
International Symposium on Object Technologies for Advanced Software,
pages 176-193, Kanazawa, Japan, November 1993. Springer Verlag.

Maintaining Behavioral Consistency during Schema

Evolution

Paul L� Bergstein and Walter L� H�ursch�

College of Computer Science� Northeastern University

��� Huntington Avenue �CN���� Boston MA ��		

f pberg j huersch g�ccs�neu�edu

Abstract

We examine the problem of how to ensure behavioral consistency of an
object�oriented system after its schema has been updated� The problem is
viewed from the perspective of both the strongly typed and the untyped
language model� Solutions are compared in both models using C�� and
CLOS as examples�

� Introduction

Schema evolution and transformations have recently received increasing attention
in the literature in both the area of object�oriented languages and especially in the
area of object�oriented database systems� �Opd��� Ber��� Ber��� Cas��� CPLZ���
DZ��� Bar��� LH��� AH��� BKKK�	� PS�	� SZ�
�� Most of this work has been
done from the object�oriented database point of view where the focus is naturally
on the structural� rather than behavioral� aspects of the evolving schema� Systems
such as ORION �BKKK�	�� GemStone �PS�	�� and OTGen �LH��� guarantee
the correctness of the performed schema changes and reect the impact on the
persistent instances in the database �structural consistency�� However� none of
them considers the impact of schema updates on existing programs �behavioral
consistency��

In this paper we consider the problem of behavioral consistency for an important
subset of possible schema transformations� The transformations in this subset are
the schema extensions de�ned in �LHX��� Ber���� We chose these transformations
for three reasons� First� they have the desirable property that the transformed
schema�s consistency with the old objects either is maintained or can be easily
restored� For object�oriented database design� this means that the database does

�Walter H�ursch�s research has been generously supported by Mettler�Toledo AG

not need to be repopulated� or that the repopulation can be easily accomplished�
In either case� no information from the old database is lost� Second� the exten�
sion transformations reect a signi�cant set of transformations that commonly
occur in practice� Third� they can be decomposed into a sequence of primitive
transformations�

The strategy we employ to solve the behavioral consistency problem relies heav�
ily on the third property� Our approach is to divide a given extension into a
sequence of primitives and then solve the problem for each of the primitives in
turn� Behavioral consistency is investigated for two very di�erent language mod�
els� strongly typed and untyped languages� We compare solutions in the two
models using C�� and CLOS as examples� As one might expect� the problem is
much more di�cult for the strongly typed model�

The paper is organized as follows� Section � provides a brief description of the
employed data and language models� The third section reviews the extension
relation and its associated primitive transformations� In section � we propose a
solution for untyped languages� We also present a partial solution for strongly
typed languages and discuss some of the remaining problems� The last two sec�
tions present related work and conclusions�

� The Demeter data model

��� Data Model

The data model used in this paper is the Demeter Kernel model which is formally
de�ned in �LBSL���� The Demeter Kernel model uses two kinds of classes� con�
struction and alternation classes� and two kinds of relationships between classes�
kind�of and part�of relationships�

Only the construction classes are instantiable� so every object must be an instance
of some construction class� The alternation classes are used to model the union
of object sets de�ned by the construction classes� This is often natural when
modeling an application domain� For example �see Figure ��Original� page 	�� in
an object�oriented drawing program the tool used to select and draw shapes on
a canvas might be either a selection tool� a tool for drawing rectangles� or a tool
for drawing ovals� So the objects that can be stored in the tool part of a Canvas

object are either OvalTool� RectTool� or SelectTool objects� Alternation classes
are used to de�ne such unions� Each class which is an element of the union is
called an alternative of the alternation class� One can think of an alternation class
as an abstract superclass in a typical class�based object�oriented programming
language� with the alternatives as immediate subclasses�

Any class may have various attributes represented by part classes� These �parts�

may be thought of as an abstraction of instance variables in a typical object�
oriented programming language� Each alternation class must have at least one
alternative or �kind�� The �kinds� of an alternation class are represented by its
subclasses�

If an alternation class has parts� they are implemented by inheritance in the sub�
classes� For example� each tool in our drawing application has a mouse interface�
This common part is expressed as a single part in the alternation class which is
shared �inherited� by all of its alternatives �subclasses�� Thus� a kind�of relation
in the Demeter Kernel model also implies an inheritance relation� Since alter�
nation classes are not instantiable� it is only possible to inherit from abstract
classes�

The classes and their relations are de�ned by a class dictionary graph� Construc�
tion classes are represented by rectangles and alternation classes are represented
by hexagons in a class dictionary graph�

Part�of relations are expressed as directed edges called construction edges from a
class to each of its part classes� The construction edges are drawn as thin arrows�
Each part must have a name� and the construction edges are labeled with the
part names in a class dictionary graph� In Figure ��Original� for example� a
DrawWindow is a construction class with two parts� a ShapeList called shapes�
and a Screen called canvas where the shapes are to be displayed�

Kind�of�inheritance relations are expressed by directed edges called alternation
edges from an alternation class to each of its alternatives� The alternation edges
are drawn with thick arrows�

Legal class dictionary graphs must satisfy two independent conditions� ��� No
class may inherit from itself� that is� there must not be any cyclic path consisting
only of alternation edges� ��� There must not be any class which has two or more
parts �including inherited parts� with the same name� The �rst condition implies
that a class de�nition may not depend upon itself in a circular fashion� The
second condition disallows �overriding� or �shadowing� of instance variables� It
guarantees that the part names in each class are unambiguous�

A class dictionary graph may be used to easily generate a set of class de�nitions
�minus method declarations� in any class�based object�oriented programming lan�
guage� This may be done either by hand or automatically by using a tool like the
Demeter SystemTM � In the latter case� the declaration and implementation of
many commonly useful �generic� methods may also be automatically generated�

��� Language Model

In this paper we consider �informally� two language models� untyped and strongly
typed� As representative examples we consider CLOS �Common Lisp Object
System� and C��� respectively� For simplicity� we consider the class de�nitions
and the methods of a class separately� although some languages might require
forward declarations of methods in the class de�nitions�

A class dictionary graph is essentially a language�independent set of class de��
nitions� and the translation to a particular programming language is a straight�
forward process� The kind�of relations de�ned by the class dictionary graph are
implemented by declaring a corresponding inheritance relation in the class de��
nitions� In most languages� this means that if there is an alternation edge from A
to B� then class B is declared to inherit from class A in the de�nition of class B�
Part�of relations are implemented by instance variables� For each part of a class�
an instance variable is declared whose name is the same as the part name� In
the case of a typed language� the part�s type is declared to be the corresponding
class� For example� the class de�nition for ShapeList from the class dictionary
graph in Figure ��Original would be written in C�� or CLOS as�

C�� Version CLOS Version

class ShapeList � public List � �defclass ShapeList �List�

protected� �firstShape restShapes��

Shape� firstShape�

List� restShapes�

��

Our two language models share several common features�

� The parts of an object are implemented as references�

� Any object can send another object any message for which the receiving
object has a corresponding method� In C�� terminology� all methods are
�public��

� Each method is attached to exactly one class� In CLOS terminology� each
method has exactly one �specialized parameter�� i�e� there are no �multi�
methods��

� Any method available to an alternation class is also available to each of its
alternatives through inheritance�

� Inherited methods may be overriden �specialized� in a subclass� In C��
terminology all methods are �virtual��

� Every object has access �through its methods� to all of its own parts� and
to the parts of other objects of the same class� This level of encapsulation
is equivalent to �protected� instance variables in C���

� Schema Extension Transformations

This section informally introduces two important kinds of schema transforma�
tions� One kind consists of the object�extending class transformations� presented
formally in �LHX���� The other kind consists of the object�preserving trans�
formations� presented formally in �Ber���� The latter kind is a special case of
the former in that any object�preserving transformation can be regarded as an
object�extending transformation� Thus� both kinds can be called schema ex�
tension tranformations� Schema extensions are de�ned as a relation on class
dictionary graphs� This relation can be decomposed into a set of eight primitive
relations that was shown to be correct� minimal and complete �Ber��� LHX����
The completeness guarantees that for any two schemas in an object�extending
relation there exists a sequence of primitive transformations that transforms the
original into the extended schema� Since the completeness proofs are construc�
tive� there also exists an algorithm to �nd the sequence� The primitive schema
transformations will be used in the subsequent section to determine their impact
on the behavioral consistency of a program�

��� The extension relation

For the following discussion it is important to remember that all alternation
classes are abstract and only instances of construction classes can be assigned to
a part� Thus� even if a construction edge points to an alternation class A� the
only objects that can be assigned to the part are instances of construction classes
that are subclasses of A�

Informally� two class dictionary graphs G� and G� are in an object�equivalence
relation if they both de�ne the same set of objects� Consequently� G� and G�

must satisfy these conditions� ��� G� and G� have the same set of construction
classes� ��� A construction class A of G� has a �inherited or direct� part b if and
only if its corresponding class in G� has a �inherited or direct� part b � ��� An
instance can be assigned to part b of class A in G� if and only if the instance can
also be assigned to part b of class A in G��

As an example of two class dictionary graphs in an object�equivalence relation�
consider Figures ��Original and ��Object�equivalent� Note that both class dic�
tionary graphs contain the same construction classes� Furthermore� each con�
struction class has the same parts and to each part one can assign the same
instances� In particular� in both class dictionary graphs� instances of classes
RectTool� OvalTool� and SelectTool can be assigned to part inputTool attached to
class Screen�

Two class dictionary graphs G� and G� are in an extension relation� such that
G� extends G�� if they satisfy these conditions� ��� The set of construction classes

of G� is a superset of the set of construction classes of G�� ��� If a construction
class A of G� has a �inherited or direct� part b� then its corresponding class in
G� has a �inherited or direct� part b � ��� If an instance can be assigned to part
b of class A in G�� then the instance can also be assigned to part b of class A in
G�� An example of two class dictionary graphs in an extension relation is given
in Figures ��Object�equivalent and ��Extended�

As a consequence of the above de�nitions the following relationship holds between
extension and object�equivalence� Class dictionary graph G� is object�equivalent
to class dictionary graph G� if and only if G� is extended by G� and G� is
extended by G��

The object�preserving transformation is composed of the �ve primitive opera�
tions� ��� Deletion of useless alternation� ��� Addition of useless alternation�
��� Abstraction of common parts� ��� Distribution of common parts� and ��� Part
replacement �Ber���� The extension relation is composed of the above �ve prim�
itives and� in addition� the three primitives� �
� Part generalization� �	� Part
addition� and ��� Class addition �LHX����

We briey summarize the semantics of the above primitives�

Deletion of useless alternation �DUA� An alternation class is �useless� if
it has no incoming edges and no outgoing construction edges� In other
words� an alternation class is useless if it is not a part of any class� and
de�nes no parts for any class to inherit� If an alternation class is useless
it may be deleted by the DUA primitive� An example of a DUA operation
is the deletion of the alternation class Tool shown in the transition from
the partially drawn class dictionary graph in Figure ��PRP to the class
dictionary graph in Figure ��Extended�

Addition of useless alternation �AUA� This is the inverse operation of DUA�
An alternation class can be added to a class dictionary graph along with
outgoing alternation edges to any other classes� An example of an AUA
operation is the addition of the two alternation classes DrawingTool and
CanvasTool �Figure ��Original to Figure ��AUA��

Abstraction of common parts �ACP� If Bi �� � i � n� are all the alterna�
tives of an alternation class A and each of them has a part c of class C� then
ACP deletes all the construction edges Bi

c
�� C �� � i � n� and replaces

them with a new construction edge A c
�� C� Intuitively� if all of the imme�

diate subclasses of a class A have the same part� that part is moved up the
inheritance hierarchy so that each of the subclasses will inherit it from A�
An example of the ACP operation is the abstraction of the common part

DrawWindow

Screen

RectTool OvalTool

SelectTool Rectangle Oval

Shape

ShapeList

Position
Mouse
Interface

window

canvas

interface
position

inputTool

CanvasTool

DrawingTool

shapes

Printer

Output
Device

Colorcolor

restShapes

firstShape

List

EmptyList

DrawWindow

Screen

RectTool OvalTool

SelectTool Rectangle Oval

Shape

ShapeList

PositionMouse
Interface

window

canvas

interface position

inputTool

CanvasTool

DrawingTool

shapes

restShapes

firstShape

List

EmptyList

Tool

RectTool OvalTool SelectTool

Mouse
Interface

interface

DrawWindow

Screen

Rectangle Oval

Shape

ShapeList

Position

window

canvas

position

inputTool

shapes

restShapes

firstShape

List

EmptyList

Original

Extended

Object−equivalent

Figure �� Extending a class dictionary graph

interface from the classes RectTool� OvalTool� SelectTool to their common
superclass CanvasTool �Figure ��DCP to Figure ��ACP��

Distribution of common parts �DCP� This is the inverse of ACP� DCP
deletes an outgoing construction edge A c

�� C from an alternation class�
A� and adds for each alternative Bi of A� a new construction edge Bi

c
�� C�

An example of DCP is the distribution of the part interface from class Tool
to its subclasses RectTool� OvalTool� SelectTool �Figure ��AUA to Figure ��
DCP��

Part replacement �PRP� If the set of construction classes that are subclasses
of an alternation class A is the same as the set that are subclasses of another
alternation class A�� then PRP may delete any construction edge X a

�� A

and replace it with a new construction edge X a
�� A�� Intuitively� if two

classes A and A� have the same set of instantiable �construction� subclasses
then the de�nable objects do not change when A is replaced by A� in the
de�nition of a part� An example of PRP is the rerouting of edge inputTool

from class Tool to class CanvasTool �Figure ��ACP to Figure ��PRP��

Class addition �CAD� CAD adds to the existing class dictionary graph new
classes and edges with the restriction that no old class may obtain new
outgoing edges or new incoming alternation edges� An example of CAD is
the addition of the classes Printer� OutputDevice and Color along with the
outgoing alternation edges from OutputDevice �Figure ��Object�equivalent
to Figure ��Extended��

Part addition �PAD� If the classes A and B already exist in a class dictionary
graph� then PAD adds a new construction edge A b

�� B� that is� the class
A obtains a new part b of class B� An example of PAD is the addition of
the part color to the class Shape �Figure ��Object�equivalent to Figure ��
Extended��

Part generalization �PGN� If a class C is a subclass of some alternation class
B� then PGN reroutes a construction edge A

p
�� C to A

p
�� B� In other

words� PGN generalizes the domain of part p� An example of PGN is the
generalization of part canvas from class Screen to the class OutputDevice

�Figure ��Object�equivalent to Figure ��Extended��

��� Structural Consistency

Each of the primitive transformations� except part addition� maintains the struc�
tural consistency of the object base� that is� all the objects remain consistent with
the transformed schema� When a part is added to a class A by a part addition�
then structural consistency must be restored by adding an instance of that part�s

Tool

RectTool OvalTool SelectTool

Mouse
Interface

interface

inputTool

AUA Screen

Drawing
 Tool

Canvas
 Tool

DCP

Tool

RectTool OvalTool SelectTool

Mouse
Interface

interface

inputTool

Screen

Drawing
 Tool

Canvas
 Tool

ACP

Tool

RectTool OvalTool SelectTool

Mouse
Interface

interface

inputTool

Screen

Drawing
 Tool

Canvas
 Tool

PRP

Tool

RectTool OvalTool SelectTool

Mouse
Interface

interface

inputTool

Screen

Drawing
 Tool

Canvas
 Tool

Figure �� Steps in the object�preserving transformation

class to every instance of class A� The added object can either be some default
object or speci�ed by an object transformation function de�ned by the user�

� Code Transformations

In this section we discuss how application code can be automatically updated
after a class dictionary graph has been transformed or extended� The approach
we take is to �rst reduce the transformation to a sequence of primitives� We
then update the code incrementally� in steps that parallel the primitive trans�
formations� Reduction to a sequence of primitives can be easily accomplished
by following the constructions of the completeness proofs given in �LHX��� and
�Ber����

For each primitive transformation� we consider the rules that should be followed
to update the application code so that it will meet all of the original require�
ments� Of course� if we wish to extend� rather than simply maintain the original
functionality� it will be necessary to hand code some of the extension� Even so�
a maintenance tool based on the primitive transformations could be used to do
most of the work and generate hints for code that should be modi�ed by hand�

��� Untyped Language Model

In the untyped language model the code transformations are very simple� Con�
sider the example of the transformation of the schema in Figure ��Original to
the extended schema in Figure ��Extended�

����� Addition of useless alternation classes

The �rst primitives in the sequence obtained by reducing the transformation are
addition of the �useless� alternation classes DrawingTool and CanvasTool �Fig�
ure ��AUA�� The addition of these abstract classes does not require any modi��
cation of the code�

����� Distribution of common parts
In the next step �Figure ��DCP�� the interface part of the Tool class is distributed
down the inheritance hierarchy to the classes RectTool� OvalTool� and SelectTool�
Once again� there is no need to modify the code� Note that there may be methods
attached to class Tool that refer to the interface part� In a strongly typed language
such as C��� the method would no longer compile� since the part would be
unde�ned within the scope of the method� In an untyped language such as
CLOS� however� the symbol interface is bound at run time when the method is
invoked in response to a message to a RectTool� OvalTool� or SelectTool object�
Since Tool is abstract� the method can never be invoked in response to a message
to a Tool object� and no run time errors occur�

����� Abstraction of common parts

When the part is moved up the new inheritance hierarchy to the CanvasTool class
�Figure ��ACP� by abstraction of common parts� there is still no need to modify
the code� Every reference to interface in the RectTool� OvalTool� and SelectTool

classes is still valid due to inheritance�

����� Part replacement
In the next step� the part class of Screen�s inputTool is changed from Tool to
CanvasTool by part replacement �Figure ��PRP�� Of course� every object that
instantiates the inputTool part of a Screen must still be an instance of one of
the three construction classes� RectTool� OvalTool� and SelectTool� Therefore any
message that was sent to inputTool in the original code will still be understood
after the class transformation and� once again� there is no need to modify existing
code�

����� Deletion of useless alternations
Now that the Tool class has no incoming edges and no outgoing construction
edges� it is considered �useless�� and may be deleted� Note that the �useless�
designation is only relevant from a data modelling point of view� since the class
may have important methods attached� If the class is deleted to produce the

schema in Figure ��Object�equivalent� the functionality of the methods attached
to the class must be preserved� In the simplest case� we consider only primary
methods and don�t allow a method to explicitly call a method de�ned in a su�
perclass �i�e� call�next�method in CLOS�� In this case each method can be copied
to each of the immediate subclasses that does not override it� Now every object
will respond to messages in the same way after the �useless� class is deleted�

Suppose� for example� that the Tool class has a method called getPosition which
is inherited in each of its subclasses�

�defmethod getPosition ��self Tool��

�getPosition �slot�value self 	interface���

In this case� the getPosition method is copied from the Tool class to the RectTool�
OvalTool� and SelectTool classes�

�defmethod getPosition ��self RectTool��

�getPosition �slot�value self 	interface���

�defmethod getPosition ��self OvalTool��

�getPosition �slot�value self 	interface���

�defmethod getPosition ��self SelectTool��

�getPosition �slot�value self 	interface���

If there is another alternation class that covers the same set of construction classes
as the �useless� alternation� the method could just be copied to that class instead�
In the example� we could just copy the getPosition method from the Tool class to
the CanvasTool class� so that the three methods above would be replaced with�

�defmethod getPosition ��self CanvasTool��

�getPosition �slot�value self 	interface���

If we wish to allow �before� and �after� methods� then any before method in
the �useless� class can be prepended to the before method in each subclass or
the primary method if the subclass has no before method� After methods are
appended to the after methods in each subclass� or the primary method if there
is no after method� If we allow �call�next�method�� then in each subclass� every
occurrance of call�next�method can be removed and the �next�method� de�ned in
the �useless� class inlined in its place�

����	 Class and part addition
Extension of a class dictionary graph by class addition or part addition does not
require any modi�cation of existing code� In the current example� addition of
the classes OutputDevice� Printer� and Color �Figure ��Extended� does not e�ect
the application code� When the color part is added to the Shape class� existing
code will continue to provide the same functionality� In this case� however� it
is likely that methods attached to the Shape� Rectangle� and Oval classes would
be extended to make use of the new color information� For example� if there
are methods attached to these classes for drawing the shapes in black and white�
they will still function properly� but the additional code required to produce color
renderings would have to be added by hand�

����
 Part generalization
Part generalization causes a problem similar to� but more serious than� part addi�
tion� When the part class of DrawWindow�s canvas part is generalized from Screen

to OutputDevice �Figure ��Extended�� the original code will continue to function
properly as long as every DrawWindow continues to use a Screen as its output
device� This is the case for all DrawWindow objects that were present in the
old object store and possibly updated subsequently by an object transformation
�see section ���� after the schema transformation� However� if new DrawWindow

objects are introduced that use Printer output devices� messages to the canvas

part will not be understood� Since it is not possible� in general� to automatically
generate correct methods for the new part classes� warnings should be added to
the code wherever a DrawWindow method accesses its canvas part to indicate that
the part has been generalized�

��� Typed Language Model

For the discussion of code transformations in the typed language model� illus�
trated for the example of C��� we make the following simplifying assumptions
on the mapping from the class dictionary graph schema to the C�� class de��
nitions� ��� All parts are de�ned as protected data members� ��� In congruence
with the Demeter data model� all alternation classes are mapped to abstract su�
perclasses� ��� All member functions of alternation classes are de�ned as virtual
member functions� ��� All data members are de�ned as pointers or references�

����� Addition of useless alternation classes

As for the untyped language model� the change in class de�nitions due to the
addition of a useless alternation class requires no modi�cation to the methods�

����� Distribution of common parts
We have seen above that� in the untyped language model� the distribution of
a part from a superclass to its subclasses does not require any change in the
methods� However� in the strongly typed model� the distributed part will no
longer be de�ned within the scope of the superclass� Therefore any superclass
method that accesses the part will no longer compile�

To restore behavioral consistency� every method in the superclass that accesses
the part must be distributed along with the part to each of the subclasses that
does not override the method� Since an object with the statically declared type
of the superclass may be sent a message whose method has been distributed� we
must replace the original method with a �pure virtual� method�

Constructor and destructor methods in C�� behave similarly to before and after
methods in CLOS and may be treated much like the distribution of before and
after methods in deletion of useless alternation classes� The body of a super�

class constructor accessing a distributed part is inlined at the beginning of each
subclass constructor� and replaced with an empty body�

Consider� for example� what happens when the interface part of the Tool class is
distributed down the inheritance hierarchy to the classes RectTool� OvalTool� and
SelectTool �Figure ��DCP�� Suppose that the Tool class de�nes the method�
Position �Tool��getPosition�� � return interface �
 getPosition��� �

Then Tool��getPosition is replaced by a pure virtual function� and the following
new methods are added�
Position �RectTool��getPosition�� � return interface�
getPosition��� �

Position �OvalTool��getPosition�� � return interface�
getPosition��� �

Position �SelectTool��getPosition�� � return interface�
getPosition��� �

����� Abstraction of common parts
As in the untyped model� no change is necessary for the implementation of mem�
ber functions� since data members are de�ned to be protected and hence mem�
ber functions of any subclass that accessed an abstracted part still have access
through inheritance�

����� Part replacement

In the untyped language model� part replacement does not require any modi��
cation of the code since the objects that can be assigned to the replaced part
are unchanged� However� in a typed language� the part replacement implies a
change in the type declaration of the part� Two problems occur in this case�
First� messages sent to the part might no longer be understood since there may
be no such method known to the part�s new class� Second� wherever the part is
involved in an assignment statement� function call �as a passed parameter�� or
function return �as the returned value�� the part�s new type will no longer be
compatible�

The �rst problem can be solved by supplying� for each method de�ned in the
part�s old class� a corresponding pure virtual function in the part�s new class�
Since each construction subclass now inherits methods from both the part�s new
and old class� it must provide its own method to resolve the ambiguity in favor
of its original �possibly inherited� method�

The second problem requires that objects be converted to the appropriate type
in assignment statements� function calls� and function returns� Note that simple
casting will not work in C�� under multiple inheritance�

Consider what happens when the part class of Screen�s inputTool is changed from
Tool to CanvasTool by part replacement� Suppose that the following methods
were originally de�ned�

void Tool��handleMouseClick�DrawWindow �win� � ��

void Screen��handleMouseClick�DrawWindow �win�

� inputTool �
 handleMouseClick�win��

void Screen��Screen�Tool �t� � inputTool � t� �

To solve the �rst problem� we de�ne a pure virtual function in the CanvasTool
class and a disambiguating method in each construction subclass�

void CanvasTool��handleMouseClick�DrawWindow �win� � ��

void RectTool��handleMouseClick�DrawWindow �win�

�Tool��handleMouseClick�win�� �

void OvalTool��handleMouseClick�DrawWindow �win�

�Tool��handleMouseClick�win�� �

void SelectTool��handleMouseClick�DrawWindow �win�

�Tool��handleMouseClick�win�� �

To solve the second problem� we generate methods to transform the type of
objects fromTool to CanvasTool and from CanvasTool to Tool� Wherever inputTool
either occurs on the right hand side of an assignment� or is passed as a parameter
to a function� or is returned from a function� it is �rst converted to its original
type �Tool�� Wherever inputTool occurs on the left hand side of an assignment
statement� the expression on the right hand side is converted to its new type
�CanvasTool��

Tool �CanvasTool��CTtoT�� � ��

CanvasTool �Tool��TtoCT�� � ��

Tool �RectTool��TtoCT�� � return this� �

CanvasTool �RectTool��CTtoT�� � return this� �

Tool �OvalTool��TtoCT�� � return this� �

CanvasTool �OvalTool��CTtoT�� � return this� �

Tool �SelectTool��TtoCT�� � return this� �

CanvasTool �SelectTool��CTtoT�� � return this� �

void Screen��Screen�Tool �t� � inputTool � t �
 TtoCT��� �

����� Deletion of useless alternation classes
As in the case of the untyped language model� one problem with deleting a
�useless� alternation class is that there may be methods attached to the class�
There is the additional problem that the class name may be used in the static
type declarations of objects�

If there are any methods attached to the useless alternation class� A� their im�
plementations must be distributed to its immediate subclasses unless they are
overridden there� If anywhere in the program an explicit call �i�e�� through the
scope resolution operator ����� to a method A �� m is made� we create a new
method with a unique name� say A m� de�ned for each of A�s immediate sub�
classes� The implementation for A m is the same as for A �� m� Then� every
occurrence of an explicit call to A �� m is replaced with a call to A m�

If there are any variables de�ned of static type A in the program� then we need
to �nd an equivalent substitute type or else keep a class de�nition of A to be used

only to satisfy the type system� If there is an alternation class B with the same
set of derived construction classes as for A� B can serve as a substitute type for A�
In this case� all the member functions which were de�ned for A are now declared
as pure virtual functions in class B� and class A is deleted� Wherever class A
appeared in a type declaration� class B is substituted� Note that in conjunction
with the part replacement transformation there is always such a corresponding
class B�

If there is no such corresponding class B� then A can not be deleted since it must
continue to be used in type declarations� In this case� class A is preserved� but
contains only pure virtual functions� We regard A as a type rather than as a
class�

As an example� consider what happens when the Tool class is deleted in the
transformation from Figure ��PRP to Figure ��Object�equivalent� Suppose the
methods declared in class Tool are these�

virtual void handleMouseClick� DrawWindow � � � ��

virtual Position getPosition�� � ��

virtual CanvasTool �TtoCT�� � ��

All the methods happen to be pure virtual� so there are no implementations to be
distributed� Furthermore� class CanvasTool quali�es as an equivalent substitute
type for class Tool� For each method declared in class Tool a pure virtual method
is declared in class CanvasTool� Everywhere that class Tool is used in a type
declaration it is replaced with class CanvasTool� Finally class Tool can be deleted�

����	 Class and part addition
As in the untyped language case� no changes are necessary for the method im�
plementations�

����
 Part generalization

The problem that occurs with part generalization is similar to one of the problems
that occurs with part replacement� If the part class C of some part is generalized
to a superclass of C� say B� then we must insure that for every method in class C
there is a corresponding method de�ned in classB� This is done by de�ning empty
virtual functions in B wherever necessary� Moreover� as for part replacement�
wherever the part is involved in an assignment statement� function call �as a
passed parameter�� or function return �as the returned value�� the part�s new
type will no longer be compatible� In this case� however� a simple cast will su�ce
since the new class is a superclass of the original�

Note that the PGN transformation indicates that a behavior extension is in order�
Our goal in this work is simply to ensure behavior preservation� The above
transformation achieves this goal� but the resulting code is not desirable from a
software engineering point of view� The inserted cast operations are therefore

seen as a hint to the programmer as to where the behavior of the program should
be extended�

��� Discussion

When comparing the update operations necessary in the two language models� the
di�erences are striking� While in the untyped language model almost no updates
to method implementations are necessary� the programmer working in the typed
language model is faced with numerous problems� For the untyped language
model� we have shown that a schema extension can always be propagated to
the method implementations such that the behavior of the program is preserved�
However� for the typed language model a behavior preserving update mechanism
could only be outlined and is far from being satisfactory� The major reason for
this is that the type system poses severe restrictions on how updates can be
performed� Without semantic information on what the update�s intentions are�
it is not always possible to change the typing speci�cations in a reasonable way�

The above comparison underlines the popularity of untyped languages for pro�
totyping purposes� Their ability to exibly adapt themselves to di�erent class
structures gives them a major advantage over typed languages in environments
where structural changes occur frequently� For typed languages� the propagation
pattern approach �LXSL��� LHSLX��� achieves the same exibility by decou�
pling the programs from the class structure� Consequently� any change in the
class structure a�ects the propagation pattern only marginally�

� Related Work

In the software refactory project at the University of Illinois� Opdyke and John�
son are investigating methods for refactoring object�oriented systems to support
reuse �OJ��� Opd���� Refactorings are de�ned as restructuring plans and are
primarily used to aid the iterative design of an application framework� A feature
of refactorings common to our approach is that they ��� also preserve behavior
and ��� can be performed by applying a small set of basic refactorings�

Delcourt and Zicari designed a tool� called Integrity Consistency Checker �ICC��
which ensures structural consistency while performing schema updates �DZ����
The ICC guarantees that only those updates are performed that do not introduce
any structural inconsistency� However� it allows behavioral inconsistencies that
do not result in run�time errors� Nevertheless� the ICC is a very useful tool
as a �rst component in the evolution process� In contrast� our tool guarantees
behavioral consistency by automatically adapting programs to the new schema�

� Conclusion

We have presented a code update mechanism for both CLOS and C�� that can
be used to automate the propagation of changes from a modi�ed schema to its
a�ected programs� The mechanism guarantees not only that the schema and
the programs stay structurally consistent� but also that the behavior of the old
programs is consistently preserved after the schema update�

The ease with which CLOS programs can be adapted to extended schemas stands
in striking contrast to the complexity involved in adapting C�� programs�

Acknowledgements� We would like to thank Karl Lieberherr� Ignacio Silva�
Lepe and Cun Xiao for helpful discussions�

References

�AH��� Serge Abiteboul and Richard Hull� Restructuring hierarchical database ob�
jects� Theoretical Computer Science� ��	
�
�� ����

�Bar�� Gilles Barbedette� Schema modi�cations in the lispo� persistent object�
oriented language� In Pierre America� editor� European Conference on
Object�Oriented Programming� pages ����� Geneva� Switzerland� July ���
Springer Verlag� Lecture Notes in Computer Science�

�Ber�� Paul L� Bergstein� Object�preserving class transformations� In Object�
Oriented Programming Systems� Languages and Applications Conference� in
Special Issue of SIGPLAN Notices� pages ��
�
� Phoenix� Arizona� ���
ACM Press�

�Ber�� Elisa Bertino� A view mechanism for object�oriented databases� In In�
ternational Conference on Extending Database Technology� pages �
������
Vienna� Austria� ���

�BKKK��� Jay Banerjee� Won Kim� Hyong�Joo Kim� and Henry F� Korth� Semantics
and implementation of schema evolution in object�oriented databases� In
Proceedings of ACM�SIGMOD Annual Conference on Management of Data�
pages
���
��� ACM� ACMPress� December ���� SIGMOD Record� Vol����
No�
�

�Cas�� Eduardo Casais� Managing evolution in object�oriented environments� an al�
gorithmic approach� PhD thesis� University of Geneva� Geneva� Switzerland�
May ��� Thesis no�
��

�CPLZ�� Alberto Coen�Porisini� Luigi Lavazza� and Roberto Zicari� Updating the
schema of an object�oriented database� Quarterly Bulletin of the IEEE Com�
puter Society Technical Committee on Data Engineering� �����	

�
�� June
��� Special Issue on Foundations of object�Oriented Database Systems�

�DZ�� Christine Delcourt and Roberto Zicari� The design of an integrity consistency
checker �icc� for an object oriented database system� In Pierre America� ed�
itor� European Conference on Object�Oriented Programming� pages ������

Geneva� Switzerland� July ��� Springer Verlag� Lecture Notes in Computer
Science�

�LBSL�� Karl J� Lieberherr� Paul Bergstein� and Ignacio Silva�Lepe� From objects
to classes	 Algorithms for object�oriented design� Journal of Software Engi�
neering� ����	�������� July ���

�LH�� Barbara Staudt Lerner and A� Nico Habermann� Beyond schema evolu�
tion to database reorganization� In Norman Meyrowitz� editor� Proceedings
OOPSLA ECOOP ���� pages ������ Ottawa� Canada� October ��� ACM�
ACM Press� Special Issue of SIGPLAN Notices� Vol���� No����

�LHSLX�� Karl J� Lieberherr� Walter H�ursch� Ignacio Silva�Lepe� and Cun Xiao� Ex�
perience with a graph�based propagation pattern programming tool� In
Gene Forte� Nazim H� Madhavji� and Hausi A� M�uller� editors� Interna�
tional Workshop on CASE� pages ������� Montr�eal� Canada� July ���
IEEE Computer Society Press�

�LHX
� Karl J� Lieberherr� Walter L� H�ursch� and Cun Xiao� Object�extending class
transformations� Formal Aspects of Computing� the International Journal
of Formal Methods� �
� Accepted for publication�

�LXSL�� Karl J� Lieberherr� Cun Xiao� and Ignacio Silva�Lepe� Graph�based software
engineering	 Concise speci�cations of cooperative behavior� Technical Re�
port NU�CCS������ College of Computer Science� Northeastern University�
Boston� MA� September ���

�OJ�� WilliamF� Opdyke and Ralph E� Johnson� Refactoring	 An aid in designing
application frameworks and evolving object�oriented systems� In Proceedings
of the Symposium on Object�Oriented Programming emphasizing Practical
Applications �SOOPA�� pages �������� Poughkeepsie� NY� September ���
ACM�

�Opd�� William F� Opdyke� Refactoring� A Program Restructuring Aid in Design�
ing object�Oriented Application Frameworks� PhD thesis� Computer Science
Department� University of Illinois� May ���

�PS��� Jason D� Penney and Jacob Stein� Class modi�cation in the GemStone
object�oriented DBMS� In Norman Meyrowitz� editor� Object�Oriented Pro�
gramming Systems� Languages and Applications Conference� in Special Is�
sue of SIGPLAN Notices� pages �������� Orlando� Florida� December ����
ACM� ACM Press� Special Issue of SIGPLAN Notices� Vol���� No����

�SZ��� Andrea H� Skarra and Stanley B� Zdonik� The management of changing
types in an object�oriented database� In Object�Oriented Programming Sys�
tems� Languages and Applications Conference� in Special Issue of SIGPLAN
Notices� pages ��
���� ACM� ACM Press� September ����

