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Abstract—Despite the many advantages provided by cloud-based 
storage services, there are still major concerns such as security, 
reliability and confidentiality of data stored in the cloud. In this 
paper, we propose a reliable and secure cloud storage schema 
using multiple service providers. Different from existing 
approaches to achieving data reliability using redundancy at the 
server side, we propose a reliable and secure cloud storage 
schema that can be implemented at the client side. In our 
approach, we view multiple cloud-based storage services as 
virtual independent disks for storing redundant data encoded 
using erasure codes. Since each independent cloud service 
provider has no access to a user’s complete data, the data stored 
in the cloud would not be easily compromised. Furthermore, the 
failure or disconnection of a service provider will not result in the 
loss of a user’s data as the missing data pieces can be readily 
recovered. To demonstrate the feasibility of our approach, we 
developed a prototype cloud-based storage system that breaks a 
data file into multiple data pieces, generates an optimal number 
of checksum pieces, and uploads them into multiple cloud 
storages. Upon the failure of a cloud storage service, the 
application can quickly restore the original data file from the 
available pieces of data. The experimental results show that our 
approach is not only secure and fault-tolerant, but also very 
efficient due to concurrent data processing.  

Keywords-Cloud storage; reliability; data security; erasure 
codes; cloud service provider; integer linear programming. 

I.  INTRODUCTION 

As an ever-growing data storage solution, cloud-based 
storage services have become a highly practical way for both 
people and businesses to store their data online. The pay-as-
per-use model of cloud computing eliminates the upfront 
commitment from cloud users; thereby it allows users to start 
small businesses quickly, and increase resources only when 
they are needed. However, since data storage locations and 
security measures at the server site are typically unknown, 
most of the users have not yet become comfortable with 
exploiting the full potential of the cloud. Many incidents 
happened recently have made users question the reliability of 
cloud storage services. For example, in May 2014, Adobe’s ID 
service went down, leaving Creative Cloud users locked out of 
their software and account for over 24 hours [1]. In early 
2013, Dropbox service had a major cloud outage that kept 
users offline and unable to synchronize using their desktop 
apps for more than 15 hours [2]. Prolonged cloud data service 
outages and security concerns can be fatal for businesses with 

data critical domains such as healthcare, banking and finance. 
Today, almost all the cloud service providers (CSP) have 
implemented fault-tolerant mechanisms at their server sides to 
recover original data from service failure or data corruption. 
Such mechanisms are suitable at the time of scheduled 
maintenance or for a small number of hard disk failures. 
However, they are of no use for the end users to ensure the 
reliability and security of their cloud data when major cloud 
services fail or the cloud services have been compromised. 
Hence, to achieve high reliability and security of critical data, 
users should not depend upon a single cloud service provider. 
In this paper, we propose an approach that can provide 
security and fault tolerance to the user’s data from the client 
side. In our approach, we decompose an original data file into 
multiple data pieces, and generate checksum pieces using 
erasure codes [3]. The pieces of data are spread across 
multiple cloud services, which can be retrieved and combined 
to recover the original file. We achieve data redundancy in our 
approach using erasure codes at the software level across 
multiple cloud service providers. Therefore, the original data 
can be recovered even when there is a cloud outage where 
some cloud service fails completely. Using this approach, 
user’s data would not be easily compromised by unauthorized 
access and security breach, as no single cloud service has the 
complete knowledge of user’s data. Thus, users could have the 
sole control of their cloud data, and do not need to rely on the 
security measures provided by cloud service providers. 
Finally, to improve the network performance of our approach, 
we adopt the multithreading technology, and fully utilize the 
network bandwidth in order to minimize the time required to 
access data over the cloud. 

There have been many research efforts on using erasure 
codes at the server side to make cloud storage service reliable. 
Huang et al. proposed to use erasure codes in Windows Azure 
storage [4]. They introduced a new set of codes for erasure 
codes called Local Reconstruction Codes (LRC) that could 
reduce the number of erasure coding fragments required for 
data reconstruction. Gomez et al. introduced a novel 
persistency technique that leverages erasure codes to save data 
in a reliable fashion in Infrastructure as a Service (IaaS) clouds 
[5]. They presented a scalable erasure coding algorithm that 
could support a high degree of reliability for local storage with 
the cost of low computational overhead and a minimal amount 
of communication. Khan et al. provided guidance for 
deploying erasure coding in cloud file systems to support load 
balance and incremental scalability in data centers [6]. Their 
proposed approach can prevent correlated failures with data 
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loss and mitigate the effect of any single failure on a data set or 
an application. Although the above approaches can 
significantly enhance the reliability of cloud data at data 
centers, they provide no support for end users to deal with 
failures or cloud outage of the service providers. Different from 
the existing approaches, we apply erasure-coding techniques at 
the application level using multiple cloud service providers. By 
deploying user’s encoded redundant data across multiple cloud 
storage services, our approach is fault tolerant for cloud storage 
when any of the cloud services fails.  

There is also a considerable amount of work on securing 
cloud data, to which this work is closely related. Santos et al. 
proposed a secure and trusted cloud computing platform 
(TCCP) for IaaS providers such as Amazon EC2 [7]. The 
platform provides a closed box execution environment that 
guarantees confidential execution of guest virtual machines on 
a cloud infrastructure. Hwang and Li proposed to use data 
coloring and software watermarking techniques to protect 
shared cloud data objects [8]. Their approach can effectively 
prevent data objects from being damaged, stolen, altered, or 
deleted, and users may have their sole access to their desired 
cloud data. The existing approaches to securing cloud data 
typically assume that the cloud service providers are trustable 
and they can prevent physical attacks to their servers. However, 
this might not be true in reality, as service providers typically 
tend to collect users’ cloud data for their commercial purposes 
such as targeted adverting. Furthermore, there have been many 
incidents that cloud service providers were compromised by 
either internal or external hackers, and thousands of users’ 
critical data were compromised. Therefore, merely relying on 
service providers’ security mechanisms is not a feasible 
solution for both people and businesses to store their critical 
data in the cloud. It is required that users should be allowed to 
apply security mechanisms to their own data at the client side. 
Different from the aforementioned methods to securing cloud 
data at the server side, our approach does not rely on any 
security measures supported by the service providers. Instead, 
the cloud storage application running at the client side can split 
users’ data into pieces, encode them using erasure codes, and 
distribute them to multiple service providers. As no single CSP 
has its access to a user’s entire data, user’s data are much 
securer than those stored with a single cloud service.       

In this paper, we extend the methodology and results of a 
preliminary study on secure and fault-tolerant model of cloud 
information storage [9].  In the previous work, we followed the 
RAID (Redundant Array of Independent Disks) approach to 
encode user’s data using XOR parity, and developed a 
hierarchical colored Petri nets (HCPN) model for secure and 
fault-tolerant cloud information storage systems. In this paper, 
we adopted erasure codes to achieve fault tolerance for cloud 
data, and presented a detailed design for a reliable and secure 
cloud storage schema. To demonstrate the effectiveness of our 
proposed approach, we implemented a prototype using three 
major cloud service providers (i.e., Amazon, Google and 
Dropbox), which allows users to securely, reliably and 
efficiently store their critical data in the cloud. 

II. RELIABLE AND SECURE CLOUD DATA STORAGE 

To address the aforementioned major issues in cloud 
storage services, we propose a reliable and secure cloud storage 

schema using multiple CSPs. Figure 1 shows a framework for 
such a system. The major component of the system is the cloud 
storage application that uses erasure codes to encode and 
decode file pieces at the client side, and upload and download 
encoded file pieces concurrently at multiple cloud services. As 
shown in the figure, when a user wants to upload a file into the 
cloud, the application first splits the file into multiple data 
pieces, say n pieces, and then encode them into an optimal 
number of m checksum pieces using the erasure coding 
technique. Once the data pieces and checksum pieces are ready, 
they are concurrently uploaded into multiple cloud storages 
maintained by different CSPs, noted as CSP_1, CSP_2, …, and 
CSP_N in Fig. 1. As none of the CSPs has the complete 
knowledge about the user data, this approach can effectively 
defend against data breach from any single CSP.   

 
Figure 1.  A framework for reliable and secure cloud storage systems 

On the other hand, when a user wants to download a stored 
file, the application will first try to download the n data pieces 
from the multiple cloud storages concurrently. If all data pieces 
are available, they can be efficiently combined into the original 
file without any additional decoding process. However, in the 
case when one or more service provider fails, the application 
must automatically download all available data pieces (n’) and 
available checksum pieces (m’). As long as n’ + m’ ≥ n, due to 
the erasure coding technique, the application can always 
successfully decode the missing data pieces using the available 
pieces of data, and restore the original file. Note that the 
checksum pieces serve as the redundancy of the original file, 
which makes our approach reliable and fault tolerant.  

III. ERASURE CODES AND REED-SOLOMON CODING  

A. Erasure Codes 
In early days, fault tolerance of cloud data is commonly 

achieved through simple data replication. Multiple copies of 
original data have to be maintained on different cloud servers 
in order to make data more reliable. However, data replication 
now becomes highly unfeasible due to its low space efficiency  
and the ever-increasing amount of cloud data. Erasure codes, 
also known as forward error correction (FEC) codes, manage to 
overcome the disadvantages of the data replication approach, 
and can achieve a high degree of fault tolerance with a much 
lower cost of physical storage [3]. An erasure code takes n data 
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words and transforms them into m code words such that any n 
out of (n+m) words are enough to recover the original n data 
words. Erasure codes use a mathematical function to convert 
original data words into encoded words and to recover them 
back. They can be very efficient in providing fault tolerance for 
large quantities of data, hence they are quite suitable for large-
scale cloud storage systems.  

Data redundancy through parity codes represents the 
simplest form of erasure codes, which overcomes the drawback 
of data replication. RAID-5 is the most commonly used 
technique that uses parity codes. It calculates parities from the 
original data to achieve fault tolerance. However, this 
technique is typically used by CSPs at the hardware level, and 
very few research efforts attempted to apply the RAID concept 
at the software level to resolve issues related to the major data 
failures of a service provider, which actually have become 
quite common nowadays [9].  

B. Reed-Solomon Coding for Cloud Based Storage 

Use of error-correction codes for redundancy has become 
prevalent due to its various advantages. Reed-Solomon (RS) 
coding is a type of optimal erasure codes, which follows the 
basic error-correction techniques. There are many different 
ways to implement error-correction using erasure codes, but 
RS technique is a good compromise between efficiency and 
complexity [10]. Traditionally, RS technique has been used in 
various applications such as error-correction in CD-ROM and 
DVDs, satellite communications, digital television, and 
wireless or mobile communications [11]. The use of RS 
technique to provide fault tolerance over the cloud is a fairly 
new idea. Our approach to distributing data and checksum 
pieces with multiple cloud services could build a RAID-like 
system with less storage overhead and more flexibility in the 
degree of fault tolerance for the stored data. Here we first 
briefly introduce the RS coding approach. Let there be n data 
pieces, we encode all data pieces using RS algorithm into m 
checksum pieces such that out of (n+m) pieces, any n pieces 
are enough to recover the original n data pieces. If the (n+m) 
pieces of data are distributed over (n+m) devices, this 
algorithm can be used to handle m failures of the devices. 

To simplify matters, we assume each data piece is an 
unsigned byte ranged from 0 to 255. In order to calculate the 
checksum bytes, we first create an (m+n)×n Vandermonde 
matrix A, where the i, j-th element of A is defined to be  
[11]. By this definition, when m rows are deleted from A, the 
newly formed matrix is invertible. Then we derive the 
information dispersal matrix B from A using a sequence of 
elementary matrix transformation. The information dispersal 
matrix B is defined as in Eq. (1), where I is an n×n identity 
matrix, and F is an m×n matrix. Note that since elementary 
matrix transformation does not change the rank of a matrix 
and each row in A is linearly independent, the information 
dispersal matrix B maintains the property that when m rows 
are deleted from B, the newly formed matrix is invertible. 
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Let D be a vector of n-byte data d0, d1, ..., dn-1, and C be a 
vector of m-byte checksum c0, c1, ..., cm-1. With the 
information dispersal matrix B, we can calculate the checksum 

vector C from the data vector D as in Eqs. (3), where fi, j (0 ≤ i 
≤ m-1, 0 ≤ j ≤ n-1) are elements of the m×n matrix F. Based on 
the calculation of C, Eq. (2) must hold. 

c0 = f0, 0*d0 + f0, 1*d1 + ... + f0, n-1*dn-1 
c1 = f1, 0*d0 + f1, 1*d1 + ... + f1, n-1*dn-1                                       (3) 
... 
cm-1 = fm-1, 0*d0 + fm-1, 1*d1 + ... + fm-1, n-1*dn-1 

Now suppose k bytes, where k ≤ m, are missing from 
vector D. By deleting the missing k elements from D as well 
as any m-k elements from C, we derive a new n-byte vector E’ 
as in Eq. (4), where D’ is a (n-k)-byte vector , 
and C’ is a k-byte vector . Similarly, in Eq. (2), by 
deleting m rows from B that correspond to the deleted rows in 
E, we drive an n×n matrix B’ as defined in Eq. (5), where I’ is 
an (n-k)×n matrix, and F’ is a k×n matrix. The matrix B’ must 
be invertible as we have mentioned, and Eq. (6) must hold. 
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Once the n-byte vector D is restored, the m-byte vector C 
can
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IV. OPTIMAL NUMBER OF CHECKSUM PIECES  

A. Calculating the Optimal Number of Checksum Pieces 
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 be recalculated as in Eqs. (3). Note that implementation of 
the RS algorithm for data files requires to perform 
com utat ons on binary words of a fixed length w. For 
example, when the binary word is a byte, w equals 8. To 
ensure that the RS algorithm works correctly for fixed-size 
words, all arithmetic operations must be performed over 
Galois Fields with 2w elements denoted as GF(2w) [11]. A 
Galois field GF(2w) is also known as a finite field which 
contains finitely many elements, namely 0, 1, ..., 2w-1. 
Arithmetic operations performed over Galois Fields will result 
in finite values in GF(2w). As such, all arithmetic operations 
mentioned in this section, including the matrix inverse, 
encoding and recovery of data, must be calculated using 
Galois Fields arithmetic. 

In order to achieve the highest space efficiency in 
roach, we propose a procedure to compute the minimal 

number of checksum pieces that allows the failures of multiple 
cloud service providers. Let N be the number of service 
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providers, Г = {1, 2, ..., N}, and M be the maximal number of 
services allowed to fail or become unavailable at the same 
time, where 1 ≤ M ≤ N-1. We define a failure set Φ as follows: 

Φ∈ P(Г), where P(Г) is the power set of Г, and |Φ| ≤ M. 

The set of available CSPs Ω corresponding to Φ can be 
defi

                                                            (8) 

dist

n  =        (9)  

where n = n1 + n2 + ... + nN. Eq. (9) allows even distribution
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Ω = Г - Φ              
Let the number of data pieces of a file be n. In order to 
ribute n data pieces evenly over N cloud service providers, 

we calculate the number of data pieces n1, n2, ..., and nN stored 
at CSP1, CSP2, ..., and CSP_N, respectively, as in Eq. (9). 
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 of 
n data pieces over N cloud service providers such that |ni - nj| ≤ 
1 for 1 ≤ i, j ≤ N. For example, when N = 3 and n = 7, the 
number of data pieces distributed over three cloud service 
providers CSP1, CSP2, and CSP3 will be 3, 2, 2, respectively. 

As a major requirement for fault tolerance, when up to M
Ps become unavailable, the original data must be recovered 

from the remaining CSPs from the available set Ω. Let m be 
the number of checksum pieces required, and m1, m2, ..., mN 
are the numbers of checksum pieces distributed over CSP1, 
CSP2, ..., and CSP_N, respectively. Obviously, we have m = 
m1 + m2 + ... + mN. To calculate the minimal number of 
checksum pieces m, we can solve the integer linear 
programmi g probl m as def ned i  Eq. (10). 

N  

subject to h failure
∑=i im

1
 

  ∑∑ Φ∈Ω∈
≥

j ji i nm                                    

                   nd |Φ| = M 

Note that a solution to the above opt
omatically satisfies the cases when |Φ| < M. The space 

efficiency e of a solution can be calculated as in Eq. (11). 
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er lin
gramming problem can be simplified as in Eq. (12). 

minimize m  + m  + m   
subject to m1 + m2 >= n3  
 m2 + m3 >= n1 // when Φ = {1}                    

  m1 + m3 >= n2 // when Φ = {2} 

Table 1 s ws the optimal solutions and the
ciency for the above example with n ranges from 2 to 14. 

For instance, when n = 8 (n1 = 3, n2 = 3, n3 = 2), the optimal 
solution is m1 = 1, m2 = 1, and m3 = 2, and the space efficiency 
e = 1 - 4/(8+4) = 0.6667. In this case, if any service provider 
becomes unavailable, the missing 4 pieces of data can always 
be recovered from the remaining data and checksum pieces 

Table 1. Optimal number of checksum pieces and space efficiency  

Data 
Pieces 
(n)

(n1, n2, n3) (m1, m2, m3) Pieces 
(m)

Checksum Space 
Efficiency 

(e)
2 (1, 1, 0) (0, 0, 1) 1 0.6667 
3 (1, 1, 1) (0, 1, 1) 2 0.6000 
4 (2, 1, 1) (0, 1, 1) 2 0 7 .666
5 (2, 2, 1) (1, 1, 1) 3 0.6250 
6 (2, 2, 2) (1, 1, 1) 3 0.6667 
7 (3, 2, 2) (1, 2, 1) 4 0.6364 
8 (3, 3, 2) (1, 1, 2) 4 0.6667 

9 (3, 3, 3) (2, 2, 1) 5 0.6429 
10 (4, 3, 3) (1, 2, 2) 5 0.6667 
11 (4, 4, 3) (2, 2, 2) 6 0.6471 
12 (4, 4, 4) (2, 2, 2) 6 0.6667 
13 (5, 4, 4) (2, 3, 2) 7 0.6500 
14 (5, 5, 4) (3, 3, 2) 7 0.6667 

B. ribu  Pi s over

When dealing with a file with k bytes, if k is not a multiple 
the 

end

Dist tion of Data and Checksum ece  CSPs 

of n, we first need to append r bytes with random values to 
 of the file such that ((k + r) mod n) = 0.  Then we group 

the (k+r) bytes into n data pieces so that each of them contains 
(k+r)/n bytes. By applying Eq. (9) and Eq. (10), we calculate 
the distribution of the n data pieces and the optimal number of 
checksum pieces. Finally, using the equations described in 
Section III.B, we can calculate the checksum pieces. Figure 2 
shows an example of file distribution at service providers 
CSP1, CSP2 and CSP3 when N = 3, M =1, n = 8 and m = 4. 

 
Figure 2.  Distribution of data and checksum pieces at three CSPs  

As shown in Fig. 2, we distribute 3, 3, 2 data pieces 
ver 

CSP

To demonstrate the feasibility of our proposed approach, 
we developed reliable cloud storage 

(denoted by the file names starting with the letter “D”) o
1, CSP2 and CSP3, respectively. Based on the optimal 

solution given in Table 1, we also distribute 1, 1, 2 checksum 
pieces (denoted by the file names starting with the letter “C”) 
over CSP1, CSP2 and CSP3, respectively. When any of the 
service providers fails, the original data can be recovered from 
the remaining 8 pieces of data using Eq. (7). It is worth noting 
that by the definition of the RS coding technique, when up to 4 
pieces of data from multiple CSPs are missing or corrupted, 
the original file can still be recovered using Eq. (7).    

V. CASE STUDY 

a prototype secure and 
application in Java. We adopt three different cloud services 
supported by major CSPs to store our data pieces and 
checksum pieces in the cloud. The selected cloud services are 
Amazon S3, Google App Engine, and Core Dropbox APIs 
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with free user accounts. All experiments have been conducted 
with excellent Internet connections at University of 
Massachusetts Dartmouth, where the download speed was 
around 160 Mbps (~20MB/s) and the upload speed was around 
400 Mbps (~50MB/s). Therefore, the network connection at 
the client side will not become a bottleneck for all of our 
experiments. As shown in Fig. 3, the user interface of the 
application allows one to select a file to upload into the cloud. 
After choosing the number of data pieces (n), the optimal 
number of checksum pieces (m) can be automatically 
calculated using integer linear programming. By clicking on 
the “Encode and Upload” button, the selected file is divided 
into n data pieces, and the application automatically encodes 
them into m checksum pieces. Once all pieces of data become 
ready, they are uploaded into the three selected cloud storage 
services using multithreading techniques. The message box in 
the user interface displays the encoding time, the uploading 
time and the total processing time.   

 

 
Figure 3.  Encode and upload a file to multiple cloud storage services 

Figure 4 shows the user interface for downloading and
e, 

en 
cho

data pieces set 
by t

 
decoding an uploaded file in the cloud. As shown in the figur
a user first selects a file from the list of uploaded files, th

oses at least two cloud service providers as the maximal 
number of failed cloud services M equals 1. By clicking on the 
“Download and Decode” button, the available file pieces are 
concurrently downloaded to the local computer, where the 
original file is recovered using RS coding techniques.  
Similarly, as shown in Fig. 4,  the message box in the user 
interface displays the downloading time, the decoding time 
and the total processing time, as well as the location of the 
downloaded file on the user’s local computer.   

To analyze the performance of our approach, we selected a 
video file with a file size of 156 MB. Figure 5 shows the 
encoding and uploading time vs. the number of 

he user. From the figure, we can see that when we increase 
the number of data pieces from 2 to 8, the uploading time 
drops down significantly; while the encoding time has slightly 
increased. The significant performance improvement for 

uploading is due to the use of multithreading techniques; 
however, the increased number of data pieces along with more 
checksum pieces result in more overhead for encoding. When 
the number of data pieces n is further increased, the uploading 
time dramatically goes up. Based on our further experiments 
with the cloud service providers, the concurrent processing 
capabilities of the service providers as well as their 
bandwidths become a major issue when the number of 
concurrent uploading reaches 5. Note that when n = 10, the 
optimal number of checksum pieces m = 5, so the number of 
concurrent uploading to each CSP is 5.   

  

 
Figure 4.  Download and decode a file from clouds with a failed service 

Figure 6 shows the downloading and decoding time vs. the
n

to 
9, 

ata pieces. For 
exa

 
 number of data pieces set by the user. From the figure, we ca

see that when we increase the number of data pieces from 2 
the downloading time drops down significantly; while the 

decoding time has slightly increased. Similar to the case of 
uploading, the significant performance improvement for 
downloading is also due to the multithreading techniques, and 
the increased number of data pieces along with more 
checksum pieces result in more overhead for decoding. When 
the number of data pieces n is further increased, the 
downloading time goes up slightly, which it is not as bad as in 
the uploading case with dramatic performance change. This is 
because major cloud service providers typically put more 
restrictions on their upload bandwidths than their download 
bandwidths, especially for free user accounts.   

From the above experimental results, we can see that both 
the uploading and downloading time can be significantly 
reduced by selecting a reasonable number of d

mple, when a file size is between 100 to 200 MB, based on 
our experiments, the number of data pieces should normally be 
set to 8 as long as the network bandwidth is sufficient. 
According to Table 1, when n = 8, the optimal number of 
checksum pieces m = 4. In this case, the space efficiency e 
reaches its highest value 0.6667. It is worth noting that when 
no service provider fails, the application only needs to 
download the data pieces, and no checksum pieces are needed 
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for restoring the original file. In this case, the downloading 
time can be further reduced, and the decoding time becomes 
merely the time needed to combine the data pieces into the 
original file. Therefore, in a normal case with no failure of 
service providers, the overall performance for file retrieval 
will be better than the results demonstrated in Fig. 6. 

 

 
Figure 5.  Encoding & uploading time vs. number of data pieces 

 

 
Figure 6.  Downloading and decoding time vs. number of data pieces 

In this paper, we addressed three major issues with cloud
storage, . Instead 
of achieving data reliability using redundancy at the 
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namely reliability, security and performance
server 

[8] K. Hwang and D. Li, “Trusted Cloud Computing with Secure Resources 
and Data Coloring,”  IEEE Internet Computing, Vol. 14, No. 5, pp. 14-
22, 2010. side, we presented a reliable and secure cloud storage schema 

for end users. In our approach, we view multiple cloud storage 
services as virtual disks, and upload redundant data files into 
multiple cloud storages. The redundant data files are calculated 
using erasure codes techniques, which allow multiple failures 
of the data pieces. By forming an optimal problem for 
calculating the number of checksum pieces, we can achieve the 
best space efficiency in our approach. Furthermore, we divide 
the user data into pieces, and distribute them across multiple 

cloud services; therefore, no single CSP can understand the 
uploaded user data. As a result, our approach can effectively 
protect user data from unauthorized access in the cloud, and 
provide security at the software level for the end users. Finally, 
the experimental results show that due to concurrent data 
processing, our approach provides very good performance in 
file uploading and downloading, with the cost of minor 
overhead for encoding and decoding data. 

For future work, we will investigate possible ways to 
automatically select a suitable number of data pieces based on 
the network condition and the file size. We

 

jor aspects of cloud data, such as data integrity and 
confidentiality. For example, it would be feasible to adopt the 
digital signature technique to verify the integrity of the data 
stored in the cloud to ensure they were not altered by the 
service providers. Furthermore, when large cloud files are 
involved, the overhead for encoding and decoding may become 
a concern. To improve the overall performance in this case, we 
need to look into more advanced techniques for erasure codes, 
such as regenerating codes and non-MDS codes [3]. Finally, 
we will attempt to integrate our approach with cloud-based big 
data analysis for reliable and secure data stored in the cloud. 
This may also be considered as a worthy future direction.   
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