
333

A Petri Net Model for Secure and Fault-Tolerant 
 Cloud-Based Information Storage 

Daniel F. Fitch and Haiping Xu 
Computer and Information Science Department 

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA 
{daniel.fitch, hxu}@umassd.edu 

Abstract—Cloud computing provides a promising opportunity for 
both small and large organizations to transition from traditional 
data centers to cloud services, where the organizations can be 
more concerned with their applications, services, and data rather 
than the underlying network infrastructures and their associated 
cost. There are major concerns, however, with data security, 
reliability, and availability in the cloud. In this paper, we address 
these concerns by proposing a novel security mechanism for 
secure and fault-tolerant cloud-based information storage. We 
present a formal model of the security mechanism using colored 
Petri nets (CPN). The model utilizes multiple cloud service 
providers as a cloud cluster for information storage, and a service 
directory for management of the cloud clusters including service 
query, key management, and cluster restoration. Our approach 
not only supports maintaining the confidentiality of the stored 
data, but also ensures that the failure or compromise of an 
individual cloud provider in a cloud cluster will not result in a 
compromise of the overall data set.  
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fault tolerant; colored Petri nets; formal modeling and verification. 

I. INTRODUCTION

As the Internet continues to evolve, service-oriented 
systems are becoming more widely adopted by large 
companies and government into their computing platforms. 
Cloud computing extends this concept, allowing for access to 
powerful, ubiquitous and reliable computing to the general 
public through the use of web services and application 
programming interfaces (API). Although there is a large push 
towards cloud computing, there is a lack of work having been 
done in regards to data security, ownership and privacy in 
cloud computing. A survey conducted by the US Government 
Accountability Office (GAO) states that “22 of 24 major 
federal agencies reported that they were either concerned or 
very concerned about the potential information security risks 
associated with cloud computing” [1]. Due to the infancy of 
cloud computing, there are not many standards or best 
practices in terms of securing data in the clouds. Besides a few 
major companies investing into the cloud, there are also 
numerous startups and smaller companies attempting to 
become cloud providers. For these smaller entities, there are 
no guarantees that they are following or have the resources 
available to follow best practices for securing their data 
centers. In addition, services change frequently as product 
offerings are developed and discontinued, leaving users of the 

service scrambling to find alternatives, forced to take a 
migration path etched by the provider, or stuck using a service 
that is no longer being developed, refined, and patched. In an 
enterprise environment, the issues that are plaguing cloud 
computing would be considered unacceptable. If the corporate 
world is to adopt cloud computing, it must guarantee that the 
stored data is secure, stable, and available in the cloud. 

Personal Information (PI), such as credit card information, 
that falls under Payment Card Industry (PCI) data security 
standards legislation, or medical records that falls under the 
Health Insurance Portability and Accountability Act (HIPAA), 
are especially at question regarding if and how exactly these 
pieces of  data can be stored and managed utilizing cloud 
computing. Although there are some attempts to address 
HIPAA compliance in the cloud [2], there exist no widely 
accepted best practices or clear recommendations as to how 
this data can be stored in the cloud. Currently, users are 
advised to seek their own legal counsel on this matter, with the 
provider offering no liability for misguiding or incorrect 
advice. In addition, legislative acts, such as HIPAA, were 
developed with traditional network architectures in mind, with 
numerous regulations regarding physical facilities, employee 
best practices, and operating system best practices. In a cloud 
environment, all or at least most of these implementation 
details are hidden from the cloud consumers, so companies 
that fall under HIPAA regulations do not have direct influence 
or authority over these compliance details. Procedures and 
requests can be specified during the contract creation time 
between a cloud provider and an enterprise, but this would 
require complex negations and audit procedures that the cloud 
provider may not be equipped for or willing to follow. There 
are efforts in the security industry to certify certain cloud 
providers as being compliant with legislative mandates for 
handling PI, but we can find no established practice at this 
time. In this paper, we develop a security model that addresses 
these issues of cloud computing, easing concerns of 
legislatures and enterprise of storing data in the cloud. The 
proposed model can be adopted to serve as an equivalent 
alternative to enterprise controlled facility, personnel and 
infrastructure mandates. 

Although cloud computing is still in its infancy, there has 
been a considerable amount of work on data security and 
federation for distributed data, in which this work is related to. 
Goodrich et al. explored efficient authentication mechanisms 
for web services with unknown providers [3]. In their 
approach, they utilized a third party notary service that could 
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ensure users the trustworthiness of the service providers. 
Weaver studied the topic of exploring data security when using 
web services [4]. In his approach, he placed a layer of 
authentication and authorization services between the clients 
and the web services they were trying to access in order to 
authorize users. He also explored the issue of federation to 
manage trust relationships among services, which could be 
extended towards securing cloud computing. Santos et al. 
provided efforts to establish a secure and trusted cloud 
computing environment [5]. They, however, assumed that 
providers could prevent physical attacks to their servers, which 
might not be true in the case of a poorly vetted employee or a 
poorly designed facility. In our approach, we focus on data 
security, redundancy, and privacy issues in cloud computing. 
We develop a formal model of information storage that utilizes 
a cloud cluster with multiple cloud providers to leverage the 
benefits of storing data in the cloud while minimizing the risks 
associated with storing data in an offsite, insecure, unregulated 
and possibly noncompliant atmosphere.  

II. SECURE AND FAULT-TOLERANT CLOUD-BASED
INFORMATION STORAGE 

A. A Motivating Example 
Consider a scenario where a medical company wishes to 

have all medical records of its patients available to its trusted 
partners, as well as to doctors who may be off site. First, the 
medical data is required to be highly fault tolerant, as losing 
patient records is not an option. Secondly, the data must be 
secure, as the company has an obligation to its patients to 
protect their personal information. Thirdly, the medical 
records must be guaranteed to be available, as it may become a 
matter of life or death if the data cannot be accessed quickly. 
The company realizes that storing the data on site would 
require a complex setup to make the data widely available to 
its central location and branch offices, with a large cost to 
purchase servers and storage devices. Furthermore, storing the 
data on site also requires a robust mechanism to ensure that 
the data is redundant and available in case of disaster, as well 
as a scalable infrastructure in case of growth. The company is 
attracted by the benefits of cloud computing, namely the 
availability of the data over the Internet for its remote offices 
and doctors, not having to invest a large amount of money to 
establish the infrastructure, the scalability, and the promise of 
resiliency and redundancy. Therefore, the company wishes to 
explore the option of using cloud computing for information 
storage and archiving of its data. It is, however, very 
concerned with moving its data into the cloud since losing 
physical control of its data be of high risk. Although the 
company can choose reputable cloud providers to host its data, 
there is no way to vet individual employees who are hired by 
the cloud provider to prevent insider attacks, whereas the 
medical company is required to do full background checks and 
audits on employees who are allowed to handle its data. The 
company is also concerned with the physical locations of its 
data. With a cloud provider, the medical company does not 
even know where its data resides in the cloud, let alone what 
safeguards are at place at the physical facility. The company 
has also seen through the media the amount of damage that 
can be caused by its data being compromised by a third party. 

It must assume that by storing its data in the cloud, it can be 
compromised, so it needs to ensure that the cloud providers 
and their employees absolutely do not have access to the 
underlying information. The company is finally concerned 
with the availability of its data, as although it sees cloud 
computing as mostly reliable, it needs to make sure that its 
data is available and that there are no extended length of 
outages. When the medical company is treating a patient, for 
example, it is critical to know if the patient is allergic to any 
medication. If this information became unavailable, there may 
be dire consequences. If the company chooses to build the data 
center by itself, it would take into account all of the above 
concerns. In the cloud, however, the environment is ever-
changing with providers having the ability to decide critical 
implementation details, where data resides, and can at whim 
discontinue or radically change a service offering. Given the 
current state of cloud computing, the healthcare provider 
would have some very serious and legitimate concerns that 
need to be addressed. 

In order to mitigate the major concerns that the medical 
company faces, we design a reliable, fault-tolerant, and secure 
architecture for cloud computing. Our approach can assist in 
bridging a major issue that resides in cloud computing yet to 
be solved, namely how to securely store personal information 
in the clouds. Thus, our approach can mitigate concerns from 
companies that are trying to adopt cloud computing and 
regulators as well as the general public who are concerned for 
the security and confidentiality of the stored information. 

B. An Architectural Design 
Our proposed information storage model for cloud 

computing can be deployed on multiple cloud service 
providers. As shown in Fig. 1, the model consists of users, a 
service directory, and a collective group of cloud storage 
providers. The users are cloud clients who wish to store and 
access data in the clouds. A user can first interact with the 
service directory, which acts as a coordinator that can set up a 
cloud cluster with multiple cloud service providers and assign 
it to the user, and also store information regarding the 
addresses of all service providers in the a cloud cluster.  

Figure 1. Architectural design of the information storage model 

Once the client obtains the address information of the 
cloud providers from the service directory, it interacts with the 
cloud cluster, namely a collection of available service 
providers that can store and send data using predefined 
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protocols. Each set of data, composed of the user’s sensitive 
information can be split into multiple pieces using a 
predefined security mechanism, and are stored into the cloud 
cluster after they are encrypted. The cloud providers in the 
cloud cluster have no knowledge of which cluster they belong 
to as well as which are the other members in the cloud cluster 
they are servicing. This means the cloud clusters are virtual
clusters in the clouds, which are generated and exclusively 
managed by the service directory. Furthermore, the service 
directory has the capability to restore data when needed. When 
a service provider in a cloud cluster fails, the service directory 
can automatically restore the data using a predefined 
restoration algorithm, and replace the failed service provider 
with a new one from the Provider Pool.

The security mechanism defined in our model consists of 
two levels. In the first level, the information to be stored is 
split into multiple pieces using the RAID 5 techniques with 
distributed parity [6] so that if a provider fails, the data stored 
collectively in the cluster would be recoverable. Note that the 
RAID technique uses block-level striping with distributed 
parity in a cluster of disk drives [7]. Due to data redundancy, 
when a disk drive fails, any subsequent reads can be calculated 
from the distributed parity, and the data in the failed drive can 
be restored. In our approach, we consider each cloud provider 
in a cloud cluster as a virtual disk drive; thus, our information 
storage model is fault tolerant upon the failure of any cloud 
provider in the cloud cluster, and the missing piece of data can 
be recovered from the distributed parity stored with the other 
cloud providers in the cloud cluster. Another advantage of our 
approach is, due to the distribution of data over multiple cloud 
providers, no cloud provider is able to calculate the original 
data because the providers have no knowledge of which the 
other members are in the cloud cluster. 

In the second level of our security mechanism, encryption 
plays an important role. To ensure that providers do not have 
access to the underlying data that is being stored, symmetric 
key encryption can be used. A symmetric key is an encryption 
key that is used for both encryption and decryption of data and 
should be kept secret from all entities that do not have access 
to the data. A user with the needed access permission can 
utilize a symmetric key to encrypt a piece of data to be stored 
prior to sending it out to the cloud and to decrypt the data after 
it is retrieved from a cloud provider. When a read operation is 
performed, all pieces of information need to be decrypted after 
retrieved from the cloud providers in the cloud cluster, and 
then they are combined into the original information.  

In order to correctly design the security mechanism, we 
develop a formal model of the secure and fault-tolerant 
information storage system in cloud computing, and verify 
some key properties of the model. We adopt colored Petri net 
formalism because it is a well-founded process modeling 
technique that has formal semantics to allow specification, 
design, verification, and simulation of a complex concurrent 
software system [8]. A Petri net is a directed, connected, and 
bipartite graph, in which each node is either a place or a 
transition. In a Petri net model, tokens are used to specify 
information or conditions in the places, and a transition can 
fire when there is at least one token in every input place of the 
transition. Colored Petri nets (CPN or CP-net) are an extension 
of ordinary Petri nets, which allow different values 

(represented by different colors) for the tokens. Colored Petri 
nets have a formal syntax and semantics that leads to compact 
and operational models of very complex systems for modular 
design and analysis. The major advantage of developing a 
CPN model of the information storage system is to provide a 
precise specification, and to ensure a correct design of the 
information storage system; therefore, design errors, such as a 
deadlock, can be avoided in the implemented system. 

III. FORMAL MODELING SECURE AND FAULT-TOLERANT 
CLOUD-BASED INFORMATION STORAGE ARCHIETCTURE 

To make the model easy to comprehend, we utilize 
hierarchical CPN (HCPN), which allows using substitution 
transitions and input/output ports to represent a secondary 
Petri net in the hierarchy. In our design, we first provide the 
high-level model with its key components. Then we utilize 
HCPN to refine each component into a more complete Petri 
net. Since the architecture we proposed is most suitable for 
storing personal or confidential data, In the following sections, 
we present the HCPN model with an example of medical 
record online storage system, which consists of a service 
directory, a cloud cluster with three cloud providers, and two 
users (cloud clients), namely a patient and a doctor. 

A. High-Level Petri Net Model 

The HCPN model can be devloped using CPN Tools [9]. 
In Fig. 2, we present a high-level model that defines the key 
components, namely the Doctor, the Patient, the Cloud, and 
the Directory, as well as the communications among the 
components. The key components are defined as substitution 
transitions, denoted as double rectangles in the figure. The 
purpose of the communications among the patient, doctor, and 
cloud is to transfer and access a patient’s medical record. The 
directory acts as a data coordinator between the users and the 
cloud. To simulate the cloud providers that are selected as 
members of a cloud cluster as well as the data being 
transferred between the users and the cloud providers, a PROV
and a MEDRECORD colored token type are defined using the 
ML functional language integrated in CPN Tools as follows: 
colset PROV = record     colset MEDRECORD = record
  prID: STRING *           recID:STRING * 
  ready: BOOL *            data: STRING;
  mrec: MEDRECORD;

where prID is a provider ID, ready is a flag of a provider 
indicating whether the provider is functioning or failed, mrec
is a medical record, recID is a record ID, and data is the 
medical data stored in the record. 

The directory is responsible for initializing the cloud 
providers in a cloud cluster assigned to a user, replying queries 
from a user for providers’ addresses, and processing 
restoration request upon the failure of a cloud provider in a 
cloud cluster. As shown in Fig. 2, the cloud cluster (denoted as 
the place “Cluster Providers”) is initialized with three 
providers "Pr1", "Pr2" and "Pr3" of type PROV, each of 
which is initialized with initrec that contains a blank 
medical record. Furthermore, the place “Provider Pool” is 
initialized with one spare cloud provider "Pr4", which can be 
used to replace a failed cloud provider in the cloud cluster.   
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Figure 2. High-level CPN model of the cloud storage 

A read request (RDREQ) and a write request (WRREQ) to a 
cloud provider can be defined as colored tokens as follows: 
colset RDREQ = record     colset WRREQ = record 
  clID:STRING *       clID:STRING * 
  recID:STRING *       mrec:MEDRECORD * 
  prID:STRING;        prID:STRING; 

where clID is a client ID. Note that in Fig. 2, RDREQLIST and 
WRREQLIST are defined as a list of read requests, and a list of 
write requests, repectively. Thus, our model allows accessing 
multiple pieces of information concurrently from the cloud 
providers participating in a cloud cluster.  

After a read (write) requst has been processed, a read 
(write) response will be returned to the user, simulated as a 
token of type RDRESP (WRRESP) being deposited in place 
“Read_Ack” (“Write_Ack”). The colored token types RDRESP
and WRRESP are defined as follows: 
colset RDRESP = record    colset WRRESP = record 
  clID:STRING *             clID:STRING * 
  prID:STRING *             prID:STRING * 
  mrec:MEDRECORD *          mrec:MEDRECORD * 
  success:BOOL;             success:BOOL; 

where the flag success indicates if a read request or a write 
request is successful or failed. In case a read or write request 
fails (i.e., a cloud provider is down), the user will change the 
token in place “Restore” from false to true, notifying the 
directory to start the restoration process for the cloud cluster.  

B. Petri Net Model for the Directory Component 

We now refine the Directory component (i.e., the 
Directory substitution transition in Fig. 2) into a CPN model 
as shown in Fig. 3. In the figure, the place “Clust_Prov_List”
is intialized with a list of providers ["Pr1","Pr2","Pr3"] 
due to the initial setting of the cloud cluster in place “Cluster 
Providers.” When a patient client or a doctor client starts 
querying the directory for the addresses of the providers in its 
assigned cloud cluster, a query token will be placed by the 
client into place “Query_Dir.” This enables the transition 
“Provider Locations.” When it fires, it creates a token of 
QUERYRESP type in palce “Query_Resp,” which attaches the 
provider information stored in place “Clus_Prov_List.” Note 
that to simplify our CPN model, the provider information only 

consists of the provider IDs rather than the providers’ actual 
endpoint addresses. Therefore, a service invocation to a cloud 
provider could be simulated by matching the cloud provider’s 
ID rather than calling at its endpoint address. Since the place 
“Query_Resp” is an input port of the clients, the token 
becomes available to the client for further processing. On the 
other hand, if the “Restore” place contains a true token due 
to an access error experienced by a user, the “Check 
Providers” transition becomes enabled as long as the directory 
is not currently restoring the cloud cluster (denoted by a 
false token in place “Init_Restore”) and there is a failed 
provider (i.e., its ready flag is set to false) in place “Cluster 
Providers.” Once the transition fires, it places a true token 
into the “Init_Restore” place, signifying that a restoration 
process should take place. The firing also removes the failed 
provider from the “Clust_Prov_List” place and transfers the 
provider  from the “Cluster Providers” place to the “Down 
Provider” place. When the restoration process starts, the 
“Restore” transition fires, and deposits a copy of the remaining 
two providers into the “Restore Gather Info” place. This 
enables the “Calculate Replacement” transition, and its firing 
simulates the calculation of the missing piece of data based on 
the distributed parity information, and results in the restored 
medical record being placed in the “Replacement Record”
place. Note that for simplicity, the detailed procedure of the 
parity calculation is not modeled in Fig. 3. 

1`false

restore

{prID = (#prID g),
ready = (#ready g),mrec = m}

h

ins h (#prID g)

mg

{recID = (#recID (#mrec g1)), 
data = (#data(#mrec g1))}

1`g1 ++ 1`g2

h

b

b

1`true

rmall (#prID g) h

g

{query=d,
provlist =h}

h

d

g

h

Transfer
to Replace

[length h = (NPROV-1)
andalso (#ready g) = true]

Restore

[length h = (NPROV-1)
andalso b = true]

Provide
Locations

[length h = 
NPROV]

Check
Providers

[#ready g = false
andalso restore = true
andalso b= false]

Restore
In BOOL

Replacement
Record

MEDRECORD

Restore
Gather Info

PROV

Init_Restore

BOOL

Cluster
Providers

I/O

Query_Resp
Out

QUERYRESP

Provider
Pool

In
PROV

Service
Ready

I/O

Down
Provider

Out
PROV

Clust_Prov_List

1`["Pr1","Pr2","Pr3"]

CLUST

Query_Dir
In

DIRQUERY
In

Out

In

Out

In

I/O

I/O

1`false

1`ReadWrite

PROV

Calculate
Replacement

1`g1 ++ 1`g2

STATUS x

1`g1++
1`g2

1

1

3

1

11`ReadWrite

1

Figure 3. CPN model for the Directory component 

Once the record has been restored, the “Transfer to 
Replace” transition becomes enabled, and its firing takes a 
provider from the “Provider Pool,” initializes it with the 
restored medical record, updates provider list in the 
“Clus_Prov_List” place by adding the new provider into the 
list, and places the provider into the “Cluster Providers” place. 
This step completes the restoration process, with the required  
number of functioning providers allocated in the cloud cluster. 

C. Petri Net Models for the Patient and Doctor Clients 
A patient client should have the permisison to read its 

medical record. As shown in Fig. 4, a patient first requests the 
addresses of the cloud providers in the cloud cluster assigned 
to him, which is modeled by placing a true token in the 
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“Query Directory” place. With this token as well as the client 
ID of the user in the “ClientID” place, the “Init_Query”
transition can fire, and its firing results in a DIRQUERY token 
to be placed in the “Query_Dir” output port. 
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Figure 4. CPN model for the patient client 

When a response from the directory is put into the 
“Query_Resp” input port, the providers’ address information 
becomes available. This enables the “Extract Providers”
transition, and the firing of the transition places a CLUST token 
in the “Provider Locations” place. The CLUST token type is 
defined as a list of providers as follows: 
colset CLUST = list STRING with 0..3; 

where the with clause specifies the minimum and maximum 
length of the list, and each item in the list contains the address 
of a provider (represented by its provider ID as a string for 
simplicity) that can be used by the client to communicate with 
the provider. To model a read operation, a token "P1.rec" is
initialized in the “Data to Read” place, which is a record ID 
representing patient P1’s medical record. The firing of the 
“Init_Read” transition starts the read process, and places the 
record ID along with the provider information into the “Read 
Information” place. Note that in this model, we assume that 
there is only one record for each patient that can be matched 
with medical data stored on the providers. Now the “Construct 
Read Req” transition can fire once for each provider in the 
provider list, and creates a token of type RDREQLIST in the 
“Read Request” place, such that the multiple read requests in 
the list can be made concurrently to the cloud providers in the 
cloud cluster. This makes the associated providers in place 
“Read Information” being removed and enables the “Start 
Read” transition. When it fires, it transmits the RDREQLIST
token to the “Read_Req” place, which is an input port to the 
cloud cluster. After the requests have been processed by the 
cloud providers, multiple tokens of type RDRESP will be 
deposited in place “Read_Ack.” If a RDRESP token contains a 
success flag with a true value, it indicates that the read 
request has been completed successfully by the corresponding 
cloud provider. In this case, the piece of medical record is 
extracted from the token and placed in the file store after bieng 
decrypted. Once all pieces of the medical record are 

successfully decrypted, the “Combine Data” transition 
becomes enabled and can fire. The firing simulates the process 
of generating the original medical record by recombining the 
RAID data slices retrieved from the cloud providers. If one of 
the providers returns a token with the success flag set to 
false, a read failure occurs for the cloud provider. In this 
case, the “Read Fail” transition becomes enabled. Once it 
fires, it changes the token in place “Restore” from false to 
true, signifying the directory to initiate a “restore” operation.  

The CPN model for the doctor client that replaces the 
Doctor substitution transition of the high-level model is 
similar to the one for the patient client, but a doctor client 
should also have the privilege to write data into the clouds. 
Due to page limits, we do not show such a CPN model here. 

D. Petri Net Model for the Cloud Component 
Finally, we refine the Cloud substitution transition of the 

high-level model into a CPN model as shown in Fig. 5, where 
the cloud providers are represented as colored tokens of type 
PROV. The clouds can accept either “read” or “write” requests 
from the clients, namely the patient and the doctor. Upon 
receiving the requests, cloud providers invoke corresponding
cloud services by matching their IDs in the cloud cluster, and 
return responses to the clients. In addition, the cloud providers 
in a cloud cluster are also responsible for providing their data 
to the service directory on demand in a case that a restoration 
process is initiated when a read or write request fails due to the 
failure of a cloud provider in the cloud cluster. 
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Figure 5. CPN model for the cloud component 

In this model, the “Cluster Providers” place is shared with 
the directory, where the PROV tokens in the place represent the 
providers selected to constitute the cloud cluster. In addition, 
the “Provider Pool,” “Down Providers,” and “Service Ready”
places are also shared places in the directory model. The 
“Provider Pool” acts as a holding place for available providers 
identified by the directory. The “Down Providers” place 
contains the providers that are down and deemed needing 
replacement. Finally, the “Service Ready” place acts as an input 
place to the cloud for simulation purposes only. In our current 
model, we only consider a maximum of one cloud provider 
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going down at a time. This is a reasonable assumption because 
cloud providers should be somewhat reliable. In order to satisfy 
this constraint in the model, the “Provider Down” place is 
connected to the “Provider_Down” transition, which allows the 
“Provider_Down” transition to fire once. 

When a client makes a “read” request, a RDREQLIST token 
with a list of RDREQ requests will be deposited into place 
“Read_Req.” This enables the “Read_Start” transition as long 
as the “RW_Control” place contains a unit token, which 
ensures “read” and “write” actions are mutual exclusive. When 
the “Read_Start” transition fires, it splits the RDREQLIST token 
into singular RDREQ tokens, places them into place 
“Read_Start,” and removes the unit token from the 
“RW_Control” place. The “Read_File” transition then 
examines each of the RDREQ tokens, matches it with its 
respective cloud provider, and fires as long as the success
flag of the corresponding PROV token in place “Cluster 
Provider” is true. The following ML transition guard code 
accomplishes this task: 

[(#recID r) = (#recID (#mrec g)) andalso  
 (#prID r) = (#prID g) andalso (#ready g)=true]  

where g represents a cloud provider that is a member of the 
cloud cluster and r represents a “read” request. The guard 
selects the correct provider by comparing the provider ID in the 
request (#prID r) with that of a provider from the 
cluster(#prID g), matches the medical record ID, and makes 
sure that the cloud provider is functioning, i.e., its ready flag 
is set to true. If all conditions are met, the transition can fire, 
and the firing of the transition creates a RDRESP token and 
deposits it into the “Read_Resp” place. On the other hand, if a 
“read” request fails due to the corresponding provider being not 
ready (i.e., its ready flag is set to false), the “Read_Fail”
transition can fire, and its firing sends a RDRESP token with a 
blank medical record and a success flag set to false to the 
“Read_Resp” place. Once all three tokens are in the 
“Read_Resp” place, the “Read_Resp” transition may fire. The 
firing of the transition returns a unit token to the “RW_Control”
place and places the RDRESP tokens into the “Read_Ack” port, 
available for the clients to digest.  

A “write” request follows an almost identical path through 
the model. When the doctor places a WRREQLIST token into the 
“Write_Req” port, the “Write_Start” transition becomes 
enabled, and the firing of the transition places the individual 
WRREQ tokens into place “Write_Start.” With the tokens in this 
place, the “Write_File” transition can fire as long as the ready
flag of some PROV token in place “Cluster Providers” is true.
The firing of the transition replaces the medical record stored in 
the PROV token with the replacement record, and also 
constructs a WRRESP token and places it in the “Write_Resp”
place. On the other hand, if the ready flag of a provider is set 
to false, the “Write_Fail” transition may fire. In this case, the 
medical record is not altered, and a WRRESP token with the 
success flag set to false will be deposited in place 
“Write_Resp.” Once all three WRRESP tokens are in the 
“Write_Resp” place, the “Write_Resp” transition can fire, and 
its firing returns a unit token back to the “RW_Control” place 
and deposits the WRRESP tokens in the “Write_Ack” place, 
being available for the client to process. 

A restoration process can be simulated in the cloud model 
by setting the SIMPROVDOWN token in place “Provider Down”
to SimEnabled. When the “Provider_Down” transition fires, it 
randomly selects a provider from the place “Cluster Providers”
and sets the ready flag of the provider to false. This step 
simulates the failure of a cloud provider in the cloud cluster. 
Furthermore, the firing of the transition also sets the STATUS
token in place “Service Ready” to ReadOnly, which disables 
the transition for writing in the CPN model for the doctor 
patient. The doctor patient will be allowed to write again only 
after the STATUS token in place “Service Ready” is changed 
back to ReadWrite. Meanwhile, when either a patient or a 
doctor client experiences an access error to a failed cloud 
provider, a restoration process will be initiated by the client. 
Communication with the directory for a “restore” operation is 
done through the shared port “Cluster Providers.” This port, 
containing the PROV tokens of the providers who make up the 
cluster, allows the directory direct access to the PROV state 
when required. When the restoration process completes, the 
failed cloud provider in place “Cluster Providers” will be 
replaced by a new one taken from the “Cluster Pool.”

IV. FORMAL ANALYSIS OF THE CPN-BASED MODEL

In addition to providing an accurate model for our proposed 
security mechanisms for cloud-based information storage, 
building a formal design model also has the advantage of 
ensuring a correct design through state space analysis. Utilizing 
the CPN Tools, a formal analysis of the CPN model can be 
performed to verify if the model meets certain system 
requirements. Typically, the model we developed should be 
live, bounded, and deadlock-free. When we use the CPN Tools 
to calculate the state space and analyze its major behavioral 
properties, the CPN Tools produce the following results:  

Statistics
-----------------------
  State Space 
     Nodes:  154908 
     Arcs:   571408 
     Secs:   1832 
     Status: Full 
  Scc Graph 
     Nodes:  90616 
     Arcs:   431478 
     Secs:   37 

Liveness Properties 
---------------------------
  Dead Markings 
     99 [44684,44683,44682, 
     44510,44509,...] 
  Dead Transition Instances 
     None 
  Live Transition Instances 
     None 

The analysis shows that the state space contains dead 
markings, thus the model we developed must contain 
deadlocks. By tracing the firing sequence for the deadlock 
states as we did in our previous work [10], we found a subtle 
design error. The error is due to the removal of the failed 
cloud provider from the place “Cluster Provider” in the CPN 
model for the Directory component, which occurs when the 
transition “Check Providers” fires. However, some “read” 
request in place “Read_Req” of the CPN model for the Cloud
component would require communicating with a removed 
cloud provider if the “read” request was created before the 
cloud provider fails. Since there is no matched cloud provider 
in the “Cluster Provider” place of the Directory model, the 
system may enter a deadlock state. The easiest way to fix this 
problem is to allow the failed cloud provider to stay in the 
“Cluster Provider” place. This would allow the “Read_Fail”
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transition to fire, and return a “read” error to the client. After 
we add a new arc from the transition “Check Providers” to the 
place “Cluster Provider” in the Directory model, the CPN 
Tools now produce the following results: 

Statistics
-----------------------
  State Space 
     Nodes:  204267 
     Arcs:   880021 
     Secs:   4599 
     Status: Full 
  Scc Graph 
     Nodes:  133063 
     Arcs:   726216 
     Secs:   242 

Liveness Properties 
---------------------------
  Dead Markings 
     None 
  Dead Transition Instances 
     None 
  Live Transition Instances 
     Cloud'Read_File 1 
     Cloud'Read_Resp 1 
     Cloud'Read_Start 1 
     ...

Boundedness Properties 
----------------------------------------------------
  Place                        Upper      Lower 
  Cloud'Provider_Down            1          0 
  Cloud'RW_Control               1          0 
  Cloud'Read_Resp                3          0 
  Cloud'Read_Start               3          0 
  Cloud'Write_Resp               3          0 
  Cloud'Write_Start              3          0 
  Directory'Clust_Prov_List      1          1 
  Directory'Init_Restore         1          0 
  Directory'Replacement_Record   1          0 
  Directory'Restore_Gather_Info  2          0 
  High_Level'Cluster_Providers   4          3 
  High_Level'Down_Providers      1          0 
  High_Level'Provider_Pool       1          0 
  High_Level'Query_Dir           2          0 
  High_Level'Query_Resp          2          0 
  High_Level'Read_Ack            6          0 
  High_Level'Read_Req            2          0 
  High_Level'Restore             1          1 
  High_Level'Service_Ready       1          1 
  High_Level'Write_Ack           3          0 
  High_Level'Write_Req           1          0 
  ... 

The analysis shows that our modified net model is 
deadlock free, and all transitions except those related to the 
restoration process are live. Note that in our simulation, we 
allow the “Provider_Down” transition in the Cloud model can 
fire only once. The analysis also shows that our net model is 
bounded. We notice that the upper bound of the place 
“Cluster_Providers” in the high-level model is 4 rather than 3. 
This is because a failed cloud provider will be kept in the 
cloud cluster after the service directory restores the cloud 
cluster by adding a replacement cloud provider into the 
cluster. A more sophisticated model that allows a failed cloud 
provider to be removed from the cloud cluster, and also allows 
more than one patient and more than one doctor to access 
cloud clusters with shared cloud providers is envisioned as a 
future, and more ambitious research plan.  

V. CONCLUSIONS AND FUTURE WORK

Cloud computing is quickly becoming a widely adopted 
platform to allow for complex computational nodes and storage 
clusters without any of the difficulties and cost associated with 
configuration and maintenance. There are, however, major 
legitimate concerns from enterprises and sensitive data holders 
related to offsite storage of personal or mission critical data. 

Studies show that given the current state of cloud computing, 
enterprises are very concerned with unresolved issues related to 
security, trust, and management in the cloud. For a majority of 
these enterprises, this is also the main reason why they have not 
yet adopted cloud computing into their infrastructure. In this 
paper, we introduce a cloud-based information storage model 
that takes into account the fact that cloud providers may 
experience outages, data breaches, and exploitations. We cope 
with these issues by developing a distributed cloud-based 
security mechanism. We then utilize hierarchical colored Petri 
nets to formally model and analyze our concurrent security 
model. The verification results show that the model we 
developed is live, bounded and deadlock-free.  

For future work, we plan to develop a more sophisticated 
model that allows more clients to access the cloud clusters with 
shared cloud providers, and demonstrate how to cope with the 
state explosion problem using the net reduction approach. 
Meanwhile, we will try to implement a prototype cloud-based 
information storage system with an improved distributed parity 
algorithm that may strengthen the security mechanism by 
preventing potential provider collusion to obtain information 
stored in a cloud cluster. Finally, the model can be further 
improved if we allow the service directory to autonomously 
detect failures, drops in quality of service (QoS), and anomalies 
of the cloud providers, and react accordingly.  
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