
333

A Petri Net Model for Secure and Fault-Tolerant
 Cloud-Based Information Storage

Daniel F. Fitch and Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
{daniel.fitch, hxu}@umassd.edu

Abstract—Cloud computing provides a promising opportunity for
both small and large organizations to transition from traditional
data centers to cloud services, where the organizations can be
more concerned with their applications, services, and data rather
than the underlying network infrastructures and their associated
cost. There are major concerns, however, with data security,
reliability, and availability in the cloud. In this paper, we address
these concerns by proposing a novel security mechanism for
secure and fault-tolerant cloud-based information storage. We
present a formal model of the security mechanism using colored
Petri nets (CPN). The model utilizes multiple cloud service
providers as a cloud cluster for information storage, and a service
directory for management of the cloud clusters including service
query, key management, and cluster restoration. Our approach
not only supports maintaining the confidentiality of the stored
data, but also ensures that the failure or compromise of an
individual cloud provider in a cloud cluster will not result in a
compromise of the overall data set.

Keywords-Cloud computing; information storage; data security;
fault tolerant; colored Petri nets; formal modeling and verification.

I. INTRODUCTION

As the Internet continues to evolve, service-oriented
systems are becoming more widely adopted by large
companies and government into their computing platforms.
Cloud computing extends this concept, allowing for access to
powerful, ubiquitous and reliable computing to the general
public through the use of web services and application
programming interfaces (API). Although there is a large push
towards cloud computing, there is a lack of work having been
done in regards to data security, ownership and privacy in
cloud computing. A survey conducted by the US Government
Accountability Office (GAO) states that “22 of 24 major
federal agencies reported that they were either concerned or
very concerned about the potential information security risks
associated with cloud computing” [1]. Due to the infancy of
cloud computing, there are not many standards or best
practices in terms of securing data in the clouds. Besides a few
major companies investing into the cloud, there are also
numerous startups and smaller companies attempting to
become cloud providers. For these smaller entities, there are
no guarantees that they are following or have the resources
available to follow best practices for securing their data
centers. In addition, services change frequently as product
offerings are developed and discontinued, leaving users of the

service scrambling to find alternatives, forced to take a
migration path etched by the provider, or stuck using a service
that is no longer being developed, refined, and patched. In an
enterprise environment, the issues that are plaguing cloud
computing would be considered unacceptable. If the corporate
world is to adopt cloud computing, it must guarantee that the
stored data is secure, stable, and available in the cloud.

Personal Information (PI), such as credit card information,
that falls under Payment Card Industry (PCI) data security
standards legislation, or medical records that falls under the
Health Insurance Portability and Accountability Act (HIPAA),
are especially at question regarding if and how exactly these
pieces of data can be stored and managed utilizing cloud
computing. Although there are some attempts to address
HIPAA compliance in the cloud [2], there exist no widely
accepted best practices or clear recommendations as to how
this data can be stored in the cloud. Currently, users are
advised to seek their own legal counsel on this matter, with the
provider offering no liability for misguiding or incorrect
advice. In addition, legislative acts, such as HIPAA, were
developed with traditional network architectures in mind, with
numerous regulations regarding physical facilities, employee
best practices, and operating system best practices. In a cloud
environment, all or at least most of these implementation
details are hidden from the cloud consumers, so companies
that fall under HIPAA regulations do not have direct influence
or authority over these compliance details. Procedures and
requests can be specified during the contract creation time
between a cloud provider and an enterprise, but this would
require complex negations and audit procedures that the cloud
provider may not be equipped for or willing to follow. There
are efforts in the security industry to certify certain cloud
providers as being compliant with legislative mandates for
handling PI, but we can find no established practice at this
time. In this paper, we develop a security model that addresses
these issues of cloud computing, easing concerns of
legislatures and enterprise of storing data in the cloud. The
proposed model can be adopted to serve as an equivalent
alternative to enterprise controlled facility, personnel and
infrastructure mandates.

Although cloud computing is still in its infancy, there has
been a considerable amount of work on data security and
federation for distributed data, in which this work is related to.
Goodrich et al. explored efficient authentication mechanisms
for web services with unknown providers [3]. In their
approach, they utilized a third party notary service that could

334

ensure users the trustworthiness of the service providers.
Weaver studied the topic of exploring data security when using
web services [4]. In his approach, he placed a layer of
authentication and authorization services between the clients
and the web services they were trying to access in order to
authorize users. He also explored the issue of federation to
manage trust relationships among services, which could be
extended towards securing cloud computing. Santos et al.
provided efforts to establish a secure and trusted cloud
computing environment [5]. They, however, assumed that
providers could prevent physical attacks to their servers, which
might not be true in the case of a poorly vetted employee or a
poorly designed facility. In our approach, we focus on data
security, redundancy, and privacy issues in cloud computing.
We develop a formal model of information storage that utilizes
a cloud cluster with multiple cloud providers to leverage the
benefits of storing data in the cloud while minimizing the risks
associated with storing data in an offsite, insecure, unregulated
and possibly noncompliant atmosphere.

II. SECURE AND FAULT-TOLERANT CLOUD-BASED
INFORMATION STORAGE

A. A Motivating Example
Consider a scenario where a medical company wishes to

have all medical records of its patients available to its trusted
partners, as well as to doctors who may be off site. First, the
medical data is required to be highly fault tolerant, as losing
patient records is not an option. Secondly, the data must be
secure, as the company has an obligation to its patients to
protect their personal information. Thirdly, the medical
records must be guaranteed to be available, as it may become a
matter of life or death if the data cannot be accessed quickly.
The company realizes that storing the data on site would
require a complex setup to make the data widely available to
its central location and branch offices, with a large cost to
purchase servers and storage devices. Furthermore, storing the
data on site also requires a robust mechanism to ensure that
the data is redundant and available in case of disaster, as well
as a scalable infrastructure in case of growth. The company is
attracted by the benefits of cloud computing, namely the
availability of the data over the Internet for its remote offices
and doctors, not having to invest a large amount of money to
establish the infrastructure, the scalability, and the promise of
resiliency and redundancy. Therefore, the company wishes to
explore the option of using cloud computing for information
storage and archiving of its data. It is, however, very
concerned with moving its data into the cloud since losing
physical control of its data be of high risk. Although the
company can choose reputable cloud providers to host its data,
there is no way to vet individual employees who are hired by
the cloud provider to prevent insider attacks, whereas the
medical company is required to do full background checks and
audits on employees who are allowed to handle its data. The
company is also concerned with the physical locations of its
data. With a cloud provider, the medical company does not
even know where its data resides in the cloud, let alone what
safeguards are at place at the physical facility. The company
has also seen through the media the amount of damage that
can be caused by its data being compromised by a third party.

It must assume that by storing its data in the cloud, it can be
compromised, so it needs to ensure that the cloud providers
and their employees absolutely do not have access to the
underlying information. The company is finally concerned
with the availability of its data, as although it sees cloud
computing as mostly reliable, it needs to make sure that its
data is available and that there are no extended length of
outages. When the medical company is treating a patient, for
example, it is critical to know if the patient is allergic to any
medication. If this information became unavailable, there may
be dire consequences. If the company chooses to build the data
center by itself, it would take into account all of the above
concerns. In the cloud, however, the environment is ever-
changing with providers having the ability to decide critical
implementation details, where data resides, and can at whim
discontinue or radically change a service offering. Given the
current state of cloud computing, the healthcare provider
would have some very serious and legitimate concerns that
need to be addressed.

In order to mitigate the major concerns that the medical
company faces, we design a reliable, fault-tolerant, and secure
architecture for cloud computing. Our approach can assist in
bridging a major issue that resides in cloud computing yet to
be solved, namely how to securely store personal information
in the clouds. Thus, our approach can mitigate concerns from
companies that are trying to adopt cloud computing and
regulators as well as the general public who are concerned for
the security and confidentiality of the stored information.

B. An Architectural Design
Our proposed information storage model for cloud

computing can be deployed on multiple cloud service
providers. As shown in Fig. 1, the model consists of users, a
service directory, and a collective group of cloud storage
providers. The users are cloud clients who wish to store and
access data in the clouds. A user can first interact with the
service directory, which acts as a coordinator that can set up a
cloud cluster with multiple cloud service providers and assign
it to the user, and also store information regarding the
addresses of all service providers in the a cloud cluster.

Figure 1. Architectural design of the information storage model

Once the client obtains the address information of the
cloud providers from the service directory, it interacts with the
cloud cluster, namely a collection of available service
providers that can store and send data using predefined

335

protocols. Each set of data, composed of the user’s sensitive
information can be split into multiple pieces using a
predefined security mechanism, and are stored into the cloud
cluster after they are encrypted. The cloud providers in the
cloud cluster have no knowledge of which cluster they belong
to as well as which are the other members in the cloud cluster
they are servicing. This means the cloud clusters are virtual
clusters in the clouds, which are generated and exclusively
managed by the service directory. Furthermore, the service
directory has the capability to restore data when needed. When
a service provider in a cloud cluster fails, the service directory
can automatically restore the data using a predefined
restoration algorithm, and replace the failed service provider
with a new one from the Provider Pool.

The security mechanism defined in our model consists of
two levels. In the first level, the information to be stored is
split into multiple pieces using the RAID 5 techniques with
distributed parity [6] so that if a provider fails, the data stored
collectively in the cluster would be recoverable. Note that the
RAID technique uses block-level striping with distributed
parity in a cluster of disk drives [7]. Due to data redundancy,
when a disk drive fails, any subsequent reads can be calculated
from the distributed parity, and the data in the failed drive can
be restored. In our approach, we consider each cloud provider
in a cloud cluster as a virtual disk drive; thus, our information
storage model is fault tolerant upon the failure of any cloud
provider in the cloud cluster, and the missing piece of data can
be recovered from the distributed parity stored with the other
cloud providers in the cloud cluster. Another advantage of our
approach is, due to the distribution of data over multiple cloud
providers, no cloud provider is able to calculate the original
data because the providers have no knowledge of which the
other members are in the cloud cluster.

In the second level of our security mechanism, encryption
plays an important role. To ensure that providers do not have
access to the underlying data that is being stored, symmetric
key encryption can be used. A symmetric key is an encryption
key that is used for both encryption and decryption of data and
should be kept secret from all entities that do not have access
to the data. A user with the needed access permission can
utilize a symmetric key to encrypt a piece of data to be stored
prior to sending it out to the cloud and to decrypt the data after
it is retrieved from a cloud provider. When a read operation is
performed, all pieces of information need to be decrypted after
retrieved from the cloud providers in the cloud cluster, and
then they are combined into the original information.

In order to correctly design the security mechanism, we
develop a formal model of the secure and fault-tolerant
information storage system in cloud computing, and verify
some key properties of the model. We adopt colored Petri net
formalism because it is a well-founded process modeling
technique that has formal semantics to allow specification,
design, verification, and simulation of a complex concurrent
software system [8]. A Petri net is a directed, connected, and
bipartite graph, in which each node is either a place or a
transition. In a Petri net model, tokens are used to specify
information or conditions in the places, and a transition can
fire when there is at least one token in every input place of the
transition. Colored Petri nets (CPN or CP-net) are an extension
of ordinary Petri nets, which allow different values

(represented by different colors) for the tokens. Colored Petri
nets have a formal syntax and semantics that leads to compact
and operational models of very complex systems for modular
design and analysis. The major advantage of developing a
CPN model of the information storage system is to provide a
precise specification, and to ensure a correct design of the
information storage system; therefore, design errors, such as a
deadlock, can be avoided in the implemented system.

III. FORMAL MODELING SECURE AND FAULT-TOLERANT
CLOUD-BASED INFORMATION STORAGE ARCHIETCTURE

To make the model easy to comprehend, we utilize
hierarchical CPN (HCPN), which allows using substitution
transitions and input/output ports to represent a secondary
Petri net in the hierarchy. In our design, we first provide the
high-level model with its key components. Then we utilize
HCPN to refine each component into a more complete Petri
net. Since the architecture we proposed is most suitable for
storing personal or confidential data, In the following sections,
we present the HCPN model with an example of medical
record online storage system, which consists of a service
directory, a cloud cluster with three cloud providers, and two
users (cloud clients), namely a patient and a doctor.

A. High-Level Petri Net Model

The HCPN model can be devloped using CPN Tools [9].
In Fig. 2, we present a high-level model that defines the key
components, namely the Doctor, the Patient, the Cloud, and
the Directory, as well as the communications among the
components. The key components are defined as substitution
transitions, denoted as double rectangles in the figure. The
purpose of the communications among the patient, doctor, and
cloud is to transfer and access a patient’s medical record. The
directory acts as a data coordinator between the users and the
cloud. To simulate the cloud providers that are selected as
members of a cloud cluster as well as the data being
transferred between the users and the cloud providers, a PROV
and a MEDRECORD colored token type are defined using the
ML functional language integrated in CPN Tools as follows:
colset PROV = record colset MEDRECORD = record
 prID: STRING * recID:STRING *
 ready: BOOL * data: STRING;
 mrec: MEDRECORD;

where prID is a provider ID, ready is a flag of a provider
indicating whether the provider is functioning or failed, mrec
is a medical record, recID is a record ID, and data is the
medical data stored in the record.

The directory is responsible for initializing the cloud
providers in a cloud cluster assigned to a user, replying queries
from a user for providers’ addresses, and processing
restoration request upon the failure of a cloud provider in a
cloud cluster. As shown in Fig. 2, the cloud cluster (denoted as
the place “Cluster Providers”) is initialized with three
providers "Pr1", "Pr2" and "Pr3" of type PROV, each of
which is initialized with initrec that contains a blank
medical record. Furthermore, the place “Provider Pool” is
initialized with one spare cloud provider "Pr4", which can be
used to replace a failed cloud provider in the cloud cluster.

336

z

x

Doctor

Doctor

Directory

Directory

Cloud

Cloud
Patient

Patient

Restore
1`false

BOOL Cluster
Providers

1`{prID="Pr1",ready=true,mrec=initrec}++1`{prID="Pr2",ready=true,mrec=initrec}++
1`{prID="Pr3",ready=true,mrec=initrec}

PROV

Provider
Pool

1`{prID="Pr4",ready=true,mrec=null}

PROV

Query_Resp

QUERYRESP

Down
Providers

PROV

Read_Ack

RDRESP

Write_Ack

WRRESP

Write_Req
WRREQLIST

Read_Req

RDREQLIST

Service
Ready

1 `ReadWrite
STATUS

Query_Dir

DIRQUERY

Patient Cloud

Directory

Doctor

1 3

1

1

Figure 2. High-level CPN model of the cloud storage

A read request (RDREQ) and a write request (WRREQ) to a
cloud provider can be defined as colored tokens as follows:
colset RDREQ = record colset WRREQ = record
 clID:STRING * clID:STRING *
 recID:STRING * mrec:MEDRECORD *
 prID:STRING; prID:STRING;

where clID is a client ID. Note that in Fig. 2, RDREQLIST and
WRREQLIST are defined as a list of read requests, and a list of
write requests, repectively. Thus, our model allows accessing
multiple pieces of information concurrently from the cloud
providers participating in a cloud cluster.

After a read (write) requst has been processed, a read
(write) response will be returned to the user, simulated as a
token of type RDRESP (WRRESP) being deposited in place
“Read_Ack” (“Write_Ack”). The colored token types RDRESP
and WRRESP are defined as follows:
colset RDRESP = record colset WRRESP = record
 clID:STRING * clID:STRING *
 prID:STRING * prID:STRING *
 mrec:MEDRECORD * mrec:MEDRECORD *
 success:BOOL; success:BOOL;

where the flag success indicates if a read request or a write
request is successful or failed. In case a read or write request
fails (i.e., a cloud provider is down), the user will change the
token in place “Restore” from false to true, notifying the
directory to start the restoration process for the cloud cluster.

B. Petri Net Model for the Directory Component

We now refine the Directory component (i.e., the
Directory substitution transition in Fig. 2) into a CPN model
as shown in Fig. 3. In the figure, the place “Clust_Prov_List”
is intialized with a list of providers ["Pr1","Pr2","Pr3"]
due to the initial setting of the cloud cluster in place “Cluster
Providers.” When a patient client or a doctor client starts
querying the directory for the addresses of the providers in its
assigned cloud cluster, a query token will be placed by the
client into place “Query_Dir.” This enables the transition
“Provider Locations.” When it fires, it creates a token of
QUERYRESP type in palce “Query_Resp,” which attaches the
provider information stored in place “Clus_Prov_List.” Note
that to simplify our CPN model, the provider information only

consists of the provider IDs rather than the providers’ actual
endpoint addresses. Therefore, a service invocation to a cloud
provider could be simulated by matching the cloud provider’s
ID rather than calling at its endpoint address. Since the place
“Query_Resp” is an input port of the clients, the token
becomes available to the client for further processing. On the
other hand, if the “Restore” place contains a true token due
to an access error experienced by a user, the “Check
Providers” transition becomes enabled as long as the directory
is not currently restoring the cloud cluster (denoted by a
false token in place “Init_Restore”) and there is a failed
provider (i.e., its ready flag is set to false) in place “Cluster
Providers.” Once the transition fires, it places a true token
into the “Init_Restore” place, signifying that a restoration
process should take place. The firing also removes the failed
provider from the “Clust_Prov_List” place and transfers the
provider from the “Cluster Providers” place to the “Down
Provider” place. When the restoration process starts, the
“Restore” transition fires, and deposits a copy of the remaining
two providers into the “Restore Gather Info” place. This
enables the “Calculate Replacement” transition, and its firing
simulates the calculation of the missing piece of data based on
the distributed parity information, and results in the restored
medical record being placed in the “Replacement Record”
place. Note that for simplicity, the detailed procedure of the
parity calculation is not modeled in Fig. 3.

1`false

restore

{prID = (#prID g),
ready = (#ready g),mrec = m}

h

ins h (#prID g)

mg

{recID = (#recID (#mrec g1)),
data = (#data(#mrec g1))}

1`g1 ++ 1`g2

h

b

b

1`true

rmall (#prID g) h

g

{query=d,
provlist =h}

h

d

g

h

Transfer
to Replace

[length h = (NPROV-1)
andalso (#ready g) = true]

Restore

[length h = (NPROV-1)
andalso b = true]

Provide
Locations

[length h =
NPROV]

Check
Providers

[#ready g = false
andalso restore = true
andalso b= false]

Restore
In BOOL

Replacement
Record

MEDRECORD

Restore
Gather Info

PROV

Init_Restore

BOOL

Cluster
Providers

I/O

Query_Resp
Out

QUERYRESP

Provider
Pool

In
PROV

Service
Ready

I/O

Down
Provider

Out
PROV

Clust_Prov_List

1`["Pr1","Pr2","Pr3"]

CLUST

Query_Dir
In

DIRQUERY
In

Out

In

Out

In

I/O

I/O

1`false

1`ReadWrite

PROV

Calculate
Replacement

1`g1 ++ 1`g2

STATUS x

1`g1++
1`g2

1

1

3

1

11`ReadWrite

1

Figure 3. CPN model for the Directory component

Once the record has been restored, the “Transfer to
Replace” transition becomes enabled, and its firing takes a
provider from the “Provider Pool,” initializes it with the
restored medical record, updates provider list in the
“Clus_Prov_List” place by adding the new provider into the
list, and places the provider into the “Cluster Providers” place.
This step completes the restoration process, with the required
number of functioning providers allocated in the cloud cluster.

C. Petri Net Models for the Patient and Doctor Clients
A patient client should have the permisison to read its

medical record. As shown in Fig. 4, a patient first requests the
addresses of the cloud providers in the cloud cluster assigned
to him, which is modeled by placing a true token in the

337

“Query Directory” place. With this token as well as the client
ID of the user in the “ClientID” place, the “Init_Query”
transition can fire, and its firing results in a DIRQUERY token
to be placed in the “Query_Dir” output port.

b

1`true

1`[]
hr

#mrec u

m

m

(NPROV-1)`m++1`m1

n

1`true

t

t

hr

hr

ins hr {clID= (#clID n),
prID= List.nth((#prov n),0),
recID= (#recID n)}

{recID=(#recID n), clID = (#clID n),
prov = (List.drop((#prov n),1))}

n

{recID=s,
clID = t,prov=h}

t

u

#mrec u u

s

h

#provlist q

q

{clID = t}
b

t

t

Combine
Data

Next_Read

Start_Read

[length(#prov n) = 0]

Construct
Read Req

[length(#prov n) > 0]

Read
Failure

[(#success u) = false
andalso (#clID u) = t]

Decrypt
Data

[(#success u) = true
andalso (#clID u) = t]

Extract
Providers

[(#clID (#query q)) = t]

Init_Read

Init_Query

[b=true]

Restore
Out BOOL

Data

MEDRECORD

Read
Request

1`[]

RDREQLIST

Read
Informaion

RDINFO

File
Store

MEDRECORD

Provider
Locations

CLUST

Query_Resp
In

QUERYRESP

Query_Dir
Out

DIRQUERY

Query
Directory

1`true

BOOL

ClientID

1`"Pat1"

STRING

Data to
Read

1` ("P1.rec")

STRING

Read_Ack
In

RDRESP

Read_Req
Out

RDREQLIST

Out

In

Out

In

Out

1

1`false

11

1

1

Figure 4. CPN model for the patient client

When a response from the directory is put into the
“Query_Resp” input port, the providers’ address information
becomes available. This enables the “Extract Providers”
transition, and the firing of the transition places a CLUST token
in the “Provider Locations” place. The CLUST token type is
defined as a list of providers as follows:
colset CLUST = list STRING with 0..3;

where the with clause specifies the minimum and maximum
length of the list, and each item in the list contains the address
of a provider (represented by its provider ID as a string for
simplicity) that can be used by the client to communicate with
the provider. To model a read operation, a token "P1.rec" is
initialized in the “Data to Read” place, which is a record ID
representing patient P1’s medical record. The firing of the
“Init_Read” transition starts the read process, and places the
record ID along with the provider information into the “Read
Information” place. Note that in this model, we assume that
there is only one record for each patient that can be matched
with medical data stored on the providers. Now the “Construct
Read Req” transition can fire once for each provider in the
provider list, and creates a token of type RDREQLIST in the
“Read Request” place, such that the multiple read requests in
the list can be made concurrently to the cloud providers in the
cloud cluster. This makes the associated providers in place
“Read Information” being removed and enables the “Start
Read” transition. When it fires, it transmits the RDREQLIST
token to the “Read_Req” place, which is an input port to the
cloud cluster. After the requests have been processed by the
cloud providers, multiple tokens of type RDRESP will be
deposited in place “Read_Ack.” If a RDRESP token contains a
success flag with a true value, it indicates that the read
request has been completed successfully by the corresponding
cloud provider. In this case, the piece of medical record is
extracted from the token and placed in the file store after bieng
decrypted. Once all pieces of the medical record are

successfully decrypted, the “Combine Data” transition
becomes enabled and can fire. The firing simulates the process
of generating the original medical record by recombining the
RAID data slices retrieved from the cloud providers. If one of
the providers returns a token with the success flag set to
false, a read failure occurs for the cloud provider. In this
case, the “Read Fail” transition becomes enabled. Once it
fires, it changes the token in place “Restore” from false to
true, signifying the directory to initiate a “restore” operation.

The CPN model for the doctor client that replaces the
Doctor substitution transition of the high-level model is
similar to the one for the patient client, but a doctor client
should also have the privilege to write data into the clouds.
Due to page limits, we do not show such a CPN model here.

D. Petri Net Model for the Cloud Component
Finally, we refine the Cloud substitution transition of the

high-level model into a CPN model as shown in Fig. 5, where
the cloud providers are represented as colored tokens of type
PROV. The clouds can accept either “read” or “write” requests
from the clients, namely the patient and the doctor. Upon
receiving the requests, cloud providers invoke corresponding
cloud services by matching their IDs in the cloud cluster, and
return responses to the clients. In addition, the cloud providers
in a cloud cluster are also responsible for providing their data
to the service directory on demand in a case that a restoration
process is initiated when a read or write request fails due to the
failure of a cloud provider in the cloud cluster.

{prID=(#prID g),
ready=false,
mrec=(#mrec g)}

r

r
hr

e

e

e

e

1`v1++1`v2++1`v3

1`v1++1`v2++1`v3

1`u1++1`u2++1`u3

1`u1++1`u2++1`u3

w

whwhw

hr

x y

{prID = (#prID g),
clID = (#clID r),
mrec = null,success=false}

g

{prID = #prID g,
req = w, success=false}

g

pd

g
{prID = #prID g,
ready = #ready g,
mrec=(#mrec w)}

g

g

{prID=(#prID g),
req = w, success=true}

{prID = (#prID g),clID = (#clID r),
mrec = (#mrec g),success=true}

Write_Resp

Read_Resp

Write_Start

Read_Start

Read_Fail
[(#prID r) = (#prID g)
andalso (#ready g) = false]

Write_Fail

[(#prID w) = (#prID g)
andalso (#ready g) = false]

Provider_Down

[pd = SimEnabled
andalso (#prID g)="Pr1"]

output (y);
action(ReadOnly);

Write_File

[(#prID w) = (#prID g)
andalso (#ready g) = true]

Read_File

[(#recID r)=(#recID (#mrec g))
andalso (#prID r)=(#prID g) andalso (#ready g)=true]

Read_Start

RDREQ

RW_Control

1`e

UNIT

Write_Ack
Out

WRRESP

Read_Ack
Out

RDRESP

Write_Start

WRREQ
Service
Ready

In

STATUS

Provider
Down

1`SimEnabled

SIMPROVDOWN

Provider
Pool

Out PROV

Write_Req
In

WRREQLIST

Cluster
ProvidersOut

PROV

Down
Providers

In PROV

Write_Resp

WRRESP

Read_Req
In

RDREQLIST

Read_Resp

RDRESP

In

In

Out

In

Out

Out

Out

In

1

1

1
1

3

Figure 5. CPN model for the cloud component

In this model, the “Cluster Providers” place is shared with
the directory, where the PROV tokens in the place represent the
providers selected to constitute the cloud cluster. In addition,
the “Provider Pool,” “Down Providers,” and “Service Ready”
places are also shared places in the directory model. The
“Provider Pool” acts as a holding place for available providers
identified by the directory. The “Down Providers” place
contains the providers that are down and deemed needing
replacement. Finally, the “Service Ready” place acts as an input
place to the cloud for simulation purposes only. In our current
model, we only consider a maximum of one cloud provider

338

going down at a time. This is a reasonable assumption because
cloud providers should be somewhat reliable. In order to satisfy
this constraint in the model, the “Provider Down” place is
connected to the “Provider_Down” transition, which allows the
“Provider_Down” transition to fire once.

When a client makes a “read” request, a RDREQLIST token
with a list of RDREQ requests will be deposited into place
“Read_Req.” This enables the “Read_Start” transition as long
as the “RW_Control” place contains a unit token, which
ensures “read” and “write” actions are mutual exclusive. When
the “Read_Start” transition fires, it splits the RDREQLIST token
into singular RDREQ tokens, places them into place
“Read_Start,” and removes the unit token from the
“RW_Control” place. The “Read_File” transition then
examines each of the RDREQ tokens, matches it with its
respective cloud provider, and fires as long as the success
flag of the corresponding PROV token in place “Cluster
Provider” is true. The following ML transition guard code
accomplishes this task:

[(#recID r) = (#recID (#mrec g)) andalso
 (#prID r) = (#prID g) andalso (#ready g)=true]

where g represents a cloud provider that is a member of the
cloud cluster and r represents a “read” request. The guard
selects the correct provider by comparing the provider ID in the
request (#prID r) with that of a provider from the
cluster(#prID g), matches the medical record ID, and makes
sure that the cloud provider is functioning, i.e., its ready flag
is set to true. If all conditions are met, the transition can fire,
and the firing of the transition creates a RDRESP token and
deposits it into the “Read_Resp” place. On the other hand, if a
“read” request fails due to the corresponding provider being not
ready (i.e., its ready flag is set to false), the “Read_Fail”
transition can fire, and its firing sends a RDRESP token with a
blank medical record and a success flag set to false to the
“Read_Resp” place. Once all three tokens are in the
“Read_Resp” place, the “Read_Resp” transition may fire. The
firing of the transition returns a unit token to the “RW_Control”
place and places the RDRESP tokens into the “Read_Ack” port,
available for the clients to digest.

A “write” request follows an almost identical path through
the model. When the doctor places a WRREQLIST token into the
“Write_Req” port, the “Write_Start” transition becomes
enabled, and the firing of the transition places the individual
WRREQ tokens into place “Write_Start.” With the tokens in this
place, the “Write_File” transition can fire as long as the ready
flag of some PROV token in place “Cluster Providers” is true.
The firing of the transition replaces the medical record stored in
the PROV token with the replacement record, and also
constructs a WRRESP token and places it in the “Write_Resp”
place. On the other hand, if the ready flag of a provider is set
to false, the “Write_Fail” transition may fire. In this case, the
medical record is not altered, and a WRRESP token with the
success flag set to false will be deposited in place
“Write_Resp.” Once all three WRRESP tokens are in the
“Write_Resp” place, the “Write_Resp” transition can fire, and
its firing returns a unit token back to the “RW_Control” place
and deposits the WRRESP tokens in the “Write_Ack” place,
being available for the client to process.

A restoration process can be simulated in the cloud model
by setting the SIMPROVDOWN token in place “Provider Down”
to SimEnabled. When the “Provider_Down” transition fires, it
randomly selects a provider from the place “Cluster Providers”
and sets the ready flag of the provider to false. This step
simulates the failure of a cloud provider in the cloud cluster.
Furthermore, the firing of the transition also sets the STATUS
token in place “Service Ready” to ReadOnly, which disables
the transition for writing in the CPN model for the doctor
patient. The doctor patient will be allowed to write again only
after the STATUS token in place “Service Ready” is changed
back to ReadWrite. Meanwhile, when either a patient or a
doctor client experiences an access error to a failed cloud
provider, a restoration process will be initiated by the client.
Communication with the directory for a “restore” operation is
done through the shared port “Cluster Providers.” This port,
containing the PROV tokens of the providers who make up the
cluster, allows the directory direct access to the PROV state
when required. When the restoration process completes, the
failed cloud provider in place “Cluster Providers” will be
replaced by a new one taken from the “Cluster Pool.”

IV. FORMAL ANALYSIS OF THE CPN-BASED MODEL

In addition to providing an accurate model for our proposed
security mechanisms for cloud-based information storage,
building a formal design model also has the advantage of
ensuring a correct design through state space analysis. Utilizing
the CPN Tools, a formal analysis of the CPN model can be
performed to verify if the model meets certain system
requirements. Typically, the model we developed should be
live, bounded, and deadlock-free. When we use the CPN Tools
to calculate the state space and analyze its major behavioral
properties, the CPN Tools produce the following results:

Statistics

 State Space
 Nodes: 154908
 Arcs: 571408
 Secs: 1832
 Status: Full
 Scc Graph
 Nodes: 90616
 Arcs: 431478
 Secs: 37

Liveness Properties

 Dead Markings
 99 [44684,44683,44682,
 44510,44509,...]
 Dead Transition Instances
 None
 Live Transition Instances
 None

The analysis shows that the state space contains dead
markings, thus the model we developed must contain
deadlocks. By tracing the firing sequence for the deadlock
states as we did in our previous work [10], we found a subtle
design error. The error is due to the removal of the failed
cloud provider from the place “Cluster Provider” in the CPN
model for the Directory component, which occurs when the
transition “Check Providers” fires. However, some “read”
request in place “Read_Req” of the CPN model for the Cloud
component would require communicating with a removed
cloud provider if the “read” request was created before the
cloud provider fails. Since there is no matched cloud provider
in the “Cluster Provider” place of the Directory model, the
system may enter a deadlock state. The easiest way to fix this
problem is to allow the failed cloud provider to stay in the
“Cluster Provider” place. This would allow the “Read_Fail”

339

transition to fire, and return a “read” error to the client. After
we add a new arc from the transition “Check Providers” to the
place “Cluster Provider” in the Directory model, the CPN
Tools now produce the following results:

Statistics

 State Space
 Nodes: 204267
 Arcs: 880021
 Secs: 4599
 Status: Full
 Scc Graph
 Nodes: 133063
 Arcs: 726216
 Secs: 242

Liveness Properties

 Dead Markings
 None
 Dead Transition Instances
 None
 Live Transition Instances
 Cloud'Read_File 1
 Cloud'Read_Resp 1
 Cloud'Read_Start 1
 ...

Boundedness Properties
--
 Place Upper Lower
 Cloud'Provider_Down 1 0
 Cloud'RW_Control 1 0
 Cloud'Read_Resp 3 0
 Cloud'Read_Start 3 0
 Cloud'Write_Resp 3 0
 Cloud'Write_Start 3 0
 Directory'Clust_Prov_List 1 1
 Directory'Init_Restore 1 0
 Directory'Replacement_Record 1 0
 Directory'Restore_Gather_Info 2 0
 High_Level'Cluster_Providers 4 3
 High_Level'Down_Providers 1 0
 High_Level'Provider_Pool 1 0
 High_Level'Query_Dir 2 0
 High_Level'Query_Resp 2 0
 High_Level'Read_Ack 6 0
 High_Level'Read_Req 2 0
 High_Level'Restore 1 1
 High_Level'Service_Ready 1 1
 High_Level'Write_Ack 3 0
 High_Level'Write_Req 1 0
 ...

The analysis shows that our modified net model is
deadlock free, and all transitions except those related to the
restoration process are live. Note that in our simulation, we
allow the “Provider_Down” transition in the Cloud model can
fire only once. The analysis also shows that our net model is
bounded. We notice that the upper bound of the place
“Cluster_Providers” in the high-level model is 4 rather than 3.
This is because a failed cloud provider will be kept in the
cloud cluster after the service directory restores the cloud
cluster by adding a replacement cloud provider into the
cluster. A more sophisticated model that allows a failed cloud
provider to be removed from the cloud cluster, and also allows
more than one patient and more than one doctor to access
cloud clusters with shared cloud providers is envisioned as a
future, and more ambitious research plan.

V. CONCLUSIONS AND FUTURE WORK

Cloud computing is quickly becoming a widely adopted
platform to allow for complex computational nodes and storage
clusters without any of the difficulties and cost associated with
configuration and maintenance. There are, however, major
legitimate concerns from enterprises and sensitive data holders
related to offsite storage of personal or mission critical data.

Studies show that given the current state of cloud computing,
enterprises are very concerned with unresolved issues related to
security, trust, and management in the cloud. For a majority of
these enterprises, this is also the main reason why they have not
yet adopted cloud computing into their infrastructure. In this
paper, we introduce a cloud-based information storage model
that takes into account the fact that cloud providers may
experience outages, data breaches, and exploitations. We cope
with these issues by developing a distributed cloud-based
security mechanism. We then utilize hierarchical colored Petri
nets to formally model and analyze our concurrent security
model. The verification results show that the model we
developed is live, bounded and deadlock-free.

For future work, we plan to develop a more sophisticated
model that allows more clients to access the cloud clusters with
shared cloud providers, and demonstrate how to cope with the
state explosion problem using the net reduction approach.
Meanwhile, we will try to implement a prototype cloud-based
information storage system with an improved distributed parity
algorithm that may strengthen the security mechanism by
preventing potential provider collusion to obtain information
stored in a cloud cluster. Finally, the model can be further
improved if we allow the service directory to autonomously
detect failures, drops in quality of service (QoS), and anomalies
of the cloud providers, and react accordingly.

REFERENCES

[1] GAO, “Information Security: Additional Guidance Needed to Address
Cloud Computing Concerns,” United States Government Accountability
Office (GAO), October 6, 2011, Retrieved on December 18, 2011 from
http://www.gao.gov/new.items/d12130t.pdf

[2] AWS, “Creating HIPAA-Compliant Medical Data Applications with
AWS,” Amazon Web Services (AWS), Amazon, April 2009, Retrieved on
August 22, 2010, from http://awsmedia.s3.amazonaws.com/AWS_
HIPAA _Whitepaper_Final.pdf.

[3] M. T. Goodrich, R. Tamassia, and D. Yao, “Notarized Federated ID
Management and Authentication,” Journal of Computer Security, Vol.
16, No. 4, December 2008, pp. 399-418.

[4] A. C. Weaver, “Enforcing Distributed Data Security via Web Services,”
In Proceedings of the IEEE International Workshop on Factory
Communication Systems (WFCS), Vienna, Austria, September 22-24,
2004, pp. 397-402.

[5] N. Santos, K. Gummadi, and R. Rodrigues, “Towards Trusted Cloud
Computing,” In Proceedings of the Workshop on Hot Topics in Cloud
Computing (HotCloud09), San Diego, CA, USA, June 15, 2009.

[6] A. Thomasian and J. Menon, “RAID 5 Performance with Distributed
Sparing,” IEEE Transactions on Parallel and Distributed Systems, Vol.
8, No. 6, June 1997, pp. 640-657.

[7] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz, “Introduction to
Redundant Arrays of Inexpensive Disks (RAID),” COMPCPN
Spring’89, Thirty-Fourth IEEE Computer Society International
Conference: Intellectual Leverage, Digest of Papers, Feb. 27 - March 3,
1989, San Francisco, CA , USA, pp. 112-117.

[8] K. Jensen, Colored Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, Vol. I: Basic Concepts, EATCS Monographs on
Theoretical Computer Science, New York Springer-Verlag, 1992.

[9] A. V. Ratzer, L. Wells, H. M. Lasen, M. Laursen, J. F. Qvortrup, et al.,
“CPN Tools for editing, simulating and analyzing colored Petri nets,” In
Proceedings of the 24th International Conference on Application and
Theory of Petri Nets, Eindhoven, Netherlands, Jun. 2003, pp. 450-462.

[10] H. Xu, M. Ayachit, and A. Reddyreddy, “Formal Modeling and Analysis
of XML Firewall for Service-Oriented Systems,” International Journal
of Security and Networks (IJSN), Vol. 3, No. 3, 2008, pp. 147-160.

