
Conditional Mapping in Data Mediation

Paul L. Bergstein and Vishal Shah
Dept. of Computer and Information Science

University of Massachusetts Dartmouth, Dartmouth MA
{pbergstein | g_vshah}@umassd.edu

Abstract

A serious problem facing many organizations
today is the need to share information among systems
that have been developed separately. Conflicts in the
structure and semantics of these disparate data
sources create major obstacles to effective sharing.
One approach to solving this problem is data
mediation. The data mediation approach relies on a
common ontology that can be used to describe the
structure and semantics of each of the systems that
wish to participate in the information sharing.

In our implementation, the common ontology is
expressed as a shared conceptual schema, and we use
XML to map data elements of real databases onto the
conceptual schema. We have found that these
mappings sometimes depend on the value of a data
element or the value of some other element of the same
tuple. Interestingly, the mapping may also depend on
the values of data elements in the (unpopulated)
conceptual schema.

1. Introduction

A serious problem facing many organizations
today is the need to share information among
systems that have been developed separately.
The information sharing may be within the
organization or with external partners. In either
case, the heterogeneity of the data creates
major obstacles to effective sharing of
information. Conflicts may exist in both the
structure and the semantics of the data
involved. Furthermore, the structure and
semantics of a data source may change over
time.

Historically, there have been a variety of
approaches to this problem [1-4]. The simplest
approach is to build a messaging system for

each pair of data sources that wish to exchange
data. The messaging system translates data t o
and from the agreed message format at each
end. However this approach doesn’t scale well if
there are many systems that want to participate
in the sharing, since a messaging system is
needed for each pair. There is another problem
as well. The metadata documenting the
structure and semantics of an enterprise’s data
that is required to build the messaging system is
a very valuable resource, but it may get lost in
the translating code.

Another approach is to define standards. The
standardization approach takes several forms.
For example, we could standardize the data
sources, making the data homogeneous. While
seemingly simple, this approach has proven
impossible in practice. Since different data
sources are designed to be used in different
environments, they are heterogeneous for good
reasons, and nobody can agree on a common
standard.

Standardizing the message format is another
possibility. This approach is not new, but has
recently been receiving widespread attention in
the form of defining standard DTD’s for
exchanging data in XML format [5]. Given the
level of effort in this direction, we expect t o
see quite a bit of success, especially within
limited and well defined domains. On the other
hand, prior attempts to define standard message
formats have generally failed due to lack of
agreement on the format’s structure and
semantics. Note that agreement to use XML
does not solve this problem. It is still necessary
to agree on the structure (what tags to use) and
the semantics (what the tags mean). Also, two
systems exchanging information through a
standard message format may lose information

and/or precision during the exchange that could
have been preserved using a custom format.

The data mediation approach relies on a
common ontology that can be used to describe
the structure and semantics of each of the
systems that wish to participate in the
information sharing. A data mediator uses these
descriptions to perform any necessary
translation between systems exchanging
information. In a variation of this approach, a
shared view is created, and the mediator
translates queries written against the shared
view. This approach has the advantages that
there is no need to agree on standard formats,
the metadata is made explicit (so it may be
reused), and translations only occur where the
structure or semantics between two systems
differ. In many situations, we believe that
mediation will prove to be a better approach
than standardization.

In the next section we will describe some of
our experiences in implementing a prototype
data mediator for relational databases. Then we
will focus on a feature we have recently
implemented called conditional mapping.

2. Background

In our implementation, the common
ontology is expressed as a shared conceptual
schema, which includes both ordinary classes
(e.g. University, Student) and domain classes
(e.g. Money, Date). The ordinary classes have
domain classes as their attribute types. For each
domain class, we specify subclasses (subdomains)
for the known representations. The mediator
uses a repository of functions for converting
between representations within a domain.

We use XML1 to map data elements of real
databases onto attributes of ordinary classes in
the conceptual schema. Each mapping to an
attribute of an ordinary class includes the
subdomain of the data element. For each data
source there is a separate XML file prepared by
someone familiar with that data source.

Our data mediator is based on the following
scenario: Suppose a user who knows the schema
of only their local database, System A, wishes

1 For brevity, in this paper we mostly describe
mappings without showing the XML syntax since the
XML is trivial but verbose.

to retrieve information from a foreign database,
System B. They write a query against the
schema of System A, but indicate that they
would like to use System B as the data source.
The mediator translates the query against
System A into one or more queries against
System B, executes the queries, and translates
the results into the local format of System A.

In the simplest case each data element of
System A corresponds one-to-one with an
element of the conceptual schema, which in
turn corresponds one-to-one with an element of
System B. If the conceptual schema contains an
ordinary class called Employee with a salary
attribute of type Salary, and System A has a
Worker relation with a pay-rate attribute, then
the XML file for System A would map
Worker/pay-rate to Employee/salary and it
would also map pay-rate to one of the
subdomains of Salary such as Annual/USDollars
or Monthly/Euros2. Similar mappings from
System B provide the mediator with the
information needed for translation.

From the beginning, we realized that the
mappings between the conceptual schema and
an actual database would not always be one-to-
one. Suppose that in the conceptual schema
Professor’s have a phone-number attribute of
type PhoneNumber, but in the actual database
Instructor’s have area-code, exchange, and
extension attributes. For the mediator to work,
the PhoneNumber domain class must have a
subdomain, say ACEE, for the area-
code/exchange/extension representation of
phone numbers, with attributes corresponding
to the three parts of a phone number. Each of
the area-code, exchange, and extension
attributes is mapped to the Professor/phone-
number attribute (and also to the appropriate
attribute of the ACEE subdomain). The
mapping (from actual to conceptual) is many-
to-one.

If another database uses the same
representation of phone numbers, so we have
mappings like:

A: (code, exchg, ext) ‡ phone-number
B: (area, exg, extension) ‡ phone-number

2 In theory, the issues of currency units and frequency
of payment should be separate, but we combine them
for the sake of simplicity in our implementation, in
order to focus on more interesting concerns.

 then the translation will not use conversion
functions. In other cases, such as:

A: (latitude, longitude) ‡ position
B: (point, bearing, range) ‡ position

a conversion function is required. In our (java)
implementation all conversion functions have
the same interface. They take a java Properties
object as parameter, and return a Properties
object as the result, so they support many-to-
many conversions.

We also support many-to-many mappings
between conceptual and actual schemas.
Suppose the conceptual schema has latitude and
longitude3 and the actual database has point,
bearing, and range. Now the mapping is many-
to-many even before the other actual schema is
involved.

3. Conditional Mapping

Notice that the many-to-one and many-to-
many mappings discussed above involve only
logical and’s. We have (latitude ‡ position)
and (longitude ‡ position) in our XML file.
Recently, we have been investigating problems
that occur when an actual schema isn’t a good
match for the conceptual schema. This is likely
to happen, for example, when a new data source
is added after the conceptual schema has been
completed. We soon discovered that we needed
the equivalent of logical or’s as well.

 Consider a conceptual schema with separate
classes for graduate and undergraduate students;
a database, A, with the same structure as the
conceptual schema; and a database, B, with a
single table for all students. If a user executes a
simple query such as “select gpa from student”
written according to schema B with database A
as the data source, the mediator simply runs two
queries against database A and combines the
results: “select gpa from g_student” and “select
gpa from u_student”.

The trouble arises when we try to execute a
query such as “select gpa from u_student”
written according to schema A with database B
as data source. The mediator needs to add a
where clause when it translates the query, but

3 This is a stretch to come up with an example. It
would be more appropriate for the conceptual schema
to have simply position, with latitude/longitude one of
the possible representations.

the mappings discussed up until now are not
sufficient to support the translation. What we
need to express is that in database B student
maps either to g_student or u_student
depending on the student’s degree program. In
our implementation we accomplish this by using
mappings (in XML) to express the following
two rules:

(student/gpa ‡ u_student/gpa
when degree = BS or BA)

(student/gpa ‡ g_student/gpa
when degree = MS or MA or PHD).

In this example there are two mutually
exclusive one-to-one mappings. If database B
u s e d t h e area-code/exchange/extension
representation of phone numbers and the
conceptual schema had simply phone, we would
have two mutually exclusive three-to-one
mappings expressed by the following 6 rules:

(student/area-code ‡ u_student/phone
when degree = BS or BA)

(student/exchange ‡ u_student/phone
when degree = BS or BA)

(student/extension ‡ u_student/phone
when degree = BS or BA)

(student/area-code ‡ g_student/phone
when degree = MS or MA or PHD)

(student/exchange ‡ g_student/phone
when degree = MS or MA or PHD)

(student/extension ‡ g_student/phone
when degree = MS or MA or PHD)

Next, suppose that the conceptual schema
has a single student class, so that it matches
database B instead of database A. Now all of the
mappings to the conceptual schema become
unconditional. All undergraduate students map
to student and all graduate students map t o
student, yet the mediator still needs to add a
where clause when it translates the query “select
gpa from u_student” written according t o
schema A with database B as data source.

Our solution is to use two kinds of
conditions. Whereas we previously thought of
mappings as simply between elements of the
actual and conceptual schemas, we now view
them as to and from the conceptual schema, and
we specify separate conditions on mappings in
the to and from directions in our XML files. In
this example, we only need from conditions. It
is interesting to observe that we are specifying

conditions on data in the conceptual schema
(expressed in terms of the actual schema) even
though the conceptual schema is purely
conceptual, i.e. it is never populated.

When writing a query using schema A to get
data from source B, the mediator uses the to
conditions from B’s mappings and the from
conditions from A’s mappings to formulate a
where clause in the query executed against
database B4. Both to and from conditions are
written only in terms of the actual schema
being mapped, so each individual doing the
mapping only needs to know their own schema
and the conceptual schema.

So far we have seen examples that specify
conditions on mappings either in the t o
direction or the from direction, but in some
cases it is necessary to specify conditions in
both directions. Consider a conceptual schema

4 In some cases, a where clause is not sufficient, and
the mediator must filter data as it translates into the
format of schema A.

that has full-time students and part-time
students, and an actual schema with graduate
students and undergraduate students. We would
need the mappings in Listing 1, given in XML
syntax.

4. Conclusions

There are numerous other researchers [1-10]
who have investigated mediation as a way of
resolving structural and semantic conflicts
between data sources. However, as far as we can
determine, there are no previous reports of
conditional mappings as described here. The
implementation of conditional mapping has
greatly increased the number of queries that our
mediator can handle correctly, and we are now
able to successfully mediate most simple SQL
queries that don’t involve joins or sub-queries.

<mapping>
 <actual class=“g_student” attribute=“gpa” />
 <conceptual class=“ft_student” attribute=“gpa”>
 <domain class=“zero2four” attribute=“score” />
 </conceptual>
 <to-condition>
 status = ‘regular’
 </to-condition>
 <from-condition>
 degree = ‘MA’ or degree = ‘MS’
 or degree = ‘PHD’
 </from-condition>
</mapping>

<mapping>
 <actual class=“g_student” attribute=“gpa” />
 <conceptual class=“pt_student” attribute=“gpa”>
 <domain class=“zero2four” attribute=“score” />
 </conceptual>
 <to-condition>
 status = ‘part time’
 </to-condition>
 <from-condition>
 degree = ‘MA’ or degree = ‘MS’
 or degree = ‘PHD’
 </from-condition>
</mapping>

<mapping>
 <actual class=“u_student” attribute=“gpa” />
 <conceptual class=“ft_student” attribute=“gpa”>
 <domain class=“zero2four” attribute=“score” />
 </conceptual>
 <to-condition>
 status = ‘regular’
 </to-condition>
 <from-condition>
 degree = ‘BA’ or degree = ‘BS’
 </from-condition>
</mapping>

<mapping>
 <actual class=“u_student” attribute=“gpa” />
 <conceptual class=“pt_student” attribute=“gpa”>
 <domain class=“zero2four” attribute=“score” />
 </conceptual>
 <to-condition>
 status = ‘part time’
 </to-condition>
 <from-condition>
 degree = ‘BA’ or degree = ‘BS’
 </from-condition>
</mapping>

Listing 1

We are currently working on enhancing the
mediator so that it can handle queries involving
joins. We are particularly interested in cases
where relations have been decomposed
differently in the local and foreign databases, so
that the joins required in the foreign database
are different than those specified for the local
database. We are also working on the
development of JDBC drivers for the mediator,
so that any java application can be readily
adapted to use different data sources through
mediation.

5. References

[1] E. Sciore, M. Siegel, and A. Rosenthal, “Using
Semantic Values to Facilitate Interoperability
Among Heterogeneous Information Systems”,
ACM Transactions on Database Systems, vol.
19(2), June 1994, pp. 254-290.

[2] G. Wiederhold, “Mediators in the Architecture of
Future Information Systems”, Readings in
Agents , Eds. M. N. Huhns and M. P. Singh, San
Francisco, CA, USA: Morgan Kaufmann, 1997,
pp. 185-196.

[3] P. B. Lowry, “XML data mediation and
collaboration: A proposed comprehensive
architecture and query requirements for using
XML to mediate heterogeneous data sources and
targets,” 34th Annual Hawai'i International
Conference On System Sciences (HICSS), Mauii,
Hawaii, January 3-6, 2001, pp. 2535-2543.

[4] C. H. Goh, S. Bressan, S. Madnick, and M.
Siegel, “Context interchange: new features and
formalisms for the intelligent integration of
information”, ACM Transactions on Information
Systems, vol. 17(3), July 1999, pp. 270.

[5] L. S. Seligman and A. Rosenthal, “XML’s Impact
on Databases and Data Sharing”, IEEE Computer,
vol. 34(6), 2001, pp. 59-67.

[6] G. Neugebauer, “GLUE – Using Heterogeneous
Sources of Information in a Logic Programming
System”, Proceedings of the KI’97 Workshop on
Intelligent Information Integration, Freiburg,
1997.

[7] L. Serafini and F. Giunchiglia and F. Mylopoulos
and P. Bernstein, “The Local Relational Model: A
Logical Formalization of Database Coordination”,
Proceedings of CONTEX'03, 2003.

[8] H. Wache and H. Stuckenschmidt, “Practical
Context Transformation for Information System
Interoperability”, Lecture Notes in Computer
Science, vol. 2116, 2001, p. 367.

[9] B. Ludäscher, A. Gupta, and M. Martone,
“Model-Based Mediation with Domain Maps”,
17th International Conference on Data
Engineering (ICDE ’01) , Washington-Brussels-
Tokyo, April 2001.

[10] C. Baru, A. Gupta, B. Ludäscher, R. Marciano,
Y. Papakonstantinou, P. Velikhov, and V. Chu,
“XML-based Information Mediation with MIX”,
Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data:
SIGMOD '99, Philadelphia, PA, June 1-3, 1999,
SIGMOD Record, vol. 28(2), 1999, pp. 597-599.

