� v�
�

�� u� e
� e� �

If �w�w�� l� l� such that e � �v l�� w� or e � �v � w�� and e� � �v� l��� w�� or e� � �v� � w��

then Ord�e�
� Ord�e��

The unique numbering condition is similar to the unique labels condition� It guarantees

that the construction and syntax edges inherited at any vertex are totally ordered�

����� Extended object graphs

Object graphs are extended in similar fashion�

De
nition ���� An extended object graph� �� is a directed graph

� � �W�Ws� S���� E�Es� ��Ord� where the de�nitions of W � S� ��� E� and � are the same

as for object graphs� Ws is a set of strings called the syntax vertices� Es is a binary relation

on W � Ws called the syntax edges� Ord � �ECES� � N is a function that maps each

edge to a natural number�

CHAPTER �� OBJECT GRAMMARS ��

De
nition ���� Let p�� p�� ���pn be the outgoing edges �including syntax edges� from a ver	

tex� v � W � of an extended object graph such that Ord�pi� � Ord�pi���� � � i � n� Then

the PartOrder�v� pi� � i�

Let q�� q�� ���qn be the construction and syntax edges outgoing from all vertices� v�� from

which a vertex� v � VC of an extended class dictionary graph is alternation reachable� such

that Ord�qi� � Ord�qi���� � � i � n� Then the PartOrder�v� qi� � i�

De
nition ���� An extended object graph� � � �W�Ws� S���� E�Es� ��Ord�� is legal with

respect to an extended class dictionary graph� � � �VC�VA��� EC�EA�� i� for each vertex�

v � W �

� ��v� � VC

Each vertex in the object graph maps to a construction vertex in the class dictionary

graph�

� 	�r l�� s� � EC where r
�

�� ��v� � �w � W such that �v l�� w� � E

Each object has all of the sub	objects prescribed by the class dictionary graph�

� 	�r� s� � ES where r
�

�� ��v� � �v � s� � Es

Each object has all of the concrete syntax prescribed by the class dictionary graph�

� 	w� l where �v l�� w� � E � ��r l�� s� � EC such that r
�

�� ��v�� s
�

�� ��w�� and

PartOrder�v� �v l�� w�� � PartOrder���v�� �r l�� s��

Each object has only the sub	objects prescribed by the class dictionary graph and has

them in the proper order�

� 	s where �v � s� � Es � �r such that �r� s� � ES� r
�

�� ��v�� and

PartOrder�v� �v� w�� � PartOrder���v�� �r� s��

Each object has only the concrete syntax prescribed by the class dictionary graph and

has it in the proper order�

The language of an extended class dictionary graph �� is formally de�ned in terms of

sentences which are de�ned� in turn� by the extended object graphs which are legal with

respect to ��

De
nition ���� An acyclic extended object graph� �� rooted at some vertex� v� has a tex	

tual representation� called sentence���� which is the string of syntax vertices encountered

CHAPTER �� OBJECT GRAMMARS ���

during a depth �rst traversal of � starting from v� If an extended object graph� �� is cyclic

or unrooted� sentence��� is unde�ned�

We say that an extended object graph� � � �W�Ws� S���� E�Es� �� Ord�� is rooted at

vertex v if v is the only vertex in W with an in	degree of ��

De
nition ���� The language de�ned by an extended class dictionary graph�

� � �V�VS��� EC�EA�ES� Ord�� is given by�

L��� � fsj�� � sentence��� � s� and � is legal with respect to �g

��� Working with extended graphs

The theory and techniques of the preceding chapters are easily extended with the addition

of syntax edges in object and class dictionary graphs� Syntax edges may generally be

treated as though they were construction edges with implicit labels� The implicit label

is the syntax vertex which is the target of the edge � uniquely labeling each syntax edge

would defeat the abstraction of common syntax to alternation vertices� uniformly labeling

all syntax edges would violate the unique labels condition� The ordering of parts introduces

additional complexity� but it is easily handled as illustrated below for class dictionary graph

learning and the object�preserving transformations�

����� Learning extended class dictionary graphs

The basic learning algorithm for extended graphs requires that the example object graphs

satisfy two additional constraints�

� The ordering of the parts must be consistent between examples�

� The concrete syntax must be the same in each example �since the target of a syntax

edge cannot be an alternation vertex��

The algorithm to translate a list of object example graphs ��� ���� �n of the form �i �

�Wi�Wsi� Si���i� Ei� Esi� �i�Ordi� into an class dictionary graph� � � �V�VS��� EC�EA�ES� Ord��

is extended by adding three steps to learn the syntax vertices� the syntax edges� and the

ordering function�

� VS �
�

��i�n

Wsi

CHAPTER �� OBJECT GRAMMARS ���

� ES � f�r� s�jr � VC� �v� i � �v � s� � Esi � �i�v� � rg

� Ord � f�r� s� j�j�v� i � �v � s� � Esi � �i�v� � r� PartOrder�v� v� s� � jg

 f�r l�� s� j�j�v� w� i � �v l�� w� � Ei� �i�v� � r� PartOrder�v� v l�� w� � jg

The incremental algorithms are similarly extended�

����� Object�preserving transformations

The object�preserving transformations for extended class dictionary graphs are almost the

same as the object�preserving transformations de�ned for ordinary class dictionary graphs

in Chapter �� For extended graphs� there is an additional primitive that allows edges to

be renumbered as long as the ordering is unchanged� Abstraction of common parts and

distribution of common parts are extended to apply to syntax edges as well as construction

edges� The only additional complexity is that abstraction of common parts to a superclass

is restricted so that the ordering of parts at each immediate subclass can not be changed�

If there is a set of classes that have more than one part in common� but the common parts

are ordered di�erently in the individual classes� then it is not possible to abstract all of the

common parts�

The new de�nitions are as follows�

� Renumbering of parts� Any set of construction and syntax edges in a class dictio�

nary graph� �� may be renumbered �by replacing the Ord function� to produce a new

class dictionary graph� ��� if for all vertices� v � V � and edges� e � �ECES�� such that

v is alternation reachable from the source of e� PartOrder��v� e� � PartOrder���v� e��

� Abstraction of common parts� If �v� w� l� i such that 	v�� where �v �� v�� � EA �

�v� l�� w� � e � EC and Ord�e� � i� or �v� � w� � e � ES and Ord�e� � i�

then all of the edges� e� can be replaced by a new edge� e�� with v as its source and

Ord�e�� � Ord�e��

� Distribution of common parts� An outgoing construction edge� e � �v l�� w��

or syntax edge� e � �v � w�� can be deleted from an alternation vertex� v� if for

each �v �� v�� � EA a new construction edge e� � �v� l�� w�� or syntax edge

e� � �v� � w�� respectively is added with Ord�e�� � Ord�e��

This is the inverse of abstraction of common parts�

CHAPTER �� OBJECT GRAMMARS ���

The de�nitions of addition of useless alternation� deletion of useless alternation� and

part replacement are unchanged�

��� A Simple Object�oriented Programming Language

This section describes a simple object�oriented programming language based on extended

class dictionary graphs� The CDG language will be used to illustrate the method trans�

formations that are required to restore behavioral consistency after a language�preserving

class dictionary graph transformation� Although the CDG language is very simple� the

same principles can be used to modify programs written in �real� languages�

����� Overview

A CDG �class dictionary graph� program consists of a set of class de�nitions in the form of

an extended class dictionary graph plus a set of method de�nitions� There is one built�in

class called Number for which the language provides the built�in methods add� sub� mul�

div� assign� and print� The user may de�ne still more methods for Number class�

The class de�nitions must include a construction class called Main� and the method

de�nitions must provide a main method for the Main class� Program execution begins by

parsing the input by recursive descent to construct an instance of the Main class �the main

object�� and invoking its main method� In the CDG language� there is no way to create or

destroy objects once the initial parsing operation is complete� Thus� the set of objects is

�xed during program execution and consists of a tree rooted at the main object�

Each object except the main object has an implied �container� attribute� An object	s

container is its parent in the object tree� In other words� the attribute links between objects

are de�ned to be bidirectional� This feature of the CDG language is included to simplify

some of the code transformations discussed below� In a �real� language� the container

attributes� would be implemented only when required by a code transformation�

In the CDG language� as in languages such as Smalltalk� each object has direct access

only to its own attributes� However� in CDG these attributes include the container attribute�

In other words� each object has access to its own parts and to the object of which it is a

part�

�There may be more than one container for each object�

CHAPTER �� OBJECT GRAMMARS ���

����� Methods	 Messages	 and Expressions

Each method may take any number of objects as arguments and every method returns an

object� Both the arguments and the return value are passed by reference� This must be the

case� since passing by value would involve the construction of new objects during program

execution�

method ��� class � name ��� formals ��� �f� explist �g�

formals ��� name f � name g

This construct is a method de�nition� When the method is invoked by sending the name

message to an object of class class� the expression explist is evaluated after argument values

are substituted for the formals and its value is returned�

explist ��� exp f � exp g

An expression list is evaluated by evaluating each expression in the list from left to right�

The value of the list is the value of the last expression�

exp ��� name

Here� name may be either the name of a part of the object for which the method being

evaluated was invoked or the name of a formal parameter of the method� The value of the

expression is the object instantiating the part or the object passed as the actual argument�

respectively�

exp ��� self

The value of the expression self is the object for which the method being evaluated was

invoked�

exp ��� container

The value of the expression container is the object which contains the object for which the

method being evaluated was invoked� The expression container must not appear in any

method attached to the Main class�

exp ��� exp � name ��� �actuals� ���

actuals ��� exp f � exp g

This construct denotes the sending of a message� When an object is sent a message� the

object	s method called name is invoked� If the object has no method with the proper name�

a run time exception occurs and program execution is terminated� The evaluation order

is� The exp on the left hand side of the message send operator� �� is evaluated� each

CHAPTER �� OBJECT GRAMMARS ���

of the actual argument expressions is evaluated and their values are substituted for the

corresponding formals in the method body� the method body is evaluated and the result is

returned�

Note that the CDG language supports delayed binding but not inheritance of methods�

I do not consider inheritance an important issue in the study of code transformations since

it can easily be eliminated from an object�oriented program just by copying methods from

superclasses to the classes where they are inherited� The inheritance mechanism is merely a

convenience for the programmer so that each method only needs to be written in one place�

����� Built�ins

All of the built�in methods for the Number class except print take a single argument which

must be another Number� All of the methods return self� A side e�ect of the methods add�

sub� mul� div� and assign is that the �value� of the Number object receiving the message

is changed� That is� the state of the object is changed in such a way that subsequent

messages to the object may have di�erent results� The value is modi�ed in the obvious way

depending on whether the message is add� sub� mul� div� or assign� When a Number is

created during the initial parsing� its value is initialized depending on the value denoted by

the token parsed� When a Number receives the print message� a token denoting its value

is output�

Example ���� A complete CDG program to evaluate arithmetic pre�x expressions is shown

in Figure ���

CHAPTER �� OBJECT GRAMMARS ���

(1)

Compound

arg2
(4)

(3)
arg1

Main
(1)
exp

Prefix

MulExp

")""("

(5)

(6)
valueNumber

(2) op (2)

(2) (2) "*""+"

MulOpAddOp

AddExp

op

Main 	 main ��

� exp � eval�� � print�� �

Number 	 eval ��

� self �

AddExp 	 eval ��

�

value � assign�arg� � eval����

value � add�arg� � eval���

�

MulExp 	 eval ��

� value � assign�arg� � eval��� � mul�arg� � eval��� �

Figure ��� Program A

Chapter �

Program Evolution by Analogy

In his classic paper from ����� A Paradigm for Reasoning by Analogy� Kling �Kli��� page

���� states that �a problem solver designed in any of the contemporary paradigms � � � solves

the same problem the same way each time it is presented� A fortiori� it is unable to exploit

similarities between new and old problems to hasten the search for a solution to the new

one�� Although analogical reasoning has been heavily investigated in recent years �Hal����

the research of the last two decades has been almost exclusively concentrated on traditional

arti�cial intelligence problems� automated deduction� general problem solving and planning�

natural language processing� and learning� There are still many areas of mathematics and

computer science where analogical reasoning has been largely neglected�

One potential application of analogical reasoning �AR� in computer science is in the

automatic synthesis of programs� When a new program is required which should provide

functionality that is di�erent� but somehow analogous� to the functionality of an existing

program in the same domain� we might expect the application of analogical reasoning tech�

niques to produce a solution� In practice� this approach has presented some very di�cult

problems and has met with only modest success ��DM���� �UM���� �P ot���� �IUT�����

There is� however� another common situation where AR might be applied to advantage

in the automatic synthesis of programs� This is the situation where functionality identi	

cal to the functionality of an existing program is required� but in a di�erent� analogous�

domain or environment� For example� in object�oriented systems it is sometimes desirable

to rearrange the class structure� but this usually has the undesirable e�ect of requiring

programs to be manually rewritten� This is an important issue in software maintenance�

where analogical program synthesis to automate the update of code when the application

���

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

environment changes could have a major impact�

This form of analogical reasoning is also interesting from an implementation point of

view� The ability to automatically reproduce some of the functionality of an old application

in a new environment would be an important contribution in the area of software reuse�

While previous e�orts to apply analogical programming to these reuse and maintenance

issues in software engineering have met with limited success� the added structure imposed

by the object�oriented paradigm could simplify some of the di�cult issues and provide an

ideal environment for the application of structure�mapping theory� �Gen��� �GT���� The

grammar�based environment of the Demeter Model �LBSL��� supplies a link between the

functionality of a program and the class structure by de�ning a language for inputs and

outputs ! provided that the inputs and outputs are objects�

	�� Problem Description

The primitive transformations de�ned in �Ber��� can be used to automate the object�

preserving optimization of a given class structure� Furthermore� it is easy to automatically

determine whether two arbitrary class structures are object�equivalent� and� if so� produce

a sequence of primitive transformations from one to the other� Given such a sequence of

primitive transformations� the code can be automatically updated in incremental fashion�

following simple update rules for each of the primitives in sequence �Ber����

Updating the code after an object�preserving class reorganization is a relatively simple

problem because although the class de�nitions change� the set of objects de�ned by the

classes remain the same� While the environments might be considered analogous� the objects

�program domains� are identical� and analogical reasoning is not required�

Since an extended class dictionary graph de�nes both a class structure and a grammar�

any change in the class structure is re
ected in a corresponding change in the grammar�

There is an interesting class of transformations that result in a new class structure� a poten�

tially new set of objects� and a new grammar� but which leave the language de�ned by the

grammar unchanged� I call such a transformation language	preserving and say that the old

and new class dictionary graphs are language	equivalent� For example� the class dictionary

graphs in Figure �� are language�equivalent but not object�equivalent� Furthermore� they

are not in an extension relationship� and cannot be brought into an extension relationship

by simple renaming of classes�

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

Prefix

(4)
arg2

arg1
(3)

Compound

"("

AddExp MulExp

(2) (2)

"*""+"
[0-9]+

(1)

(1)
num

Number

Simple

(1) (5)
")"

��

Prefix

Number

[0-9]+

(1)

Compound

arg1
(3)

arg2
(4)

(1) (5)

"(" ")"
op
(2)

Op

AddOp MulOp

"+"
(1) (1)

"*"

��

Figure ��� Language�equivalent Class Dictionary Graphs

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

If the inputs and outputs of a program are objects� then it is reasonable to expect that

the code could be automatically updated after a language�preserving transformation so that

identical inputs will produce identical outputs� More generally� if two class dictionaries

de�ne a common sub�language �i�e� the intersection of the two languages is not empty�

then it is reasonable to expect that a program written for one of the class dictionaries could

be automatically transformed into a program for the other class dictionary in such a way

that any input in the sub�language will produce output identical to the output from the

original program�

I call this problem� �Analogical Program Synthesis in a Grammar�Based Environment��

The problem is motivated in part by a rewrite of the Demeter system	s class dictionary�

which required the entire system to be manually ported to the new environment by rewriting

all the code� This was true even though the languages de�ned by the class dictionaries

were nearly identical� and the functionality of the programs comprising the system was

unchanged�

The problem is more formally stated as follows�

Instance

Two extended class dictionary graphs� such that the intersection of the languages

de�ned by the class dictionary graphs is non�empty� Also� a program written for

the environment of the �rst class dictionary graph� whose inputs are sentences in the

language de�ned by the class dictionary graph �i�e�� the inputs are textual represen�

tations of objects�� Without loss of generality� the outputs may also be restricted to

sentences in the language de�ned by the class dictionary graph�

Problem

Find a program for the environment of the second class dictionary graph that is

functionally analogous to the given program for the �rst class dictionary graph� The

solution program should produce output identical to the output of the given program

on any input which is in the language of both class dictionary graphs�

There are a number of interesting special cases of this problem� For example� the two

class dictionaries may de�ne the same language� that is� they may be �language�equivalent��

Another special case is where one of the languages is a proper superset of the other� that is�

it is a �language�extension�� In this chapter� the �language�equivalent� case is examined� In

particular� we study CDG programs which have the same input languages� Note that even

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

if two class dictionaries are language�equivalent� they may de�ne entirely di�erent classes�

The more general problems are left for future work�

De
nition ���� The input language of a CDG program� P � with class dictionary graph�

�� is given by�

L�P � � fsj�� � s � sentence���� � � Objects���� and � is rooted at Maing

The approach taken in this section is the same as was used for studying the object�

preserving and object�extending transformations� In this approach the problem is broken

down into three manageable sub�problems�

�� De
ning a set of primitive transformations� In the case of the object�preserving

transformations it was possible to �nd a small set of primitives which was provably

complete �Ber���� For the current case� it is more important that the set of primitives

be useful than complete� That is� it should be possible to express the kinds of language�

preserving transformations which would make sense from a software design point of

view as a sequence of primitives�

The transformations allowed by the primitives considered in this chapter include�

� The object�preserving transformations

� Renaming of vertices and edges

� Addition and deletion of useless symbols

� Distribution of parts up or down the part�of hierarchy

� Replacing subclasses with attributes or attributes with subclasses

� Providing algorithms for incrementally updating the code� For each primitive

transformation an algorithm must be found for updating the code� Then� given any

sequence of primitive transformations� the code can be updated incrementally by

performing updates for each of the primitives in sequence�

�� Reducing an arbitrary language�preserving transformation to a sequence

of primitives� An algorithm to search for a sequence of primitive transformations

between two arbitrary language�equivalent class dictionaries must be found� Since

a sequence of primitives de�nes an analogy� this is an algorithm for searching for

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

an analogy between two language�equivalent class structures� The search may be

e�ectively guided by the concrete syntax of the language�

It is likely that there will be more than one sequence of primitives that can result in

the same overall transformation� Each such sequence may represent a slightly di�erent

analogy� Depending on which analogy is used� di�erent programs may result� but as

long as the rules for updating the code are correct� all of the possible programs should

be functionally equivalent� That is� they should all produce the same output for any

given input�

	�� Transforming a CDG Program

Consider the CDG program in Figure ��� which is functionally equivalent to the CDG

program for evaluating pre�x expressions shown in Figure ��� Notice that there is no

object�extending relation �see �Ber���� between the class dictionary graphs and that simple

renaming of classes cannot bring them into such a relation� Still� the two class dictionary

graphs de�ne the same language� and the programs accept the same inputs�

The class dictionary graph in Figure �� has been transformed to the class dictionary

graph in Figure �� by addition of useless alternation �Op� followed by the primitive language�

preserving transformation I call �subclass�to�attribute�� In the original class dictionary

graph� the class Compound is abstract� with two concrete subclasses� AddExp and MulExp�

When a Compound is parsed at program initialization� an instance of either AddExp or MulExp

is created� depending on whether a ��� or �"� is found in the input stream�

In the transformed class dictionary graph� the Compound class is concrete� there is only

one kind of Compound� However� each instance has an op attribute �part� which can hold an

AddOp or MulOp value� so the information content is the same� When a Compound is parsed�

an instance of a Compound is created� This involves parsing the op part of the Compound to

produce either an AddOp or MulOp depending on whether a ��� or �"� is found in the input

stream� Wherever an object had an AddExp or MulExp as a part in the original program�

the corresponding object will have a Compound with either a AddOp or MulOp� respectively�

in the transformed program�

In order to maintain functional equivalence� it is necessary for a Compound object in

�Program B requires accessor methods for the value� arg�� and arg� parts of the Compound class which
are not shown in Figure ���

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

arg1

AddOp MulOp

"+" "*"

"("

(1)
(2)

(1)(1)

Main Prefix

Number

Op

op (5)
")"

Compound

arg2
(4)

(3)

(6)

(1)
exp

value

Main 	 main ��

� exp � eval�� � print�� �

Number 	 eval ��

� self �

Compound 	 eval ��

� op � eval�self� �

AddOp 	 eval �e�

�

e � value�� � assign�e � arg��� � eval����

e � value�� � add�e � arg��� � eval���

�

MulOp 	 eval �e�

� e � value�� � assign�e�arg����eval��� � mul�e�arg����eval��� �

Figure ��� Program B

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

the transformed program to pass along any message it receives to its op part with the

extra argument self� Methods written for the original program are mapped from AddExp

� AddOp and from MulExp � MulOp� The only modi�cation to the methods is that they

must access any parts de�ned for Compound objects indirectly through the extra argument�

Methods to allow access to these parts are added to the Compound class�

	�� Primitive Language�Preserving Transformations

The following primitives comprise the language�preserving class dictionary graph transfor�

mations�

�� The object�preserving transformations

� Renaming of vertices and edges

�� Nesting of parts

�� Unnesting of parts

�� Addition of lambda parts

�� Deletion of lambda part

�� Addition of lambda alternative

�� Deletion of lambda alternative

�� Insertion of singleton construction

��� Deletion of singleton construction

��� Attribute to subclass

�� Subclass to attribute

���� Object�preserving transformations

The object�preserving transformations for extended class dictionary graphs are de�ned in

Chapter ��

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

���� Renaming of vertices and edges

Any construction edge� �v l�� w� � EC may be replaced by a construction edge with a

di�erent label� �v l��� w�� Also� any construction vertex� v � VC� may be replaced by

a di�erent construction vertex� v�� with the same incoming and outgoing edges� When

viewing a picture of a class dictionary graph it appears that the vertex has been �renamed�

by changing its label� Since the labels or identi�ers used to denote construction vertices

have a global scope� and the same identi�ers may be used to denote vertices in other class

dictionary graphs� a changed label implies a changed vertex� On the other hand� since

the identi�ers used to denote alternation vertices have a scope local to the class dictionary

graph� changing the labels of alternation vertices may be done freely� but does not in any

way �transform� the class dictionary graph�

���� Nesting of parts

Given a vertex� w � V with no incoming alternation edges and a di�erent vertex� u �

�V VS�� such that for every construction edge� ev � from some vertex� v� to some vertex w�

where w
�

�� w�� there is a syntax or construction edge� e�v � from v to u and w� has at most

one incoming alternation edge� then�

� If for each v� PartOrder�v� e�v� � PartOrder�v� ev���� then we may delete each edge�

e�v� and add a single replacement edge� e� from w to u and let Ord�e� � Ord�e�� for all

other construction and syntax edges� e� outgoing from any w� where w
�

�� w��

Intuitively� if every class which has w as a part has u as a part immediately after w�

then we may remove the u part from all of those classes and instead make u the last

part of class w� See� for example� Figure ���

� If for each v� PartOrder�v� e�v� � PartOrder�v� ev���� then we may delete each edge�

e�v� and add a single replacement edge� e� from w to u and let Ord�e� � Ord�e�� for all

other construction and syntax edges� e� outgoing from any w� where w
�

�� w��

Intuitively� if every class which has w as a part has u as a part immediately before w�

then we may remove the u part from all of those classes and instead make u the �rst

part of class w�

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

Nest
w

w´

v2
v1 u

(5)

(4)

A B

(3)

C

(1)

(2)

(1)

(4)

v3

(3)

(2)

w

w´

v2
v1

A B

u

(3)

C

(4)

(4)

(1)

(2)

(1)

v3

(3)

Figure ��� Nesting of parts

���� Unnesting of parts

Given a vertex� w � V with no incoming alternation edges and an outgoing construction

edge or syntax edge� e� with target u�

� If for every construction or syntax edge� e�
� e� with source w� such that w
�

�� w��

w� has at most one incoming alternation edge and Ord�e� � Ord�e�� �so e is the last

part of every w object�� then we may delete edge e� if for each construction from

some vertex� v� to w� ev� we add a replacement edge� e�v � from v to u such that

PartOrder�v� e�v� � PartOrder�v� ev���� In other words� we remove the last part� p�

from every w object� and insert the part p just after the w part of every object that

contains a w object�

or

� If for every construction or syntax edge� e�
� e� with source w� such that w
�

�� w��

w� has at most one incoming alternation edge and Ord�e� � Ord�e�� �so e is the �rst

part of every w object�� then we may delete edge e� if for each construction from

some vertex� v� to w� ev� we add a replacement edge� e�v � from v to u such that

PartOrder�v� e�v� � PartOrder�v� ev�� �� In other words� we remove the �rst part�

p� from every w object� and insert the part p just before the w part of every object

that contains a w object�

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

Add lambda alternative
A

B

A

w B

v v

v´ v´
l l

Figure ��� Addition of lambda alternative

This is the inverse of nesting of parts�

���� Addition of lambda parts

From any vertex� v � V � an outgoing construction edge� �v l�� w� to a construction vertex�

w � VC� may be added if w has no outgoing edges� An outgoing syntax edge� �v � w� to

a syntax vertex� w� may be added if w is the �empty string��

���� Deletion of lambda parts

A construction edge whose target is a construction vertex with no outgoing edges� or a

syntax edge whose target is the �empty string� may be deleted� This is the inverse of

addition of lambda parts�

���� Addition of lambda alternative

An alternation edge� �v �� w�� may be added from an alternation vertex� v � VA to a

construction vertex� w � VC if w has no outgoing edges� v has only one outgoing construc�

tion edge� �v l�� v��� and the target� v�� of that edge has an outgoing alternation edge�

�v� �� v�� back to v� See� for example� Figure ���

���
 Deletion of lambda alternative

An alternation edge� �v �� w�� from a vertex� v � VA to a construction vertex� w � VC�

may be deleted if w has no outgoing edges� v has only one outgoing construction edge�

�v l�� v��� and the target� v�� of that edge has an outgoing alternation edge� �v� �� v��

back to v� This is the inverse of addition of lambda alternative�

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

Insert singleton construction
v´

BA

BA

v´

v

Figure ��� Insertion of singleton construction

���� Insertion of singleton construction

A new construction vertex� v� with a single outgoing construction edge to a vertex� v� � V �

may be added to a class dictionary graph� and any incoming construction edges at v� may

be rerouted to v� Incoming alternation edges at v� may also by rerouted to v if the rerouting

does not result in the inheritane of additional parts �syntax or construction edges� at v�

See� for example� Figure ���

����� Deletion of singleton construction

If a class dictionary graph contains a construction vertex� v� with no inherited parts and a

single outgoing edge to a vertex� v� � �V VS�� then v may be deleted if all incoming edges

at v are rerouted to v�� This is the inverse of insertion of singleton construction�

����� Attribute to subclass

If a class dictionary graph contains a construction vertex� v � VC� with an outgoing con�

struction edge� �v l�� w�� to an alternation vertex� w � VA� then we may delete the

construction edge from v to w and for each vertex� w�� such that �w �� w�� � EA� we add

a new construction vertex� v�� with an incoming alternation edge from v� �v �� v��� and

an outgoing construction edge� �v� l�� w�� to w�� Each of the new construction edges is

mapped to the same number �under Ord� as was the deleted construction edge� Since v

now has outgoing alternation edges it becomes �by de�nition� an alternation vertex� See�

for example� Figure ��

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

Attribute to subclass

wv

A CB

l

w

l l l

v

A CB

Figure �� Attribute to subclass

����� Subclass to attribute

If a class dictionary graph contains alternation vertices� v� w � VA� such that there is a one

to one correspondence between the vertices� v�� where �v �� v�� � EA and the vertices�

w� where �w �� w�� � EA� such that for each w� the corresponding v� is a construction

vertex with a single incoming edge� �v �� v��� and a single outgoing edge� �v� l�� w���

then we may delete each such v� along with its incoming and outgoing edges and add a new

construction edge� �v l�� w�� from v to w� Since v no longer has any outgoing alternation

edges it becomes �by de�nition� a construction vertex� This is the inverse of attribute to

subclass�

	�� Justi
cation for the primitive transformations

One justi�cation for the selection of the chosen primitives is that they make it possible to ex�

press commonly occurring language�preserving transformations as a sequence of primitives�

Examination of the literature and personal experience with the evolution of the Deme�

ter system indicate that the primitive transformations de�ned in this chapter are powerful

enough to express most� if not all� of the transformations that could be considered language�

preserving� Rather than argue the subjective �practical usefulness� of the transformations�

however� we demonstrate that the primitive language�preserving transformations de�ned

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY �

(A*)

A

denotes

(2)
cdr

(A*)

A_list

A

(1) car

λ

Figure ��� Closure operator

here form the basis of a complete transformation system for a subset of class dictionary

graphs powerful enough to express the regular languages�

���� Regular class dictionary graphs

The regular class dictionary graphs are de�ned so that there is a bijection between them

and the regular expressions� The alphabet of a regular class dictionary graph consists of the

terminal construction vertices �those with a single outgoing syntax edge and no outgoing

construction edges�� Non�terminal construction vertices are concatenation ��� operators and

alternation vertices are union ��� operators� The closure ��� operator can be expressed using

a cycle combining alternation and construction vertices� For convenience� we introduce a

symbol �see Figure ��� for the � operator and the symbol� �� for the terminal construction

vertex with the �empty string� as the target of its syntax edge�

De
nition ���� Let VS be the set of all syntax vertices� Then the regular class dictionary

graphs and their bijection with the regular expressions are de�ned recursively as follows�

�

A

"A"

for all A � VS

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

��

a b
(1) (2)

(A·B)

BA

for regular subgraphs A and B

�

(A+B)

BA

for regular subgraphs A and B

��

(A*)

A

for regular subgraph A

Since there is a bijection between the regular expressions and the regular class dictionary

graphs� we sometimes denote a regular class dictionary graph by its corresponding regular

expression in the following discussion�

���� Axiom systems for regular expressions

It is well known that using substitution as the only rule of inference� there is no �nite set

of equations over the regular expressions that allows the derivation of a regular expression�

�� from a regular expression �� i� � and �� de�ne the same language� That is� there is

no �nite complete set of axioms in the algebra of regular expressions �Sal���� However� the

following system� F � due to Salomaa �Sal��� is complete if an additional rule of inference is

allowed�

��� �	 �
�� � ���� 	� �
�

�� � �	 �
�� � ��� � 	� �
�

��� 	� � �	 � ��

�� � �	 �
�� � ��� � 	� � �� �
��

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

���� 	� �
� � ��� �
� � �	 �
��

��� �� � �

�� � �� � �

�� � �� � �

��� �� � �

���� � ��� �� � ������

���� � ���� ����

The additional rule of inference is solution of equations� If 	 does not possess the �empty

word property� then the equation � � �
 � �	��� may be inferred from the equation � �

��� � 	� �
��

De
nition ���� A regular expression� �� �or its corresponding regular class dictionary

graph� has the empty word property �e�w�p�� i� one of the following holds�

� � � �

�� � � �	�� for any 	

� � � �	 �
� where 	 or
 has the e�w�p�

�� � � �	 �
� where 	 and
 have the e�w�p�

���� Completeness proof

In this section� we show that for each equation over the regular expressions which is a

substitution instance of an axiom in the complete system F � there is a sequence of primitive

transformations to transform the regular class dictionary graph corresponding to the left

hand side of the equation to the class dictionary graph corresponding to the right hand

side� Since every primitive transformation has an inverse� it is also possible to transform

the right hand side to the left hand side� In other words� if it is possible to substitute

a regular expression� �� for a regular expression �� in F � then it is possible to transform

the regular class dictionary graph� �� to � with the primitive transformations� Any regular

expression� �� can be derived from any language�equivalent regular expression� ��� in F � so it

must be possible to transform any regular class dictionary graph to any language�equivalent

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

Several steps

Meta-transformation

IF

a

(2)(1)

c

a b

THEN

(2)(1)

c

a b

(2)(1)

c

b

Figure ��� Solution of equations

regular class dictionary graph by a sequence of primitive transformations if the following

meta�transformation �Figure ���� corresponding to the extra rule of inference� solution of

equations� is allowed�

� If a regular class dictionary graph� �� contains a subgraph� ��� � 	� �
�� which was

obtained by a sequence of primitive transformations from �� and 	 does not possess the

empty word property� then ��� �	��
� may be replaced with the subgraph �
 � �	����

The meta�transformation may prove di�cult to apply in practice and is not considered one

of the primitives� It is included here only to demonstrate that the primitive transformations

themselves form a system as complete as any known system for regular expressions�

Figures �� � �� show sequences of primitive transformations that correspond to each of

the equations in the axiom system� F � except for the equations �� ��� � � and ����� � �

which are not applicable since the regular class dictionary graphs as de�ned here do not

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

b

a

c a b

cObject-equivalent

Figure ��� �a� �b� c�� � ��a� b� � c�

a

b c

a

b c

c

a b

(1) (2)

(1) (2) (1)

(1) (2)

(1) (2)

b

(2)
(3)(1)

a c
Unnest Nest

Figure ��� �a � �b � c�� � ��a � b� � c�

contain the empty language� ��

	�� CDG Program Transformations

In this section� code update rules for programs written in the CDG language are given for

each of the primitive language preserving transformations� The rules are relatively straight

forward since CDG is untyped� and since the objects in a CDG program always form a

tree at runtime� Some of the code transformations require that an object have access to

a b b a

Object-equivalent

Figure ��� �a� b� � �b� a�

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

Attribute to subclass

Object-equivalent

c

a

(1) (2)

b

a

b c

(1)

(2) (2)

a a

(2)(1) (2)

b c

(1)

Figure ��� �a � �b� c�� � ��a � b� � �a � c��

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

Object-equivalent

Attribute to subclass

(1) (2)

c

ba

ba

c
(2)

(1)(1)

a

(2)(1) (2)(1)

c b c

Figure ��� ��a� b� � c� � ��a � c� � �b � c��

Object-equivalent

a

a

Figure ��� �a� a� � a

Delete lambda part Delete singleton construction

a

aλa

Figure ��� �a � �� � a

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

Insert singleton construction
Unnest part

Delete singleton construction

Attribute to subclass
a

λ

a

(1)

(2)

λ

λ

a
(1)

(2) (2)

λ

a

(2) (2)

λ

(1)

(1)

λ

λ (2)(2)

(2)

a

a

(1)

(1)

λ

(2)

a

(1)

a

Figure �� �a�� � ��� �a � �a����

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

Object-equivalent

aλ

Add lambda alternative

λ

(2)

λ
(1)

a

λ

λ

(2)

(1)

(1)

a

aλ

λ

(2)

(1)

a

a

(1)

(2)

λ λ

(2)

a
(1)

2) Unnest part

Insert singleton construction1)

Delete singleton construction

Figure ��� �a�� � ���� a���

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

its �container� �parent� object and may involve adding code to the container class� For

example� when a part is unnested �moved up the part�of hierarchy� instances of the class

which originally had the part must access it indirectly through their containers� In CDG

there is a built�in method called container that provides the required access� In �real�

languages� an instance variable may be added where necessary to provide a link to an

object	s container� Still� there are additional complications when the objects don	t form

a tree� When a class dictionary graph is used to de�ne the class structure for a program

written in a typical object�oriented language� a construction edge from some vertex� A�

to another vertex� B� implies that every A object has a B object as a part� but not the

converse� every B object is not necessarily a part of an A object� In general� there may be no

suitable container class for a code transformation� and if there is a suitable class it cannot

in general be identi�ed without examining the existing code� The code transformations

presented below� while correct for CDG programs� are intended to be used with human

guidance in the general case� The container classes are speci�ed manually� and code must

be transformed manually if a container class is required by a code transformation rule and

none is available� For strongly typed languages there are the complications discussed in

Chapter ��

���� The object�preserving transformations

The code updates required for the object�preserving transformations are de�ned in Chap�

ter � �untyped language model��

���� Renaming of vertices and edges

No code updates are required when vertices are renamed� In the standard interpretation�

renaming an edge corresponds to changing the identi�er for an instance variable� When an

edge� �v l�� w�� is renamed to �v l��� w�� the identi�er l� is substituted for the identi�er� l�

in the methods of class v� Since CDG provides strong data encapsulation� there is no need

to make substitutions in methods of any other classes�

���� Nesting of parts

If a class� A� has outgoing construction edges� �A b�� B� and �A c�� C�� and the edge

�A c�� C� is replaced by an edge �B c�� C� �the c part of A is nested under its b part��

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

then in methods attached to class A� the c part must be accessed indirectly through its

b part� An accessor method to return the c part is added to class B� and the identi�er�

c� is replaced by b � c�� in methods of class A� If methods of class C access A objects

through the container operator� the access must now be indirect through the intermediate

B object� We add an accessor method to class B for its container� and in methods of class

C the expression container is replaced by the expression container � container���

���� Unnesting of parts

If a class� A� has an outgoing construction edge� �A b�� B� to a class B which has an

outgoing construction edge� �B c�� C�� to class C� and the edge �B c�� C� is replaced

by the edge� �A c�� C�� �the c part is unnested from under the b part of class A� then

in methods attached to class B� the c part must be accessed indirectly through its parent

A object� Similarly� in methods of class C that access B objects through the container

operator� the access must now be indirect through its parent A object� Accessor methods

are added to class A to return the b and c parts� In methods of class B� the expression c

is replaced by the expression container � c�� and in methods of class C the expression

container is replaced by container � b���

���� Addition of lambda parts

Adding a part does not require any change in the code�

���� Deletion of lambda part

If a class� A� has a construction edge� �A b�� B�� to a �lambda� class B and the edge is

deleted� class A must supply any functionality that was formerly delegated to class B� Note

that since B is a lambda class� none of its methods have access to any objects other than

self and container� Each method of class B is copied unchanged to class A except that

the expression container is replaced with self in the copied methods� In class A	s original

methods� the expression b is replaced with the expression self�

���� Addition of lambda alternative

When an alternation edge� �A �� B�� is added from a class� A to a lambda class� B�

by addition of lambda alternative� B objects may be interspersed in a list of A objects�

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

Any message received by such a B object should be passed to the A object that has been

displaced� For each method attached to any subclass of A a corresponding method is

generated for class B which simply delegates to the next object in the list� We also add to

each of the original A classes a method called this which returns self� To class B we add

a this method that returns container � this��� In each of the original A methods the

expression container is replaced by container � this�� so that these expressions will

have the same objects as their values as if the B objects were not present in the list�

���
 Deletion of lambda alternative

Deletion of a lambda alternative does not require any change in the code�

���� Insertion of singleton construction

When a new construction class� A� with a construction edge to a class� B� is added by

insertion of singleton construction� a method which simply delegates to its B part is added

to class A for each method in class B� An accessor is added to A for its container� and in the

methods of class B the expression container is replaced by container � container���

����� Deletion of singleton construction

When a construction class� A� with a construction edge� �A b�� B�� to class B is deleted

by deletion of singleton construction� each method in class A is copied to class B with

substitution of the expression self for b� In the original methods of class B the expression

container is replaced by self�

����� Attribute to subclass

When a construction class� is transformed into an alternation class by attribute to subclass�

its methods are simply copied to each of its new subclasses�

����� Subclass to attribute

When an alternation class� A� gains an attribute� l by subclass to attribute� each of its

subclasses� B� must be a singleton construction whose only outgoing edge� �B l�� C�� has

label l� The elimination of the subclasses is handled as for deletion of singleton construction

�above�� except that an additional argument is added to each of the methods copied from

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

class B to C� and the copied methods are modi�ed to access any parts inherited in B �from

A� indirectly through the extra argument� Accessor methods are added to class A for each

of its parts� and for each method copied from B to C� a corresponding method is added to

class A which simply delegates to its l part� passing along whatever arguments it received

plus self for the actual value of the extra argument�

	�� Examples of CDG program transformations

Example ���� Figures ��	�� show how yet another version of the pre�x expression evalu	

ator �Figure ��� is transformed when its class structure evolves �rst by transforming the op

attribute of class Compound to subclasses followed by deletion of the useless alternation vertex

Op �Figure ��� and then by deleting the singleton construction vertices MulExp and AddExp

followed by renaming of the classes MulOp and AddOp to MulExp and AddExp� respectively

�Figure ����

Example ���� Figure �� shows a CDG program to calculate the total weight of all the

bricks in a pile� If the class dictionary graph evolves by addition of lambda alternative to

allow balloons to be interspersed with the bricks the code to calculate the total weight of the

bricks is updated as shown in Figure ���

	�� Search algorithms

If the primitive language�preserving transformations are used to restructure the class or�

ganization of a CDG program� the code may be automatically updated following the rules

de�ned in Section ���� More generally� given an arbitrary CDG program and a new language�

equivalent class dictionary graph� we must be able to �nd a sequence of primitives that

produces the given transformation in order to apply the code transformation rules�

���� Regular languages

Since the primitive transformations are not complete for regular class dictionary graphs

without the addition of a meta�transformation� it is not always possible to reduce an arbi�

trary language�preserving transformation over the regular class dictionary graphs to a se�

quence of primitives� However� there is an algorithm to perform the reduction to a sequence

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

arg1

AddOp MulOp

"+" "*"

"("

(1)
(2)

(1)(1)

Main Prefix

Number

Op

op (5)
")"

Compound

arg2
(4)

(3)

(6)

(1)
exp

value

Main 	 main ��

� exp � eval�� � print�� �

Number 	 eval ��

� self �

Compound 	 eval ��

� op � apply�arg�� arg�� value� �

AddOp 	 apply �a�� a�� v�

� v � assign�a� � eval��� � add�a� � eval��� �

MulOp 	 apply �a�� a�� v�

� v � assign�a� � eval��� � mul�a� � eval��� �

Figure ��� Program C

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

(1)

Compound

arg2
(4)

(3)
arg1

Main
(1)
exp

Prefix

MulExp

")""("

(5)

(6)
valueNumber

(2) op (2)

(2) (2) "*""+"

MulOpAddOp

AddExp

op

Main 	 main ��

� exp � eval�� � print�� �

Number 	 eval ��

� self �

MulExp 	 eval ��

� op � apply�arg�� arg�� value� �

AddExp 	 eval ��

� op � apply�arg�� arg�� value� �

AddOp 	 apply �a�� a�� v�

� v � assign�a� � eval��� � add�a� � eval��� �

MulOp 	 apply �a�� a�� v�

� v � assign�a� � eval��� � mul�a� � eval��� �

Figure ��� Program D

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

(1)

Compound

(2)

arg2
(4)

(3)
arg1

Main
(1)
exp

Prefix

AddExp MulExp

(2)

"*""+"

")""("

(5)

(6)
valueNumber

Main 	 main ��

� exp � eval�� � print�� �

Number 	 eval ��

� self �

MulExp 	 eval ��

� self � apply�arg�� arg�� value� �

AddExp 	 eval ��

� self � apply�arg�� arg�� value� �

AddExp 	 apply �a�� a�� v�

� v � assign�a� � eval��� � add�a� � eval��� �

MulExp 	 apply �a�� a�� v�

� v � assign�a� � eval��� � mul�a� � eval��� �

Figure ��� Program E

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

Main

Bottom

weight

zero

bricks

next

Pile

BrickNumber

Main 	 main ��

� bricks � last�� � weight�� � print�� �

Brick 	 last ��

� next � last�� �

Bottom 	 last ��

� container �

Brick 	 weight ��

� container � weight�� � add�weight� �

Main 	 weight ��

� zero �

Figure ��� Program to calculate weight of brick pile

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

Main

Bottom

weight

zero

bricks

next

Pile

Brick BalloonNumber

Main 	 main ��

� bricks � last�� � weight�� � print�� �

Main 	 weight ��

� zero �

Brick 	 last ��

� next � last�� �

Brick 	 weight ��

� container � this�� � weight�� � add�weight� �

Brick 	 this ��

� self �

Bottom 	 last ��

� container � this�� �

Balloon 	 this ��

� container � this�� �

Balloon 	 last ��

� next � last�� �

Balloon 	 weight ��

� next � weight�� �

Figure ��� After adding balloons to the pile

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

of primitives and meta�transformations� Manual code updates must then be performed only

for the meta�transformations�

The proof that Salomaa	s axiom system for the regular expressions is complete �Sal��� is

constructive in the sense that for any valid equation X � Y � over the regular expressions it

gives a method to constuct its proof� To reduce an arbitrary language�preserving transfor�

mation over the regular class dictionary graphs to a sequence of primitives we �rst construct

the proof that the corresponding regular expressions are equivalent� Each substitution in

the proof is mapped to a sequence of primitives as de�ned in Section ������ Each solution

of equations is mapped to the meta�transformation de�ned in Section ������

���� Context free languages

There can be no algorithm guaranteed to reduce an arbitrary language�preserving trans�

formation over the extended class dictionary graphs to a sequence of primitives� Even if

the set of primitive transformations were complete� such an algorithm would be impossible

since equivalence of context�free languages is undecidable� and the extended class dictionary

graphs de�ne context�free languages�� Nevertheless� it is reasonable to expect that searches

for sequences of primitives will often terminate successfully since the primitives are designed

to represent the kinds of transformations that are likely to arise in practice�

The search problem may be viewed in terms of the classic state�space search paradigm as

de�ned in the literature of arti�cial intelligence� Given an initial state� S� a set of operators

on states� O� and a set of goal states� G� the state�space is de�ned as a directed graph where

each node represents a state and each arc represents an operation� The problem is to �nd a

path from the initial state to a goal state� Normally� the graph is not made explicit except

for the solution path�

In our case� the initial state is a class dictionary graph� the operators are the primitive

language�preserving transformations� and the only goal state is a language�equivalent class

dictionary graph� Alternatively� we may consider the set of goal states to be the set of

all class dictionary graphs which are object�equivalent to a given language�equivalent class

dictionary graph since we already have e�cient algorithms for checking object�equivalence

and reducing an object�preserving transformation to a sequence of primitives�

State�space search has been heavily investigated in AI� and sophisticated systems have

�See Table �� Also� consider extending the textual notation for class dictionary graphs presented in
Chapter � with concrete syntax or terminals�

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

have been developed for evaluating states and choosing the next operation to apply in vari�

ous domains� A detailed algorithm of this sort is beyond the scope of the current work and

is left for future research� However� a simple search strategy might proceed as follows� The

state space is searched in depth��rst order �with backtracking� and operators are applied

to vertices in the class dictionary graph in breadth��rst order starting with the Main class�

The Main vertex of the initial class dictionary graph is brought into congruence with the

Main vertex of the goal state by applying operators �primitive transformations� until the

vertices have the same types and numbers of outgoing edges� outgoing construction edges

have the same labels� and outgoing syntax edges have the same targets� Next� the target of

each construction and alternation edge is brought into congruence with the corresponding

class in the goal state in the same manner� and the process continues until the target is

reached or the depth in the state space exceeds some speci�ed value�

An important heuristic which can are used to improve the search performance is to use

the names of classes and labels of edges to guide the search� If� for example� a vertex must

have an outgoing construction edge with label l to a vertex labeled V � we �rst check to see

if there is already an outgoing edge with label l� If two analogous classes have parts with

the same names� we guess that the parts are also analogous� Otherwise� we check if some

other vertex has an outgoing edge with label l and target V that can be brought into the

proper position by nesting and unnesting of parts� If neither condition is met we look for a

vertex labeled V and �nally for an edge with label l�

This strategy is useful if the class dictionary graph changes gradually during the evo�

lutionary process� since most classes and parts will retain their original names� It is also

useful if the designers use names consistently when reorganizing the class structure� Finally�

if a class dictionary graph has changed dramatically it may be easy for a human designer

familiar with the application domain to supply a mapping between classes with analogous

roles by manually renaming parts and classes before starting the search� For the human

designer� giving a partial analogy by renaming the parts and classes is the �easy� part

� elaborating the analogy by �nding the primitive transformations and then updating all

of the code is the �hard� part� For the machine� the reverse is true� thus� the machine

compliments the abilities of the human designer when this strategy is employed�

The concrete syntax may be used as a further guide of the search or to prune nodes in

the state space if we note that it is not possible to �nd a solution by bringing two vertices

into congruence that have di�erent sets of reachable syntax vertices�

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ��

	�	 Related Work

�
�� Structure Mapping Theory

In structure mapping theory �Gen��� GT��� knowledge is represented as propositional net�

works comprising object nodes and predicates �attributes and relations�� An analogy maps

object nodes from the base domain to object nodes in the target domain� Generally� there is

a ��� mapping between nodes in the base and target domains� Each pair of corresponding

object nodes in the mapping is part of the analogy� �the target is like the base�� The

analogy is applied by using mapping rules� based on the principle of systematicity� to de�

termine which predicates should be brought from the base domain to the target domain�

The selected predicates are carried over using the node substitutions indicated in the object

mapping�

A sequence of primitive transformations where each primitive only renames a vertex in

a class dictionary graph graph would be equivalent to an analogy as de�ned by structure

mapping theory� However� the primitive transformations can be more expressive since they

may include changes in certain structural relations �e�g� part�of� kind�of� as part of the

analogy� For example� in the base domain a class Human might have an attribute �part�

called Gender� with possible values �kinds� Male or Female� In the target domain an

analogous structure might have a class Person with subclasses �kinds� Man and Woman�

The simple mapping �Human � Person�Male � Man� Female � Woman� does not

properly express the analogy� Instead� the relationship between Person and Human must

be quali�ed� as in� �a Person is like a Human where the attribute Gender is expressed by

subclassing�� Gentner	s structure mapping theory is not powerful enough to express such

a quali�ed structural analogy� but this can be expressed by a primitive transformation� say

�attribute�to�subclass��

In analogical program synthesis� application of the analogy involves bringing relations� in

the form of program code� from the base domain over to the target domain� As in structure

mapping theory� the rules depend only on syntactic properties and not on an understanding

of the contents of the domains� Therefore� the code is brought over with little modi�cation�

Structure mapping theory says nothing about how an analogy� �the Target is like the

Base�� is broken down into a mapping of nodes in the base to nodes in the target� In analog�

ical program synthesis� a search is performed to �nd a sequence of primitive transformations

that would convert the base structure to the target structure�

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

�
�� Graph Transformations in Analogical Reasoning

P otschke �P ot��� has used analogical reasoning to construct programs to control robots in

assembly processes� and for programming chemical synthesis reaction sequences� In each

case� scene descriptions are given in the form of digraphs where vertices are interpreted as

objects and edges represent relations between the objects� A program consists of a sequence

of instructions for transforming the graph from a representation of the initial scene to a

representation of the �nal scene�

When a new program is required� it may be constructed automatically if the overall

transformation desired is analogous to the transformation accomplished by the old program�

The generated program must meet certain criteria� For example� in robotic assembly the

solution must be collision�free� Sequences of substitutions are sought to convert the original

initial scene to the new initial scene� and to convert the original �nal scene to the new

new �nal scene� These substitutions are applied to the original program to produce a new

program that will transform the new initial scene to the desired �nal scene�

An important similarity in P otschke	s work is that he generates sequences of graph

transformations from initial state to goal state as an important step in the process of

analogical program synthesis� He says nothing� however� about how the transformation

sequences are generated and apparently does not work from a set of primitives� Another

di�erence is that the programs themselves are always in the domain of graph transformation

so that the generated sequences can be used to transform the original program in a trivial

manner�

�
�� Analogical Program Synthesis Guided by Correctness Proofs

Ulrich and Moll �UM��� have used correctness proofs to guide the formation of analogies

and the construction of analogous programs� Each line in the proof of a program written for

the base domain is mapped into a statement in the target domain� Terms and relationships

in the target domain are substituted for terms and relationships in the original proof� As

the process is carried out� the original program is modi�ed by the same substitutions� This

process produces a new program and its correctness proof at the same time�

Dershowitz and Manna �DM��� used a similar approach to automatically modify pro�

grams� They formulate an analogy as a set of substitutions that yield a speci�cation of the

CHAPTER �� PROGRAM EVOLUTION BY ANALOGY ���

desired program when applied to the speci�cation of an analogous program� The speci�ca�

tions� including input speci�cations� are given for both programs in a high�level assertion

language� In our case� the known CDG program contains its own input speci�cation in the

form of an extended class dictionary graph�

An important aspect of a program speci�cation is the inclusion of invariant assertions

which are utilized in correctness proofs� Transformations are applied to all assertions as

well as to program code� The transformed assertions can be used to obtain veri�cation

conditions for the new program� In our case� it is the language de�ned by the extended

class dictionary graphs that remains invariant� Correctness is guaranteed by the correctness

of the primitive transformations�

Bibliography

�AH��� S� Abiteboul and R� Hull� A formal semantic database model� ACM Transac	

tions on Database Systems� ������������ Dec� �����

�AH��� Serge Abiteboul and Richard Hull� Restructuring hierarchical database objects�

Theoretical Computer Science� ������� �����

�AKN��� H� Ait�Kaci and R� Nasr� Login� A logic programming language with built�in

inheritance� Journal of Logic Programming� ��������� �����

�AS��� Dana Angluin and Carl Smith� Inductive inference� Theory� ACM Computing

Surveys� ������������ September �����

�Bar��� Gilles Barbedette� Schema modi�cations in the lispo� persistent object�oriented

language� In Pierre America� editor� European Conference on Object	Oriented

Programming� pages ������ Geneva� Switzerland� July ����� Springer Verlag�

Lecture Notes in Computer Science�

�BCG���� Jay Banerjee� Hong�Tai Chou� Jorge F� Garza� Won Kim� Darrell Woelk� and

Nat Ballou� Data model issues for object�oriented applications� ACM Trans	

actions on O�ce Information Systems� ������ � �� January� �����

�Ber��� Paul L� Bergstein� Object�preserving class transformations� In Object	Oriented

Programming Systems� Languages and Applications Conference� in Special Is	

sue of SIGPLAN Notices� pages ������� Phoenix� Arizona� ����� ACM Press�

�Ber�� Elisa Bertino� A view mechanism for object�oriented databases� In International

Conference on Extending Database Technology� pages �������� Vienna� Austria�

����

���

BIBLIOGRAPHY ���

�Ber��� Paul L� Bergstein� Object�preserving class transformations� Applications to

software design and maintenance� In Preparation� �����

�BH��� Paul L� Bergstein and Walter L� H ursch� Maintaining behavioral consistency

during schema evolution� In S� Nishio and A� Yonezawa� editors� Interna	

tional Symposium on Object Technologies for Advanced Software� pages ����

���� Kanazawa� Japan� November ����� JSSST� Springer Verlag� Lecture Notes

in Computer Science� Also available as Northeastern University� College of

Computer Science technical report number NU�CCS�������

�BKKK��� Jay Banerjee� Won Kim� Hyong�Joo Kim� and Henry F� Korth� Semantics

and implementation of schema evolution in object�oriented databases� In Pro	

ceedings of ACM�SIGMOD Annual Conference on Management of Data� pages

������ ACM� ACM Press� December ����� SIGMOD Record� Vol���� No���

�BMW��� Alexander Borgida� Tom Mitchell� and Keith Williamson� Learning improved

integrity constraints and schemas from exceptions in data and knowledge bases�

In Michael L� Brodie and John Mylopoulos� editors� On Knowledge Base Man	

agement Systems� pages ������ Springer Verlag� �����

�Boo��� Grady Booch� Object	Oriented Design With Applications� Ben�

jamin�Cummings Publishing Company� Inc�� �����

�Car��� Luca Cardelli� A semantics of multiple inheritance� In Gilles Kahn� David

MacQueen� and Gordon Plotkin� editors� Semantics of Data Types� pages ���

��� Springer Verlag� �����

�Cas��� Eduardo Casais� Reorganizing an object system� In Dennis Tsichritzis�

editor� Object Oriented Development� pages �������� Centre Universitaire

D	Informatique� Gen#eve� �����

�Cas��� Eduardo Casais� Managing class evolution in object�oriented systems� In Dennis

Tsichritzis� editor� Object Management� pages �������� Centre Universitaire

D	Informatique� Gen#eve� �����

�Cas��� Eduardo Casais� Managing evolution in object	oriented environments� an al	

gorithmic approach� PhD thesis� University of Geneva� Geneva� Switzerland�

May ����� Thesis no� ����

BIBLIOGRAPHY ���

�CF�� Paul R� Cohen and Edward A� Feigenbaum� The Handbook of Arti�cial Intel	

ligence� volume �� William Kaufmann� Inc�� ����

�CPLZ��� Alberto Coen�Porisini� Luigi Lavazza� and Roberto Zicari� Updating the schema

of an object�oriented database� Quarterly Bulletin of the IEEE Computer Soci	

ety Technical Committee on Data Engineering� ����������� June ����� Special

Issue on Foundations of object�Oriented Database Systems�

�DJ��� V� Dhar and M� Jarke� Dependency directed reasoning and learning in systems

maintenance support� IEEE Transactions on Software Engineering� ��������

�� February �����

�DM��� Nachum Dershowitz and Zohar Manna� The evolution of programs� Auto�

matic program modi�cation� IEEE Transactions on Software Engineering� SE�

������������� November �����

�DZ��� Christine Delcourt and Roberto Zicari� The design of an integrity consistency

checker �icc� for an object oriented database system� In Pierre America� editor�

European Conference on Object	Oriented Programming� pages ������� Geneva�

Switzerland� July ����� Springer Verlag� Lecture Notes in Computer Science�

�Gen��� Dedre Gentner� Structure�mapping� A theoretical framework for analogy� Cog	

nitive Science� ���������� �����

�GPG��� Marc Gyssens� Jan Paradaens� and Dirk Van Gucht� A graph�oriented object

model for database end�user interfaces� In Hector Garcia�Molina and H�V�

Jagadish� editors� Proceedings of ACM�SIGMOD Annual Conference on Man	

agement of Data� pages ����� Atlantic City� ����� ACM Press�

�GT��� Dedre Gentner and Cecile Toupin� Systematicity and surface similarity in the

development of analogy� Cognitive Science� ���������� �����

�Hal��� Rogers P� Hall� Computational approaches to analogical reasoning� A compar�

ative analysis� Arti�cial Intelligence� ��������� �����

�HY��� R�B� Hull and C�K� Yap� The format model� A theory of data organization�

Journal of the Association for Computing Machinery� �������������� July �����

BIBLIOGRAPHY ���

�IUT��� Takeshi Imanaka� Kuniaki Uehara� and Junichi Toyoda� Analogical program

synthesis from program components� In Logic Programming
���� Proceedings

of the Sixth Conference� pages ������ Tokyo� Japan� June �� ����� Springer�

Verlag �����

�JF��� Ralph E� Johnson and Brian Foote� Designing reusable classes� Journal of

Object	Oriented Programming� �������� June�July �����

�KK��� J� Karimi and B�R� Konsynski� An automated software design assistant� IEEE

Transactions on Software Engineering� ������������ Feb� �����

�Kli��� Robert E� Kling� A paradigm for reasoning by analogy� Arti�cial Intelligence�

��������� �����

�KV��� G�M� Kuper and M�Y� Vardi� The logical data model� In Principles of Database

Systems� pages ������ ACM� �����

�LBSL��� Karl J� Lieberherr� Paul Bergstein� and Ignacio Silva�Lepe� Abstraction of

object�oriented data models� In Hannu Kangassalo� editor� Proceedings of In	

ternational Conference on Entity	Relationship� pages ������ Lausanne� Switzer�

land� ����� Elsevier�

�LBSL��� Karl J� Lieberherr� Paul Bergstein� and Ignacio Silva�Lepe� From objects to

classes� Algorithms for object�oriented design� Journal of Software Engineering�

���������� July �����

�LG��� Barbara Liskov and John Guttag� Abstraction and Speci�cation in Program

Development� The MIT Electrical Engineering and Computer Science Series�

MIT Press� McGraw�Hill Book Company� �����

�LH��� Karl J� Lieberherr and Ian Holland� Assuring good style for object�oriented

programs� IEEE Software� pages ������ September �����

�LH��� Barbara Staudt Lerner and A� Nico Habermann� Beyond schema evolution to

database reorganization� In Norman Meyrowitz� editor� Proceedings OOPSLA

ECOOP ���� pages ������ Ottawa� Canada� October ����� ACM� ACM Press�

Special Issue of SIGPLAN Notices� Vol��� No����

BIBLIOGRAPHY ���

�LHR��� Karl J� Lieberherr� Ian Holland� and Arthur J� Riel� Object�oriented program�

ming� An objective sense of style� In Object	Oriented Programming Systems�

Languages and Applications Conference� in Special Issue of SIGPLAN Notices�

number ��� pages ������� San Diego� CA�� September ����� A short version of

this paper appears in IEEE Computer� June ��� Open Channel section� pages

������

�LHSLX�� Karl J� Lieberherr� Walter H ursch� Ignacio Silva�Lepe� and Cun Xiao� Experi�

ence with a graph�based propagation pattern programming tool� In Gene Forte�

Nazim H� Madhavji� and Hausi A� M uller� editors� International Workshop on

CASE� pages �������� Montr$eal� Canada� July ���� IEEE Computer Society

Press�

�LHX��� Karl J� Lieberherr� Walter L� H ursch� and Cun Xiao� Object�extending class

transformations� Formal Aspects of Computing� the International Journal of

Formal Methods� ����� �����

�Lie��� Y�E� Lien� Relational database design� In S� Bing Yao� editor� Principles of

Database Design� pages ������ Prentice Hall� �����

�Lie��� Karl J� Lieberherr� Object�oriented programming with class dictionaries� Jour	

nal on Lisp and Symbolic Computation� ���������� �����

�LM��� Qing Li and Dennis McLeod� Conceptual database evolution through learning�

In Rajiv Gupta and Ellis Horowitz� editors� Object	oriented Databases with

applications to CASE� networks and VLSI CAD� pages ����� Prentice Hall

Series in Data and Knowledge Base Systems� �����

�LR��� Karl J� Lieberherr and Arthur J� Riel� Demeter� A CASE study of software

growth through parameterized classes� Journal of Object	Oriented Program	

ming� �������� August� September ����� A shorter version of this paper was

presented at the
�th International Conference on Software Engineering� Sin	

gapore� April
���� IEEE Press� pages ������

�LRV��� Christophe Lecluse� Philipe Richard� and Fernando Velez� O� an object�

oriented data model� In Zdonik and Maier� editors� Readings in Object	Oriented

Database Systems� pages ����� Morgan Kaufmann Publishers� �����

BIBLIOGRAPHY ���

�LXSL��� Karl J� Lieberherr� Cun Xiao� and Ignacio Silva�Lepe� Graph�based software

engineering� Concise speci�cations of cooperative behavior� Technical Report

NU�CCS������� College of Computer Science� Northeastern University� Boston�

MA� September �����

�Mey��� Bertrand Meyer� Object	Oriented Software Construction� Series in Computer

Science� Prentice Hall International� �����

�MMP��� Ole Lehrmann Madsen and Birger M%ller�Pedersen� What object�oriented pro�

gramming may be � and what it does not have to be� In S�Gjessing and K� Ny�

gaard� editors� European Conference on Object	Oriented Programming� pages

���� Oslo� Norway� ����� Springer Verlag�

�OJ��� William F� Opdyke and Ralph E� Johnson� Refactoring� An aid in designing

application frameworks and evolving object�oriented systems� In Proceedings of

the Symposium on Object	Oriented Programming emphasizing Practical Appli	

cations �SOOPA�� pages �������� Poughkeepsie� NY� September ����� ACM�

�Opd�� William F� Opdyke� Refactoring� A Program Restructuring Aid in Design	

ing object	Oriented Application Frameworks� PhD thesis� Computer Science

Department� University of Illinois� May ����

�PBF���� B� Pernici� F� Barbic� M�G� Fugini� R� Maiocchi� J�R� Rames� and C� Rol�

land� C�TODOS� An automatic tool for o�ce system conceptual design� ACM

Transactions on O�ce Information Systems� ������������� October �����

�Pir��� Fiora Pirri� Modelling a multiple inheritance lattice with exceptions� In Pro	

ceedings of the Workshop on Inheritance and Hierarchies in Knowledge Rep	

resentation and Programming Languages� pages ������� Viareggio� February

�����

�P ot��� Dieter P otschke� Synthesis of programs for intelligent robots by analogy algo�

rithms� In I� Plander� editor� Arti�cial Intelligence and Information	Control

Systems of Robots� pages �������� Elsevier Science Publishers� North�Holland�

�����

�PS��� Jason D� Penney and Jacob Stein� Class modi�cation in the GemStone object�

oriented DBMS� In Norman Meyrowitz� editor� Object	Oriented Programming

BIBLIOGRAPHY ���

Systems� Languages and Applications Conference� in Special Issue of SIGPLAN

Notices� pages �������� Orlando� Florida� December ����� ACM� ACM Press�

Special Issue of SIGPLAN Notices� Vol�� No���

�PW��� Winnie W� Y� Pun and Russel L� Winder� Automating class hierarchy graph

construction� Technical report� University College London� �����

�Sal��� Arto Salomaa� Theory of Automata� International series of monographs in pure

and applied mathematics� v� ���� Pergamon Press� �����

�SM��� R�E� Stepp and R�S� Michalski� Conceptual clustering� Inventing goal�oriented

classi�cation of structured objects� In R�S� Michalski et al�� editor� Machine

Learning� An Arti�cial Intelligence Approach� Vol� II� pages �������� Morgan�

Kaufman Publishers� �����

�Sno��� Richard Snodgrass� The interface description language� Computer Science

Press� �����

�Str��� B� Stroustrup� The C�� Programming Language� Addison Wesley� �����

�SZ��� Andrea H� Skarra and Stanley B� Zdonik� The management of changing types in

an object�oriented database� In Object	Oriented Programming Systems� Lan	

guages and Applications Conference� in Special Issue of SIGPLAN Notices�

pages �������� ACM� ACM Press� September �����

�TL�� Dennis Tsichritzis and Frederick Lochovsky� Data Models� Software Series�

Prentice�Hall� ����

�TYF��� T�J� Teorey� D� Yang� and J�P� Fry� A logical design methodology for relational

data bases� ACM Computing Surveys� ���������� June �����

�UM��� John Wade Ulrich and Robert Moll� Program synthesis by analogy� SIGPLAN

Notices� �������� August �����

�Weg��� Peter Wegner� Concepts and paradigms of object�oriented programming� OOPS

Messenger� ���������� Aug� �����

�Win��� P�H� Winston� Learning structural descriptions from examples� Technical Re�

port ��� MIT� ����� Project MAC�

