
An ODBC CORBA-Based Data Mediation Service

Paul L. Bergstein
Dept. of Computer and Information Science

University of Massachusetts Dartmouth, Dartmouth MA
pbergstein@umassd.edu

Keywords: Data mediation, data integration, ODBC

Abstract

A serious problem facing many organizations
today is the need to use information from multiple
data sources that have been developed separately.
Conflicts in the structure and semantics of these
disparate data sources create major obstacles to
effective use. We have previously described our data
mediation approach to this problem and our
implementation of an RMI-based mediation service
with JDBC drivers. Here we report our
implementation of a CORBA-based mediation service
with ODBC drivers, making mediation convenient for
a wider class of applications. An application can
switch to any data source registered with the mediator
simply by plugging in our drivers and specifying the
mediation service as the data source. No other code
needs to be rewritten.

1. Introduction

A serious problem facing many organizations
today is the need to share information among
systems that have been developed separately.
The information sharing may be within the
organization or with external partners. In either
case, the heterogeneity of the data creates
major obstacles to effective sharing of
information. Conflicts may exist in both the
structure and the semantics of the data
involved. Furthermore, the structure and
semantics of a data source may change over
time.

Historically, there have been a variety of
approaches to this problem [1-4]. The simplest
approach is to build a messaging system for
each pair of data sources that wish to exchange
data. The messaging system translates data t o
and from the agreed message format at each

end. However this approach doesn’t scale well if
there are many systems that want to participate
in the sharing, since a messaging system is
needed for each pair. There is another problem
as well. The metadata documenting the
structure and semantics of an enterprise’s data
that is required to build the messaging system is
a very valuable resource, but it may get lost in
the translating code.

Another approach is to define standards. The
standardization approach takes several forms.
For example, we could standardize the data
sources, making the data homogeneous. While
seemingly simple, this approach has proven
impossible in practice. Since different data
sources are designed to be used in different
environments, they are heterogeneous for good
reasons, and nobody can agree on a common
standard.

Standardizing the message format is another
possibility. This approach is not new, but has
recently been receiving widespread attention in
the form of defining standard DTD’s for
exchanging data in XML format [5]. Given the
level of effort in this direction, we expect t o
see quite a bit of success, especially within
limited and well defined domains. On the other
hand, prior attempts to define standard message
formats have generally failed due to lack of
agreement on the format’s structure and
semantics. Note that agreement to use XML
does not solve this problem. It is still necessary
to agree on the structure (what tags to use) and
the semantics (what the tags mean). Also, two
systems exchanging information through a
standard message format may lose information
and/or precision during the exchange that could
have been preserved using a custom format.

The data mediation approach relies on a
common ontology that can be used to describe
the structure and semantics of each of the
systems that wish to participate in the
information sharing. A data mediator uses these
descriptions to perform any necessary
translation between systems exchanging
information. In a variation of this approach, a
shared view is created, and the mediator
translates queries written against the shared
view. Mediation has the advantages that there is
no need to agree on standard formats, the
metadata is made explicit (so it may be reused),
and translations only occur where the structure
or semantics between two systems differ. In
many situations, we believe that mediation will
prove to be a better approach than
standardization.

Our ODBC mediation service uses a layered
architecture as shown in Figure 1. In the next
section we will summarize the lower layers and
core workings of our data mediator. Then we
will describe the CORBA service and ODBC
drivers which are built on top of the mediation
functionality. We have previously reported on
the RMI service and JDBC drivers[6]. The
architecture for applications using the mediator
is shown in Figure 2.

ODBC Drivers JDBC Drivers

CORBA Mediation
Service

RMI Mediation
Service

Data Mediator

Data Source
Metadata
(XML)

Conceptual
Schema

Conversion
Functions

Figure 1

2. Background

Our data mediator was originally based on the
following scenario: Suppose a user who knows
the schema of only their local database, System
A, wishes to retrieve information from a
foreign database, System B. They write a query

against the schema of System A, but indicate
that they would like to use System B as the data
source. The mediator translates the query
against System A into one or more queries
against System B, executes the queries, and
translates the results into the local format of
System A.

In our current work we consider a slightly
different scenario: Suppose an application using
ODBC (or JDBC [6]), has been written to use a
particular data source, System A, but we now
want to use a different source, System B, with a
different structure or semantics. We accomplish
the change simply by plugging in our Mediator
ODBC (or JDBC) driver in place of the System
A driver. The application can now use the new
data source without rewriting any code. Notice
that plugging in the System B driver will only
work if Systems A and B have identical
structure and semantics, otherwise mediation is
required.

2.1 Conceptual Schema

In our implementation, the common
ontology is expressed as a shared conceptual
schema, which includes both ordinary classes
(e.g. University, Student) and domain classes
(e.g. Money, Date). The attributes of ordinary
classes have domain classes as their types. For
example, Student might have an attribute called
graduation-date with type Date. For each
domain class, we specify subclasses (sub-
domains) for the known representations. When
a new data source is registered with the
mediator, it will typically be necessary to add
sub-domains for data representations that are
unique to that data source.
The conceptual schema is never populated in
our system. It is used only as a reference for
defining the structure and semantics of the
actual data sources. In particular, the conceptual
schema is not used as an intermediate data
representation when transferring data from one
source to another. Instead, the mediator
synthesizes a plan for direct conversion
between the data sources based on their
structures and semantics as defined by their
individual mappings to the conceptual schema.

Figure 2

ODBC
Application

JDBC
Application

ODBC
Driver Manager

Mediator
JDBC Driver

Mediator
ODBC Driver

Mediation
Service

Data
Source

Data
Source

Data
Source

Metadata
(XML)

Client

Server

Metadata
(XML)

Metadata
(XML)

IIOP RMI

2.2 Conversion Functions

The mediator uses a repository of functions
for converting between representations within a
domain. In our (java) implementation all
conversion functions have the same interface.
They take a java Properties object as
parameter, and return a Properties object as the
result, so they naturally support many-to-many
mappings, e.g. (latitude, longitude) to (point,
bearing, range). The repository is implemented
as a java class with methods for each
conversion function. The repository uses java
introspection to search for suitable conversion
functions.

2.2 Metadata

In order to register a data source with the
mediator, a description of the data source (its
metadata) must be supplied in XML format. For
each data source there is a separate XML file
prepared by someone familiar with that data
source. Currently, the XML files are prepared
manually, but we plan to develop tools to help
generate these files. The metadata includes
information required to connect to the data
source as well as mappings to the conceptual
schema that define the structure and semantics
of the data source. We use XML1 to map data
elements of real databases onto attributes of
ordinary classes in the conceptual schema. Each
mapping to an attribute of an ordinary class
includes the subdomain of the data element.

In the simplest case each data element of
System A corresponds one-to-one with an
element of the conceptual schema, which in
turn corresponds one-to-one with an element of
System B. If the conceptual schema contains an
ordinary class called Employee with a salary
attribute of type Salary, and System A has a
Worker relation with a pay-rate attribute, then
the XML file for System A would map
Worker/pay-rate to Employee/salary and it
would also map pay-rate to one of the
subdomains of Salary such as Annual/USDollars
or Monthly/Euros2. Similar mappings from

1 For brevity, in this paper we mostly describe
mappings without showing the XML syntax since the
XML is trivial but verbose.
2 In theory, the issues of currency units and frequency
of payment should be separate, but we combine them

System B provide the mediator with the
information needed for translation.

Mappings between the conceptual schema
and an actual database are not always one-to-
one. Suppose that in the conceptual schema
Professor’s have a phone-number attribute of
type PhoneNumber, but in the actual database
Instructor’s have area-code, exchange, and
extension attributes. For the mediator to work,
the PhoneNumber domain class must have a
subdomain, say ACEE, for the area-
code/exchange/extension representation of
phone numbers, with attributes corresponding
to the three parts of a phone number. Each of
the area-code, exchange, and extension
attributes is mapped to the Professor/phone-
number attribute (and also to the appropriate
attribute of the ACEE subdomain). The
mapping (from actual to conceptual) is many-
to-one.

If another database uses the same
representation of phone numbers, so we have
mappings like:

A: (code, exchg, ext) ‡ phone-number
B: (area, exg, extension) ‡ phone-number

 then the translation will not use conversion
functions (even if the data elements have
different names). In other cases, such as:

A: (latitude, longitude) ‡ position
B: (point, bearing, range) ‡ position

a conversion function is required.

Sometimes data source isn’t a very good
match for the conceptual schema. This is likely
to happen, for example, when a new data source
is added after the conceptual schema has been
completed. Consider, for example, a conceptual
schema that has entity classes for full-time
students and part-time students, and a data
source with graduate students and undergraduate
students. In this case we map attributes, e.g.
gpa, from both graduate and undergraduate
students to attributes of both full-time and part-
time students. Additionally, we supply
conditions that determine, for example, which
graduate students are part-time and which are
full-time. These conditional mappings [5] are

for the sake of simplicity in our implementation, in
order to focus on more interesting concerns.

specified in both directions (to and from the
conceptual schema).

2.3 Data Mediator

The data mediator manages the conversion
function repository, the conceptual schema,
and the data source metadata. It is responsible
for synthesizing query and translation plans.
When a query against the schema of System A
is executed using System B as the data source,
the mediator translates the query against
System A into one or more queries against
System B, executes the queries, and translates
the results into the local format of System A.
The details of our algorithm are beyond the
scope of this paper, but will be reported
elsewhere.

The mediator is implemented entirely in
Java and uses JDBC to access the desired data
source. Therefore, the mediator can be used t o
exchange data between any data sources that
have JDBC drivers available, including most
relational databases, all ODBC data sources (via
a JDBC/ODBC bridge driver), and XML data
(using an available XML JDBC driver).

3. CORBA Mediation Service and
ODBC Drivers
The CORBA mediation service is a thin

wrapper around the data mediator. The
interface to the service consists of a single
function that takes an SQL query, the schema
name against which the query is written, and the
name of the data source to be used to retrieve
the data. It uses the mediator to produce a result
set in the format of the specified schema. The
service can utilize any JDBC data source
(including any ODBC data source via the
JDBC/ODBC bridge driver) that has been
registered with the mediator.

Our ODBC drivers are implemented in C on
linux for unixODBC and are designed for easy
portability to other platforms. The use of
CORBA allows us to easily access the mediator
functionality implemented in Java from the
ODBC drivers written in C. So far, our
implementation is incomplete but we have
implemented enough to demonstrate proof of
concept. Specifically, we have working
implementations of the SQLAllocHandle,

SQLConnect, SQLSetStmtAttr, SQLBindCol,
SQLExecDirect, SQLFetch, SQLFreeHandle,
and SQLDisconnect driver API functions.

Under unixODBC, the drivers are configured
with entries in two configuration files. In
odbcinst.ini, an ODBC driver is mapped to its
library, e.g:

[MEDIATOR]
driver = /usr/lib/libmediator.so

An entry in the system or user’s odbc.ini file
maps a data source name (DSN) to a driver, and
supplies values for whatever other attributes are
required by the driver. In the case of the
mediator driver, the server, port, schema name,
and data source name are required, e.g:

[A2B]
driver = MEDIATOR
server = sebago.cis.umassd.edu
port = 1956
schema = sysA
datasource = sysB

The schema and datasource are names of data
sources that have been registered with the
mediator. In principle, a data source could be
registered with the mediator under any arbitrary
name, but in order to avoid name collisions we
use names similar to:

edu.umassd.cis.db1.
Queries and result sets are in the form of the
specified s c h e m a , while the specified
datasource is used as the actual data source.

When requesting a connection to the
mediator, the username and validation strings
that are supplied to SQLConnect must be a valid
username/password pair for the datasource
specified in the configuration file. We don’t see
any need for password protection of the
mediator service itself, though we could easily
add such protection if the need arises. As it
stands, clients cannot access information
through the mediator that they would not
otherwise have access to, although the mediator
will make the information accessible through a
familiar interface and supply it in a much more
convenient format.

Our SQLExecDirect implementation uses the
mediation service to execute queries and
produce result sets in the format of the
specified schema.

Using our ODBC drivers, changes in data
source are almost completely transparent t o
client applications. If we want to modify an
application designed to use a particular data
source so that it uses a different data source, it
is only necessary to plug in our drivers and add
the appropriate entries to the ODBC
configuration. No other C/C++ code or SQL
queries need to be rewritten. Using these drivers
it also becomes trivial for application
developers to allow users to select a data source
of their choice at runtime (assuming the data
sources have been registered with the data
mediator).

4. Conclusions
There are numerous other researchers [1-4,

7-12] who have investigated mediation as a way
of resolving structural and semantic conflicts
between data sources. However, as far as we can
determine, there are no previous reports of an
ODBC based mediation service as described
here.

The addition of the mediation service and
ODBC driver layers to our architecture
significantly enhances the utility of our
mediation technology. The principal benefits
are the ability to easily change the data source
used by an ODBC application, and the ability t o
easily offer the user a choice of data sources at
runtime.

We have tested our implementation on a
small number of sample applications and found
it to be highly effective. However, we are still
working on improvements in several areas. We
are working actively to complete a fully ODBC
compliant set of drivers. We are also working
to improve the underlying mediation
technology.

Currently our mediator is able to successfully
mediate most simple SQL queries that don’t
involve joins or sub-queries. We are currently
working on enhancing the mediator so that it
can handle queries involving joins. We are
particularly interested in cases where relations
have been decomposed differently in the local
and foreign databases, so that the joins required
in the foreign database are different than those
specified for the local database. We are also
working to improve the handling of where
clauses in the mediator.

5. References

[1] E. Sciore, M. Siegel, and A. Rosenthal, “Using
Semantic Values to Facilitate Interoperability
Among Heterogeneous Information Systems”,
ACM Transactions on Database Systems, vol.
19(2), June 1994, pp. 254-290.

[2] G. Wiederhold, “Mediators in the Architecture of
Future Information Systems”, Readings in
Agents , Eds. M. N. Huhns and M. P. Singh, San
Francisco, CA, USA: Morgan Kaufmann, 1997,
pp. 185-196.

[3] P. B. Lowry, “XML data mediation and
collaboration: A proposed comprehensive
architecture and query requirements for using
XML to mediate heterogeneous data sources and
targets,” 34th Annual Hawai'i International
Conference On System Sciences (HICSS), Mauii,
Hawaii, January 3-6, 2001, pp. 2535-2543.

[4] C. H. Goh, S. Bressan, S. Madnick, and M.
Siegel, “Context interchange: new features and
formalisms for the intelligent integration of
information”, ACM Transactions on Information
Systems, vol. 17(3), July 1999, pp. 270.

[5] P. Bergstein and V. Shah, “Conditional Mapping
in Data Mediation”, Proceedings of the
International Conference on Information and
Knowledge Engineering (IKE 2004). June 21-24,
2004, Las Vegas, Nevada, USA. CSREA Press
2004, ISBN 1-932415-27-0.

[6] P. Bergstein and A. Sikder, “A JDBC Data
Mediation Service”, Proceedings of the
International Conference on Information and
Knowledge Engineering (IKE 2005), pages 45-50,
June 20-23, 2005, Las Vegas, Nevada. CSREA
Press, ISBN 1-932415-81-5.

[7] L. S. Seligman and A. Rosenthal, “XML’s Impact
on Databases and Data Sharing”, IEEE Computer,
vol. 34(6), 2001, pp. 59-67.

[8] G. Neugebauer, “GLUE – Using Heterogeneous
Sources of Information in a Logic Programming
System”, Proceedings of the KI’97 Workshop on
Intelligent Information Integration, Freiburg,
1997.

[9] L. Serafini and F. Giunchiglia and F. Mylopoulos
and P. Bernstein, “The Local Relational Model: A
Logical Formalization of Database Coordination”,
Proceedings of CONTEX'03, 2003.

[10] H. Wache and H. Stuckenschmidt, “Practical
Context Transformation for Information System
Interoperability”, Lecture Notes in Computer
Science, vol. 2116, 2001, p. 367.

[11] B. Ludäscher, A. Gupta, and M. Martone,
“Model-Based Mediation with Domain Maps”,
17th International Conference on Data
Engineering (ICDE ’01) , Washington-Brussels-
Tokyo, April 2001.

[12] C. Baru, A. Gupta, B. Ludäscher, R. Marciano,
Y. Papakonstantinou, P. Velikhov, and V. Chu,
“XML-based Information Mediation with MIX”,
Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data:
SIGMOD '99, Philadelphia, PA, June 1-3, 1999,
SIGMOD Record, vol. 28(2), 1999, pp. 597-599.

