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Abstract

We examine the problem of how to ensure behavioral consistency of an
object�oriented system after its schema has been updated� The problem is
viewed from the perspective of both the strongly typed and the untyped
language model� Solutions are compared in both models using C�� and
CLOS as examples�

� Introduction

Schema evolution and transformations have recently received increasing attention
in the literature in both the area of object�oriented languages and especially in the
area of object�oriented database systems� �Opd��� Ber��� Ber��� Cas��� CPLZ���
DZ��� Bar��� LH��� AH��� BKKK�	� PS�	� SZ�
�� Most of this work has been
done from the object�oriented database point of view where the focus is naturally
on the structural� rather than behavioral� aspects of the evolving schema� Systems
such as ORION �BKKK�	�� GemStone �PS�	�� and OTGen �LH��� guarantee
the correctness of the performed schema changes and reect the impact on the
persistent instances in the database �structural consistency�� However� none of
them considers the impact of schema updates on existing programs �behavioral
consistency��

In this paper we consider the problem of behavioral consistency for an important
subset of possible schema transformations� The transformations in this subset are
the schema extensions de�ned in �LHX��� Ber���� We chose these transformations
for three reasons� First� they have the desirable property that the transformed
schema�s consistency with the old objects either is maintained or can be easily
restored� For object�oriented database design� this means that the database does
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not need to be repopulated� or that the repopulation can be easily accomplished�
In either case� no information from the old database is lost� Second� the exten�
sion transformations reect a signi�cant set of transformations that commonly
occur in practice� Third� they can be decomposed into a sequence of primitive
transformations�

The strategy we employ to solve the behavioral consistency problem relies heav�
ily on the third property� Our approach is to divide a given extension into a
sequence of primitives and then solve the problem for each of the primitives in
turn� Behavioral consistency is investigated for two very di�erent language mod�
els� strongly typed and untyped languages� We compare solutions in the two
models using C�� and CLOS as examples� As one might expect� the problem is
much more di�cult for the strongly typed model�

The paper is organized as follows� Section � provides a brief description of the
employed data and language models� The third section reviews the extension
relation and its associated primitive transformations� In section � we propose a
solution for untyped languages� We also present a partial solution for strongly
typed languages and discuss some of the remaining problems� The last two sec�
tions present related work and conclusions�

� The Demeter data model

��� Data Model

The data model used in this paper is the Demeter Kernel model which is formally
de�ned in �LBSL���� The Demeter Kernel model uses two kinds of classes� con�
struction and alternation classes� and two kinds of relationships between classes�
kind�of and part�of relationships�

Only the construction classes are instantiable� so every object must be an instance
of some construction class� The alternation classes are used to model the union
of object sets de�ned by the construction classes� This is often natural when
modeling an application domain� For example �see Figure ��Original� page 	�� in
an object�oriented drawing program the tool used to select and draw shapes on
a canvas might be either a selection tool� a tool for drawing rectangles� or a tool
for drawing ovals� So the objects that can be stored in the tool part of a Canvas

object are either OvalTool� RectTool� or SelectTool objects� Alternation classes
are used to de�ne such unions� Each class which is an element of the union is
called an alternative of the alternation class� One can think of an alternation class
as an abstract superclass in a typical class�based object�oriented programming
language� with the alternatives as immediate subclasses�

Any class may have various attributes represented by part classes� These �parts�



may be thought of as an abstraction of instance variables in a typical object�
oriented programming language� Each alternation class must have at least one
alternative or �kind�� The �kinds� of an alternation class are represented by its
subclasses�

If an alternation class has parts� they are implemented by inheritance in the sub�
classes� For example� each tool in our drawing application has a mouse interface�
This common part is expressed as a single part in the alternation class which is
shared �inherited� by all of its alternatives �subclasses�� Thus� a kind�of relation
in the Demeter Kernel model also implies an inheritance relation� Since alter�
nation classes are not instantiable� it is only possible to inherit from abstract
classes�

The classes and their relations are de�ned by a class dictionary graph� Construc�
tion classes are represented by rectangles and alternation classes are represented
by hexagons in a class dictionary graph�

Part�of relations are expressed as directed edges called construction edges from a
class to each of its part classes� The construction edges are drawn as thin arrows�
Each part must have a name� and the construction edges are labeled with the
part names in a class dictionary graph� In Figure ��Original� for example� a
DrawWindow is a construction class with two parts� a ShapeList called shapes�
and a Screen called canvas where the shapes are to be displayed�

Kind�of�inheritance relations are expressed by directed edges called alternation
edges from an alternation class to each of its alternatives� The alternation edges
are drawn with thick arrows�

Legal class dictionary graphs must satisfy two independent conditions� ��� No
class may inherit from itself� that is� there must not be any cyclic path consisting
only of alternation edges� ��� There must not be any class which has two or more
parts �including inherited parts� with the same name� The �rst condition implies
that a class de�nition may not depend upon itself in a circular fashion� The
second condition disallows �overriding� or �shadowing� of instance variables� It
guarantees that the part names in each class are unambiguous�

A class dictionary graph may be used to easily generate a set of class de�nitions
�minus method declarations� in any class�based object�oriented programming lan�
guage� This may be done either by hand or automatically by using a tool like the
Demeter SystemTM � In the latter case� the declaration and implementation of
many commonly useful �generic� methods may also be automatically generated�



��� Language Model

In this paper we consider �informally� two language models� untyped and strongly
typed� As representative examples we consider CLOS �Common Lisp Object
System� and C��� respectively� For simplicity� we consider the class de�nitions
and the methods of a class separately� although some languages might require
forward declarations of methods in the class de�nitions�

A class dictionary graph is essentially a language�independent set of class de��
nitions� and the translation to a particular programming language is a straight�
forward process� The kind�of relations de�ned by the class dictionary graph are
implemented by declaring a corresponding inheritance relation in the class de��
nitions� In most languages� this means that if there is an alternation edge from A
to B� then class B is declared to inherit from class A in the de�nition of class B�
Part�of relations are implemented by instance variables� For each part of a class�
an instance variable is declared whose name is the same as the part name� In
the case of a typed language� the part�s type is declared to be the corresponding
class� For example� the class de�nition for ShapeList from the class dictionary
graph in Figure ��Original would be written in C�� or CLOS as�

C�� Version CLOS Version

class ShapeList � public List � �defclass ShapeList �List�

protected� �firstShape restShapes��

Shape� firstShape�

List� restShapes�

��

Our two language models share several common features�

� The parts of an object are implemented as references�

� Any object can send another object any message for which the receiving
object has a corresponding method� In C�� terminology� all methods are
�public��

� Each method is attached to exactly one class� In CLOS terminology� each
method has exactly one �specialized parameter�� i�e� there are no �multi�
methods��

� Any method available to an alternation class is also available to each of its
alternatives through inheritance�

� Inherited methods may be overriden �specialized� in a subclass� In C��
terminology all methods are �virtual��

� Every object has access �through its methods� to all of its own parts� and
to the parts of other objects of the same class� This level of encapsulation
is equivalent to �protected� instance variables in C���



� Schema Extension Transformations

This section informally introduces two important kinds of schema transforma�
tions� One kind consists of the object�extending class transformations� presented
formally in �LHX���� The other kind consists of the object�preserving trans�
formations� presented formally in �Ber���� The latter kind is a special case of
the former in that any object�preserving transformation can be regarded as an
object�extending transformation� Thus� both kinds can be called schema ex�
tension tranformations� Schema extensions are de�ned as a relation on class
dictionary graphs� This relation can be decomposed into a set of eight primitive
relations that was shown to be correct� minimal and complete �Ber��� LHX����
The completeness guarantees that for any two schemas in an object�extending
relation there exists a sequence of primitive transformations that transforms the
original into the extended schema� Since the completeness proofs are construc�
tive� there also exists an algorithm to �nd the sequence� The primitive schema
transformations will be used in the subsequent section to determine their impact
on the behavioral consistency of a program�

��� The extension relation

For the following discussion it is important to remember that all alternation
classes are abstract and only instances of construction classes can be assigned to
a part� Thus� even if a construction edge points to an alternation class A� the
only objects that can be assigned to the part are instances of construction classes
that are subclasses of A�

Informally� two class dictionary graphs G� and G� are in an object�equivalence
relation if they both de�ne the same set of objects� Consequently� G� and G�

must satisfy these conditions� ��� G� and G� have the same set of construction
classes� ��� A construction class A of G� has a �inherited or direct� part b if and
only if its corresponding class in G� has a �inherited or direct� part b � ��� An
instance can be assigned to part b of class A in G� if and only if the instance can
also be assigned to part b of class A in G��

As an example of two class dictionary graphs in an object�equivalence relation�
consider Figures ��Original and ��Object�equivalent� Note that both class dic�
tionary graphs contain the same construction classes� Furthermore� each con�
struction class has the same parts and to each part one can assign the same
instances� In particular� in both class dictionary graphs� instances of classes
RectTool� OvalTool� and SelectTool can be assigned to part inputTool attached to
class Screen�

Two class dictionary graphs G� and G� are in an extension relation� such that
G� extends G�� if they satisfy these conditions� ��� The set of construction classes



of G� is a superset of the set of construction classes of G�� ��� If a construction
class A of G� has a �inherited or direct� part b� then its corresponding class in
G� has a �inherited or direct� part b � ��� If an instance can be assigned to part
b of class A in G�� then the instance can also be assigned to part b of class A in
G�� An example of two class dictionary graphs in an extension relation is given
in Figures ��Object�equivalent and ��Extended�

As a consequence of the above de�nitions the following relationship holds between
extension and object�equivalence� Class dictionary graph G� is object�equivalent
to class dictionary graph G� if and only if G� is extended by G� and G� is
extended by G��

The object�preserving transformation is composed of the �ve primitive opera�
tions� ��� Deletion of useless alternation� ��� Addition of useless alternation�
��� Abstraction of common parts� ��� Distribution of common parts� and ��� Part
replacement �Ber���� The extension relation is composed of the above �ve prim�
itives and� in addition� the three primitives� �
� Part generalization� �	� Part
addition� and ��� Class addition �LHX����

We briey summarize the semantics of the above primitives�

Deletion of useless alternation �DUA� An alternation class is �useless� if
it has no incoming edges and no outgoing construction edges� In other
words� an alternation class is useless if it is not a part of any class� and
de�nes no parts for any class to inherit� If an alternation class is useless
it may be deleted by the DUA primitive� An example of a DUA operation
is the deletion of the alternation class Tool shown in the transition from
the partially drawn class dictionary graph in Figure ��PRP to the class
dictionary graph in Figure ��Extended�

Addition of useless alternation �AUA� This is the inverse operation of DUA�
An alternation class can be added to a class dictionary graph along with
outgoing alternation edges to any other classes� An example of an AUA
operation is the addition of the two alternation classes DrawingTool and
CanvasTool �Figure ��Original to Figure ��AUA��

Abstraction of common parts �ACP� If Bi �� � i � n� are all the alterna�
tives of an alternation class A and each of them has a part c of class C� then
ACP deletes all the construction edges Bi

c
�� C �� � i � n� and replaces

them with a new construction edge A c
�� C� Intuitively� if all of the imme�

diate subclasses of a class A have the same part� that part is moved up the
inheritance hierarchy so that each of the subclasses will inherit it from A�
An example of the ACP operation is the abstraction of the common part
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interface from the classes RectTool� OvalTool� SelectTool to their common
superclass CanvasTool �Figure ��DCP to Figure ��ACP��

Distribution of common parts �DCP� This is the inverse of ACP� DCP
deletes an outgoing construction edge A c

�� C from an alternation class�
A� and adds for each alternative Bi of A� a new construction edge Bi

c
�� C�

An example of DCP is the distribution of the part interface from class Tool
to its subclasses RectTool� OvalTool� SelectTool �Figure ��AUA to Figure ��
DCP��

Part replacement �PRP� If the set of construction classes that are subclasses
of an alternation class A is the same as the set that are subclasses of another
alternation class A�� then PRP may delete any construction edge X a

�� A

and replace it with a new construction edge X a
�� A�� Intuitively� if two

classes A and A� have the same set of instantiable �construction� subclasses
then the de�nable objects do not change when A is replaced by A� in the
de�nition of a part� An example of PRP is the rerouting of edge inputTool

from class Tool to class CanvasTool �Figure ��ACP to Figure ��PRP��

Class addition �CAD� CAD adds to the existing class dictionary graph new
classes and edges with the restriction that no old class may obtain new
outgoing edges or new incoming alternation edges� An example of CAD is
the addition of the classes Printer� OutputDevice and Color along with the
outgoing alternation edges from OutputDevice �Figure ��Object�equivalent
to Figure ��Extended��

Part addition �PAD� If the classes A and B already exist in a class dictionary
graph� then PAD adds a new construction edge A b

�� B� that is� the class
A obtains a new part b of class B� An example of PAD is the addition of
the part color to the class Shape �Figure ��Object�equivalent to Figure ��
Extended��

Part generalization �PGN� If a class C is a subclass of some alternation class
B� then PGN reroutes a construction edge A

p
�� C to A

p
�� B� In other

words� PGN generalizes the domain of part p� An example of PGN is the
generalization of part canvas from class Screen to the class OutputDevice

�Figure ��Object�equivalent to Figure ��Extended��

��� Structural Consistency

Each of the primitive transformations� except part addition� maintains the struc�
tural consistency of the object base� that is� all the objects remain consistent with
the transformed schema� When a part is added to a class A by a part addition�
then structural consistency must be restored by adding an instance of that part�s
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class to every instance of class A� The added object can either be some default
object or speci�ed by an object transformation function de�ned by the user�

� Code Transformations

In this section we discuss how application code can be automatically updated
after a class dictionary graph has been transformed or extended� The approach
we take is to �rst reduce the transformation to a sequence of primitives� We
then update the code incrementally� in steps that parallel the primitive trans�
formations� Reduction to a sequence of primitives can be easily accomplished
by following the constructions of the completeness proofs given in �LHX��� and
�Ber����

For each primitive transformation� we consider the rules that should be followed
to update the application code so that it will meet all of the original require�
ments� Of course� if we wish to extend� rather than simply maintain the original
functionality� it will be necessary to hand code some of the extension� Even so�
a maintenance tool based on the primitive transformations could be used to do
most of the work and generate hints for code that should be modi�ed by hand�



��� Untyped Language Model

In the untyped language model the code transformations are very simple� Con�
sider the example of the transformation of the schema in Figure ��Original to
the extended schema in Figure ��Extended�

����� Addition of useless alternation classes

The �rst primitives in the sequence obtained by reducing the transformation are
addition of the �useless� alternation classes DrawingTool and CanvasTool �Fig�
ure ��AUA�� The addition of these abstract classes does not require any modi��
cation of the code�

����� Distribution of common parts
In the next step �Figure ��DCP�� the interface part of the Tool class is distributed
down the inheritance hierarchy to the classes RectTool� OvalTool� and SelectTool�
Once again� there is no need to modify the code� Note that there may be methods
attached to class Tool that refer to the interface part� In a strongly typed language
such as C��� the method would no longer compile� since the part would be
unde�ned within the scope of the method� In an untyped language such as
CLOS� however� the symbol interface is bound at run time when the method is
invoked in response to a message to a RectTool� OvalTool� or SelectTool object�
Since Tool is abstract� the method can never be invoked in response to a message
to a Tool object� and no run time errors occur�

����� Abstraction of common parts

When the part is moved up the new inheritance hierarchy to the CanvasTool class
�Figure ��ACP� by abstraction of common parts� there is still no need to modify
the code� Every reference to interface in the RectTool� OvalTool� and SelectTool

classes is still valid due to inheritance�

����� Part replacement
In the next step� the part class of Screen�s inputTool is changed from Tool to
CanvasTool by part replacement �Figure ��PRP�� Of course� every object that
instantiates the inputTool part of a Screen must still be an instance of one of
the three construction classes� RectTool� OvalTool� and SelectTool� Therefore any
message that was sent to inputTool in the original code will still be understood
after the class transformation and� once again� there is no need to modify existing
code�

����� Deletion of useless alternations
Now that the Tool class has no incoming edges and no outgoing construction
edges� it is considered �useless�� and may be deleted� Note that the �useless�
designation is only relevant from a data modelling point of view� since the class
may have important methods attached� If the class is deleted to produce the



schema in Figure ��Object�equivalent� the functionality of the methods attached
to the class must be preserved� In the simplest case� we consider only primary
methods and don�t allow a method to explicitly call a method de�ned in a su�
perclass �i�e� call�next�method in CLOS�� In this case each method can be copied
to each of the immediate subclasses that does not override it� Now every object
will respond to messages in the same way after the �useless� class is deleted�

Suppose� for example� that the Tool class has a method called getPosition which
is inherited in each of its subclasses�

�defmethod getPosition ��self Tool��

�getPosition �slot�value self 	interface���

In this case� the getPosition method is copied from the Tool class to the RectTool�
OvalTool� and SelectTool classes�

�defmethod getPosition ��self RectTool��

�getPosition �slot�value self 	interface���

�defmethod getPosition ��self OvalTool��

�getPosition �slot�value self 	interface���

�defmethod getPosition ��self SelectTool��

�getPosition �slot�value self 	interface���

If there is another alternation class that covers the same set of construction classes
as the �useless� alternation� the method could just be copied to that class instead�
In the example� we could just copy the getPosition method from the Tool class to
the CanvasTool class� so that the three methods above would be replaced with�

�defmethod getPosition ��self CanvasTool��

�getPosition �slot�value self 	interface���

If we wish to allow �before� and �after� methods� then any before method in
the �useless� class can be prepended to the before method in each subclass or
the primary method if the subclass has no before method� After methods are
appended to the after methods in each subclass� or the primary method if there
is no after method� If we allow �call�next�method�� then in each subclass� every
occurrance of call�next�method can be removed and the �next�method� de�ned in
the �useless� class inlined in its place�

����	 Class and part addition
Extension of a class dictionary graph by class addition or part addition does not
require any modi�cation of existing code� In the current example� addition of
the classes OutputDevice� Printer� and Color �Figure ��Extended� does not e�ect
the application code� When the color part is added to the Shape class� existing
code will continue to provide the same functionality� In this case� however� it
is likely that methods attached to the Shape� Rectangle� and Oval classes would
be extended to make use of the new color information� For example� if there
are methods attached to these classes for drawing the shapes in black and white�
they will still function properly� but the additional code required to produce color
renderings would have to be added by hand�



����
 Part generalization
Part generalization causes a problem similar to� but more serious than� part addi�
tion� When the part class of DrawWindow�s canvas part is generalized from Screen

to OutputDevice �Figure ��Extended�� the original code will continue to function
properly as long as every DrawWindow continues to use a Screen as its output
device� This is the case for all DrawWindow objects that were present in the
old object store and possibly updated subsequently by an object transformation
�see section ���� after the schema transformation� However� if new DrawWindow

objects are introduced that use Printer output devices� messages to the canvas

part will not be understood� Since it is not possible� in general� to automatically
generate correct methods for the new part classes� warnings should be added to
the code wherever a DrawWindow method accesses its canvas part to indicate that
the part has been generalized�

��� Typed Language Model

For the discussion of code transformations in the typed language model� illus�
trated for the example of C��� we make the following simplifying assumptions
on the mapping from the class dictionary graph schema to the C�� class de��
nitions� ��� All parts are de�ned as protected data members� ��� In congruence
with the Demeter data model� all alternation classes are mapped to abstract su�
perclasses� ��� All member functions of alternation classes are de�ned as virtual
member functions� ��� All data members are de�ned as pointers or references�

����� Addition of useless alternation classes

As for the untyped language model� the change in class de�nitions due to the
addition of a useless alternation class requires no modi�cation to the methods�

����� Distribution of common parts
We have seen above that� in the untyped language model� the distribution of
a part from a superclass to its subclasses does not require any change in the
methods� However� in the strongly typed model� the distributed part will no
longer be de�ned within the scope of the superclass� Therefore any superclass
method that accesses the part will no longer compile�

To restore behavioral consistency� every method in the superclass that accesses
the part must be distributed along with the part to each of the subclasses that
does not override the method� Since an object with the statically declared type
of the superclass may be sent a message whose method has been distributed� we
must replace the original method with a �pure virtual� method�

Constructor and destructor methods in C�� behave similarly to before and after
methods in CLOS and may be treated much like the distribution of before and
after methods in deletion of useless alternation classes� The body of a super�



class constructor accessing a distributed part is inlined at the beginning of each
subclass constructor� and replaced with an empty body�

Consider� for example� what happens when the interface part of the Tool class is
distributed down the inheritance hierarchy to the classes RectTool� OvalTool� and
SelectTool �Figure ��DCP�� Suppose that the Tool class de�nes the method�
Position �Tool��getPosition�� � return interface �
 getPosition��� �

Then Tool��getPosition is replaced by a pure virtual function� and the following
new methods are added�
Position �RectTool��getPosition�� � return interface�
getPosition��� �

Position �OvalTool��getPosition�� � return interface�
getPosition��� �

Position �SelectTool��getPosition�� � return interface�
getPosition��� �

����� Abstraction of common parts
As in the untyped model� no change is necessary for the implementation of mem�
ber functions� since data members are de�ned to be protected and hence mem�
ber functions of any subclass that accessed an abstracted part still have access
through inheritance�

����� Part replacement

In the untyped language model� part replacement does not require any modi��
cation of the code since the objects that can be assigned to the replaced part
are unchanged� However� in a typed language� the part replacement implies a
change in the type declaration of the part� Two problems occur in this case�
First� messages sent to the part might no longer be understood since there may
be no such method known to the part�s new class� Second� wherever the part is
involved in an assignment statement� function call �as a passed parameter�� or
function return �as the returned value�� the part�s new type will no longer be
compatible�

The �rst problem can be solved by supplying� for each method de�ned in the
part�s old class� a corresponding pure virtual function in the part�s new class�
Since each construction subclass now inherits methods from both the part�s new
and old class� it must provide its own method to resolve the ambiguity in favor
of its original �possibly inherited� method�

The second problem requires that objects be converted to the appropriate type
in assignment statements� function calls� and function returns� Note that simple
casting will not work in C�� under multiple inheritance�

Consider what happens when the part class of Screen�s inputTool is changed from
Tool to CanvasTool by part replacement� Suppose that the following methods
were originally de�ned�

void Tool��handleMouseClick�DrawWindow �win� � ��



void Screen��handleMouseClick�DrawWindow �win�

� inputTool �
 handleMouseClick�win��

void Screen��Screen�Tool �t� � inputTool � t� �

To solve the �rst problem� we de�ne a pure virtual function in the CanvasTool
class and a disambiguating method in each construction subclass�

void CanvasTool��handleMouseClick�DrawWindow �win� � ��

void RectTool��handleMouseClick�DrawWindow �win�

�Tool��handleMouseClick�win�� �

void OvalTool��handleMouseClick�DrawWindow �win�

�Tool��handleMouseClick�win�� �

void SelectTool��handleMouseClick�DrawWindow �win�

�Tool��handleMouseClick�win�� �

To solve the second problem� we generate methods to transform the type of
objects fromTool to CanvasTool and from CanvasTool to Tool� Wherever inputTool
either occurs on the right hand side of an assignment� or is passed as a parameter
to a function� or is returned from a function� it is �rst converted to its original
type �Tool�� Wherever inputTool occurs on the left hand side of an assignment
statement� the expression on the right hand side is converted to its new type
�CanvasTool��

Tool �CanvasTool��CTtoT�� � ��

CanvasTool �Tool��TtoCT�� � ��

Tool �RectTool��TtoCT�� � return this� �

CanvasTool �RectTool��CTtoT�� � return this� �

Tool �OvalTool��TtoCT�� � return this� �

CanvasTool �OvalTool��CTtoT�� � return this� �

Tool �SelectTool��TtoCT�� � return this� �

CanvasTool �SelectTool��CTtoT�� � return this� �

void Screen��Screen�Tool �t� � inputTool � t �
 TtoCT��� �

����� Deletion of useless alternation classes
As in the case of the untyped language model� one problem with deleting a
�useless� alternation class is that there may be methods attached to the class�
There is the additional problem that the class name may be used in the static
type declarations of objects�

If there are any methods attached to the useless alternation class� A� their im�
plementations must be distributed to its immediate subclasses unless they are
overridden there� If anywhere in the program an explicit call �i�e�� through the
scope resolution operator ����� to a method A �� m is made� we create a new
method with a unique name� say A m� de�ned for each of A�s immediate sub�
classes� The implementation for A m is the same as for A �� m� Then� every
occurrence of an explicit call to A �� m is replaced with a call to A m�

If there are any variables de�ned of static type A in the program� then we need
to �nd an equivalent substitute type or else keep a class de�nition of A to be used



only to satisfy the type system� If there is an alternation class B with the same
set of derived construction classes as for A� B can serve as a substitute type for A�
In this case� all the member functions which were de�ned for A are now declared
as pure virtual functions in class B� and class A is deleted� Wherever class A
appeared in a type declaration� class B is substituted� Note that in conjunction
with the part replacement transformation there is always such a corresponding
class B�

If there is no such corresponding class B� then A can not be deleted since it must
continue to be used in type declarations� In this case� class A is preserved� but
contains only pure virtual functions� We regard A as a type rather than as a
class�

As an example� consider what happens when the Tool class is deleted in the
transformation from Figure ��PRP to Figure ��Object�equivalent� Suppose the
methods declared in class Tool are these�

virtual void handleMouseClick� DrawWindow � � � ��

virtual Position getPosition�� � ��

virtual CanvasTool �TtoCT�� � ��

All the methods happen to be pure virtual� so there are no implementations to be
distributed� Furthermore� class CanvasTool quali�es as an equivalent substitute
type for class Tool� For each method declared in class Tool a pure virtual method
is declared in class CanvasTool� Everywhere that class Tool is used in a type
declaration it is replaced with class CanvasTool� Finally class Tool can be deleted�

����	 Class and part addition
As in the untyped language case� no changes are necessary for the method im�
plementations�

����
 Part generalization

The problem that occurs with part generalization is similar to one of the problems
that occurs with part replacement� If the part class C of some part is generalized
to a superclass of C� say B� then we must insure that for every method in class C
there is a corresponding method de�ned in classB� This is done by de�ning empty
virtual functions in B wherever necessary� Moreover� as for part replacement�
wherever the part is involved in an assignment statement� function call �as a
passed parameter�� or function return �as the returned value�� the part�s new
type will no longer be compatible� In this case� however� a simple cast will su�ce
since the new class is a superclass of the original�

Note that the PGN transformation indicates that a behavior extension is in order�
Our goal in this work is simply to ensure behavior preservation� The above
transformation achieves this goal� but the resulting code is not desirable from a
software engineering point of view� The inserted cast operations are therefore



seen as a hint to the programmer as to where the behavior of the program should
be extended�

��� Discussion

When comparing the update operations necessary in the two language models� the
di�erences are striking� While in the untyped language model almost no updates
to method implementations are necessary� the programmer working in the typed
language model is faced with numerous problems� For the untyped language
model� we have shown that a schema extension can always be propagated to
the method implementations such that the behavior of the program is preserved�
However� for the typed language model a behavior preserving update mechanism
could only be outlined and is far from being satisfactory� The major reason for
this is that the type system poses severe restrictions on how updates can be
performed� Without semantic information on what the update�s intentions are�
it is not always possible to change the typing speci�cations in a reasonable way�

The above comparison underlines the popularity of untyped languages for pro�
totyping purposes� Their ability to exibly adapt themselves to di�erent class
structures gives them a major advantage over typed languages in environments
where structural changes occur frequently� For typed languages� the propagation
pattern approach �LXSL��� LHSLX��� achieves the same exibility by decou�
pling the programs from the class structure� Consequently� any change in the
class structure a�ects the propagation pattern only marginally�

� Related Work

In the software refactory project at the University of Illinois� Opdyke and John�
son are investigating methods for refactoring object�oriented systems to support
reuse �OJ��� Opd���� Refactorings are de�ned as restructuring plans and are
primarily used to aid the iterative design of an application framework� A feature
of refactorings common to our approach is that they ��� also preserve behavior
and ��� can be performed by applying a small set of basic refactorings�

Delcourt and Zicari designed a tool� called Integrity Consistency Checker �ICC��
which ensures structural consistency while performing schema updates �DZ����
The ICC guarantees that only those updates are performed that do not introduce
any structural inconsistency� However� it allows behavioral inconsistencies that
do not result in run�time errors� Nevertheless� the ICC is a very useful tool
as a �rst component in the evolution process� In contrast� our tool guarantees
behavioral consistency by automatically adapting programs to the new schema�



� Conclusion

We have presented a code update mechanism for both CLOS and C�� that can
be used to automate the propagation of changes from a modi�ed schema to its
a�ected programs� The mechanism guarantees not only that the schema and
the programs stay structurally consistent� but also that the behavior of the old
programs is consistently preserved after the schema update�

The ease with which CLOS programs can be adapted to extended schemas stands
in striking contrast to the complexity involved in adapting C�� programs�
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