
27th International Conference on Software Engineering and Knowledge Engineering

 A Reliable and Secure Cloud Storage Schema Using
Multiple Service Providers

Haiping Xu and Deepti Bhalerao
Computer and Information Science Department

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
{hxu, dbhalerao}@umassd.edu

Abstract—Despite the many advantages provided by cloud-based
storage services, there are still major concerns such as security,
reliability and confidentiality of data stored in the cloud. In this
paper, we propose a reliable and secure cloud storage schema
using multiple service providers. Different from existing
approaches to achieving data reliability using redundancy at the
server side, we propose a reliable and secure cloud storage
schema that can be implemented at the client side. In our
approach, we view multiple cloud-based storage services as
virtual independent disks for storing redundant data encoded
using erasure codes. Since each independent cloud service
provider has no access to a user’s complete data, the data stored
in the cloud would not be easily compromised. Furthermore, the
failure or disconnection of a service provider will not result in the
loss of a user’s data as the missing data pieces can be readily
recovered. To demonstrate the feasibility of our approach, we
developed a prototype cloud-based storage system that breaks a
data file into multiple data pieces, generates an optimal number
of checksum pieces, and uploads them into multiple cloud
storages. Upon the failure of a cloud storage service, the
application can quickly restore the original data file from the
available pieces of data. The experimental results show that our
approach is not only secure and fault-tolerant, but also very
efficient due to concurrent data processing.

Keywords-Cloud storage; reliability; data security; erasure
codes; cloud service provider; integer linear programming.

I. INTRODUCTION

As an ever-growing data storage solution, cloud-based
storage services have become a highly practical way for both
people and businesses to store their data online. The pay-as-
per-use model of cloud computing eliminates the upfront
commitment from cloud users; thereby it allows users to start
small businesses quickly, and increase resources only when
they are needed. However, since data storage locations and
security measures at the server site are typically unknown,
most of the users have not yet become comfortable with
exploiting the full potential of the cloud. Many incidents
happened recently have made users question the reliability of
cloud storage services. For example, in May 2014, Adobe’s ID
service went down, leaving Creative Cloud users locked out of
their software and account for over 24 hours [1]. In early
2013, Dropbox service had a major cloud outage that kept
users offline and unable to synchronize using their desktop
apps for more than 15 hours [2]. Prolonged cloud data service
outages and security concerns can be fatal for businesses with

data critical domains such as healthcare, banking and finance.
Today, almost all the cloud service providers (CSP) have
implemented fault-tolerant mechanisms at their server sides to
recover original data from service failure or data corruption.
Such mechanisms are suitable at the time of scheduled
maintenance or for a small number of hard disk failures.
However, they are of no use for the end users to ensure the
reliability and security of their cloud data when major cloud
services fail or the cloud services have been compromised.
Hence, to achieve high reliability and security of critical data,
users should not depend upon a single cloud service provider.
In this paper, we propose an approach that can provide
security and fault tolerance to the user’s data from the client
side. In our approach, we decompose an original data file into
multiple data pieces, and generate checksum pieces using
erasure codes [3]. The pieces of data are spread across
multiple cloud services, which can be retrieved and combined
to recover the original file. We achieve data redundancy in our
approach using erasure codes at the software level across
multiple cloud service providers. Therefore, the original data
can be recovered even when there is a cloud outage where
some cloud service fails completely. Using this approach,
user’s data would not be easily compromised by unauthorized
access and security breach, as no single cloud service has the
complete knowledge of user’s data. Thus, users could have the
sole control of their cloud data, and do not need to rely on the
security measures provided by cloud service providers.
Finally, to improve the network performance of our approach,
we adopt the multithreading technology, and fully utilize the
network bandwidth in order to minimize the time required to
access data over the cloud.

There have been many research efforts on using erasure
codes at the server side to make cloud storage service reliable.
Huang et al. proposed to use erasure codes in Windows Azure
storage [4]. They introduced a new set of codes for erasure
codes called Local Reconstruction Codes (LRC) that could
reduce the number of erasure coding fragments required for
data reconstruction. Gomez et al. introduced a novel
persistency technique that leverages erasure codes to save data
in a reliable fashion in Infrastructure as a Service (IaaS) clouds
[5]. They presented a scalable erasure coding algorithm that
could support a high degree of reliability for local storage with
the cost of low computational overhead and a minimal amount
of communication. Khan et al. provided guidance for
deploying erasure coding in cloud file systems to support load
balance and incremental scalability in data centers [6]. Their
proposed approach can prevent correlated failures with data

(DOI Reference Number: 10.18293/SEKE2015-045) 116

loss and mitigate the effect of any single failure on a data set or
an application. Although the above approaches can
significantly enhance the reliability of cloud data at data
centers, they provide no support for end users to deal with
failures or cloud outage of the service providers. Different from
the existing approaches, we apply erasure-coding techniques at
the application level using multiple cloud service providers. By
deploying user’s encoded redundant data across multiple cloud
storage services, our approach is fault tolerant for cloud storage
when any of the cloud services fails.

There is also a considerable amount of work on securing
cloud data, to which this work is closely related. Santos et al.
proposed a secure and trusted cloud computing platform
(TCCP) for IaaS providers such as Amazon EC2 [7]. The
platform provides a closed box execution environment that
guarantees confidential execution of guest virtual machines on
a cloud infrastructure. Hwang and Li proposed to use data
coloring and software watermarking techniques to protect
shared cloud data objects [8]. Their approach can effectively
prevent data objects from being damaged, stolen, altered, or
deleted, and users may have their sole access to their desired
cloud data. The existing approaches to securing cloud data
typically assume that the cloud service providers are trustable
and they can prevent physical attacks to their servers. However,
this might not be true in reality, as service providers typically
tend to collect users’ cloud data for their commercial purposes
such as targeted adverting. Furthermore, there have been many
incidents that cloud service providers were compromised by
either internal or external hackers, and thousands of users’
critical data were compromised. Therefore, merely relying on
service providers’ security mechanisms is not a feasible
solution for both people and businesses to store their critical
data in the cloud. It is required that users should be allowed to
apply security mechanisms to their own data at the client side.
Different from the aforementioned methods to securing cloud
data at the server side, our approach does not rely on any
security measures supported by the service providers. Instead,
the cloud storage application running at the client side can split
users’ data into pieces, encode them using erasure codes, and
distribute them to multiple service providers. As no single CSP
has its access to a user’s entire data, user’s data are much
securer than those stored with a single cloud service.

In this paper, we extend the methodology and results of a
preliminary study on secure and fault-tolerant model of cloud
information storage [9]. In the previous work, we followed the
RAID (Redundant Array of Independent Disks) approach to
encode user’s data using XOR parity, and developed a
hierarchical colored Petri nets (HCPN) model for secure and
fault-tolerant cloud information storage systems. In this paper,
we adopted erasure codes to achieve fault tolerance for cloud
data, and presented a detailed design for a reliable and secure
cloud storage schema. To demonstrate the effectiveness of our
proposed approach, we implemented a prototype using three
major cloud service providers (i.e., Amazon, Google and
Dropbox), which allows users to securely, reliably and
efficiently store their critical data in the cloud.

II. RELIABLE AND SECURE CLOUD DATA STORAGE

To address the aforementioned major issues in cloud
storage services, we propose a reliable and secure cloud storage

schema using multiple CSPs. Figure 1 shows a framework for
such a system. The major component of the system is the cloud
storage application that uses erasure codes to encode and
decode file pieces at the client side, and upload and download
encoded file pieces concurrently at multiple cloud services. As
shown in the figure, when a user wants to upload a file into the
cloud, the application first splits the file into multiple data
pieces, say n pieces, and then encode them into an optimal
number of m checksum pieces using the erasure coding
technique. Once the data pieces and checksum pieces are ready,
they are concurrently uploaded into multiple cloud storages
maintained by different CSPs, noted as CSP_1, CSP_2, …, and
CSP_N in Fig. 1. As none of the CSPs has the complete
knowledge about the user data, this approach can effectively
defend against data breach from any single CSP.

Figure 1. A framework for reliable and secure cloud storage systems

On the other hand, when a user wants to download a stored
file, the application will first try to download the n data pieces
from the multiple cloud storages concurrently. If all data pieces
are available, they can be efficiently combined into the original
file without any additional decoding process. However, in the
case when one or more service provider fails, the application
must automatically download all available data pieces (n’) and
available checksum pieces (m’). As long as n’ + m’ ≥ n, due to
the erasure coding technique, the application can always
successfully decode the missing data pieces using the available
pieces of data, and restore the original file. Note that the
checksum pieces serve as the redundancy of the original file,
which makes our approach reliable and fault tolerant.

III. ERASURE CODES AND REED-SOLOMON CODING

A. Erasure Codes
In early days, fault tolerance of cloud data is commonly

achieved through simple data replication. Multiple copies of
original data have to be maintained on different cloud servers
in order to make data more reliable. However, data replication
now becomes highly unfeasible due to its low space efficiency
and the ever-increasing amount of cloud data. Erasure codes,
also known as forward error correction (FEC) codes, manage to
overcome the disadvantages of the data replication approach,
and can achieve a high degree of fault tolerance with a much
lower cost of physical storage [3]. An erasure code takes n data

117

words and transforms them into m code words such that any n
out of (n+m) words are enough to recover the original n data
words. Erasure codes use a mathematical function to convert
original data words into encoded words and to recover them
back. They can be very efficient in providing fault tolerance for
large quantities of data, hence they are quite suitable for large-
scale cloud storage systems.

Data redundancy through parity codes represents the
simplest form of erasure codes, which overcomes the drawback
of data replication. RAID-5 is the most commonly used
technique that uses parity codes. It calculates parities from the
original data to achieve fault tolerance. However, this
technique is typically used by CSPs at the hardware level, and
very few research efforts attempted to apply the RAID concept
at the software level to resolve issues related to the major data
failures of a service provider, which actually have become
quite common nowadays [9].

B. Reed-Solomon Coding for Cloud Based Storage

Use of error-correction codes for redundancy has become
prevalent due to its various advantages. Reed-Solomon (RS)
coding is a type of optimal erasure codes, which follows the
basic error-correction techniques. There are many different
ways to implement error-correction using erasure codes, but
RS technique is a good compromise between efficiency and
complexity [10]. Traditionally, RS technique has been used in
various applications such as error-correction in CD-ROM and
DVDs, satellite communications, digital television, and
wireless or mobile communications [11]. The use of RS
technique to provide fault tolerance over the cloud is a fairly
new idea. Our approach to distributing data and checksum
pieces with multiple cloud services could build a RAID-like
system with less storage overhead and more flexibility in the
degree of fault tolerance for the stored data. Here we first
briefly introduce the RS coding approach. Let there be n data
pieces, we encode all data pieces using RS algorithm into m
checksum pieces such that out of (n+m) pieces, any n pieces
are enough to recover the original n data pieces. If the (n+m)
pieces of data are distributed over (n+m) devices, this
algorithm can be used to handle m failures of the devices.

To simplify matters, we assume each data piece is an
unsigned byte ranged from 0 to 255. In order to calculate the
checksum bytes, we first create an (m+n)×n Vandermonde
matrix A, where the i, j-th element of A is defined to be
[11]. By this definition, when m rows are deleted from A, the
newly formed matrix is invertible. Then we derive the
information dispersal matrix B from A using a sequence of
elementary matrix transformation. The information dispersal
matrix B is defined as in Eq. (1), where I is an n×n identity
matrix, and F is an m×n matrix. Note that since elementary
matrix transformation does not change the rank of a matrix
and each row in A is linearly independent, the information
dispersal matrix B maintains the property that when m rows
are deleted from B, the newly formed matrix is invertible.

ji

⎥
⎦

⎤
⎢
⎣

⎡
=

F
I

B (1)

where (2)

,ED

F
I

BD =⎥
⎦

⎤
⎢
⎣

⎡
= ⎥

⎦

⎤
⎢
⎣

⎡
=

C
D

E

Let D be a vector of n-byte data d0, d1, ..., dn-1, and C be a
vector of m-byte checksum c0, c1, ..., cm-1. With the
information dispersal matrix B, we can calculate the checksum

vector C from the data vector D as in Eqs. (3), where fi, j (0 ≤ i
≤ m-1, 0 ≤ j ≤ n-1) are elements of the m×n matrix F. Based on
the calculation of C, Eq. (2) must hold.

c0 = f0, 0*d0 + f0, 1*d1 + ... + f0, n-1*dn-1
c1 = f1, 0*d0 + f1, 1*d1 + ... + f1, n-1*dn-1 (3)
...
cm-1 = fm-1, 0*d0 + fm-1, 1*d1 + ... + fm-1, n-1*dn-1

Now suppose k bytes, where k ≤ m, are missing from
vector D. By deleting the missing k elements from D as well
as any m-k elements from C, we derive a new n-byte vector E’
as in Eq. (4), where D’ is a (n-k)-byte vector ,
and C’ is a k-byte vector . Similarly, in Eq. (2), by
deleting m rows from B that correspond to the deleted rows in
E, we drive an n×n matrix B’ as defined in Eq. (5), where I’ is
an (n-k)×n matrix, and F’ is a k×n matrix. The matrix B’ must
be invertible as we have mentioned, and Eq. (6) must hold.

'
1

'
1

'
0 ,...,, −−knddd

'
1

'
1

'
0 ,...,, −kccc

⎥
⎦

⎤
⎢
⎣

⎡
=

'
'

'
C
D

E

(4) ='B (5) =' DB

By

⎥
⎦

⎤
⎢
⎣

⎡
'
'

F
I (6)

calculating the inverse matrix using Gaussian

elim he data

 (7)

...

Once the n-byte vector D is restored, the m-byte vector C
can

p i

IV. OPTIMAL NUMBER OF CHECKSUM PIECES

A. Calculating the Optimal Number of Checksum Pieces

our
app

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
'
'

'
'

C
D

D
F
I

 1'−= BG
ination method, we can recover t vector D as in

Eqs. (7), where gi, j (0 ≤ i ≤ n-1, 0 ≤ j ≤ n-1) are elements of the
n×n matrix G.

=
'

11,0
'
11,0

'
0,0

'
11,0

'
21,0

'
00,00

*,...,**

*,...,**

−−+−−

−−−−

+++

++++

knknkn

knkn

cgcgcg

dgdgdgd

'''

'
11,1

'
11,1

'
0,1

11,121,100,11

*,...,**

*,...,**

−−+−−

−−−−

+++

++++=

knknkn

knkn

cgcgcg

dgdgdgd

'
11,1

'
11,1

'
0,1

'
11,1

'
21,1

'
00,1

*,...,**

*,...,**

−−−+−−−−

−−−−−−−

+++

++++=

knnknnknn

knknnnnn

cgcgcg

dgdgdg d

 be recalculated as in Eqs. (3). Note that implementation of
the RS algorithm for data files requires to perform
com utat ons on binary words of a fixed length w. For
example, when the binary word is a byte, w equals 8. To
ensure that the RS algorithm works correctly for fixed-size
words, all arithmetic operations must be performed over
Galois Fields with 2w elements denoted as GF(2w) [11]. A
Galois field GF(2w) is also known as a finite field which
contains finitely many elements, namely 0, 1, ..., 2w-1.
Arithmetic operations performed over Galois Fields will result
in finite values in GF(2w). As such, all arithmetic operations
mentioned in this section, including the matrix inverse,
encoding and recovery of data, must be calculated using
Galois Fields arithmetic.

In order to achieve the highest space efficiency in
roach, we propose a procedure to compute the minimal

number of checksum pieces that allows the failures of multiple
cloud service providers. Let N be the number of service

118

providers, Г = {1, 2, ..., N}, and M be the maximal number of
services allowed to fail or become unavailable at the same
time, where 1 ≤ M ≤ N-1. We define a failure set Φ as follows:

Φ∈ P(Г), where P(Г) is the power set of Г, and |Φ| ≤ M.

The set of available CSPs Ω corresponding to Φ can be
defi

 (8)

dist

n = (9)

where n = n1 + n2 + ... + nN. Eq. (9) allows even distribution

CS

n e i n

minimize

for eac set Φ (10)

 where Φ ∈ P(Г) a

imal problem
aut

 (11)

As an example, let N = 3 and M = 1, the integ ear
pro

1 2 3
 // when Φ = {3} (12)

ho ir space
effi

stored at the other two CSPs.

ned as in Eq. (8).
Ω = Г - Φ
Let the number of data pieces of a file be n. In order to
ribute n data pieces evenly over N cloud service providers,

we calculate the number of data pieces n1, n2, ..., and nN stored
at CSP1, CSP2, ..., and CSP_N, respectively, as in Eq. (9).

i
⎡ ⎤

⎡ ⎤
⎪
⎪
⎩

⎪⎪
⎨

⎧

=−

<<+−−
=

∑
∑

−

=

−

=
1

1

1

1
1)1/()(

1/

N

j j

i

j j

Niwhennn

NiwheniNnn
iwhenNn

 of
n data pieces over N cloud service providers such that |ni - nj| ≤
1 for 1 ≤ i, j ≤ N. For example, when N = 3 and n = 7, the
number of data pieces distributed over three cloud service
providers CSP1, CSP2, and CSP3 will be 3, 2, 2, respectively.

As a major requirement for fault tolerance, when up to M
Ps become unavailable, the original data must be recovered

from the remaining CSPs from the available set Ω. Let m be
the number of checksum pieces required, and m1, m2, ..., mN
are the numbers of checksum pieces distributed over CSP1,
CSP2, ..., and CSP_N, respectively. Obviously, we have m =
m1 + m2 + ... + mN. To calculate the minimal number of
checksum pieces m, we can solve the integer linear
programmi g probl m as def ned i Eq. (10).

N

subject to h failure
∑=i im

1

 ∑∑ Φ∈Ω∈
≥

j ji i nm

 nd |Φ| = M

Note that a solution to the above opt
omatically satisfies the cases when |Φ| < M. The space

efficiency e of a solution can be calculated as in Eq. (11).
N N∑ ∑= =

==+−=
i i ii mmnnmnme

1 1
andwhere),/(1

er lin
gramming problem can be simplified as in Eq. (12).

minimize m + m + m
subject to m1 + m2 >= n3
 m2 + m3 >= n1 // when Φ = {1}

 m1 + m3 >= n2 // when Φ = {2}

Table 1 s ws the optimal solutions and the
ciency for the above example with n ranges from 2 to 14.

For instance, when n = 8 (n1 = 3, n2 = 3, n3 = 2), the optimal
solution is m1 = 1, m2 = 1, and m3 = 2, and the space efficiency
e = 1 - 4/(8+4) = 0.6667. In this case, if any service provider
becomes unavailable, the missing 4 pieces of data can always
be recovered from the remaining data and checksum pieces

Table 1. Optimal number of checksum pieces and space efficiency

Data
Pieces
(n)

(n1, n2, n3) (m1, m2, m3) Pieces
(m)

Checksum Space
Efficiency

(e)
2 (1, 1, 0) (0, 0, 1) 1 0.6667
3 (1, 1, 1) (0, 1, 1) 2 0.6000
4 (2, 1, 1) (0, 1, 1) 2 0 7 .666
5 (2, 2, 1) (1, 1, 1) 3 0.6250
6 (2, 2, 2) (1, 1, 1) 3 0.6667
7 (3, 2, 2) (1, 2, 1) 4 0.6364
8 (3, 3, 2) (1, 1, 2) 4 0.6667

9 (3, 3, 3) (2, 2, 1) 5 0.6429
10 (4, 3, 3) (1, 2, 2) 5 0.6667
11 (4, 4, 3) (2, 2, 2) 6 0.6471
12 (4, 4, 4) (2, 2, 2) 6 0.6667
13 (5, 4, 4) (2, 3, 2) 7 0.6500
14 (5, 5, 4) (3, 3, 2) 7 0.6667

B. ribu Pi s over

When dealing with a file with k bytes, if k is not a multiple
the

end

Dist tion of Data and Checksum ece CSPs

of n, we first need to append r bytes with random values to
 of the file such that ((k + r) mod n) = 0. Then we group

the (k+r) bytes into n data pieces so that each of them contains
(k+r)/n bytes. By applying Eq. (9) and Eq. (10), we calculate
the distribution of the n data pieces and the optimal number of
checksum pieces. Finally, using the equations described in
Section III.B, we can calculate the checksum pieces. Figure 2
shows an example of file distribution at service providers
CSP1, CSP2 and CSP3 when N = 3, M =1, n = 8 and m = 4.

Figure 2. Distribution of data and checksum pieces at three CSPs

As shown in Fig. 2, we distribute 3, 3, 2 data pieces
ver

CSP

To demonstrate the feasibility of our proposed approach,
we developed reliable cloud storage

(denoted by the file names starting with the letter “D”) o
1, CSP2 and CSP3, respectively. Based on the optimal

solution given in Table 1, we also distribute 1, 1, 2 checksum
pieces (denoted by the file names starting with the letter “C”)
over CSP1, CSP2 and CSP3, respectively. When any of the
service providers fails, the original data can be recovered from
the remaining 8 pieces of data using Eq. (7). It is worth noting
that by the definition of the RS coding technique, when up to 4
pieces of data from multiple CSPs are missing or corrupted,
the original file can still be recovered using Eq. (7).

V. CASE STUDY

a prototype secure and
application in Java. We adopt three different cloud services
supported by major CSPs to store our data pieces and
checksum pieces in the cloud. The selected cloud services are
Amazon S3, Google App Engine, and Core Dropbox APIs

119

with free user accounts. All experiments have been conducted
with excellent Internet connections at University of
Massachusetts Dartmouth, where the download speed was
around 160 Mbps (~20MB/s) and the upload speed was around
400 Mbps (~50MB/s). Therefore, the network connection at
the client side will not become a bottleneck for all of our
experiments. As shown in Fig. 3, the user interface of the
application allows one to select a file to upload into the cloud.
After choosing the number of data pieces (n), the optimal
number of checksum pieces (m) can be automatically
calculated using integer linear programming. By clicking on
the “Encode and Upload” button, the selected file is divided
into n data pieces, and the application automatically encodes
them into m checksum pieces. Once all pieces of data become
ready, they are uploaded into the three selected cloud storage
services using multithreading techniques. The message box in
the user interface displays the encoding time, the uploading
time and the total processing time.

Figure 3. Encode and upload a file to multiple cloud storage services

Figure 4 shows the user interface for downloading and
e,

en
cho

data pieces set
by t

decoding an uploaded file in the cloud. As shown in the figur
a user first selects a file from the list of uploaded files, th

oses at least two cloud service providers as the maximal
number of failed cloud services M equals 1. By clicking on the
“Download and Decode” button, the available file pieces are
concurrently downloaded to the local computer, where the
original file is recovered using RS coding techniques.
Similarly, as shown in Fig. 4, the message box in the user
interface displays the downloading time, the decoding time
and the total processing time, as well as the location of the
downloaded file on the user’s local computer.

To analyze the performance of our approach, we selected a
video file with a file size of 156 MB. Figure 5 shows the
encoding and uploading time vs. the number of

he user. From the figure, we can see that when we increase
the number of data pieces from 2 to 8, the uploading time
drops down significantly; while the encoding time has slightly
increased. The significant performance improvement for

uploading is due to the use of multithreading techniques;
however, the increased number of data pieces along with more
checksum pieces result in more overhead for encoding. When
the number of data pieces n is further increased, the uploading
time dramatically goes up. Based on our further experiments
with the cloud service providers, the concurrent processing
capabilities of the service providers as well as their
bandwidths become a major issue when the number of
concurrent uploading reaches 5. Note that when n = 10, the
optimal number of checksum pieces m = 5, so the number of
concurrent uploading to each CSP is 5.

Figure 4. Download and decode a file from clouds with a failed service

Figure 6 shows the downloading and decoding time vs. the
n

to
9,

ata pieces. For
exa

 number of data pieces set by the user. From the figure, we ca

see that when we increase the number of data pieces from 2
the downloading time drops down significantly; while the

decoding time has slightly increased. Similar to the case of
uploading, the significant performance improvement for
downloading is also due to the multithreading techniques, and
the increased number of data pieces along with more
checksum pieces result in more overhead for decoding. When
the number of data pieces n is further increased, the
downloading time goes up slightly, which it is not as bad as in
the uploading case with dramatic performance change. This is
because major cloud service providers typically put more
restrictions on their upload bandwidths than their download
bandwidths, especially for free user accounts.

From the above experimental results, we can see that both
the uploading and downloading time can be significantly
reduced by selecting a reasonable number of d

mple, when a file size is between 100 to 200 MB, based on
our experiments, the number of data pieces should normally be
set to 8 as long as the network bandwidth is sufficient.
According to Table 1, when n = 8, the optimal number of
checksum pieces m = 4. In this case, the space efficiency e
reaches its highest value 0.6667. It is worth noting that when
no service provider fails, the application only needs to
download the data pieces, and no checksum pieces are needed

120

121

for restoring the original file. In this case, the downloading
time can be further reduced, and the decoding time becomes
merely the time needed to combine the data pieces into the
original file. Therefore, in a normal case with no failure of
service providers, the overall performance for file retrieval
will be better than the results demonstrated in Fig. 6.

Figure 5. Encoding & uploading time vs. number of data pieces

Figure 6. Downloading and decoding time vs. number of data pieces

In this paper, we addressed three major issues with cloud
storage, . Instead
of achieving data reliability using redundancy at the

 will consider other
ma

is Too
Big to Fail,” InfoWorld Retrieved on March 7, 2015
from http://www.infowo 8200/cloud-computing/adobe

N. J. A. Sloane, The Theory of Error-Correcting

VI. CONCLUSIONS AND FUTURE WORK

Fi

namely reliability, security and performance
server

[8] K. Hwang and D. Li, “Trusted Cloud Computing with Secure Resources
and Data Coloring,” IEEE Internet Computing, Vol. 14, No. 5, pp. 14-
22, 2010. side, we presented a reliable and secure cloud storage schema

for end users. In our approach, we view multiple cloud storage
services as virtual disks, and upload redundant data files into
multiple cloud storages. The redundant data files are calculated
using erasure codes techniques, which allow multiple failures
of the data pieces. By forming an optimal problem for
calculating the number of checksum pieces, we can achieve the
best space efficiency in our approach. Furthermore, we divide
the user data into pieces, and distribute them across multiple

cloud services; therefore, no single CSP can understand the
uploaded user data. As a result, our approach can effectively
protect user data from unauthorized access in the cloud, and
provide security at the software level for the end users. Finally,
the experimental results show that due to concurrent data
processing, our approach provides very good performance in
file uploading and downloading, with the cost of minor
overhead for encoding and decoding data.

For future work, we will investigate possible ways to
automatically select a suitable number of data pieces based on
the network condition and the file size. We

jor aspects of cloud data, such as data integrity and
confidentiality. For example, it would be feasible to adopt the
digital signature technique to verify the integrity of the data
stored in the cloud to ensure they were not altered by the
service providers. Furthermore, when large cloud files are
involved, the overhead for encoding and decoding may become
a concern. To improve the overall performance in this case, we
need to look into more advanced techniques for erasure codes,
such as regenerating codes and non-MDS codes [3]. Finally,
we will attempt to integrate our approach with cloud-based big
data analysis for reliable and secure data stored in the cloud.
This may also be considered as a worthy future direction.

REFERENCES

[1] Yegulalp, “Adobe Creative Cloud Crash Shows that No Cloud S.
, May 16, 2014.
rld.com/article/260

-creative-cloud-crash-shows-that-no-cloud-is-too-big-to-fail.html
[2] C. Talbot, “Dropbox Outage Represents First Major Cloud Outage of

2013,” Talkin’Cloud, Jan 15, 2013. Retrieved on May 18, 2014 from
http://talkincloud.com/cloud-storage/dropbox-outage-represents-first-
major-cloud-outage-2013

[3] J. S. Plank, “Erasure Codes for Storage Systems: A Brief Primer,”
Login: The USENIX Magzine, www.usenix.org, December 2013, Vol.
38, No. 6, pp. 44-50.

[4] C. Huang, H. Simitci, Y. Xu et al., “Erasure Coding in Windows Azure
Storage,” Proceedings of the 2012 USENIX Annual Technical
Conference, Boston, MA, USA, pp. 15-26 , June 13-15, 2012.

[5] L. B. Gomez, B. Nicolae, N. Maruyama, F. Cappello and S. Matsuoka,
“Scalable Reed-Solomon-based Reliable Local Storage for HPC
Applications on IaaS Clouds,” Proceedings of the 18th International
Euro-Par Conference on Parallel Processing (Euro-Par’12), Rhodes,
Greece, pp. 313-324, August 2012.

[6] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
Erasure Codes for Cloud File Systems: Minimizing I/O for Recovery
and Degraded Reads,” Proceedings of the 10th USENIX Conference on

le and Storage Technologies (FAST-2012), San Jose, CA, USA, pp.
20-33, February 2012.

[7] N. Santos, K. Gummadi, and R. Rodrigues, “Towards Trusted Cloud
Computing,” Proceedings of the Workshop on Hot Topics in Cloud
Computing (HotCloud09), Article No. 3, San Diego, CA, June 15, 2009.

[9] D. Fitch and H. Xu, “A RAID-Based Secure and Fault-Tolerant Model
for Cloud Information Storage,” International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), Vol. 23, No. 5,
2013, pp. 627-654.

[10] C. K. Clarke, “Reed-Solomon Error Correction,” R&D White Paper,
British Broadcasting Corporation, July 2002.

[11] F. J. MacWilliams and
Codes, North-Holland Mathematical Library, Amsterdam, London, New
York, Tokyo, 1977.

	I. 0BIntroduction
	II. 2BReliable and Secure Cloud Data Storage
	III. 3BErasure Codes and Reed-Solomon Coding
	A. 9BErasure Codes
	B. 10BReed-Solomon Coding for Cloud Based Storage

	IV. Optimal Number of Checksum Pieces
	A. 11BCalculating the Optimal Number of Checksum Pieces
	B. Distribution of Data and Checksum Pieces over CSPs

	V. 4Case Study
	VI. 5BConclusions and Future Work
	12BIn this paper, we addressed three major issues with cloud storage, namely reliability, security and performance. Instead of achieving data reliability using redundancy at the server side, we presented a reliable and secure cloud storage schema for end users. In our approach, we view multiple cloud storage services as virtual disks, and upload redundant data files into multiple cloud storages. The redundant data files are calculated using erasure codes techniques, which allow multiple failures of the data pieces. By forming an optimal problem for calculating the number of checksum pieces, we can achieve the best space efficiency in our approach. Furthermore, we divide the user data into pieces, and distribute them across multiple cloud services; therefore, no single CSP can understand the uploaded user data. As a result, our approach can effectively protect user data from unauthorized access in the cloud, and provide security at the software level for the end users. Finally, the experimental results show that due to concurrent data processing, our approach provides very good performance in file uploading and downloading, with the cost of minor overhead for encoding and decoding data.
	For future work, we will investigate possible ways to automatically select a suitable number of data pieces based on the network condition and the file size. We will consider other major aspects of cloud data, such as data integrity and confidentiality. For example, it would be feasible to adopt the digital signature technique to verify the integrity of the data stored in the cloud to ensure they were not altered by the service providers. Furthermore, when large cloud files are involved, the overhead for encoding and decoding may become a concern. To improve the overall performance in this case, we need to look into more advanced techniques for erasure codes, such as regenerating codes and non-MDS codes [3]. Finally, we will attempt to integrate our approach with cloud-based big data analysis for reliable and secure data stored in the cloud. This may also be considered as a worthy future direction.
	13B
	14BReferences

