

Securing Service-Oriented Systems Using State-Based XML Firewall*

Abhinay Reddyreddy and Haiping Xu

Computer and Information Science Department
University of Massachusetts Dartmouth

North Dartmouth, MA 02747, USA
{g_areddyreddy, hxu}@umassd.edu

Abstract. Web services security has been a challenging
issue in recent years because current security
mechanisms, such as conventional firewalls, are not
sufficient for protecting service-oriented systems from
XML-based attacks. In order to provide effective security
mechanisms for service-oriented systems, XML firewalls
were recently introduced as an extension to conventional
firewalls for web services security. In this paper, we
present a state-based XML firewall architecture that
supports role-based access control and detection of XML-
based attacks. We develop a detailed design of our state-
based XML firewall by defining state-based information,
user information, and various access control policies and
detection rules. The detection rules are modularized into
separate units, which support real-time detection and
verification of various types of XML-based attacks using
state-based information and user information. To
illustrate the effectiveness of our approach, we develop a
prototype state-based XML firewall, and demonstrate
how XML-based attacks can be efficiently detected.

1. Introduction

Enterprises are increasingly employing web services
technology in order to achieve interoperability at
application levels. Web services are both platform and
language independent service components that can be
exposed using a standard Web Services Description
Language (WSDL) and registered at UDDI registries.
They can be automatically discovered over the Internet by
potential clients, and support loosely coupled interactions
between applications through a standard XML-based
protocol, called Simple Object Access Protocol (SOAP).
Since web services create open interfaces into core
enterprise applications and data, attacks on web services
can be more severe than those attacks perpetrated via e-
mail, web servers and network connections.

* This material is based upon work supported by the Chancellor’s
Research Fund and UMass Joseph P. Healey Endowment Grants,
and the Research Seed Initiative Fund (RSIF), College of
Engineering, UMass Dartmouth.

Conventional firewalls are not sufficient for protecting
service-oriented systems because web services attackers
can initiate attacks as request/response traffics using
HTTP protocol that can pass conventional firewalls. The
most commonly used conventional firewalls are package
filtering firewalls, stateful inspection firewalls, and
application level firewalls [1]. A packet filtering firewall
only restricts IP addresses or TCP ports recorded in an IP
table; however, the port 80 reserved for HTTP and SOAP
traffics cannot be blocked on a server that hosts the web
services. Thus, a malicious web service invocation can
easily pass a packet filtering firewall. On the other hand, a
stateful inspection firewall can keep track of TCP/IP
connection states and take actions accordingly, but it does
not look into packet contents. Similarly, an application
level firewall also blocks only those suspicious network
traffics with protocols that might be used by an attacker.
For example, an application gateway for an FTP server
can be configured to accept FTP traffics only and reject
all packets using other protocols. Therefore, both stateful
inspection firewalls and application level firewalls are not
capable of detecting XML-based attacks, e.g., SQL
injection attack and overloaded payload attack, which are
embedded in XML-based messages [2, 3].

Lack of effective security mechanisms for web
services is one of the major reasons why there are so
many organizations hesitating to adopt service-oriented
technologies despite their significant advantages. In this
paper, we introduce an approach to securing service-
oriented systems by developing a state-based XML
firewall at the application level. Our approach supports
Role-Based Access Control (RBAC) [4] for users and
detection of XML-based attacks. The XML firewall
design introduced in this paper is based on a formal XML
firewall model presented in previous work [5], where
access permissions to web services are only granted to
users who are authenticated and authorized. We develop a
detailed design by defining state-based information, user
information, and various access control policies and
detection rules. Finally, to demonstatrate the effectiveness
of our approach, we implement a prototype state-based
XML firewall for efficient detection of XML-based
attacks to a hospital management service-oriented system.

 512

2. Related Work

Web services security has been an active research area

in recent years. Many organizations such as IBM and
Cisco, tried to identify major threats to web services in
order to protect service-oriented systems more effectively
[6, 7]. Typical XML-based attacks include request
flooding attack, SQL injection, parameter tampering,
overloaded payload attack, and recursive payload attack
[2]. A request flooding attack is a type of XML Denial of
Service (XDoS) attack, where the attacker floods the web
service provider with a large number of web service
requests in order to exhaust the resources at the server
side. XDoS attacks are similar to packet-based DoS
attacks that flood servers with lots of data (e.g., SYN
packets); however, conventional firewalls cannot detect
XDoS attacks because XDoS attacks are threats to the
availability of web services rather than network
connections. An SQL injection attack involves tampering
the input fields of database requests in order to obtain
unauthorized access to data or stored procedures; while a
parameter tampering attack is a process of tampering the
method parameters passed to a web service operation, and
resulting in undesired service behaviors. An overloaded
payload attack and a recursive payload attack can exhaust
the XML parser of a service provider by sending huge
XML data and embedding deeply nested elements in a
web service request, respectively.

There is very little previous work on protecting web
service providers from being attacked. Fernandez
proposed a pattern-based language for XML firewall [8].
Two patterns for design of XML firewall were proposed,
which are security assertion coordination pattern using
role-based access control for access to distributed
resources, and filter pattern for filtering XML messages
or documents according to institution policies. Hoktamp
discussed the need for XML firewall and possible
techniques to protect web services [9]. He analyzed the
security issues at three levels of enterprise application
integration, namely intranet, extranet and Internet.
Cremonini et al. discussed about integrating XML
firewall with existing web services security specifications
[10]. They analyzed serious security risks in stateful
SOAP protocols such as WS-Reliable Messaging, and
presented some design guidelines to develop semantics-
aware firewalls that can be integrated with the Web
Service Architecture (WSA). Bebawy et al. discussed
how to apply business specific rules in a centralized
manner to develop a web services firewall, called Netdgy
[11]. In their implementation, SOAP messages are
removed from the transport layer and examined for attack
detection, and then induced back into the OSI stack if the
XML message is not corrupt. The Netdgy system only
supports prevention of limited types of web services
attacks such as buffer overflow and SOAP-based DoS
attacks. Furthermore, it does not provide any access

control mechanisms for users; instead, it supports
authorization based on IP tables, which is in the same
manner as a conventional packet filtering firewall where
messages originating from certain IP address are either
dropped or accepted according to a list of blocked IP
addresses. Different from the Netdgy system, our effort is
to develop a modularized XML firewall that is
customizable and targeted for various types of XML-
based attacks, thus our approach provides a more
comprehensive solution to web services security.

3. Development of State-Based XML Firewall

3.1 State-Based XML Firewall

Based on the formal model of XML firewall we
introduced previously [5], we design the state-based
XML firewall as a software module with four functional
components, namely client interface, RBAC processor,
SOAP filter, and admin interface, which coordinate to
protect the web services deployed on a web server. As
shown in Figure 1, the four major components in an XML
firewall are supported by two databases: User_Info
database and State_Info database, which store user
information and state-based information, respectively.
The client interface module interacts with web service
clients and is responsible for receiving requests and
sending responses back to the service clients. The actual
web services can be deployed either on the same or a
different machine where the XML firewall is installed;
however, they can only accept requests from a service
client through a service proxy defined in the client
interface module. As illustrated in Figure 1, each
deployed web service (e.g., WS1) has a corresponding
web service proxy (e.g., WS1P) defined in the client
interface module. The client interface module provides
exactly the same interface for web service invocation as
the deployed web services, so it is transparent to the web
service clients. A client can access an actual web service
only after it successfully passes through the XML firewall
because the service proxies are the only interface for web
service invocations. Authentication and authorization are
the major features of the XML firewall for providing user
access control. These features ensure that only valid users
are allowed to access services. The login block defined in
the client interface module provides a basic mechanism
for user authentication; while the RBAC processor is
responsible for authorizing a user with predefined roles
and access permissions. The RBAC processor can
determine whether a client has appropriate permissions to
access a web service. If a malicious user is detected for a
lack of access permissions, any attempts to access the
web service by that user will be denied, and the user will
be forced to log out of the system. In order to provide a
valid duration for a user to invoke web services, we first
define the concept of user session as follows.

 513

Definition 3.1 A user session is defined as a 5-tuple
(UID, SID, RO, ST, ET), where UID is a user ID, SID is a
session ID, RO is a set of roles that will be assigned to the
user, ST is the session start time, and ET is the session
expiration time. A user session is created when the user
logs in and destroyed when the user logs out.

After a user logs in and passes the authentication step,
his user information is transferred to the RBAC processor
module for authorization. Before the User Role and
Permission Assignment (URPA) module assigns the user
appropriate roles and corresponding access permissions,
the session management module in the RBAC processor
creates a user session for that user, which has a start time
and an expiration time. During the period of time when
the session is valid, a user can make requests to web
services without being authenticated again. The URPA
module, which is used to assign roles to users and
permissions to roles, interacts with the Policy Base, which
is a repository of access control policies defined in Prolog
by an administrator through the admin interface. The
reasoning process for authorization is supported by a
Prolog engine as well as user’s information, such as a
user’s trust level, stored in User_Info database.

For every incoming web service request from a user,
the RBAC controller verifies whether the associated user
session is valid and the user has sufficient permissions to
invoke the web service. If the user has enough permission
to access the web service, his request in a form of XML
message, along with the session information will be
passed to the SOAP filter for threat detection and content

analysis. Otherwise, the user’s request will be denied by
the RBAC controller immediately.

The filter controller in the SOAP filter module is
responsible for detection of suspicious requests. It
examines the session information passed to it as well as
the data from the User_Info and State_Info databases to
determine whether the user request is suspicious of any
kind of attacks. The detection process is supported by the
detection rules defined in Prolog by an administrator,
which are modularized into different rule sets for
detection of different types of XML-based attacks, e.g.,
an XDoS attack and an SQL injection attack. Thus, the
modularized rule sets can be invoked individually, which
support efficient reasoning in real-time. In addition, there
is also a set of rules used by the filter controller for
detection of attacker suspects. For example, when the
filter controller detects a suspicious user with high
frequency of requests (determined by predefined
thresholds as shown in Section 3.4), the user’s request
will be passed to the XDoS verification module to verify
if the user is performing an XDoS attack. Similarly, if the
controller detects that a user request exceeds the normal
packet size, the XML message will be sent to the XML
validation module to verify for oversized payload attack.
On the other hand, if a user request is a normal one, the
request will be immediately passed to the web server for
web service invocation.

The XDoS verification module requires investigation
of a user’s previous behavior in order to verify if a user is
performing an XDoS attack. If the user has a very low
trust level or has been suspected as an XDoS attacker for

Figure 1. Architectural design of state-based XML firewall

User Info State Info

User Role
& Permission

Assignment (URPA)

RBAC Controller

Session
Management

Admin Interface Detection Rules

Filter Controller

XDoS
Verification

SQL
Injection

XML
Validation

Policy Base

RBAC Processor SOAP Filter

Web Server

WS1

WS2

WS3

WS4

WS5

XML
Parser

Web
Service
Client

Session Info

WS Request
Info

Login

WS1P

WS2P

WS3P

WS4P

WS5P

Administrator

Client Interface

WS Request

WS Response

Prolog
Engine

…

 514

a number of times, not only the request from that user will
be dropped, but also the user’s trust level may be
degraded further. Different from the XDoS verification
module, the SQL injection module only evaluates the
parameters passed to a web service operation by matching
them with predefined regular expressions in order to
check for any malformed parameters or parameter
tampering. Similarly, the XML validation module
interacts with the XML parser to evaluate if the request
message is well formed by comparing it with an XML
schema, and also checks for the size and nesting depth of
the message. If any malicious activity is detected and
confirmed, the request for the web service invocation is
denied immediately; otherwise, the request is passed to
the web server for processing. When the service
invocation is completed, the result will be forwarded back
to the client through the client interface.

One of the major advantages of our approach is that
the access policies and the detection rules are
modularized; therefore, they can be dynamically updated
without recompiling and reinstalling the XML firewall.
As shown in Figure 1, a human administrator can add,
remove or update any of the access policies and detection
rules through the admin interface at runtime. However,
during the updating process, the Prolog engine must wait
until the updating process is completed.

3.2 Database Design for State-Based XML Firewall

In the detection process, the critical information used
by the XML firewall for decision making is the data
stored in State_Info and User_Info databases, which are
used for detecting and verifying different types of XML-
based attacks. In the following, we give some key
definitions of data types used in State_Info and User_Info
databases for detection of XDoS attacks.

Definition 3.2 A user state is a 5-tuple (UID, SID, TR,
FR, TL), where UID is the ID assigned to the user at the
time of registration, SID is the ID of the session that is
initiated, TR is the total number of requests made by the
user in the current session, RF is the request frequency,
i.e., the number of requests made by the user in a recent
time interval, and TL is the user’s current trust level.

Definition 3.3 A firewall state is a triple (RE, DE, RT),
where RE is the number of requests that are received by
the XML firewall but not yet forwarded to the web server.
DE is the number of requests that are being processed by
the detection modules in the SOAP filter. RT is the
number of requests in a recent time interval, e.g., the last
five minutes. A firewall state is a measure of the work
load on the XML firewall system.

Definition 3.4 A web service state is a triple (WID, NR,
SI), where WID is the ID of the web service, NR is the
number of requests currently being processed by the web

service, and SI is a state indication of the web service,
which can be busy, normal or free. The state indication of
a web service indicates the work load of the web service
that is determined by thresholds set by an administrator.

Definition 3.5 A user credential is a 4-tuple (UN, PW,
UID, TL), where UN is the user name, PW is the
password specified by the user at registration time, UID is
the user ID, and TL is the current trust level assigned to
the user. A user receives a “normal” trust level at the time
of registration, and his trust level can be updated later at
runtime based on the user’s most recent behavior.

Based on the above state-based information and user
information, the SOAP filter can detect and verify XDoS
attacks in real-time. Note that the databases store not only
the current state and user information, but also the
previous states and the recent user information that are
useful for attack verification.

3.3 Role-Based Access Control Policies

A role is an abstraction that represents a set of
permissions that are needed to perform the tasks
associated with a position. Role-based authorization
policies specify the roles that each user may adopt, and
the permissions associated with each role [4, 12]. From
earlier research, it has been argued that it is desirable to
separate policy from the application code, so policies can
be easily changed over time [13]. Therefore, in this
project, we choose Prolog as a specification language for
both access control policies and detection rules. Prolog is
a declarative language, and can be used to specify both
facts and production rules or policies. With a solid
mathematical foundation, Prolog allows to reason from a
set of rules and supports meta-level reasoning, making
policy conflict detection possible. Consider the following
access control policies. In a hospital management system,
a staff member (e.g., a billing clerk) and a pharmacist can
only access a patient’s contact and billing information but
not his medical records. A patient can be assigned to a
doctor or a nurse, who may have full access to the
patient’s medical records and contact information, but not
his billing and account information. A patient can access
all records of his own, including his contact information,
billing and accounts, and medical records. The access
control policies can be specified in Prolog as follows.
isValidRole(patient).
isValidRole(doctor). isValidRole(nurse).
isValidRole(staff). isValidRole(pharmacist).
assignRole(U,R) :- isValidRole(R).
canInvoke(R,T,billingService,accessBill):-
 contains(R,[staff,pharmacist,patient]),
 contains(T,[normal,high]).
canInvoke(R,T,billingService,computeBill):-
 contains(R,[staff,pharmacist]),
 contains(T,[normal,high]).
canInvoke(R,T,accessService,readRecord):-
 contains(R,[doctor,nurse,patient]),

 515

 contains(T,[normal,high]).
canInvoke(R,T,accessService,writeRecord,P,U):-
 contains(R,[doctor,nurse]),
 contains(T,[normal,high]), assignPatient(P,U),
 assignRole(P,patient), assignRole(U,R).
canInvoke(R,T,contactService,accessContact):-
 contains(R,[staff,doctor,nurse,patient]),
 contains(T,[normal,high]).

Note that in the above Prolog code, R and T represent
a user’s role and the trust level of a user, respectively.
Any user must take certain role and have at least a
“normal” or “high” trust level before he can access any
resource. The predicate isValidRole lists various roles
defined in the system. The predicate assignRole(U, R) is
true when a user with UID U is assigned a valid role R.
Similarly, assignPatient(P, U) is true when the patient
with UID P is assigned to a doctor or a nurse with UID U.
The predicate canInvoke determines whether a user with a
certain role has the permission to invoke a web service
operation. For example, the predicate canInvoke(R, T,
accessService, readRecord) specifies that a user with role
R and trust level T can invoke the web service operation
readRecord defined in web service accessService.
Similarly, the predicate canInvoke(R, T, accessService,
writeRecord, P, U) ensures that a doctor or a nurse U can
update a patient P’s record only if the patient P has been
assigned to the doctor or nurse with UID U.

3.4 Real-Time Detection of XML-Based Attacks

The SOAP filter is responsible for real-time detection
of XML-based attacks. The process of detecting XML-
based attacks involves two major steps, which are
detection of suspicious SOAP messages and verification
of attacks. Suspicious SOAP messages are detected by the
filter controller, which uses the session and state
information to find possible request flooding attacks, uses
certain predefined patterns to find matched strings in the
parameters passed to a web service operation; and also
keeps track of the maximal allowed message size and the
maximal allowed nesting depth in the incoming XML
messages in order to detect oversized or recursive payload
attacks. We now use an XDoS attack as an example to
show how to detect XML-based attacks using our state-
based XML firewall. To detect XDoS attacks, the filter
controller looks into the session information to check if
the current frequency of requests (e.g., the number of
request during the last minute) made by a certain user
exceeds the threshold set by an administrator. If the
frequency exceeds the limit, any new requests from that
user will be sent to the XDoS verification module for
further analysis. Some sample rules used by the filter
controller for XDoS detection are illustrated as follows.
checkThreshold(W,S,X):- threshold(W,SI,Y),X > Y.
threshold(accessService,busy,20).
threshold(accessService,normal,40).
threshold(accessService,free,60).

In the above rules, W is the web service name, S
represents the session ID, and X is the number of requests
per minute made by a user who is currently under
investigation. The predicate checkThreadhold evaluates
to true when the number of requests made by the user
during the last minute exceeds the limit determined by the
web service state indication. For this example, the state
indication of a web service is busy, normal, or free if the
number of requests processed by the web service during
the last minute is larger than 40, between 20 and 40, or
less than 20, respectively. According to the above rules,
when the web service is busy, normal or free, the
corresponding limit on number of requests per minute is
20, 40 or 60, respectively. Note that the information about
the web service state and the number of requests the user
made during the last minute are stored in State_Info
database. To simplify matters, the threshold in our current
XML firewall implementation does not depend on the
firewall state that is specified in Definition 3.3.

If a query to the predicate checkThreshold returns
true, the corresponding request will be passed to the
XDoS verification module where the user’s violation
history is analyzed. The following Prolog rules
demonstrate how to verify an attacker and when to
degrade a user’s trust level.
xdosVerify(U,T):- inspectHistory(U,T,V).
inspectHistory(U,T,V):-
 T = high, dataConnect(U,3,V), V = '3',
 degradeTrustLevel(U,normal).
inspectHistory(U,T,V):-
 T = normal, dataConnect(U,5,V), V = '3',
 degradeTrustLevel(U,low).
inspectHistory(U,T,V):-
 T = low, dataConnect(U,7,V), V = '3'.
 degradeTrustLevel(U,permanentlyBlocked)
dataConnect(U,X,V):-
 java_object('DataConnect',[],data),
 data<-getHistorySessionStatus(U,X) returns V.
degradeTrustLevel(U,T):-
 java_object('DataConnect',[],data),
 data <- recordTrustLevel(U,X).

The Prolog code inspects a user’s violation history of
exceeding service invocation frequency threshold. If the
user’s trust level is “high”, the XDoS verification module
only checks the user’s previous 3 sessions. If the user has
3 violations, his trust level will be degraded to “normal”.
On the other hand, if the user’s trust level is “normal” or
“low”, then the user’s previous 5 or 7 sessions need to be
checked. Similarly, when the user reaches the limit of 3
violations, his trust level will be degraded to “low” or
“permanentlyBlocked”, respectively. In all above cases, if
a query to the predicate xdosVerify evaluates to true, the
user’s current session will be immediately closed. In this
case, the user must log in again before he can make
further requests. Note that the Prolog code listed above
requires invoking Java methods getHistorySessionStatus
and recordTrustLevel to acquire information from
State_Info database, and record a user’s trust level as
history information in User_Info database, respectively.

 516

Another example to show how to detect attacks using
our XML firewall is to detect SQL injection attacks. SQL
injection is a technique used to exploit the vulnerabilities
in web applications that communicate with databases. The
basic idea behind SQL injection is to convince the
application to run some malicious SQL code that may
result in unauthorized data access or data loss. SQL
injection attacks mostly occur due to a lack of user input
validation. Although SQL injection is a general technique
to attack web-based applications, in the context of
service-oriented systems, it can tamper web service
parameters which are embedded in XML messages. Thus,
in this paper, we treat it as a type of XML-based attack. A
simple example of SQL injection attack is called
concatenated query attack, where the user manipulates a
parameter to form a concatenated query. When a normal
query “SELETE * FROM users WHERE userid =
'user1'” is manipulated to “SELECT * FROM users
WHERE userid = 'user1'; DELETE FROM users;
-- x'”, the execution of the query results in data loss.

In our current implementation of XML firewall, the
SOAP filter uses regular expressions to specify string
patterns such as concatenation of “';” and “';--”. If any
input string matches one of the predefined patterns, the
user will be detected as an attacker for SQL injection, and
the user’s current session will be closed immediately.

4. A Case Study

In this section, we use a case study to demonstrate
how a state-based XML firewall can be used to
effectively detect XML-based attacks. We developed a
prototype XML firewall, and installed it on the same
machine where a service-oriented system was deployed.
The service-oriented system we adopted in this case study
is a hospital management system, where different roles
and access control policies are defined to determine a
user’s access permission to specific services. The hospital
management system is an adaptation of the system
presented in previous work [13], which is implemented as
a service-oriented system. The related user roles as well
as their corresponding access permissions are the same as
those defined in Section 3.3. We now first simulate an
SQL injection attack by accessing the web service
accessService, which allows a user with sufficient
permissions to write medical records for a patient.
Consider User1 with a patient role who is assigned to
nurse User2. Since User1 is assigned to User2, User2 has
permission to write User1’s medical records by invoking
writeRecord operation defined in web service
accessService. The invocation requires four parameters,
namely the ID of the user who writes the record, the ID of
the patient whose record is to be updated, a string
containing medical report information, and the type of the
report. A legitimate request from the nurse could be
writeRecord(“User2”, “User1”, “The patient reacted

abnormally to new drugs.”, “Observation”), which
results in an SQL query as follows.
INSERT INTO patientRecords VALUES('User2',
'User1', 'The patient reacted abnormally to new
drugs.','Observation');

 Now a malicious user may perform an SQL injection
attack by tampering the parameters in the web service
invocation. User2 may send the fourth parameter as
“Observation’); DELETE FROM users; --
dummystring”. The resultant query in the web service
will delete all the records in users table if the server
allows execution of multiple queries.

With the installed XML firewall, when User2 makes
such a request, the XML firewall can successfully detect
the SQL injection attack and prevents unauthorized data
access by checking the parameters of the request against
predefined regular expressions. Figure 2 is a snapshot of
the log information showing the successful detection of a
simulated SQL injection attack.

Figure 2. Log information for SQL injection detection

To demonstrate that our prototype XML firewall can

effectively detect and prevent XDoS attacks, we simulate
request flooding attacks on a web service with a large
number of requests from an attacker, and record the
response behavior of the server for requests from a
normal user. We choose the report generation service
implemented in the service-oriented hospital management
system because it consumes significant amount of
memory space and CPU time. The web service takes
around 10 seconds to process a request; thus, the normal
response time should be around 10 seconds. We now set
up the flooding attack with a number of threads, each of
which sends web service requests continuously to the
report generation service. When the XML firewall was
disabled, we observed that when the number of requests
received by the server increases, the response time of a
request from a normal user increases significantly. When
the frequency of requests reaches around 128 per minute,
the web service becomes unavailable to the normal user
because the server crashes due to a heap space error. This

 517

is illustrated by one of the curve (denoted as “without
XML Firewall”) in Figure 3. When we enable our XML
firewall and set an appropriate threshold, the web server
can be successfully prevented from crashing. Figure 3
shows two other curves that represent the experimental
results with the XML firewall enabled when the
thresholds for the firewall with free state indication are
set to 80 and 60, respectively. As shown in Figure 3,
when the threshold is 80, the worst response time is 25
seconds, but it drops to normal response time when the
attacker increases the request frequency further. To
enhance performance, we lower the threshold from 80 to
60, and the worst response time now becomes 17 seconds.

Response Time vs. Number of Requests Per Minute

0

5

10

15

20

25

20 40 60 80 100 120 140 160 180 200
Number of requests per minute from attacker

R
es

po
ns

e
tim

e
in

 s
ec

s

without XML Firewall
with XML Firewall (80
with XML Firewall (60

Figure 3. Experimental results for XDoS attacks

Note that a very high threshold could overload the

system while a very low threshold might block legitimate
users with high request rates. Thus, it is important for the
administrator to choose an appropriate threshold for the
XML firewall in order to make it work efficiently.

5. Conclusions and Future Work

Service-oriented systems are increasingly deployed
over the Internet due to their standardized protocols and
techniques that enable the efficient integration of loosely
coupled applications over networks. However, due to the
open interface for service-oriented architecture, attacks on
service-oriented systems are more complicated than
traditional attacks that can be handled by conventional
firewalls. Thus, there is a pressing need to introduce new
security mechanisms to protect service-oriented systems.
In this paper, we introduced a state-based XML firewall,
which can be used to protect service provider from
various XML-based attacks. We developed a detailed
design of our state-based XML firewall, and implemented
a prototype XML firewall. Our experimental results show
that our prototype XML firewall can effectively protect
web services from various XML-based attacks. In our
future work, we will study new types of XML-based
attacks and show how their corresponding attack

verification modules can be easily integrated into our
current implemented system due to the modular design.
We will also consider adopting agent-based technology to
provide more intelligence in XML firewall for efficient
detection and verification of XML-based attacks.

References

[1] E. B. Fernandez, M. M. Larrondo-Petrie, N. Seliya,
N. Delessy-Gassant, and M. Schumacher, “A Pattern
Language for Firewalls,” In M. Schumacher, et al.
(Eds.), Security Patterns: Integrating Security and
Systems Engineering, Wiley, March 2006.

[2] E. Moradian and A. Håkansson, “Possible Attacks on
XML Web Services,” International Journal of
Computer Science and Network Security (IJCSNS),
Vol.6, No.1B, January 2006, pp. 154-170.

[3] M. Andrews and J. A. Whittaker, How to Break Web
Software: Functional and Security Testing of Web
Applications and Web Services, Addison-Wesley
Professional, February 2006.

[4] H. Feinstein, R. Sandhu, E. Coyne, and C. Youman,
“Role-Based Access Control Models,” IEEE
Computer, Vol. 29, No. 2, 1996, pp. 38-47.

[5] H. Xu, M. Ayachit and A. Reddyreddy, “Formal
Modeling and Analysis of XML Firewall for Service
Oriented Systems,” International Journal of Security
and Networks (IJSN), Vol. 3, No. 3, 2008.

[6] P. Crocker and B. Thompson, “Integrating
WebSphere DataPower SOA Appliances with
WebSphere MQ,” Technical Report, IBM Hursley
Software Lab, March 2007.

[7] Reactivity, “Architecting the Infrastructure for SOA
and XML,” White Paper, Cisco Systems, Inc. 2007.

[8] E. B. Fernandez, “Two Patterns for Web Services
Security,” In Proceedings of the 2004 International
Symposium on Web Services and Applications
(ISWS'04), Las Vegas, Nevada, 2004.

[9] M. Holtkamp, “The Role of XML Firewalls for Web
Services,” The 1st Twente Student Conference on IT,
Track B, June 2004.

[10] M. Cremonini, S. Vimercati, E. Damiani, and P.
Samarati, “An XML-Based Approach to Combine
Firewalls and Web Services Security Specifications”,
In Proceedings of the 2003 ACM Workshop on XML
Security, Fairfax, Virginia, 2003, pp. 69-78.

[11] R. Bebawy, H. Sabry, S. El-Kassas, Y. Hanna, and Y.
Youssef, “Nedgty: Web Services Firewall,” In
Proceedings of the IEEE International Conference on
Web Services (ICWS’05), 2005, pp. 597-601.

[12] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and
R. Chandramouli, “Proposed NIST Standard for Role-
Based Access Control,” ACM Transactions on
Information and System Security (TISSEC), Vol.
4, No. 3, August 2001, pp. 224-274.

[13] M. Y. Becker and P. Sewell, “Cassandra: Flexible
Trust Management, Applied to Electronic Health
Records,” In Proceedings of the 17th IEEE Computer
Security Foundations Workshop, 2004, pp. 139-154.

 518

