
152 153

A Real-Time Reliability Model for Ontology-Based
Dynamic Web Service Composition

Harmeet Chawla and Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747, USA

{hchawla, hxu}@umassd.edu

MengChu Zhou
Department of Electrical and Computer Engineering

New Jersey Institute of Technology
Newark, NJ 07102, USA

zhou@njit.edu

Abstract—Ontology-based web service composition allows for
integration of available web services in real-time to meet desired
objectives. In order to evaluate the quality of composite web
services at runtime, there is a pressing need to define a feasible
real-time web service reliability model. In this paper, we present
such a model. We first introduce a dynamic process model that
supports the evaluation of web service reliability. Then we
provide a hybrid reliability model for atomic web services by
considering both software and hardware aspects of the services.
In order to calculate efficiently the reliability of ontology-based
dynamic composite web services, we present a recursive
algorithm that evaluates the reliability of various service
composition constructs in real-time. Finally, we use a case study
to show how to compute and monitor the reliability of composite
web services in real-time, and how our approach supports
reliable ontology-based dynamic web service composition.

Keywords-web service composition; ontology; reliability model;
quality of service (QoS); dynamic process model; real-time.

I. INTRODUCTION

Web services are self-contained software components that
can be published, discovered and invoked over the Internet.
However, in many cases, a standalone web service is not
sufficient to provide the needed functionality for certain user
requirements [1]. This leads to the idea of composing different
web services in order to meet such requirements. The process
of web service composition can be either static or dynamic. In
the former, the services are pre-determined during the design
phase; while in the latter, only the service template can be
initially defined, but the available web services associated with
each constitutive component defined in the template must be
determined at runtime. In order to discover, invoke, compose
and monitor web services with a high degree of automation, we
can use the semantic and ontological techniques [2]. In this
paper, we adopt the semantic markup language for web
services (OWL-S), which is an ontology language, to formally
specify the semantics of web services. Such specification
makes the definitions of web services machine-understandable.
Decisions on adoption of a web service for service composition
require matching not only the functional properties of the
service, but also the nonfunctional properties such as service
reliability. The functional and non-functional properties of a
web service can be formally specified using an OWL-S profile.
An OWL-S profile can be published and stored in an ontology-

based UDDI (Universal Description, Discovery and
Integration) such as an OWL-S/UDDI service registry so that
when a service client searches it, services with matching
profiles can be discovered and the corresponding grounding
information can be retrieved. Since there may be more than one
matched profiles published in an OWL-S/UDDI, a service
client has to select one of them according to certain criteria
such as the service reliability. This requires the calculation of
service reliability in real-time. To achieve this, we first provide
a hybrid reliability model for atomic web services, which
considers both software and hardware aspects of the services.
Then, to calculate the reliability of composite web services, we
design an efficient recursive algorithm that evaluates various
service composition constructs in real-time. By employing a
real-time reliability model for service composition, our
approach not only supports the selection of desirable web
services for dynamic web service composition, but also
provides an effective way to monitor the reliability of both
atomic and composite web services in real-time.

Service reliability has been an important measure of the
quality of web services for service composition. There are
many different kinds of existing software reliability models for
web services. Li et al. developed a user-oriented software
reliability model for evaluating the reliability of web services
[3]. Their approach can be used to evaluate the reliability of
atomic web services based on an extended UDDI model, and to
predict the overall reliability of a composite web service using
a Business Process Execution Language (BPEL)-specified
structure. Tsai et al. proposed a software reliability model that
could dynamically evaluate the reliability of atomic and
composite web services [4]. The model first calculates the
reliability of atomic services by using group testing and
majority voting, and then the overall reliability of a composite
service by using an architecture-based model. The above
approaches consider only the software aspect of web services
and assume the reliabilities of the machines that host the web
services are near perfection. Furthermore, they are typically
based on BPEL-like architectures that require static binding of
available web services with the service components defined in
a process model at design time. Thus, they do not support
dynamic web service composition. In contrast, our approach
considers both software and hardware aspects of service
reliability. Furthermore, since our approach supports ontology-
based web service composition, it provides a feasible way for
maintaining reliable composite web services at runtime.

154 155

There are also many previous efforts on ontology-based
web service composition and formal modeling of dynamic
service composition. Ma et al. introduced an ontology-based
model for web service composition, called OMWSC [5]. They
presented a goal-driven and ontology-based architecture that
could support automatic composition of web services. Xiong et
al. presented a service functional configuration net based on
Petri nets for automatic service composition [6]. They
described the configuration specification for component
services through the structure of disassembly Petri nets, and
obtained the optimal one using linear programming. Tan et al.
introduced a formal method to derive possible web service
composition candidates based on a service portfolio [7]. They
first generated a service net (SN) containing all needed
operations, and then used Petri net decomposition techniques to
derive a subnet of SN that meets the business requirements.
Although the above approaches support dynamic web service
composition, most of them consider only the functional
requirements for service composition, and none of them
attempted to use service reliability as a major criterion for
service selection. Different from the above approaches, we
developed a real-time service reliability model for ontology-
based web service composition. Thus, our approach supports
dynamic composition of reliable web services at runtime.

II. ONTOLOGY-BASED WEB SERVICE COMPOSITION

A. Ontology-Based Web Service Composition
Specifying service related information semantically is the

key to effective dynamic service discovery and service
composition. Web service description language (WSDL) can
be used to describe the syntax of a web service such as its input
and output parameters, as well as related information such as
the service provider and the service endpoint address; however,
it does not support specifying the semantics of a web service.
Therefore, WSDL has its limitations in supporting the dynamic
service discovery, execution, composition and interoperation of
web services. On the other hand, ontology-based techniques
can not only be used to describe the syntax but also the
semantics of web services. In ontology-based semantic
modeling, the terms used in the concerned domain can be
precisely defined, thus services can be matched based on their
semantics rather than their syntax or keywords. In our
approach, the process model is defined as a template, called a
Process Model Template (PMT). In order to instantiate a PMT
into an Instantiated Process Model (IPM), we need to search
for available web services for its constitutive service
components. For this purpose, each service component, which
is also called a simple component, is associated with an OWL-S
profile template. An OWL-S profile template is essentially an
incomplete OWL-S profile with semantically defined input,
output, preconditions and effects so that it can be matched with
existing OWL-S profiles published in an OWL-S/UDDI. Based
on the matched OWL-S profiles, a simple component can be
bound to either an atomic or a composite web service. When a
matched web service is a composite one, its process model
must also be defined using a PMT, which can be instantiated
further in the same manner. This procedure repeats until all
matched web services become atomic. In this case, the process
of instantiating the PMT is completed.

Since a profile template can be matched with more than one
published OWL-S profiles, the most desirable one must be
selected for execution. The criteria for service selection can be
based on multiple features, such as provider, reliability, and
price; however, for simplicity, in this paper, we only consider
the reliability as the sole criterion for service selection. Since
service reliability is a dynamic property, it requires the system
be able to calculate it in real-time. This serves two purposes,
namely the selection of web services for dynamic service
composition and the real-time monitoring of web service
reliabilities. With the monitoring function, a reliable service-
oriented system can be maintained continuously – when the
reliability of some web services drop to an unacceptable level,
they can be replaced by other reliable ones at runtime.

B. Dynamic Process Model
A PMT is defined as a dynamic process model that consists

of structural components, such as a sequence component and a
parallel one. Each structural component contains simple
components and possibly other structural ones. At runtime, a
simple one can be bound to either an atomic web service or a
composite one. The PMT is formally defined using Backus-
Naur form (BNF) as in Fig. 1. As shown in the definition of
PMT, the reliability requirements for a process model are
described by using two parameters, namely <desired
reliability> and <marginal reliability>. The former
defines the desired reliability of an instantiated process model
(i.e., a composite web service). A composite web service with
at least the desired reliability is considered to be reliable. On
the other hand, a composite web service with at least the
<marginal reliability> but less than the <desired
reliability> is considered as not reliable but is acceptable
for a temporary usage. In this case, the application must try to
search for more reliable ones in order to meet the reliability
requirements of the composite web service. If it fails, a warning
message must be sent to the user of the application.
Furthermore, when the reliability of a composite web service
becomes less than the marginal reliability, the composite web
service becomes unacceptable and must stop its execution.

<PMT> ::= <pmt><desired reliability>
<marginal reliability><process model></pmt>

<desired reliability> ::= <float>
<marginal reliability>::= <float>
<process model> ::= <process><start>
 <structural component><finish></process>
<structural component> ::= <sequence component>|

<parallel component>|<loop component>|
<choice component>

<sequence component> ::= <sequence><component>
 <component>{<component>}</sequence>
<parallel component> ::= <parallel>component>
 <component>{<component>}</parallel>
<loop component> ::= <loop><condition><component>

</loop>
<condition> ::= <Boolean expression>
<choice component> ::= <choice><component>
 <component>{<component>}</choice>
<component> ::= <simple component>|
 <structural component>
<simple component> ::= <simple><component id>
 <owl-s profile template></simple>
<component id> ::= <string>

Figure 1. Definiton of PMT in BNF

154 155

A structural component can be one of the four major
composition constructs, namely sequence, parallel, loop, and
choice [4]. We now give a description of the major constructs
defined in a PMT as follows.

Sequence In a sequence structural component, the
constitutive components are executed in series. Fig. 2(a) shows
an example with two simple components A and B, defined in a
PMT. The directed arrow between A and B indicates the order
of execution. When one of the constitutive components in a
sequence construct is not functioning, the entire sequence
structural component is not.

Start

Finish

A

B

Start

Finish

A

B

Start

BA

Finish

Start

BA

Finish

Start

Finish

cond

A Skip

true false

Start

Finish

cond

A Skip

true false

Start

BA

Finish

Start

BA

Finish

 (a) (b) (c) (d)
Figure 2. Examples: (a) sequence (b) parallel (c) loop (d) choice constructs

Parallel In a parallel structural component, two or more
constitutive components can execute concurrently. The
structural component terminates when all of its components
have finished their execution. Fig. 2(b) shows a parallel
structural component with two simple components A and B.

Loop A loop structural component refers to the repetitive
execution of a simple or structural component. As shown in
Fig. 2(c), when the condition cond is evaluated to be true,
simple component A is executed repetitively. Only when it
becomes false, the loop construct terminates. Note that the
“skip” component is an empty component that is used to
separate the loop construct from other components.

Choice In a choice structural component, only one of the
constitutive components can be selected for execution. Fig.
2(d) shows an example of a simplified choice structural
component with no guards (conditions). When guards are not
defined, the component (A or B) to be selected for execution is
determined manually by user inputs.

Fig. 3 shows an example of PMT with multiple structural
components. The process model is defined as a parallel
component with two sequence components defined as its
constitutive ones, which can execute concurrently. The first
sequence component consists of two components, namely
simple component A and a choice structural component with
two simple ones B and C. The second sequence component
consists of two simple ones D and E.

Start Finish

B

C

A

D E

choice

sequence

sequence

parallel

Start Finish

B

C

A

D E

choice

sequence

sequence

parallel

Figure 3. An example of PMT with mutiple structural components

C. Instantiation of PMT into IPM
When a PMT is instantiated into an IPM, each simple

component defined in the PMT needs to be bound to either an
atomic web service described by a WSDL file or a composite
one specified by another PMT. Since such information must be
recorded in the IPM when a matched web service is selected,
we define an IPM as an extended version of a PMT with a set
of placeholders for the mapping information that details how a
simple component can be bound to a selected web service. At
runtime, the placeholders are filled up with such detailed
service information. The IPM can be formally defined using
BNF as in Fig. 4.

<IPM> ::= <ipm><PMT><simple component mapping>
{<simple component mapping>}</ipm>

<simple component mapping> ::= <simple mapping>
<component id><placeholders for matched
service></simple mapping>

<component id> ::= <string>
<placeholders for matched service> ::= <ph>

<real-time reliability><service id>
<service type>(<atomic service grounding
info>|<composite service grounding info>)</ph>

<real-time reliability> ::= <float>
<service id> ::= <string>
<service type> ::= ”atomic” | ”composite”
<atomic service grounding info> ::= <wsdl file>
<composite service grounding info> ::= <ipm file>

Figure 4. Definition of IPM in BNF

As shown in the definition, the placeholders for a matched
and selected web service are enclosed by the <ph>…</ph>
tags. The item <real-time reliability> is the reliability
of the web service that is bound to a simple component, which
is calculated at runtime. The two parameters <service id>
and <service type> are the identification and the type of the
selected web service, respectively, where the service type can
be either “atomic” or “composite.” If the selected web service
is an atomic one, the placeholder <atomic service
grounding info> must be filled with the address of its
WSDL file. On the other hand, if the selected one is a
composite one, the placeholder <composite service
grounding info> needs to be filled with the location of the
IPM file that specifies the composite web service. The
procedure for instantiating a PMT into a set of IPMs is defined
in Algorithm 1. Note that it is defined recursively because a
simple component can be mapped to a composite web service
specified by another PMT file. In this case, that IPM file must
also be instantiated by invoking the method Instantiate-
PMTintoIPM recursively. As a result, the output of the
algorithm is a set of IPM files organized in a tree-like structure.
Furthermore, the instantiation process requires calculating web
service reliabilities in real-time. This is because when more
than one matched web services are discovered, their
reliabilities need to be calculated in real-time, such that the
most reliable one can be selected for execution. In order to
calculate the reliability of a composite web service, an external
method CalculateReliability (to be discussed in Section III-B)
must be invoked. Note that calculating the reliability of a
composite web service requires its IPM file as an input (line 17
of the algorithm), which has been generated after the recursive
method call InstantiatePMTintoIPM (ws.pmt) in line 16.

156 157

Algorithm 1: Instantiate PMT into IPMs
Input: a pmt file to be converted
Output: a set of ipm files arranged in a tree structure.

1. InstantiatePMTintoIPM (File fname.pmt)
2. copy fname.pmt to fname.ipm & create placeholders in fname.ipm
3. create a PMT object pmt_obj from file fname.pmt
4. foreach simple component sc in pmt_obj.process_model
5. initialize sc.realtime_reliability to 0
6. query OWL-S/UDDI using sc.profile_template
7. foreach matched web service ws
8. if (ws is atomic)
9. extract reliability parameters from OWL-S profile
10. calculate ws.reliability for atomic web service ws
11. if (ws.reliability > sc.realtime_reliability)
12 sc.realtime_reliability = ws.reliability
13. sc.service_id = ws.id
14. sc.service_type = “atomic”
15. else if (ws is composite)
16. InstantiatePMTintoIPM (ws.pmt) // create ws.ipm file
17. ws.reliability = CalculateReliability (ws.ipm, true, null)
18. if (ws.reliability > sc.realtime_reliability)
19. sc.realtime_reliability = ws.reliability
20. sc.service_id = ws.id
21. sc.service_type = “composite”
22. if (sc.service_type == “atomic”)
23. extract wsdl address from owl-s profile of sc.id
24. set sc.service_type = “atomic”
25. set sc.wsdl_file to the wsdl file of sc.service_id
26. else
27. set sc.service_type = “composite”
28. set sc.ipm to the ipm file of sc.service_id
29. save the service info of sc into its placeholders in file fname.ipm

III. REAL-TIME SERVICE RELIABILITY EVALUATION

Service reliability represents an important attribute for the
QoS of a web service deployed on a certain machine. In this
paper, we take into account both hardware and software aspects
of service reliability as both are needed to determine the
reliability of a deployed atomic web service. Then based on the
reliability of the participating atomic web services, we can
calculate the reliability of a composite web service according to
its dynamic process model.

A. A Hybrid Reliability Model for Atomic Web Services
Software reliability growth models (SRGM) are based on

the assumption that the number of faults of a software system
can be continuously reduced, which results in growth of its
software reliability [8]. Although SRGM has been considered
as one of the most successful techniques in software reliability
engineering, it is most suitable for measuring and predicting the
improvement of software reliability through the testing process
[9]. In this paper, we assume that there are no features added
and no faults removed once an atomic web service is deployed.
In this case, the failure intensity of the software component
(i.e., the atomic web service) will be constant. According to
[10], the number of failures of the service in a given time
follows a Poisson distribution. The corresponding formula to
calculate software reliability can be defined as in (1).
)exp()(softwareR (1)

where is the constant failure intensity and is the execution
time of the web service. When a web service is computation-
intensive and executed continuously, can be further replaced
by the elapsed time since the service is deployed.

On the other hand, hardware reliability can be represented
by the two-parameter Weibull distribution [11]. The
corresponding formula to calculate the reliability of a hardware
component can be defined as in (2).
 (2)])(exp[)(ttRhardware

where is the shape parameter (> 0), and is the scale
parameter (> 0). Note that the hardware reliability decreases
with time. This is because after a certain age, the product enters
its wear-out phase and the failure rate starts to increase.

Bowles tried to derive a combined hardware and software
reliability model for networks [12]. According to [12], “The
probability of successful operation of a device is the probability
that the hardware does not fail and the probability that the
software does not fail.” Inspired by this idea, in this paper, we
calculate web service reliability by considering both the
reliability of the web service and the reliability of the machine
where the web service is deployed. For simplicity, we assume
that a web service is initially deployed on a new machine with
the perfect reliability of 1. Thus, time t can be defined as t =
tcurrent – t0, where tcurrent is the time when the reliability is
calculated and t0 is the time when the web service is deployed.
Based on (1) and (2), the hybrid reliability model for atomic
web service can be defined as in (3).

])(exp[)exp(

)()()(

tt

tRtRtR hardwaresoftwareservice (3)

where Rsoftware(t) is the reliability function of the atomic web
service and Rhardware(t) is the reliability function of the machine
that hosts the atomic web service.

The needed parameters for calculating the reliability of a
deployed atomic web service can be stored in an OWL-S
profile as follows.
<profile: Reliability>
 <FailureIntensity datatype=”float”> 0.0001
 </FailureIntensity>
 <Shape datatype=”float”>2</Shape>
 <Scale datatype=”float”>0.00002</Scale>
 <Date datatype=”date”>07/16/2010</Date>
 <Time datatype=”time”>14:30</Time>
</profile: Reliability>

Note that in the reliability portion of an OWL-S profile, we
also include the parameters of the deployment date and time of
the atomic web service because they are needed for calculating
the web service reliability. Since the reliability of an atomic
web service is time-dependent, the above parameters must be
retrieved at runtime such that the reliability of the atomic web
service can be calculated in real-time.

B. Reliability Model for Composite Web Services
The overall reliability of a composite web service depends

on its structure, the degree of independence between service
components and the availability of its constitutive web
services. In order to calculate the reliability of a composite web
service, we first need to consider the reliability of the major
structural components defined in Section II-B. Based on

156 157

previous work [3, 4], we now define the reliability model for
each structural component as follows.

Sequence The reliability of a composite web service
composed of services in sequence can be calculated as in (4).

 (4)
n

i
iservicesequence tRtR

1
_)()(

where the constitutive web services service_i (1 i n) are all
independent of each other (i.e., the failure of one service does
not lead to the failure of the others), and Rservice_i(t) is the
reliability function of each constitutive atomic or composite
web service.

Parallel The reliability of a composite web service
composed of services in parallel can be calculated as in (5).

 (5)
n

i
iserviceparallel tRtR

1
_)()(

where the constitutive web services service_i (1 i n) are all
independent of each other. Note that the failure of any
constitutive service results in the failure of the composite one
because the successful termination of the latter requires the
successful termination of all of its constitutive web services.

Loop The reliability of a composite web service composed
of web services in a loop can be calculated as in (6).
 (6)))((min)(_0

titRtR loopbodyserviceniloop

where Rservice_loopbody(t) is the reliability function of the loop
body that can be an atomic web service or composite one; n is
the number of iterations; and t is the execution time of each
iteration. When n* t is not a large value, the reliability of the
loop structural component would be approximately the same as
when it was executed the first time.

Algorithm 2: Calculate composite web service reliability
Input: an ipm file for a composite web service
Output: the real-time reliability of the composite web service

1. CalculateReliability (File fname.ipm, Boolean initialization,
2. StructuralComponent structcom)
3. initialize reliability to 1
4. if (initialization == true) // step 1
5. create an IPM object ipm_obj from file fname.ipm
6. foreach simple component sc in ipm_obj
7. if (sc.service_type == “atomic”)
8. calculate sc.realtime_reliability
9. else sc.realtime_reliability = // sc is “composite”
10. CalculateReliability(sc.ipm, true, null)
11. strc = ipm_obj.process_model // step 2
12. if (strc is squenceComponent)
13. foreach component com in strc
14. if (com is simpleComponent)
15. reliability *= com.realtime_reliability
16. else reliability *= CalculateReliability(null, false, com)
17. else if (strc is parallelComponent)
18. foreach component com in strc
19. if (com is simpleComponent)
20. reliability *= com.realtime_reliability
21. else reliability *= CalculateReliability(null, false, com)
22. else if (…) // other cases: redundant component,
23. … // loop component, and choice component
24. return reliability

Choice The reliability of a composite web service
composed of web services in choice can be calculated as in (7).

 (7)))((min)(_1
tRtR iservicenichoice

Since we consider the worst-case scenario, the reliability of
a choice structural component equals the minimal reliability of
the constitutive web services.

The algorithm for calculating the reliability of a composite
web service is defined recursively as in Algorithm 2. Algorithm
2 involves two steps when calculating the reliability of a
composite web service. In its first step, the reliabilities of all
simple components are calculated. In a case when a simple
component is bound to a composite web service, the method
CalculateReliability must be invoked recursively with the
parameter initialization being true. In the second step, the
reliabilities of the structural components are calculated.
Similarly, when a structural component contains another
structural component as its constitutive component, the method
CalculateReliability is also invoked recursively, but this time,
the parameter initialization is set to false indicating that the
algorithm is now processing its second step.

IV. CASE STUDY

To demonstrate the effectiveness of our approach, we
utilize a case study of financial services, which involves
investment in mutual funds and stocks. We define a process
model for financial investment as a composite web service with
a choice structure. As shown in Fig. 5, the choice is between
buying mutual funds or stocks. The upper structural component
represents mutual fund investment wherein the investor has a
choice of investing in three types of mutual funds. They are
equity that involves high risk, high gain funds, debt that
represents low risk low gain funds, and balanced fund that
gives almost steady gain with medium risk. In order to use the
financial services, the investor needs to provide information
about the type of fund, investment amount and personal
information. For example, if the user wants to invest in equity
funds, the Equity web service is selected and invoked, which
provides a list of equity mutual funds along with their returns.
Then the SelectMutualFund service is invoked to automatically
choose the service with best returns for the user. Finally, the
BuyMutualFund service will be invoked to buy the selected
mutual funds. Similarly, the web services Debt and Balanced
can be invoked to provide a list of debt funds and a list of
balanced funds with returns, respectively. On the other hand, if
buying stock is chosen, the process model has the BuyStocks
service, where the input to this service is the stock to be
bought, the number of stocks, and the rate at which the user
wants to buy. When the specified stock is available at the
preferred rate, the BuyStocks service is automatically invoked
to buy the specified number of stocks.

Start

Finish

Equity

Debt

Balanced

Select Mutual
Fund

Buy
Mutual Fund

Buy Stocks

Start

Finish

Equity

Debt

Balanced

Select Mutual
Fund

Buy
Mutual Fund

Buy Stocks

Figure 5. A process model for financial investment

158 159

In order to ensure the desired reliability of the financial
services for investment, we develop a prototype service
reliability monitoring tool. Fig. 6 shows the interface for
monitoring the reliability of the financial investment service in
real-time. Under the ProcessModel tab, it presents the
predefined process model (as shown in Fig. 5) at the left hand
side, and displays the real-time reliability of the composite web
service at the right hand side. The interface also shows the
status of the composite web service, which could be normal,
warning or unacceptable. A normal status indicates that the
reliability of the composite web service equals to or more than
the desired reliability; a warning status indicates that the
reliability is below the desired reliability but no lower than the
marginal reliability. When the reliability falls below the
marginal reliability, the status becomes unacceptable. Note that
in this example, the desired and marginal reliabilities are set to
0.85 and 0.75, respectively. They can be easily re-configured
by clicking on the Configuration tab. In addition, the interface
also displays the current date and time as well as execution
information of the composite web service. At the bottom part
of the interface, all services bound to the simple components
are listed. If the service is atomic (e.g., EquityService), the
address of its WSDL and its real-time reliability are displayed
(e.g., http://192.168.1.112:8080/equity/EquityService?wsdl and
0.92751); otherwise, if the service is composite (e.g.,
BuyStocks1), the address of the corresponding IPM file and its
real-time reliability are displayed (e.g., C://Files/Buy-
Stocks1.owl and 0.84917). The detailed information about a
composite web service (e.g., BuyStocks1) can be retrieved by
clicking on the CompositeComponents menu at the top of the
interface. Note that when the real-time reliability of a
composite service falls below the desired reliability, some of its
constitutive web services with low reliabilities must be
replaced by others in order to improve its QoS.

Figure 6. Interface for monitoring real-time web service reliability

V. CONCLUSIONS AND FUTURE WORK

In this paper, we define a dynamic process model that
consists of various constructs for web service composition. The
dynamic process model is initially defined as a process model
template, called PMT, where the constitutive components are
not bound to any specific web services. At runtime, the PMT is

instantiated into a set of instantiated process models or IPMs.
During the instantiation process, web services that are matched
with the simple components in a PMT are discovered and
selected based on their real-time reliability values. In order to
calculate the reliabilities of composite web services, we first
present a hybrid reliability model for atomic web services.
Then we define a real-time reliability model for a composite
web service that aggregates the reliabilities of its constitutive
components according to the definition of its dynamic process
model. Our approach not only supports service selection for
dynamic web service composition, but also supports
maintaining a reliable composite web service at runtime by
monitoring the service reliabilities in real-time. For future
work, we will study existing software reliability models and
propose the most suitable ones for atomic web services by
considering additional factors such as software aging due to
performance degradation or a sudden software crash. We will
demonstrate how to automatically switch a web service to a
reliable one when its reliability becomes unacceptable. By
utilizing artificial intelligence techniques, we may further
improve the service reliability model for automatic adjustment
of its parameters at runtime. In addition, integrating the
proposed reliability index into some existing approaches [5, 6]
can also be considered as a worthy future direction.

REFERENCES

[1] J. Rao and X. Su, “A survey of automated web service composition
methods,” in Proc. of the First Int. Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), San Diego, CA, USA,
pp. 43-54, Jul. 2004.

[2] D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D.
McGuinness, et al., “Bringing semantics to web services: the OWL-S
approach,” in Proc. of the First Int. Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004), San Diego,
CA, USA, pp. 26-42, Jul. 2004.

[3] B. Li, Z. Su, Y. Zhou, and X. Gong, “A user-oriented web service
reliability model,” in Proc. of the IEEE Int. Conf. on Systems, Man and
Cybernetics, Singapore, pp. 3612-3617, Oct. 2008.

[4] W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, and N. Liao, “A
software reliability model for web services,” in Proc. of the 8th IASTED
Int. Conf. on Software Engineering and Applications (SEA 2004),
Cambridge, MA, pp. 144-149, Nov. 2004,

[5] J. Ma, Y. Zhang, and M. Li, “OMWSC - an ontology-based model for
web services composition,” in Proc. of the 5th Int. Conf. on Quality
Software (QSIC 2005), Melbourne, Australia, pp. 464-469, Sept. 2005.

[6] P. C. Xiong, Y. Fan, and M. C. Zhou, “Web service configuration under
multiple quality-of-service attributes,” IEEE Trans. on Automation
Science and Engineering, vol. 6, no. 2, pp. 311-321, Apr. 2009.

[7] W. Tan, Y. Fan, M. C. Zhou, and Z. Tian, “Data-driven service
composition in building SOA solutions: a Petri net approach,” IEEE
Trans. on Automation Science and Engineering, vol. 7, no. 3, pp. 686-
694, Jul. 2010.

[8] M. R. Lyu, “Software reliability engineering: a roadmap,” in Proc. of the
Workshop on Future of Software Engineering (FOSE’07), Int. Conf. on
Software Engineering, Washington, DC, pp.153-170, 2007.

[9] H. Pham, System Software Reliability, Springer-Verlag, London, pp.
152-177, 2006.

[10] J. Musa, Software Reliability Engineering, McGraw-Hill, New York, pp.
310-311, 1999.

[11] A. Hoyland and M. Rausand, System Reliability Theory: Models and
Statistical Models, John Wiley & Sons, New York, pp. 37-40, 1994.

[12] J. B. Bowles, “A model for assessing computer network reliability,” in
Proc. of the IEEE Conf. on Energy and Information Technologies in the
Southeast (SoutheastCon), Columbia, SC, USA, pp. 603-608, Apr. 1989.

