
1

11/19/2007 CIS Dept., UMass Dartmouth 1

DRBD: Dynamic Reliability Block Diagram DRBD: Dynamic Reliability Block Diagram
for System Reliability Modelingfor System Reliability Modeling

Prof. Haiping Xu
Concurrent Software Systems Laboratory
Computer and Information Science Department
University of Massachusetts Dartmouth

11/19/2007 CIS Dept., UMass Dartmouth 2

Acknowledgement

Dr. Liudong Xing, Assistant Professor
Electrical and Computer Engineering Department
University of Massachusetts Dartmouth

Ryan Robidoux, Graduate Student
Concurrent Software Systems Laboratory
Computer and Information Science Department
University of Massachusetts Dartmouth

2

11/19/2007 CIS Dept., UMass Dartmouth 3

Outline

DRBD controller component blocks
Development of DRBD models (example)
Formal specifications of DRBD constructs
Formal verification of DRBD models
Conversion of DRBD models into colored
Petri nets (CPN)
Case study: modeling, verification
Conclusions and future work

11/19/2007 CIS Dept., UMass Dartmouth 4

A Motivating Example

When the primary cluster head fails, the secondary
cluster head will be automatically activated.
Sensor nodes in S1 can be put into a sleeping
mode, and sensor nodes in S2 will be activated.
How to model the state dependency between S1
and S2: Deactivation -> Activation dependency?

Primary Cluster Head

Sensor Nodes in S1

Sensor Nodes in S2

Secondary Cluster Head

Initially, sensor nodes
in S1 are operational;
sensor nodes in S2 are
in a sleeping mode

3

11/19/2007 CIS Dept., UMass Dartmouth 5

The State of the Art

Most of the existing reliability modeling
tools (e.g., RBD) cannot capture the statestate
dependencydependency between components.
Other tools, such as DDynamic FFault TTree (DFT), may
support modeling a functional dependency

The failure of a component causes some other dependent
components to become inaccessible or unusable
However, it still cannot capture the Deactivation -> Activation
state dependency between components.

We propose a set of new DDynamic RReliability BBlock
DDiagram (DRBD) constructs as an extension to the
existing RBD modeling tool.

11/19/2007 CIS Dept., UMass Dartmouth 6

DRBD Controller Component Blocks

AA stands for an activation event occurred on a component that
leads to an Active state of that component,
DD stands for a deactivation event occurred on a component that
leads to a Standby state of that component, and
FF stands for a failure event occurred on a component that leads
to a Failed state of that component.

Trigger

A|D|F

1

SDEP

n

A|D|F

A|D|F Primary
Unit

A

1

SPARE

n

A

D|F

D|F

1

LSH

n

D|F

k/n

...

D|F D|F

C|W|H C|W|H

Dependent/Target Components Spare Components Load Sharing Components

(a) SDEP (state dependency) block (b) SPARE (spare part) block (c) LSH (load sharing) block

4

11/19/2007 CIS Dept., UMass Dartmouth 7

DRBD Model of the WSN Example

The failure of the primary cluster head will automatically activate
the secondary cluster head.
The components labeled S1 and S2 represent the two sets of
sensor nodes that may work alternatively.
The deactivation of S1 (S2) will automatically activate S2 (S1).

Primary
Cluster Head

Secondary
Cluster Head

SPARE

F

A

S1

S2

SDEP SDEP

D

A D

A

C

Primary Cluster Head

Sensor Nodes in S1

Sensor Nodes in S2

Secondary Cluster Head

AA: Activation
DD: Deactivation
FF: Failure

11/19/2007 CIS Dept., UMass Dartmouth 8

Formal Specifications

C3

C4

SDEP

C1

C2

SDEP
F

FF

DD D

SPARE
A

C

To support formal verification and validation of our proposed
DRBD model, it is necessary to formally define the DRBD
modeling constructs.

Provide the denotational semantics for the development of DRBD
models in a precise manner.
Help to eliminate ambiguity in a constructed DRBD model.

Question 1:Question 1: When component C1 fails, will C4 be in a state of
Active or Standby, or will the result be nondeterministic?

DRBD ModelDRBD Model

5

11/19/2007 CIS Dept., UMass Dartmouth 9

Object-Z Specification

The target events do not
occur simultaneously,
but with some random
time delay δc for target
component c.
The failure of C2 and
deactivation of C3 will
not happen immediately
after the failure of C1.
Which state C4 will be in
(Active or Standby) is
nondeterministic.
Question 2Question 2:: How can
we be confident that the
model is an accurate
representation of the
actual system?

Event ::= Activation | Deactivation | Failure

SDEP

trigger : Component
targets : P Component
nTargets : N

triggerEvent : Event
targetEvents : Component → Event
sdep : T × Component × Event → P(T × Component × Event)

nTargets = #targets ∧ nTargets > 0 ∧ targets = dom targetEvents
∀ c ∈ targets • c �= trigger ∧ probability(c | triggerEvent) �= probability(c)

∧ probability(triggerEvent | c) = probability(triggerEvent)
{(t , trigger , triggerEvent) | t ∈ T} = dom sdep

ActivateTrigger
∆(trigger , targets)
t? : T

(triggerEvent = Active) ∧ (trigger .state ′ = Active)
∀ c ∈ targets • (t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)

∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

DeactivateTrigger

FailTrigger

11/19/2007 CIS Dept., UMass Dartmouth 10

Formal Verification Approach

Testing or simulations are not suitable
for verifying DRBD models because it
is almost impossible to cover all cases.
Use formal methods (e.g., model checking techniques)
to verify the behavioral properties of a DRBD model
before the evaluation process starts.
Use temporal logic to specify system properties

Property P:Property P: “If component A fails, component B and C will
also fail, which leads to the failure of the whole system S.”
The temporal formula in LTL (Linear Temporal Logic) can be
written as []([](¬¬AA→→((¬¬BB∧¬∧¬C)C)∧∧<><>¬¬S)S)

When a DRBD model is proved to be incorrect
Any quantitative evaluation results might be unusable.
The DRBD model needs to be fixed.

6

11/19/2007 CIS Dept., UMass Dartmouth 11

Formal Verification Models

DRBD models are not formally defined & executable.
Object-Z specifications of DRBD constructs are formal
specifications, however

Are not feasible for verification of behavioral properties.
Have no effective analysis and verification tool support.

Convert a DRBD model into a formal executable
model such as a state machine or a Petri net model.
We adopt Colored Petri Net (CPN) model because

Is user friendly based on its graphical notations.
Has powerful, but intuitive rules for defining
structure and dynamic behaviors.
Has many existing analysis and verification tools.

CPNCPN

11/19/2007 CIS Dept., UMass Dartmouth 12

“Three-in-one” capability of Petri net models [Murata 1989]
Graphical representation
Mathematical description
Simulation tool

Definition:
A Petri net is a 4-tuple, PN = (P, T, F, M0) where

P = {P1, P2, …, Pm} is a finite set of places;
T = {t1, t2, …, tn} is a finite set of transitions;
F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow relation);
M0: P --> {0, 1, 2, 3, …} is the initial marking.

Introduction to Petri Net

7

11/19/2007 CIS Dept., UMass Dartmouth 13

P4

P2

P5
t1

t5

t3

t4

t2P1

P3

An Ordinary Petri Net

In an ordinary Petri net, tokens are all of color black.
In a Colored Petri net (CPN or CP-net),

Colors of tokens can represent values.
A transition may have a guard and executable code.

11/19/2007 CIS Dept., UMass Dartmouth 14

Convert DBBD into CPN Models

C1 C2SPARE
CF A

C1 C2LSH
F F

C1
F D

C2SDEP
2/2

D|FD|F

colset STATE = with Active | Standby | Failed;
var x, y, z : STATE;

z

y

y

z

x

xx

y

zx

y

z

LSH-2

LSH-1SDEP

[x=Failed, y=Active]

output (z);
action (Standby);

Spare

[x=Failed, y=Standby]

output (z);
action (Active);

C2C1C2

STATE

C2

STATE

C1

STATE

C1

STATE

[x=Failed, y=Active]
output (z);
action (Standby);

output (z);
action (Standby);[x=Failed, y=Active]

Define three different colors/states: Active, Standby and Failed.
A transition is associated with a guard and executable code

Can fire only if the guard [x=Failed, y=Active][x=Failed, y=Active] evaluates to true.
Code output(z);action(Standby)output(z);action(Standby)deposits a Standby token in C2.

8

11/19/2007 CIS Dept., UMass Dartmouth 15

A Case Study

R1

R2

SPARE

C

SDEP

F

D

F

A

C1

C2

LSH

D|F

D|F

SDEP

SDEP SDEP

F

F

D

D

D

F

R1

F

D

C1

C2

LSH

D|F

D|F

SDEP

SDEP

F

D

2/2 2/2

(a) Load sharing servers connected to a router (b) Load sharing servers connected to a router with a CSP

F

F

F

F

Router R1 is connected to two server computers C1 and C2.
Server computers C1 and C2 are load sharing servers.
When router R1 fails, the computers C1 and C2 will be deactivated.

To make the system more reliable, we introduce a cold spare (CSP) for
router R1, which is represented by component R2.

11/19/2007 CIS Dept., UMass Dartmouth 16

Colored Petri Net Model

colset UNIT = unit with e;
colset BOOL = bool;
colset STATE = with Active | Standby | Failed;
var x, y, z : STATE;
var u : UNIT;
var b : BOOL;

z

u

u

u
y

x

b

z

y

b

x

b

x

x

x

x

x

y

z

x
y z

x

x

zy

y

x

y z

x

x

y

b

b
y

z

x

x

y

x

y y

x

y z

x T7

[x=Failed orelse y=Failed]

output (b);
action (true);

T6

T5 [x=Active, y=Active, z=Active]output (b);
action (true);

T1

[x=Active]

T2

[x=Active]

LSH_2

[x=Failed, y=Active]

output (z);
action
(Standby);

LSH_1

[x=Failed,
y=Active]

output (z);
action (Standby);

SDEP_R1_C2

[x=Failed,
y=Active]

output (z);
action (Standby);

SDEP_R2_C1

[x=Failed, y=Active]

output (z);
action
(Standby);

SDEP_R2_C2

[x=Failed, y=Active]

output (z);
action (Standby);

Fail_C2

[x=Active]

output (y);
action (Failed);

Stop

[b=true]

Run

[b=true]

SDEP_R1_C1

[x=Failed, y=Active]
output (z);
action (Standby);

Fail_R2

[x=Active]

output (y);
action (Failed);

Fail_R1

[x=Active]

output (y);
action (Failed);

Fail_C1

[x=Active]

output (y);
action (Failed);

Spare

[x=Failed, y=Standby]

output (z);
action (Active);

Syn_2

UNIT

Syn_1

UNIT

R1_or_R2

STATE

C2

1`Active

STATE

System_down

BOOL

C1

1`Active

STATE

System_up

BOOL

R2
1`Standby

STATE

R1

1`Active

STATE

u

output (b);
action (true);

[x=Failed]

1

1

1

1

9

11/19/2007 CIS Dept., UMass Dartmouth 17

Analysis Results

DeadMarking(32)

val it = true : bool
print(NodeDescriptor 32)

32:
C1 1: 1`Standby
C2 1: 1`Standby
R1 1: empty
R2 1: empty
R1_or_R2 1: 1`Active
Syn_1 1: empty
Syn_2 1: empty
System_down 1: empty
System_up 1: empty
val it = () : unit
Reachable'(1, 32)

A path from node 1 to 32: [1, 3, 11,

25, 30, 32]
val it = true : bool

Statistics

State Space

Nodes: 33
Arcs: 69
Secs: 0
Status: Full

Scc Graph
Nodes: 33
Arcs: 62
Secs: 0

Liveness Properties

Dead Markings [32]
Dead Transition Instances

Router'SDEP_R2_C1 1
Router'SDEP_R2_C2 1

Live Transition Instances
None

Result-2Result-1

11/19/2007 CIS Dept., UMass Dartmouth 18

Deadlock in CPN

colset UNIT = unit with e;
colset BOOL = bool;
colset STATE = with Active | Standby | Failed;
var x, y, z : STATE;
var u : UNIT;
var b : BOOL;

z

u

u

u
y

x

b

z

y

b

x

b

x

x

x

x

x

y

z

x
y z

x

x

zy

y

x

y z

x

x

y

b

b
y

z

x

x

y

x

y y

x

y z

x T7

[x=Failed orelse y=Failed]

output (b);
action (true);

T6

T5 [x=Active, y=Active, z=Active]output (b);
action (true);

T1

[x=Active]

T2

[x=Active]

LSH_2

[x=Failed, y=Active]

output (z);
action
(Standby);

LSH_1

[x=Failed,
y=Active]

output (z);
action (Standby);

SDEP_R1_C2

[x=Failed,
y=Active]

output (z);
action (Standby);

SDEP_R2_C1

[x=Failed, y=Active]

output (z);
action
(Standby);

SDEP_R2_C2

[x=Failed, y=Active]

output (z);
action (Standby);

Fail_C2

[x=Active]

output (y);
action (Failed);

Stop

[b=true]

Run

[b=true]

SDEP_R1_C1

[x=Failed, y=Active]
output (z);
action (Standby);

Fail_R2

[x=Active]

output (y);
action (Failed);

Fail_R1

[x=Active]

output (y);
action (Failed);

Fail_C1

[x=Active]

output (y);
action (Failed);

Spare

[x=Failed, y=Standby]

output (z);
action (Active);

Syn_2

UNIT

Syn_1

UNIT

R1_or_R2

STATE

C2

1`Active

STATE

System_down

BOOL

C1

1`Active

STATE

System_up

BOOL

R2
1`Standby

STATE

R1

1`Active

STATE

u

output (b);
action (true);

[x=Failed]

1

1

1

1

10

11/19/2007 CIS Dept., UMass Dartmouth 19

Revised DRBD Model

R1

R2

SPARE

C

SDEP

F

D

F

A

C1

C2

LSH

A

A

SDEP

SDEP SDEP

F

F

D

D

D

F

2/2

SDEP

SDEP

A A

A

A

11/19/2007 CIS Dept., UMass Dartmouth 20

Analysis Results (after revision)

Statistics

State Space

Nodes: 67
Arcs: 162
Secs: 0
Status: Full

Scc Graph
Nodes: 67
Arcs: 141
Secs: 0

Liveness Properties

Dead Markings

None
Dead Transition Instances

None
Live Transition Instances

None

Result-3 Fix the colored Petri
net model by adding

New transition
SDEP_R2_C12
New synchronization
place Syn_3
And arcs and guards

The analysis results
show no deadlock
markings.
Question 3Question 3:: How to
verify additional
properties?

11

11/19/2007 CIS Dept., UMass Dartmouth 21

Model Checking Results

truefalse

val isFailed = FORALL_UNTIL(TT, NF("",SystemFailed));
val system = OR(NOT(NF("", R1_Failed)), isFailed);
val myASKCTLformula = INV(system);
eval_node myASKCTLformula InitNode;

Formula_3

truetrue

val isFailed = FORALL_UNTIL(TT, NF("",SystemFailed));
val system = OR(NOT(NF("", R2_Failed)), isFailed);
val myASKCTLformula = INV(system);
eval_node myASKCTLformula InitNode

Formula_2

--
fun R1_Failed n = (Mark.R1 1 n = 1`Failed);
fun R2_Failed n = (Mark.R2 1 n = 1`Failed);
fun SystemFailed n = (Mark.System_down 1 n = 1`true);

Functions

truefalse
val myASKCTLformula = EXIST_UNTIL(TT,NOT(MODAL(TT)));
eval_node myASKCTLformula InitNode;

Formula_1

Before
Rev

After
RevASK-CTL in MLFormulas

11/19/2007 CIS Dept., UMass Dartmouth 22

Conclusions and Future Work

Proposed a new modeling approach called DDynamic
RReliability BBlock DDiagrams (DRBD)

Resolves the shortcomings of the existing work.
Provides a powerful but easy-to-use reliability modeling tool
for complex and large computer-based systems.
Supports automated verification of DRBD models.

Develop a software tool that can automatically
translate DRBD models into colored Petri nets.
Study efficient evaluation methods for DRBD models.
Develop a comprehensive system reliability modeling
tool that supports editing, formal verification, and
evaluation of DRBD models.

12

11/19/2007 CIS Dept., UMass Dartmouth 23

Related Publications
R. Robidoux, H. Xu, and L. Xing Towards Automated Verification of Dynamic Reliability
Block Diagrams. To be submitted to journal, Computer and Information Science Dept.,
UMass Dartmouth, November 2007.
L. Xing, H. Xu, S. V. Amari, and W. Wang A New Framework for Complex System
Reliability Analysis: Modeling, Verification, and Evaluation. Submitted to Journal of
Autonomic and Trusted Computing (JoATC), September 2007.
H. Xu, L. Xing, and R. Robidoux DRBD: Dynamic Reliability Block Diagrams for System
Reliability Modeling. Submitted to International Journal of Computers and Applications
(IJCA), August 2007.
H. Xu and L. Xing Formal Semantics and Verification of Dynamic Reliability Block
Diagrams for System Reliability Modeling. In Proceedings of the 11th International
Conference on Software Engineering and Applications (SEA 2007), November 19-21,
2007, Cambridge, Massachusetts, USA.

Contact Information
Liudong Xing, Assistant Professor
Electrical and Computer Engineering (ECE)
Department, College of Engineering
University of Massachusetts Dartmouth
Phone : (508) 999-8883
Email: lxing@umassd.edu

Haiping Xu, Assistant Professor
Computer and Information Science (CIS)
Department, College of Engineering
University of Massachusetts Dartmouth
Phone : (508) 910-6427
Email: hxu@umassd.edu

11/19/2007 CIS Dept., UMass Dartmouth 24

Questions?

The slides for this talk can be downloaded from

http://www.cis.umassd.edu/~hxu

