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Types of auction fraud
• Non-delivery
• False advertising
• Bid shielding
• Shill bidding
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Difficult to detect
• Non-obvious, unlike other types of fraud
• Collusion
• Online anonymity 
• Multiple ways to participate in an auction

Examples of warning signs
• High bid amount(s) in beginning of auction
• Bidding very close to beginning of auction
• Bid unmasking
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Shill verification for every bidder 
infeasible
• Numerous auctions for every bidder

Most bidders are not shills
• Faster to check for shill suspects and then verify

Feature extraction to enable data mining
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Series of measurable attributes
Easily obtainable
• Auction’s bidding history

Allows for more sophisticated techniques
• Decision trees
• Neural networks
• Support vector machines
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Group similar bidders based on 
behavior
Similarity measure
• Centroid clustering
• Centroid = vector average of cluster’s members
• Similarity = dot product of 2 centroids
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Minimum similarity cutoff
• Terminates combination

Normalization of attribute values
Attribute weighting
• Reflect relative importance of attributes
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Classification approach
Information gain
• Calculate the most significant attribute 

Gain ratio used to overcome overfitting
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Real eBay data: “Used Playstation 3”
• Collected over period of 30 days
• Two separate datasets: 1 and 7 day durations

3-fold cross validation process 
• Fold 1 = First 1/3 test set

Clustering minimum similarity cut-off = 
86.9%
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Cluster Size Class Description
1 63% Normal Bids placed very late in auction (later middle stage or final stage).
2 <1% Highly Suspicious Very high bidding amounts in middle stage.
3 4% Suspicious Bids placed close together in middle stage. Possible bid unmasking.
4 9% Normal Few bids placed in the middle stage of auction.
5 8% Normal Similar to cluster 4, but bids placed later in the middle stage.
6 1% Suspicious Bids placed fairly early in auction. 
7 <1% Normal Few bids placed in the middle stage of auction.
8 <1% Highly Suspicious Highest bid amounts in the middle stage.
9 1% Suspicious Bids placed close together in the middle stage. Possible bid unmasking.
10 <1% Suspicious Bids placed fairly early and bids placed close together in middle stage. 
11 <1% Highly Suspicious Bids placed in quickest succession in the middle stage. Possible bid unmasking.
12 11% Suspicious Bids placed very early in auction (early stage).
13 <1% Suspicious Moderate number of bids in early stage.
14 <1% Suspicious Bids placed close together in early stage. Possible bid unmasking.
15 <1% Highly Suspicious Bids placed in quickest succession in the early stage. Possible bid unmasking.
16 <1% Highly Suspicious Highest number of bids in the early stage.
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1-Day Dataset, Fold 1, Decision Tree Statistics

Training Set Testing Set Size Test Results

81% Normal
18% Suspicious
1% Highly Suspicious

614 data points 94% Correct
6% Incorrect
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Quantified bidder behavior
Grouped bidders based on behavior
Created a decision tree to efficiently 
identify shill suspects
Future work
• More precise classifiers

Neural networks
Support vector machines

• Stage-based classifiers
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For more information, refer to our project homepage at:

http://www.cis.umassd.edu/~hxu/Projects/ATM/


