
AppDetector: A Tool Prototype for Visualizing Java
Code Dependencies on Relational Databases

Sai Ravindran and Paul L. Bergstein

Dept. of Computer and Information Science
University of Massachusetts Dartmouth

 Dartmouth, MA

Abstrac t - Modern tools have simplified the
development of the enterprise applications by bridging
gaps across various technologies like file systems,
relational databases, messaging, and web services.
However, the interaction between these various layers
is not sufficiently captured by the current generation
of IDE (Integrated Development Environment). Our
idea is to develop a framework that will help
programmers in bridging the gap between different
technologies used in an enterprise application.
However, this is very substantial initiative and we
report here a simple prototype, called AppDetector
that we have developed for the Java language and
relational database interactions as a proof of concept.

Keywords: Software maintenance, software
visualization tools.

1 Introduction
Modern tools have simplified the development of the
enterprise applications by bridging gaps across various
technologies like file systems, relational databases,
messaging, and web services. However, this has also
led to challenges in maintenance and enhancement of
enterprise applications. An enterprise application
usually consists of a web layer, the business logic and
relational database, often enhanced with frameworks
like Struts and Hibernate for web and persistence.
However, the interaction between these various layers
is not sufficiently captured by the current generation of
IDE (Integrated Development Environment). For
example, the Eclipse IDE provides support for syntax
and debugging of java classes, but it does not evaluate
the relationship with the database, or how a particular
java method interacts with database tables and
columns. For example, it does not flag a warning where
an SQL query might be formed incorrectly. Similarly,
the Visual Studio .NET would not flag a warning if an
XPath applied on an XML document does not
correspond to a valid value according to the schema.
This makes it very difficult to maintain and enhance
applications written by a third party, since a change in

code may break some other layer, and the problem will
become known only after extensive testing.

Our idea is to develop a framework that will help
programmers in bridging the gap between different
technologies used in an enterprise application.
However, this is very substantial initiative and we
report here a simple prototype, called AppDetector,
that we have developed for the Java language and
relational database interactions as a proof of concept.
AppDetector helps the programmer to visually map the
Java code blocks and database interactions. The
technique of parser generators is used for code analysis
since it may be easily adopted for other languages. The
AppDetector scans java source code, API’s, schemas,
and other information and identifies application
components such as functions, variables, procedures,
database tables & columns, and more. Components are
organized in a centralized, standards-based catalog.
Our prototype currently supports only the Java
programming language and relational databases.
Enterprise applications written using the Java language
are quite common and they access databases through
the JDBC API. This API is a simple layer that directly
sends the SQL queries (Select, Insert, Delete and
Update) to the database. Hence we have chosen these
technologies for building our proof of concept. This
will enable us to test this tool with real-world
programmers.

Future extensions may enhance the application for
different technologies and then it can be developed as a
framework with bindings for various languages, like
C#, PHP and Ruby. AppDetector then would analyze
each component to map dependencies within
applications, between applications and their underlying
databases, and across multiple applications, including
integration middleware to uncover dependencies and
relationships that would be nearly impossible to find
manually. AppDetector would then work like a search
engine constantly gathering and updating information
to create a living, searchable map of the complex inner-
workings of your applications and databases.

2 Background and Motivation
Our AppDetector is based on the following scenario.
Suppose a programmer has a Java enterprise
application which uses relational database for data
persistence, and the Eclipse IDE is being used for
development. The programmer wants to make some
changes to a method and would like to know the effects
of this change on rest of the code. So the programmer
uses the “Call Hierarchy” feature of the Eclipse IDE to
get the dependencies of other methods and classes on
this method.

Now the programmer wants to change an SQL query
being used in the program, for example, a column ‘date
of birth’ of Table ‘Student’ to a column ‘place of
birth’. This is not easy because there may be methods
which are dependent on this column but are not related
to the current method containing this SQL query
through the call hierarchy. Therefore the programmer
has to manually inspect all the classes and check for
methods referencing the column ‘date of birth’.
Sometimes the string search of an editor may be useful
but it is not helpful in operations like removing the
column or when a query is dynamically constructed
inside the code, e.g. if the query is constructed by
concatenation of strings like “select date_”+” of_birth
from person”. In this case using the editor to search for
column ‘date_of_birth’ will fail. To solve this problem
the programmer needs a tool to easily visualize the
intra-application dependencies just like the Call
Hierarchy feature, i.e. an application which helps the
programmer to find out the table or columns in a
relational database referenced from methods in a
programming language.

3 Results
Our AppDetector is built using ANTLR [1] and a
public domain java grammar [2] for ANTLR to parse

the java source code and build an abstract syntax tree.
The JDBC API is used to extract metadata from the

database accessed by the java code we are analyzing.

The AppDetector then attempts to figure out the
dependencies between the two different technologies,
using the public domain ZQL parser [3] to help analyze
java strings potentially containing SQL. The high-level
architecture of the AppDetector protoype is shown in
Figure 1.

The Java Analyzer first parses the artifacts (classes and
methods) of the programming language and stores
information about these artifacts in its database. It also
detects all the static strings inside corresponding
methods and maps these strings to those particular
methods. At this point, AppDetector has a list of
classes, methods related to them, and static strings
related to every method.

The Database Detector uses the JDBC API to extract
all the tables and column names from the database used
in the enterprise application. The input for this
component is the JDBC URL of the database and
credentials required to extract its metadata.

The static strings collected while parsing the source
code may be SQL syntax containing table and column

Database
Java

Application

Java
Analyzer

Database
Detector

Resolver

AppDetector

JDBC Bridge

Figure 1: High-level Architecture of AppDetector Application.

names or they may be regular strings. So the Resolver
component runs an intelligent matcher that tries to map
the static strings found in the methods against database
tables and column names. The Resolver verifies which
strings belong to SQL statements and maps the
database tables and columns contained in the SQL
statement to the methods containing these strings. Any
such matches indicate the relationship between the
database table/column and the method, which is
visually shown by the AppDetector tool in a similar
way as the Call Hierarchy. This enables the
programmer to immediately see which methods are
dependent on a particular database table or column.

The user interface component displays the relationships
between tables/columns and the methods detected by
Application Detector. It also provides a feature to view
the relationships so that the programmer can easily find
methods depending on a particular column. We have
tested our prototype on several student written sample
applications and found it to be effective. Figures 2-4
show screen shots from the analysis of a sample stock
trading application.

Figure 2: Input Data Screen.

On the Input Data Screen, the user enters a java source
file name and database properties which need to be
processed and clicks on the ‘Start’ button to start
processing. The user can exit from the application by
clicking on ‘Exit’ button.

Figure 3: Resources Screen.

After processing the source code and database,
resources are shown to the user. The screen displays
the resource Id, resource name, resource type and
number of references detected by the AppDetector
business logic. User can find out the details of
references by clicking on Resource Id.

Figure 4: References Screen.

The References Screen displays all the references of
the selected resource. The screen displays Referrer
name, Resource type of referrer, Referred name,
Resource Type of the Referred and relationship
between referrer and referred.

As shown in the above screen, AppDetector detects the
mapping between Java method ‘findStock (Stock)’ in
our Sample class StockDAO.java and the table ‘Stocks’
and columns ‘StockName’, ‘StockCode’, ‘Exchange’
and ‘StockId’.

4 Related Work
There is a large body of work on software visualization
and also on database visualization. There is also a good
deal of work on reverse engineering of databases and
CASE tools that support reverse engineering with
visualization techniques. However, we are not aware of
any other system designed to support the development
and maintenance of software through the visualization
of program code dependencies on the database.

5 Conclusion and Future Work
Many researchers have investigated to resolve the
dependencies between different technologies involved
in an enterprise application. The AppDetector utility
significantly enhances visibility between java and
relational databases. The principal benefits are the
ability to detect the dependencies between program
code and databases used in enterprise applications.
Since AppDetector stores the dependency information
in its own database, it would be easy to detect
dependency changes and flag them for the user.

We have implemented AppDetector as a utility using
Grammar Parsing technology (ANTLR), SQL Parser
(ZQL) and JDBC driver. For this project, the sample
application is written to extract out the dependencies
between java and relational database as proof of
concept. A complete application implementation is left
for the future work. We have tested our implementation
on a sample application and found it to be highly
effective. However, we are still working on
improvements in several areas.

There are many enhancements required to make
AppDetector a really effective tool. The AppDetector
can be designed as a web application and can be setup
to analyze all code-bases that an organization has in its
various repositories. This search engine can be made
accessible via a web browser interface to access
enterprise applications. Thus it will be easy for
programmers across the organization to view the
dependencies between various applications and it
provides various opportunities of reuse of code.

This prototype can be extended to various technologies
so the programmer can view the dependencies between
various technologies. For example, it can analyze the
java snippets used in the JSP and then find the JSP
pages related to the code. In a typical J2EE
environment, programmer can detect the dependencies
between various layers like presentation (JSP),
business logic code and relational database. If all these
dependencies can be shown through a visual tool, the
task of maintaining and enhancing applications can be
made very easy.

6 References
[1] An Introduction To ANTLR (By Terence Parr).
http://www.cs.usfca.edu/~parrt/course/652/lectures/antl
r.html

[2] Java Grammar
http://www.antlr.org/grammar/java

[3] Zql: a Java SQL parser
http://www.experlog.com/gibello/zql/

[4] Sun Microsystems, “Getting Started with the
JDBC API,” Sun Developer Network (SDN) Products
and Technologies, Technical Topics, September 1999.
http://java.sun.com/j2se/1.3/docs/guide/jdbc/getstart/G
ettingStartedTOC.fm.html

[5] Sun Microsystems, “JDBC Overview,” Sun
Developer Network (SDN) Products and Technologies,
Technical Topics.
http://java.sun.com/products/jdbc/overview.html

[6] SWT: The Standard Widget Toolkit
 http://www.eclipse.org/swt/

