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ABSTRACT 
With the rapid advances in computer science and 
technology, critical computer-based systems, such as 
those in aerospace, military, and power industries exhibit 
more complex dependent and dynamic behaviors, which 
cannot be fully captured by existing reliability modeling 
tools. In this paper, we introduce a new reliability 
modeling tool, called dynamic reliability block diagrams 
(DRBD), for modeling dynamic relationships between 
components, such as state dependency and redundancy. 
We give formal semantics for some key DRBD constructs 
using Object-Z formalism. In order to verify and validate 
the correctness of a DRBD model, we propose to convert 
a DRBD model into a colored Petri net (CPN), and use an 
existing Petri net tool, called CPN Tools, to analyze and 
verify dynamic system behavioral properties. Our case 
study and experimental results show that DRBD provides 
a powerful tool for system reliability modeling, and our 
proposed verification approach can effectively ensure the 
correct design of DRBD reliability models for complex 
and large-scale computer-based systems. 
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1.  Introduction 
 
With the rapid advances in computer science and 
technology, system reliability becomes an issue of 
increasing practical concern and research attentions. 
Critical computer based systems, such as those in 
aerospace, military, and power industries exhibit more 
and more complex dependent and dynamic behaviors. For 
example, due to a function dependency existing among 
components, where the failure of one component can 
cause other components to become inaccessible, 
components of a system do not necessarily fail 
independently. Failure to model dependency relationships 
accurately results in overstated or understated system 
reliability, which renders reliability analysis less effective 
in system design and tuning activities. Existing research 

efforts on this challenging issue do not fully address 
complexities of the dependency relationships among 
components. Sparing is another major dynamic behavior 
of mission critical systems. Specifically, a system with 
spares usually consists of one or more duplications of 
units for enhancing the system reliability. There are three 
types of sparing configurations, namely hot, cold, and 
warm. A hot spare operates in synchrony with a primary 
(i.e., online) component, and is prepared to take over at 
any time; a cold spare is unpowered until needed to 
replace a faulty component [1]. A warm spare is a trade-
off between hot and cold spares in terms of 
reconfiguration time and power consumption. For all the 
three types of sparing approaches, a reconfiguration 
process happens when the primary component fails or is 
deactivated (i.e., put into the sleeping mode). Among the 
existing reliability modeling tools, only the dynamic fault 
tree (DFT) has the capability to model all the three types 
of redundant behaviors [2]. However, the DFT approach 
assumes that a reconfiguration can only be triggered by 
the failure of a primary component; it cannot model a 
situation where a reconfiguration is triggered by the 
deactivation of a primary component.  

The reliability block diagram (RBD) model has been 
widely used as one of the most practical reliability 
modeling tools due to its simplicity [3, 4]. An RBD is a 
success-oriented network describing the functions of a 
system. Specifically, each RBD model consists of an 
input point, an output point, and a set of blocks. Each 
block represents a physical component that functions 
correctly. The blocks in the RBD are arranged in a way 
that illustrates the proper combinations of working 
components that keep the entire system operational [3]. 
Typically, if there is at least one path connecting between 
the input and output points, the system is operational. On 
the other hand, the failure of a component is indicated by 
the removal of the corresponding block in an RBD model; 
if enough blocks are removed to interrupt the connection 
between the input and output points, the system fails. The 
main virtues of the RBD model are that it is easy to read, 
and it is readily understood by customers, people who sell 
systems, engineers who design and test systems, and 
managers who make decisions on systems. With 
knowledge of the system, design engineers can easily 
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construct and modify the corresponding RBD model, and 
communicate with people from different disciplines. 
However, similar to the other existing tools, the 
traditional RBD model has a distinct disadvantage that it 
cannot fully capture the dependent and dynamic behaviors 
of large and complex systems.  

Motivated by the virtues of RBD models and the 
inadequacies of the existing modeling tools to model 
dependencies and dynamic relationships among 
components in a large and complex system, we introduce 
a new modeling approach called dynamic reliability block 
diagrams (DRBD). The DRBD model extends the 
traditional RBD model by fully considering the various 
dependencies and system dynamics. Some key DRBD 
modeling constructs, such as SDEP (State Dependency) 
block and SPARE (Spare Part) block, will be formally 
specified using the Object-Z formal specification 
language [5], which provides precise definitions for 
DRBD model behaviors. In addition, to ensure a correct 
design of a DRBD model that accurately represents the 
actual system in terms of its reliability behaviors, we will 
formally verify behavioral properties of the DRBD model. 
This requires a conversion of the DRBD model to a 
formalism, e.g., the Petri net formalism [6, 7], which is 
supported by effective analysis and verification tools.  
 
 
2.  Related Work 
 
Previous work related to our research includes work on 
modeling dynamic reliability behaviors, and work on 
formal specification and verification of reliability models. 
Dynamic fault tree (DFT) has been proposed as an 
extension to the traditional (static) fault trees by including 
additional gates for modeling sequential and sparing 
behaviors [2]. The DFT approach also offers limited 
capability to model dependency relationships among 
components. However, it cannot accurately and fully 
model and analyze large systems subject to complex 
dynamics and dependencies. The ReliaSoft’s BlockSim 
tool incorporates a standby container into the traditional 
RBD model for modeling the standby redundancy [8]; 
however, only cold spares are considered in this tool.  
More recently, Distefano and Xing introduced a set of 
DRBD constructs as an extension to the RBD models [9]. 
The DRBD constructs are used to model dynamic 
dependency relationships among components; however, 
compared to the DFT approach, the DRBD constructs 
introduced in [9] are very complicated and difficult to use, 
thus they are not practically usable. In this paper, we 
introduce a brand new set of DRBD constructs, which are 
based on simple notations; however, our newly introduced 
DRBD constructs are very powerful in modeling state-
based dynamic system reliability behaviors. 

Very little work has been done on formal 
specification of reliability modeling constructs. Coppit 
and his colleagues used the Z formalism to specify 
various DFT gates, such as AND, OR, KOFM and 
Priority AND (PAND) [10, 11]. The Z formalism is very 

useful in providing formal and precise definitions for DFT 
gates; however, in their approach, only state schemas are 
defined, while the operation schemas for modeling the 
dynamic behaviors of gates are missing. Furthermore, no 
solutions are provided for verification of DFT models to 
ensure a correct design. In contrast, we use the Object-Z 
formalism to specify both the state space and operations 
of a DRBD construct as a class schema. Furthermore, we 
propose and demonstrate a way of converting a DRBD 
model to a colored Petri net for formal verification and 
validation of DRBD models. 

Additional related work to our proposed approach 
includes converting fault trees (FT) into the generalized 
stochastic Petri net (GSPN) to support dependability 
analysis [12]. The aim of the GSPN approach is to exploit 
the modeling and decision power of GSPN for both the 
qualitative and the quantitative analysis of the modeled 
system. Similarly, Everdij and Blom proposed to use 
dynamically colored Petri nets (DCPN) to develop PDP 
(Piecewise Deterministic Markov Processes) models [13]. 
They showed that DCPN has similar modeling power to 
PDP, and is more powerful than deterministic and 
stochastic Petri nets. Although the above approaches used 
Petri net formalism to model and analyze system 
reliability, they were not concerned with dynamic system 
reliability properties, such as state-based dependency. 
Furthermore, our approach has a major difference from 
their approaches: instead of providing quantitative 
analysis of system reliability directly using Petri nets, we 
use colored Petri nets to verify the correctness of a 
reliability model (i.e., a DRBD model). This is necessary 
because when dynamic reliability properties are involved, 
the DRBD model becomes very complicated for large and 
complex systems. Thus, it becomes vital to ensure the 
correctness of the DRBD model before any qualitative 
and quantitative analysis is conducted. 
 
 
3.  Dynamic Reliability Block Diagrams 
 
Consider a cluster of sensor nodes in a clustered wireless 
sensor network system as shown in Figure 1. The cluster 
head manages the cluster by assigning duty cycles to 
sensor nodes and coordinating intra- and inter-cluster 
transmissions. The cluster head has a cold spare (i.e., the 
secondary cluster head in Figure 1) that is activated when 
the primary cluster head fails. All the sensor nodes within 
this cluster are divided into two mutually exclusive 
subsets (S1, S2). We assume each subset can provide 
desired sensing coverage, and in the beginning, sensor 
nodes in S1 are operational; while sensor nodes in S2 are 
in the sleeping mode. To preserve the limited energy of 
sensor nodes, the duty cycle of sensor nodes will be 
adjusted. At some other time, sensor nodes in S1 will be 
put into the sleeping mode and sensor nodes in S2 will be 
activated to maintain the desired sensing coverage. The 
entire cluster is considered to be operational when the 
sensor nodes in at least one of those two subsets are 
operational and one cluster head is functioning.  
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Figure 4. The DRBD model of the example system 
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Figure 1. A clustered wireless sensor network system 

For modeling the state dependency between the two 
subsets of the sensor nodes, i.e., the deactivation (or 
sleeping) of one subset of the sensor nodes leads to the 
activation (or wake-up) of the other subset of sensor 
nodes, we propose a new DRBD component called State 
Dependency (SDEP) block. Figure 2 illustrates the 
general structure of this block, where A means activation, 
D means deactivation, and F means failure. The 
occurrence of the trigger event will force all the 
dependent events to occur. Both the trigger event and the 
dependent events can be activation, deactivation or failure 
of a system component. In other words, our proposed 
SDEP block can be used to model nine types of 
dependencies among the system components: (A, A), (A, 
D), (A, F), (D, A), (D, D), (D, F), (F, A), (F, D), and (F, 
F). Here, it is important to mention that a DFT model 
cannot capture the above (D, A) state dependency 
behavior of the sensor network system; actually it can 
only be used to model the (F, D) state dependency where 
the failure of a component causes some other dependent 
components to become inaccessible or unusable. 
Compared with the existing DFT approach, the DRBD is 
more powerful in modeling dependent behaviors. 
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Figure 2. SDEP (state dependency) block 
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Figure 3. SPARE (spare part) block 
 

For modeling the cold standby sparing cluster head 
subsystem, we propose another new DRBD component 
called SPARE (spare part) block. Figure 3 illustrates the 
general structure of this block, where A|D|F have the same 
meaning as in the SDEP block, and C|W|H means 
cold|warm|hot spare. Specifically, this block models the 
behavior that the deactivation or failure of the primary 
component will lead to the activation of a spare 
component, which could be in cold, warm, or hot standby 
state. All the spare units will be used in the specified 
order, i.e., from left to right. 

Figure 4 gives the DRBD model of the wireless 
sensor network system as described in Figure 1. The 
model is developed using SDEP and SPARE blocks. The 
blocks labeled S1 and S2 represent a series structure of 
the sensor nodes that constitute the corresponding subset. 
Besides the capability of modeling the state dependencies 
and the various sparing behaviors, more new DRBD 
blocks and concepts have been proposed to model other 
dynamic relationships such as sequence dependency and 
load sharing. Sequence dependence enforces the order of 
occurrence of input events. A classic example of sequence 
dependence is a fault-tolerant system with one primary 
component and one standby spare connected with a 
switch controller [14]. If the switch controller fails after 
the primary component fails, and thus the standby 
component is switched into active operation, then the 
system can continue to operate. However, if the switch 
controller fails before the primary component fails, then 
the standby component cannot be activated, and the 
system fails even though the spare part is still operational. 
Similarly, a load sharing represents a condition where two 
or more components share the same workload. A load 
sharing condition usually involves components that 
perform the same task. Components in the load sharing 
redundancy exhibit different failure characteristics when 
one or more of them have failed or have been deactivated. 
The traditional fault trees, DFT, and RBD model do not 
consider the load sharing behavior. The BlockSim tool 
supports the load sharing configuration, but only 
considers the case where the increased load on the 
operating components happens when other load sharing 
components fail [8]. Both sequence dependency and load 
sharing are defined as DRBD constructs in our proposed 
approach; however, due to space limitation, in this paper, 
we only introduce those blocks used in our examples. 
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4.  Formal Specification of DRBD Constructs 
 
4.1 A Motivating Example 
 
To support formal verification and validation of our 
proposed DRBD model, it is necessary to formally define 
the DRBD modeling constructs. Formal definitions of the 
DRBD constructs can not only provide the denotational 
semantics for the development of DRBD models in a 
precise manner, but also help to eliminate ambiguity in a 
constructed DRBD model. For example, Figure 5 shows a 
DRBD model with state dependencies and sparing 
relationship defined among components C1, C2, C3 and 
C4, where C4 is a cold spare for C2. Suppose component 
C1 fails at some time. According to the state dependency 
(F, F) from C1 to C2, and (F, D) from C1 to C3, 
component C2 and C3 will become Failed and Standby, 
respectively. Since component C4 is a spare unit of 
component C2, the failure of component C2 will lead to 
the activation of component C4; however, since there is a 
(D, D) state dependency from component C3 to C4, the 
deactivation of component C3 will lead to the 
deactivation of component C4. To evaluate the system’s 
reliability, we have to answer the following question: 
when component C1 fails, will component C4 be in a 
state of Active or Standby, or will the result be 
nondeterministic? The above question can actually be 
reduced to the following question: when component C1 
fails, will the two state dependencies (from C1 to C2, and 
from C1 to C3) happen immediately and thus 
simultaneously, or with some nondeterministic time 
delay? To answer this type of questions, it is vital for us 
to formally define the denotational semantic of the DRBD 
constructs. Here we propose to use the Object-Z 
formalism [5] for this purpose.  
 

 
4.2 Specification of DRBD Constructs in Object-Z 
 
Object-Z is an extension to the Z formal specification 
language for modular design of complex systems [5, 15]. 
It has strong data and state modeling capabilities, which is 
suitable for specifying the formal semantics of DRBD 
modeling constructs. Figure 6 shows the formal 
specification of the state dependency (SDEP) block in 
Object-Z. In this specification, we first define Event 
occurring on a component as an enumerated type with the 
following values: Activation, Deactivation, and Failure, 
which will lead a component to a state of Active, Standby 
and Failed, respectively. Then we define a state 
dependency as a block that consists of a trigger 

component and a set of target/dependent components. The 
relationship between the trigger component and the target 
components are defined by a function sdep, which maps 
the trigger event happening at time t? to a set of target 
events happening at t?+δc, where c represents a target 
component. This definition precisely states that the target 
events do not need to happen simultaneously as long as δc 
is sufficiently small. The three operations defined on a 
state dependency are ActivateTrigger, DeactivateTrigger, 
and FailTrigger. According to the definition, the 
activation of the trigger component may lead to one of 
three different states for each target component, i.e., 
Active, Standby and Failed, which correspond to three 
different relationships between the trigger and one of the 
targets, namely (A, A), (A, D), and (A, F) state 
dependency. Similarly, the formal definition of 
DeactivateTrigger operation specifies how state 
dependencies (D, A), (D, D), and (D, F) are enforced; 
while the formal definition of FailTrigger specifies how 
state dependencies (F, A), (F, D), and (F, F) are enforced. 
 

Event ::= Activation | Deactivation | Failure

SDEP

trigger : Component
targets : P Component
nTargets : N

triggerEvent : Event
targetEvents : Component → Event
sdep : T × Component × Event → P(T × Component × Event)

nTargets = #targets ∧ nTargets > 0 ∧ targets = dom targetEvents
∀ c ∈ targets • c �= trigger

∧probability(c | triggerEvent) �= probability(c)
∧ probability(triggerEvent | c) = probability(triggerEvent)

{(t , trigger , triggerEvent) | t ∈ T} = dom sdep

ActivateTrigger
∆(trigger , targets)
t? : T

(triggerEvent = Active) ∧ (trigger .state ′ = Active)
∀ c ∈ targets •

(t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)
∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

DeactivateTrigger
∆(trigger , targets)
t? : T

(triggerEvent = Deactivation) ∧ (trigger .state ′ = Standby)
∀ c ∈ targets •

(t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)
∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

FailTrigger
∆(trigger , targets)
t? : T

(triggerEvent = Failure) ∧ (trigger .state ′ = Failed)
∀ c ∈ targets •

(t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)
∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

 

C3

C4

SDEP

C1

C2

SDEP
F

FF

DD D

SPARE
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C

 
 

Figure 5. A DRBD model with conflicts 

 
Figure 6. Object-Z specification of SDEP block 
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Figure 7 shows the formal specification of the 
SPARE (spare part) block in Object-Z. We define a spare 
part redundancy as a block that consists of a primary unit 
component and a set of alternative (spare) unit 
components. The relationships among them are defined 
by the function switch, which maps a state change event 
happened on a primary unit or an alternative unit at time 
t? to a state change event happened on an alternative unit 
at t?+δc, where c represents an alternative unit component. 
The PrimarySwitch operation defines when the primary 
unit is deactivated or failed, the first alternative unit will 
be activated; while the AlternativeSwitch operation 
defines when alternative unit i? is deactivated or failed, 
alternative unit i?+1 will be activated. Note that the 
previous state of an activated alternative unit must be 
Standby, which can be in one of the three cases: Hot, Cold 
and Warm. 
 

Standby ::= Hot | Cold | Warm

SPARE

primaryUnit : Component
alternativeUnits : P Component
nAlternatives : N

alternative : N → Component
switch : T × Component × Event → T × Component × Event

∀ c ∈ alternativeUnits • c �= primaryUnit
nAlternatives = #alternativeUnits ∧ nAlternatives > 0
{1, 2, ...,nAlternatives} = dom alternative
dom switch = {(t , c, e) | t ∈ T, c ∈ {primaryUnit} ∪

{(alternative(i)) | 1 ≤ i ≤ nAlternatives − 1},
e ∈ {Deactivation,Failure}}

INIT

trigger .state = Active
∀ i ,where 1 ≤ i ≤ nAlternatives • alternative(i).state = Standby

PrimarySwitch
∆(primaryUnit , alternativeUnits)
t? : T

∀ e ∈ {Deactivation,Failure} •
switch(t?, primaryUnit , e) = (t? + δc , alternative(1),Activation)

(primaryUnit .state = Active) ∧
(primaryUnit .state ′ ∈ {Standby ,Failed})
∧ (alternative(1).state ′ = Active)

AlternativeSwitch
∆(alternativeUnits)
t? : T, i? : N

∀ e ∈ {Deactivation,Failure}, 1 ≤ i? ≤ nAlternatives − 1 •
switch(t?, alternative(i), e) =
(t? + δc , alternative(i + 1),Activation)
∧ (alternative(i?).state = Active)
∧ (alternative(i?).state ′ ∈ {Standby ,Failed})
∧ (alternative(i? + 1).state = Standby)
∧ (alternative(i? + 1).state ′ = Active)

 
 

Figure 7. Object-Z specification of SPARE block 
 
The introduction of new DRBD constructs as an 

extension to the RBD model can greatly enhance the 
modeling power for system reliability modeling. 
However, to derive a correct result from a DRBD model 
in an industrial setting, we must first face one major 
concern, which is how we can be certain that the model is 
correct. In other words, how can we be confident that the 

model is an accurate representation of the actual system 
for its reliability properties. This problem is not severe 
when we use the standard RBD models, because it only 
contains a few static modeling constructs. However, when 
we design DRBD models, which involve new dynamic 
conceptual modeling constructs, engineers are more 
potentially to bring design errors into the model due to the 
complexity of the newly introduced dynamic modeling 
constructs, e.g., the state dependency. Such design errors 
could be very subtle and very difficult to detect when the 
model is not trivial, and it will result in an incorrect 
reliability model, which will lead to inaccurate results 
when the model is evaluated. Traditional simulation 
approaches to model testing is not suitable for DRBD 
models because it is hard (almost impossible) to cover all 
execution paths. A promising way to solve this problem is 
to use formal methods to verify the behavioral properties 
of the model before the evaluation process starts. That is, 
to verify if the DRBD model satisfies the specified 
behavioral properties of the system under investigation. 
For example, we may use temporal logic [16] to specify 
the following system property of a computer system: “if 
component A fails, component B and C will also fail, 
which leads to the failure of the whole system S.” The 
temporal formula in LTL (Linear Temporal Logic) can be 
written as [](¬A→(¬B∧¬C)∧<>¬S), where the box [] 
and the diamond <> represent the always operator and 
eventually operator, respectively. The above temporal 
formula says that it is always true that the failure of A 
immediately leads to the failure of B and C, and will 
eventually leads to the failure of the system S. One way to 
verify such a system behavioral property is to use the 
model checking technique [17]. In this case, a valid 
result shows that the reliability model developed for 
system S does have this property; while an invalid 
result shows that the model developed for system S is 
incorrect. When a DRBD model is proved to be incorrect, 
any quantitative evaluation results derived from the 
DRBD model might not be usable, so the DRBD model 
must be corrected and re-verified.  
 
 
5. Formal Verification of DRBD Models 
 
Although the semantics of DRBD components and 
constructs can be formally defined in Object-Z as shown 
in Section 4, it is not straightforward and feasible to 
verify the behavioral properties of DRBD models based 
on the Object-Z formalism due to a lack of analysis and 
verification tool support [18]. A better approach to 
verifying a DRBD model is to convert it into a formal 
model such as a state machine or a Petri net model, which 
is supported by powerful verification tools. We adopt the 
Petri net formalism because it has a distinct advantage of 
being easy to understand and use due to its graphical 
formulation, and the powerful, but intuitive rules for 
defining structure and dynamic behaviors [6]. Petri nets 
provide an intuitive, graphically defined, way to express 
conditions, events, and their relationships, as well as 
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essential characteristics like nondeterminism and 
concurrency. Specifically, in a Petri net graph, there are 
nodes that represent conditions (called “places”) and 
nodes that represent events (called “transitions”). When 
some specified conditions hold true, events can occur – 
this is depicted in the net model by the “firing” of 
transitions, which causes new conditions to hold. So, a 
Petri net provides an executable model that directly 
defines the concept of a system’s state space. Although 
most research concerned with automated analysis of 
concurrent and distributed systems is based on some type 
of state-space exploration and cannot avoid the state-
space explosion problem. Based on our significant 
experience with Petri nets for many years, the Petri net 
formalism is capable of achieving an effective balance 
between theoretical concepts and practical techniques.  

In the following, we use a DRBD model of a router 
example to show how we can convert it into a colored 
Petri net and use an existing Petri net tool to detect 
possible design errors in the DRBD model.  

Figure 8 shows the DRBD model of the router 
example, which contains a router (Component C1) 
connected with a computer (Component C2). The 
computer can access the Internet only through the router. 
Therefore, there is a (F, D) state dependency from 
Component C1 to C2, i.e., when the router fails, the 
computer will be deactivated for its network connection, 
and will be in a “Standby” state. To make the system 
more reliable, we introduce a cold-spare part for the 
router, which is represented by Component C3 in Figure 
9. The DRBD model in Figure 9 describes when the 
Component C1 fails, Component C3 will be automatically 
activated and continue to provide network access for 
Component C2.  
 

C1 C2

SDEP

Router Computer

F D

 
Figure 8. DRBD model of a router example 
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Figure 9. DRBD model of a router with a cold-spare part 

 
The DRBD model in Figure 9 can be converted into a 

colored Petri net as shown in Figure 10. The three 
components in Figure 9 are modeled by the three places 
Component_1, Component_2 and Component_3, and each 
place can contain a colored token with three different 
colors, i.e., “Active”, “Standby” and “Failed”. Each 

component may fail when its corresponding Fail_i (i = 
1..3) transition fires, in which case, the “Active” token in 
the corresponding component place will be replaced by a 
“Failed” token. Note that since we only allow cold-
standby component in this example, a component in a 
“Standby” state cannot fail.  

Initially, the three component places contain 
“Active”, “Standby” and “Active” colored token, 
respectively. According to the DRBD model in Figure 9, 
when either Component 1 or Component 3 is active, the 
parallel structure is functioning. This is represented by 
firing either transition T1 or T3 when either the place 
Component_1 or Component_3 contains an “Active” 
token, thus an “Active” token can be deposited into the 
place C1_or_C3. When Component C2 is also active, the 
transition T2 may fire, and a Boolean token “true” is 
deposited into place System_up, which enables the Run 
transition. This scenario shows that when Component C1 
(or Component C3) and Component C2 are functioning, 
the system must be functioning. On the other hand, when 
either Component C2 or C3 fails, the transition T4 or T5 
may fire, and the firing of the transition T4 or T5 deposits 
a Boolean token “true” into place System_down, which 
indicates that the system cannot be functioning. However, 
if Component C1 fails, it will activate Component C3 due 
to the spare part redundancy; thus, it should not lead to 
the failure of the whole system. 

When Component C1 fails and Component C2 is 
active, the transition SDEP can fire, and deposit a 
“Standby” token into the Component_2 place. Meanwhile, 
a unit token is deposited into the synchronization place 
Syn_1 to ensure that the firing of transition SDEP 
precedes the firing of transition Spare, so the transition 
SDEP will not accidentally become disabled when the 
“Failed” token in place Component_1 is removed due to 
the firing of transition Spare. When transition Spare fires, 
it deposits an “Active” token into place Component_3 to 
activate the spare part. This should lead to the continuous 
functioning of the whole system.  

We now use an existing Petri net tool called CPN 
Tools [19] to analyze our Petri net model. After running 
the analysis tool, we get the Result-1 as shown in Table 1. 

 
Table 1. Results from state space analysis tool 

                 Result-1           Result-2 
Statistics 
-------------------- 
State Space 
   Nodes:  15 
   Arcs:   23 
   Secs:   0 
   Status: Full 
 
Scc Graph 
   Nodes:  15 
   Arcs:   18 
   Secs:   0 
 
Liveness Properties 
-------------------- 
  Dead Markings 
     [14] 

Statistics 
--------------------
State Space 
   Nodes:  27 
   Arcs:   48 
   Secs:   0        
   Status: Full 
 
Scc Graph 
   Nodes:  27 
   Arcs:   36 
   Secs:   0 
 
Liveness Properties 
--------------------
  Dead Markings 
     None 
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The result shows that there is a dead marking (state 
14) in the reachability graph of the Petri net model. From 
Figure 11 (a snapshot of the state space tracing), we can 
see that in the dead marking S14, both the places 
System_up and System_down contains no token. This 
implies that the Petri net model must contain a deadlock. 
By tracing the dead marking state using the CPN Tools, 
we find the following firing sequence that leads to the 
dead marking. The firing sequence is: S1, Fail_1, S4, 
SDEP, S9, Spare, S12, T3, S14. From Figure 10, it is easy to 
see that dead marking is due to the firing of transition 
SDEP that deposits a “Standby” token in place 
Component_2 when Component C1 fails. When 
Component C3 is activated, Component C2 should also 
be activated accordingly. However, such state dependency 
from Component C3 to C2 is not presented in the DRBD 
model in Figure 9. This design error must be fixed by 
adding an (A, A) state dependency from Component C3 to 
Component C2 in Figure 9. Accordingly, we need to 
revise the colored Petri net model in Figure 10 as follows: 
(1) add a new transition SDEP_1 with both the places 
Component_2 and Component_3 as the input places and 
output places; (2) add a new synchronization place Syn_2 
with SDEP_1 as input transition and T3 as output 
transition; (3) set the condition of transition SDEP_1 such 
that Component_3 contains an “Active” token and 
Component_2 contains a “Standby” token; and (4) set the 
output of transition SDEP_1 as an “Active” token 
deposited into the Component_2 place. We analyze the 
revised colored Petri net again using the CPN Tools, and 
now we get the results as shown in Table 1, Result-2. The 
results indicates that there is no dead marking in the 
revised Petri net model, which ensures that the revised 
Petri net model is deadlock free. 
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colset UNIT              = unit with e;
colset BOOL             = bool;
colset STATE            = with Active | Standby | Failed;
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Figure 10. The colored Petri net model converted from the DRBD model in Figure 9 
 

 

 
Figure 11. State space tracing of the dead marking state 

In addition, we can also use model checking 
technique to verify some other properties of the colored 
Petri net model. For example, the following code in ML 
language defines three functions: IsRunning, IsFailed_1 
and IsFailed_2. The function IsRunning returns true if the 
place System_up contains a colored token “true”, which 
indicates the system is functioning. Similarly, the function 
IsFailed_1 (or IsFailed_2) returns true when the place 
System_down contains one (or two) colored token(s) 
“true”, which indicates that one (or both) of the 
Component C2 and C3 fails. An operator 
FORALL_UNTIL(A1, A2) is true if for all paths in the 
reachability graph of the Petri net model, A1 is true for 
each state along the path until reaching a state on the path 
where A2 must hold. Therefore, the CTL formula 
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myASKCTLformula specifies that in all paths of the 
reachability graph, it eventually becomes true where 
either the system is functioning, or the system is not 
functioning due to one or both of Component C2 and C3 
fails. Note that in the CTL formula, “TT” represents the 
constant “true” value. 
 
fun IsRunning n =(Mark.System_up 1 n = 1`true); 
fun IsFailed_1 n =(Mark.System_down 1 n = 1`true); 
fun IsFailed_2 n =(Mark.System_down 1 n = 2`true); 
val fail = OR(NF("Is failed", IsFailed_1), 
NF("Is failed", IsFailed_2)); 
val sys = OR(NF("Is running", IsRunning), fail); 
val myASKCTLformula = FORALL_UNTIL(TT, sys); 
eval_node myASKCTLformula InitNode; 
 

The model checking result of the above formula for 
the revised Petri net model is “true”, which implies the 
proper behavior of the net model. However, when we 
evaluate the formula for the initial design of the Petri net 
model (as shown in Figure 10), a “false” result is 
returned. This is because both of the places System_up 
and System_down are empty along the path that leads to 
the dead marking, which indicates a design error. 
 
 
6.  Conclusion and Future Work 
 
Existing system reliability modeling approaches cannot 
fully capture dynamic relationships between components, 
such as state dependency and redundancy. In this paper, 
we propose a new modeling approach called dynamic 
reliability block diagrams (DRBD) to resolve the 
shortcomings of the existing work. Our proposed 
approach provides a powerful but easy-to-use modeling 
tool for complex and large computer-based systems. Our 
formal verification approach can be used to ensure a 
correct design of DRBD models. In our future work, we 
will design conversion algorithms to support automatic 
translation of DRBD models to colored Petri nets. We 
also plan to develop a system reliability modeling tool 
that supports editing, formal verification, and evaluation 
of DRBD models for complex and large-scale systems.  
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