

FORMAL SEMANTICS AND VERIFICATION OF DYNAMIC RELIABILITY
BLOCK DIAGRAMS FOR SYSTEM RELIABILITY MODELING

Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747, USA

hxu@umassd.edu

Liudong Xing
Electrical and Computer Engineering Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747, USA

lxing@umassd.edu

ABSTRACT
With the rapid advances in computer science and
technology, critical computer-based systems, such as
those in aerospace, military, and power industries exhibit
more complex dependent and dynamic behaviors, which
cannot be fully captured by existing reliability modeling
tools. In this paper, we introduce a new reliability
modeling tool, called dynamic reliability block diagrams
(DRBD), for modeling dynamic relationships between
components, such as state dependency and redundancy.
We give formal semantics for some key DRBD constructs
using Object-Z formalism. In order to verify and validate
the correctness of a DRBD model, we propose to convert
a DRBD model into a colored Petri net (CPN), and use an
existing Petri net tool, called CPN Tools, to analyze and
verify dynamic system behavioral properties. Our case
study and experimental results show that DRBD provides
a powerful tool for system reliability modeling, and our
proposed verification approach can effectively ensure the
correct design of DRBD reliability models for complex
and large-scale computer-based systems.

KEY WORDS
Reliability modeling, dynamic reliability block diagrams
(DRBD), Object-Z formalism, formal verification,
colored Petri net (CPN), and CPN Tools

1. Introduction

With the rapid advances in computer science and
technology, system reliability becomes an issue of
increasing practical concern and research attentions.
Critical computer based systems, such as those in
aerospace, military, and power industries exhibit more
and more complex dependent and dynamic behaviors. For
example, due to a function dependency existing among
components, where the failure of one component can
cause other components to become inaccessible,
components of a system do not necessarily fail
independently. Failure to model dependency relationships
accurately results in overstated or understated system
reliability, which renders reliability analysis less effective
in system design and tuning activities. Existing research

efforts on this challenging issue do not fully address
complexities of the dependency relationships among
components. Sparing is another major dynamic behavior
of mission critical systems. Specifically, a system with
spares usually consists of one or more duplications of
units for enhancing the system reliability. There are three
types of sparing configurations, namely hot, cold, and
warm. A hot spare operates in synchrony with a primary
(i.e., online) component, and is prepared to take over at
any time; a cold spare is unpowered until needed to
replace a faulty component [1]. A warm spare is a trade-
off between hot and cold spares in terms of
reconfiguration time and power consumption. For all the
three types of sparing approaches, a reconfiguration
process happens when the primary component fails or is
deactivated (i.e., put into the sleeping mode). Among the
existing reliability modeling tools, only the dynamic fault
tree (DFT) has the capability to model all the three types
of redundant behaviors [2]. However, the DFT approach
assumes that a reconfiguration can only be triggered by
the failure of a primary component; it cannot model a
situation where a reconfiguration is triggered by the
deactivation of a primary component.

The reliability block diagram (RBD) model has been
widely used as one of the most practical reliability
modeling tools due to its simplicity [3, 4]. An RBD is a
success-oriented network describing the functions of a
system. Specifically, each RBD model consists of an
input point, an output point, and a set of blocks. Each
block represents a physical component that functions
correctly. The blocks in the RBD are arranged in a way
that illustrates the proper combinations of working
components that keep the entire system operational [3].
Typically, if there is at least one path connecting between
the input and output points, the system is operational. On
the other hand, the failure of a component is indicated by
the removal of the corresponding block in an RBD model;
if enough blocks are removed to interrupt the connection
between the input and output points, the system fails. The
main virtues of the RBD model are that it is easy to read,
and it is readily understood by customers, people who sell
systems, engineers who design and test systems, and
managers who make decisions on systems. With
knowledge of the system, design engineers can easily

591-050 155

nicholas

construct and modify the corresponding RBD model, and
communicate with people from different disciplines.
However, similar to the other existing tools, the
traditional RBD model has a distinct disadvantage that it
cannot fully capture the dependent and dynamic behaviors
of large and complex systems.

Motivated by the virtues of RBD models and the
inadequacies of the existing modeling tools to model
dependencies and dynamic relationships among
components in a large and complex system, we introduce
a new modeling approach called dynamic reliability block
diagrams (DRBD). The DRBD model extends the
traditional RBD model by fully considering the various
dependencies and system dynamics. Some key DRBD
modeling constructs, such as SDEP (State Dependency)
block and SPARE (Spare Part) block, will be formally
specified using the Object-Z formal specification
language [5], which provides precise definitions for
DRBD model behaviors. In addition, to ensure a correct
design of a DRBD model that accurately represents the
actual system in terms of its reliability behaviors, we will
formally verify behavioral properties of the DRBD model.
This requires a conversion of the DRBD model to a
formalism, e.g., the Petri net formalism [6, 7], which is
supported by effective analysis and verification tools.

2. Related Work

Previous work related to our research includes work on
modeling dynamic reliability behaviors, and work on
formal specification and verification of reliability models.
Dynamic fault tree (DFT) has been proposed as an
extension to the traditional (static) fault trees by including
additional gates for modeling sequential and sparing
behaviors [2]. The DFT approach also offers limited
capability to model dependency relationships among
components. However, it cannot accurately and fully
model and analyze large systems subject to complex
dynamics and dependencies. The ReliaSoft’s BlockSim
tool incorporates a standby container into the traditional
RBD model for modeling the standby redundancy [8];
however, only cold spares are considered in this tool.
More recently, Distefano and Xing introduced a set of
DRBD constructs as an extension to the RBD models [9].
The DRBD constructs are used to model dynamic
dependency relationships among components; however,
compared to the DFT approach, the DRBD constructs
introduced in [9] are very complicated and difficult to use,
thus they are not practically usable. In this paper, we
introduce a brand new set of DRBD constructs, which are
based on simple notations; however, our newly introduced
DRBD constructs are very powerful in modeling state-
based dynamic system reliability behaviors.

Very little work has been done on formal
specification of reliability modeling constructs. Coppit
and his colleagues used the Z formalism to specify
various DFT gates, such as AND, OR, KOFM and
Priority AND (PAND) [10, 11]. The Z formalism is very

useful in providing formal and precise definitions for DFT
gates; however, in their approach, only state schemas are
defined, while the operation schemas for modeling the
dynamic behaviors of gates are missing. Furthermore, no
solutions are provided for verification of DFT models to
ensure a correct design. In contrast, we use the Object-Z
formalism to specify both the state space and operations
of a DRBD construct as a class schema. Furthermore, we
propose and demonstrate a way of converting a DRBD
model to a colored Petri net for formal verification and
validation of DRBD models.

Additional related work to our proposed approach
includes converting fault trees (FT) into the generalized
stochastic Petri net (GSPN) to support dependability
analysis [12]. The aim of the GSPN approach is to exploit
the modeling and decision power of GSPN for both the
qualitative and the quantitative analysis of the modeled
system. Similarly, Everdij and Blom proposed to use
dynamically colored Petri nets (DCPN) to develop PDP
(Piecewise Deterministic Markov Processes) models [13].
They showed that DCPN has similar modeling power to
PDP, and is more powerful than deterministic and
stochastic Petri nets. Although the above approaches used
Petri net formalism to model and analyze system
reliability, they were not concerned with dynamic system
reliability properties, such as state-based dependency.
Furthermore, our approach has a major difference from
their approaches: instead of providing quantitative
analysis of system reliability directly using Petri nets, we
use colored Petri nets to verify the correctness of a
reliability model (i.e., a DRBD model). This is necessary
because when dynamic reliability properties are involved,
the DRBD model becomes very complicated for large and
complex systems. Thus, it becomes vital to ensure the
correctness of the DRBD model before any qualitative
and quantitative analysis is conducted.

3. Dynamic Reliability Block Diagrams

Consider a cluster of sensor nodes in a clustered wireless
sensor network system as shown in Figure 1. The cluster
head manages the cluster by assigning duty cycles to
sensor nodes and coordinating intra- and inter-cluster
transmissions. The cluster head has a cold spare (i.e., the
secondary cluster head in Figure 1) that is activated when
the primary cluster head fails. All the sensor nodes within
this cluster are divided into two mutually exclusive
subsets (S1, S2). We assume each subset can provide
desired sensing coverage, and in the beginning, sensor
nodes in S1 are operational; while sensor nodes in S2 are
in the sleeping mode. To preserve the limited energy of
sensor nodes, the duty cycle of sensor nodes will be
adjusted. At some other time, sensor nodes in S1 will be
put into the sleeping mode and sensor nodes in S2 will be
activated to maintain the desired sensing coverage. The
entire cluster is considered to be operational when the
sensor nodes in at least one of those two subsets are
operational and one cluster head is functioning.

156

Primary
Cluster Head

Secondary
Cluster Head

C

SPARE

S1

S2

SDEP

F

A

D/F

D/FA

A

Figure 4. The DRBD model of the example system

Primary Cluster Head

Sensor Nodes in S1

Sensor Nodes in S2

Secondary Cluster Head

Figure 1. A clustered wireless sensor network system

For modeling the state dependency between the two
subsets of the sensor nodes, i.e., the deactivation (or
sleeping) of one subset of the sensor nodes leads to the
activation (or wake-up) of the other subset of sensor
nodes, we propose a new DRBD component called State
Dependency (SDEP) block. Figure 2 illustrates the
general structure of this block, where A means activation,
D means deactivation, and F means failure. The
occurrence of the trigger event will force all the
dependent events to occur. Both the trigger event and the
dependent events can be activation, deactivation or failure
of a system component. In other words, our proposed
SDEP block can be used to model nine types of
dependencies among the system components: (A, A), (A,
D), (A, F), (D, A), (D, D), (D, F), (F, A), (F, D), and (F,
F). Here, it is important to mention that a DFT model
cannot capture the above (D, A) state dependency
behavior of the sensor network system; actually it can
only be used to model the (F, D) state dependency where
the failure of a component causes some other dependent
components to become inaccessible or unusable.
Compared with the existing DFT approach, the DRBD is
more powerful in modeling dependent behaviors.

SDEP
A|D|F

A|D|F A|D|F

Dependent/Target Components

…...

Trigger

1 n

Figure 2. SDEP (state dependency) block

SPARE

1 n

D|F

A A

Primary
Unit

Spare Components

…...C|W|H C|W|H

Figure 3. SPARE (spare part) block

For modeling the cold standby sparing cluster head
subsystem, we propose another new DRBD component
called SPARE (spare part) block. Figure 3 illustrates the
general structure of this block, where A|D|F have the same
meaning as in the SDEP block, and C|W|H means
cold|warm|hot spare. Specifically, this block models the
behavior that the deactivation or failure of the primary
component will lead to the activation of a spare
component, which could be in cold, warm, or hot standby
state. All the spare units will be used in the specified
order, i.e., from left to right.

Figure 4 gives the DRBD model of the wireless
sensor network system as described in Figure 1. The
model is developed using SDEP and SPARE blocks. The
blocks labeled S1 and S2 represent a series structure of
the sensor nodes that constitute the corresponding subset.
Besides the capability of modeling the state dependencies
and the various sparing behaviors, more new DRBD
blocks and concepts have been proposed to model other
dynamic relationships such as sequence dependency and
load sharing. Sequence dependence enforces the order of
occurrence of input events. A classic example of sequence
dependence is a fault-tolerant system with one primary
component and one standby spare connected with a
switch controller [14]. If the switch controller fails after
the primary component fails, and thus the standby
component is switched into active operation, then the
system can continue to operate. However, if the switch
controller fails before the primary component fails, then
the standby component cannot be activated, and the
system fails even though the spare part is still operational.
Similarly, a load sharing represents a condition where two
or more components share the same workload. A load
sharing condition usually involves components that
perform the same task. Components in the load sharing
redundancy exhibit different failure characteristics when
one or more of them have failed or have been deactivated.
The traditional fault trees, DFT, and RBD model do not
consider the load sharing behavior. The BlockSim tool
supports the load sharing configuration, but only
considers the case where the increased load on the
operating components happens when other load sharing
components fail [8]. Both sequence dependency and load
sharing are defined as DRBD constructs in our proposed
approach; however, due to space limitation, in this paper,
we only introduce those blocks used in our examples.

157

4. Formal Specification of DRBD Constructs

4.1 A Motivating Example

To support formal verification and validation of our
proposed DRBD model, it is necessary to formally define
the DRBD modeling constructs. Formal definitions of the
DRBD constructs can not only provide the denotational
semantics for the development of DRBD models in a
precise manner, but also help to eliminate ambiguity in a
constructed DRBD model. For example, Figure 5 shows a
DRBD model with state dependencies and sparing
relationship defined among components C1, C2, C3 and
C4, where C4 is a cold spare for C2. Suppose component
C1 fails at some time. According to the state dependency
(F, F) from C1 to C2, and (F, D) from C1 to C3,
component C2 and C3 will become Failed and Standby,
respectively. Since component C4 is a spare unit of
component C2, the failure of component C2 will lead to
the activation of component C4; however, since there is a
(D, D) state dependency from component C3 to C4, the
deactivation of component C3 will lead to the
deactivation of component C4. To evaluate the system’s
reliability, we have to answer the following question:
when component C1 fails, will component C4 be in a
state of Active or Standby, or will the result be
nondeterministic? The above question can actually be
reduced to the following question: when component C1
fails, will the two state dependencies (from C1 to C2, and
from C1 to C3) happen immediately and thus
simultaneously, or with some nondeterministic time
delay? To answer this type of questions, it is vital for us
to formally define the denotational semantic of the DRBD
constructs. Here we propose to use the Object-Z
formalism [5] for this purpose.

4.2 Specification of DRBD Constructs in Object-Z

Object-Z is an extension to the Z formal specification
language for modular design of complex systems [5, 15].
It has strong data and state modeling capabilities, which is
suitable for specifying the formal semantics of DRBD
modeling constructs. Figure 6 shows the formal
specification of the state dependency (SDEP) block in
Object-Z. In this specification, we first define Event
occurring on a component as an enumerated type with the
following values: Activation, Deactivation, and Failure,
which will lead a component to a state of Active, Standby
and Failed, respectively. Then we define a state
dependency as a block that consists of a trigger

component and a set of target/dependent components. The
relationship between the trigger component and the target
components are defined by a function sdep, which maps
the trigger event happening at time t? to a set of target
events happening at t?+δc, where c represents a target
component. This definition precisely states that the target
events do not need to happen simultaneously as long as δc
is sufficiently small. The three operations defined on a
state dependency are ActivateTrigger, DeactivateTrigger,
and FailTrigger. According to the definition, the
activation of the trigger component may lead to one of
three different states for each target component, i.e.,
Active, Standby and Failed, which correspond to three
different relationships between the trigger and one of the
targets, namely (A, A), (A, D), and (A, F) state
dependency. Similarly, the formal definition of
DeactivateTrigger operation specifies how state
dependencies (D, A), (D, D), and (D, F) are enforced;
while the formal definition of FailTrigger specifies how
state dependencies (F, A), (F, D), and (F, F) are enforced.

Event ::= Activation | Deactivation | Failure

SDEP

trigger : Component
targets : P Component
nTargets : N

triggerEvent : Event
targetEvents : Component → Event
sdep : T × Component × Event → P(T × Component × Event)

nTargets = #targets ∧ nTargets > 0 ∧ targets = dom targetEvents
∀ c ∈ targets • c �= trigger

∧probability(c | triggerEvent) �= probability(c)
∧ probability(triggerEvent | c) = probability(triggerEvent)

{(t , trigger , triggerEvent) | t ∈ T} = dom sdep

ActivateTrigger
∆(trigger , targets)
t? : T

(triggerEvent = Active) ∧ (trigger .state ′ = Active)
∀ c ∈ targets •

(t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)
∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

DeactivateTrigger
∆(trigger , targets)
t? : T

(triggerEvent = Deactivation) ∧ (trigger .state ′ = Standby)
∀ c ∈ targets •

(t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)
∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

FailTrigger
∆(trigger , targets)
t? : T

(triggerEvent = Failure) ∧ (trigger .state ′ = Failed)
∀ c ∈ targets •

(t? + δc , c, targetEvents(c)) ∈ sdep(t?, trigger , triggerEvent)
∧ ((targetEvents(c) = Activation ∧ c.state ′ = Active)
∨ (targetEvents(c) = Deactivation ∧ c.state ′ = Standby)
∨ (targetEvents(c) = Failure ∧ c.state ′ = Failed))

C3

C4

SDEP

C1

C2

SDEP
F

FF

DD D

SPARE
A

C

Figure 5. A DRBD model with conflicts

Figure 6. Object-Z specification of SDEP block

158

Figure 7 shows the formal specification of the
SPARE (spare part) block in Object-Z. We define a spare
part redundancy as a block that consists of a primary unit
component and a set of alternative (spare) unit
components. The relationships among them are defined
by the function switch, which maps a state change event
happened on a primary unit or an alternative unit at time
t? to a state change event happened on an alternative unit
at t?+δc, where c represents an alternative unit component.
The PrimarySwitch operation defines when the primary
unit is deactivated or failed, the first alternative unit will
be activated; while the AlternativeSwitch operation
defines when alternative unit i? is deactivated or failed,
alternative unit i?+1 will be activated. Note that the
previous state of an activated alternative unit must be
Standby, which can be in one of the three cases: Hot, Cold
and Warm.

Standby ::= Hot | Cold | Warm

SPARE

primaryUnit : Component
alternativeUnits : P Component
nAlternatives : N

alternative : N → Component
switch : T × Component × Event → T × Component × Event

∀ c ∈ alternativeUnits • c �= primaryUnit
nAlternatives = #alternativeUnits ∧ nAlternatives > 0
{1, 2, ...,nAlternatives} = dom alternative
dom switch = {(t , c, e) | t ∈ T, c ∈ {primaryUnit} ∪

{(alternative(i)) | 1 ≤ i ≤ nAlternatives − 1},
e ∈ {Deactivation,Failure}}

INIT

trigger .state = Active
∀ i ,where 1 ≤ i ≤ nAlternatives • alternative(i).state = Standby

PrimarySwitch
∆(primaryUnit , alternativeUnits)
t? : T

∀ e ∈ {Deactivation,Failure} •
switch(t?, primaryUnit , e) = (t? + δc , alternative(1),Activation)

(primaryUnit .state = Active) ∧
(primaryUnit .state ′ ∈ {Standby ,Failed})
∧ (alternative(1).state ′ = Active)

AlternativeSwitch
∆(alternativeUnits)
t? : T, i? : N

∀ e ∈ {Deactivation,Failure}, 1 ≤ i? ≤ nAlternatives − 1 •
switch(t?, alternative(i), e) =
(t? + δc , alternative(i + 1),Activation)
∧ (alternative(i?).state = Active)
∧ (alternative(i?).state ′ ∈ {Standby ,Failed})
∧ (alternative(i? + 1).state = Standby)
∧ (alternative(i? + 1).state ′ = Active)

Figure 7. Object-Z specification of SPARE block

The introduction of new DRBD constructs as an

extension to the RBD model can greatly enhance the
modeling power for system reliability modeling.
However, to derive a correct result from a DRBD model
in an industrial setting, we must first face one major
concern, which is how we can be certain that the model is
correct. In other words, how can we be confident that the

model is an accurate representation of the actual system
for its reliability properties. This problem is not severe
when we use the standard RBD models, because it only
contains a few static modeling constructs. However, when
we design DRBD models, which involve new dynamic
conceptual modeling constructs, engineers are more
potentially to bring design errors into the model due to the
complexity of the newly introduced dynamic modeling
constructs, e.g., the state dependency. Such design errors
could be very subtle and very difficult to detect when the
model is not trivial, and it will result in an incorrect
reliability model, which will lead to inaccurate results
when the model is evaluated. Traditional simulation
approaches to model testing is not suitable for DRBD
models because it is hard (almost impossible) to cover all
execution paths. A promising way to solve this problem is
to use formal methods to verify the behavioral properties
of the model before the evaluation process starts. That is,
to verify if the DRBD model satisfies the specified
behavioral properties of the system under investigation.
For example, we may use temporal logic [16] to specify
the following system property of a computer system: “if
component A fails, component B and C will also fail,
which leads to the failure of the whole system S.” The
temporal formula in LTL (Linear Temporal Logic) can be
written as [](¬A→(¬B∧¬C)∧<>¬S), where the box []
and the diamond <> represent the always operator and
eventually operator, respectively. The above temporal
formula says that it is always true that the failure of A
immediately leads to the failure of B and C, and will
eventually leads to the failure of the system S. One way to
verify such a system behavioral property is to use the
model checking technique [17]. In this case, a valid
result shows that the reliability model developed for
system S does have this property; while an invalid
result shows that the model developed for system S is
incorrect. When a DRBD model is proved to be incorrect,
any quantitative evaluation results derived from the
DRBD model might not be usable, so the DRBD model
must be corrected and re-verified.

5. Formal Verification of DRBD Models

Although the semantics of DRBD components and
constructs can be formally defined in Object-Z as shown
in Section 4, it is not straightforward and feasible to
verify the behavioral properties of DRBD models based
on the Object-Z formalism due to a lack of analysis and
verification tool support [18]. A better approach to
verifying a DRBD model is to convert it into a formal
model such as a state machine or a Petri net model, which
is supported by powerful verification tools. We adopt the
Petri net formalism because it has a distinct advantage of
being easy to understand and use due to its graphical
formulation, and the powerful, but intuitive rules for
defining structure and dynamic behaviors [6]. Petri nets
provide an intuitive, graphically defined, way to express
conditions, events, and their relationships, as well as

159

essential characteristics like nondeterminism and
concurrency. Specifically, in a Petri net graph, there are
nodes that represent conditions (called “places”) and
nodes that represent events (called “transitions”). When
some specified conditions hold true, events can occur –
this is depicted in the net model by the “firing” of
transitions, which causes new conditions to hold. So, a
Petri net provides an executable model that directly
defines the concept of a system’s state space. Although
most research concerned with automated analysis of
concurrent and distributed systems is based on some type
of state-space exploration and cannot avoid the state-
space explosion problem. Based on our significant
experience with Petri nets for many years, the Petri net
formalism is capable of achieving an effective balance
between theoretical concepts and practical techniques.

In the following, we use a DRBD model of a router
example to show how we can convert it into a colored
Petri net and use an existing Petri net tool to detect
possible design errors in the DRBD model.

Figure 8 shows the DRBD model of the router
example, which contains a router (Component C1)
connected with a computer (Component C2). The
computer can access the Internet only through the router.
Therefore, there is a (F, D) state dependency from
Component C1 to C2, i.e., when the router fails, the
computer will be deactivated for its network connection,
and will be in a “Standby” state. To make the system
more reliable, we introduce a cold-spare part for the
router, which is represented by Component C3 in Figure
9. The DRBD model in Figure 9 describes when the
Component C1 fails, Component C3 will be automatically
activated and continue to provide network access for
Component C2.

C1 C2

SDEP

Router Computer

F D

Figure 8. DRBD model of a router example

C1

C3

C2SPARE

C

SDEP
F

DF

A

Figure 9. DRBD model of a router with a cold-spare part

The DRBD model in Figure 9 can be converted into a

colored Petri net as shown in Figure 10. The three
components in Figure 9 are modeled by the three places
Component_1, Component_2 and Component_3, and each
place can contain a colored token with three different
colors, i.e., “Active”, “Standby” and “Failed”. Each

component may fail when its corresponding Fail_i (i =
1..3) transition fires, in which case, the “Active” token in
the corresponding component place will be replaced by a
“Failed” token. Note that since we only allow cold-
standby component in this example, a component in a
“Standby” state cannot fail.

Initially, the three component places contain
“Active”, “Standby” and “Active” colored token,
respectively. According to the DRBD model in Figure 9,
when either Component 1 or Component 3 is active, the
parallel structure is functioning. This is represented by
firing either transition T1 or T3 when either the place
Component_1 or Component_3 contains an “Active”
token, thus an “Active” token can be deposited into the
place C1_or_C3. When Component C2 is also active, the
transition T2 may fire, and a Boolean token “true” is
deposited into place System_up, which enables the Run
transition. This scenario shows that when Component C1
(or Component C3) and Component C2 are functioning,
the system must be functioning. On the other hand, when
either Component C2 or C3 fails, the transition T4 or T5
may fire, and the firing of the transition T4 or T5 deposits
a Boolean token “true” into place System_down, which
indicates that the system cannot be functioning. However,
if Component C1 fails, it will activate Component C3 due
to the spare part redundancy; thus, it should not lead to
the failure of the whole system.

When Component C1 fails and Component C2 is
active, the transition SDEP can fire, and deposit a
“Standby” token into the Component_2 place. Meanwhile,
a unit token is deposited into the synchronization place
Syn_1 to ensure that the firing of transition SDEP
precedes the firing of transition Spare, so the transition
SDEP will not accidentally become disabled when the
“Failed” token in place Component_1 is removed due to
the firing of transition Spare. When transition Spare fires,
it deposits an “Active” token into place Component_3 to
activate the spare part. This should lead to the continuous
functioning of the whole system.

We now use an existing Petri net tool called CPN
Tools [19] to analyze our Petri net model. After running
the analysis tool, we get the Result-1 as shown in Table 1.

Table 1. Results from state space analysis tool

 Result-1 Result-2
Statistics

State Space
 Nodes: 15
 Arcs: 23
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 15
 Arcs: 18
 Secs: 0

Liveness Properties

 Dead Markings
 [14]

Statistics

State Space
 Nodes: 27
 Arcs: 48
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 27
 Arcs: 36
 Secs: 0

Liveness Properties

 Dead Markings
 None

160

The result shows that there is a dead marking (state
14) in the reachability graph of the Petri net model. From
Figure 11 (a snapshot of the state space tracing), we can
see that in the dead marking S14, both the places
System_up and System_down contains no token. This
implies that the Petri net model must contain a deadlock.
By tracing the dead marking state using the CPN Tools,
we find the following firing sequence that leads to the
dead marking. The firing sequence is: S1, Fail_1, S4,
SDEP, S9, Spare, S12, T3, S14. From Figure 10, it is easy to
see that dead marking is due to the firing of transition
SDEP that deposits a “Standby” token in place
Component_2 when Component C1 fails. When
Component C3 is activated, Component C2 should also
be activated accordingly. However, such state dependency
from Component C3 to C2 is not presented in the DRBD
model in Figure 9. This design error must be fixed by
adding an (A, A) state dependency from Component C3 to
Component C2 in Figure 9. Accordingly, we need to
revise the colored Petri net model in Figure 10 as follows:
(1) add a new transition SDEP_1 with both the places
Component_2 and Component_3 as the input places and
output places; (2) add a new synchronization place Syn_2
with SDEP_1 as input transition and T3 as output
transition; (3) set the condition of transition SDEP_1 such
that Component_3 contains an “Active” token and
Component_2 contains a “Standby” token; and (4) set the
output of transition SDEP_1 as an “Active” token
deposited into the Component_2 place. We analyze the
revised colored Petri net again using the CPN Tools, and
now we get the results as shown in Table 1, Result-2. The
results indicates that there is no dead marking in the
revised Petri net model, which ensures that the revised
Petri net model is deadlock free.

u
u

x

x

b

b

b

y

x

xx

x

y

x

y y

x

x

b

y z

x

y

x

x

[x=Failed]
Stop

Run

[x=Failed]

SDEP

[x=Failed, y=Active]

output (z);
action (Standby);

[x=Active]

Fail_3

[x=Active]

output (y);
action (Failed);

Fail_1

[x=Active]

output (y);
action (Failed);

Fail_2

[x=Active]

output (y);
action (Failed);

Spare[x=Failed, y=Standby]

output (z);
action (Active);

[x=Active]

Syn_1

UNIT

Component_2

STATE

BOOL

Component_3

STATE

C1_or_C3

STATE

Component_1

STATE

b

[x=Active, y=Active]
output (b); action (true);

BOOL

output (b);
action (true);

output (b);
action (true);T5 T4

T3 T2

z

[b=true]

[b=true]

System_up

System_down

T1

1 1`Active 1 1`Active

colset UNIT = unit with e;
colset BOOL = bool;
colset STATE = with Active | Standby | Failed;
var x, y, z : STATE;
var u : UNIT;
var b : BOOL;

1`Standby1

Figure 10. The colored Petri net model converted from the DRBD model in Figure 9

Figure 11. State space tracing of the dead marking state

In addition, we can also use model checking
technique to verify some other properties of the colored
Petri net model. For example, the following code in ML
language defines three functions: IsRunning, IsFailed_1
and IsFailed_2. The function IsRunning returns true if the
place System_up contains a colored token “true”, which
indicates the system is functioning. Similarly, the function
IsFailed_1 (or IsFailed_2) returns true when the place
System_down contains one (or two) colored token(s)
“true”, which indicates that one (or both) of the
Component C2 and C3 fails. An operator
FORALL_UNTIL(A1, A2) is true if for all paths in the
reachability graph of the Petri net model, A1 is true for
each state along the path until reaching a state on the path
where A2 must hold. Therefore, the CTL formula

161

myASKCTLformula specifies that in all paths of the
reachability graph, it eventually becomes true where
either the system is functioning, or the system is not
functioning due to one or both of Component C2 and C3
fails. Note that in the CTL formula, “TT” represents the
constant “true” value.

fun IsRunning n =(Mark.System_up 1 n = 1`true);
fun IsFailed_1 n =(Mark.System_down 1 n = 1`true);
fun IsFailed_2 n =(Mark.System_down 1 n = 2`true);
val fail = OR(NF("Is failed", IsFailed_1),
NF("Is failed", IsFailed_2));
val sys = OR(NF("Is running", IsRunning), fail);
val myASKCTLformula = FORALL_UNTIL(TT, sys);
eval_node myASKCTLformula InitNode;

The model checking result of the above formula for
the revised Petri net model is “true”, which implies the
proper behavior of the net model. However, when we
evaluate the formula for the initial design of the Petri net
model (as shown in Figure 10), a “false” result is
returned. This is because both of the places System_up
and System_down are empty along the path that leads to
the dead marking, which indicates a design error.

6. Conclusion and Future Work

Existing system reliability modeling approaches cannot
fully capture dynamic relationships between components,
such as state dependency and redundancy. In this paper,
we propose a new modeling approach called dynamic
reliability block diagrams (DRBD) to resolve the
shortcomings of the existing work. Our proposed
approach provides a powerful but easy-to-use modeling
tool for complex and large computer-based systems. Our
formal verification approach can be used to ensure a
correct design of DRBD models. In our future work, we
will design conversion algorithms to support automatic
translation of DRBD models to colored Petri nets. We
also plan to develop a system reliability modeling tool
that supports editing, formal verification, and evaluation
of DRBD models for complex and large-scale systems.

References

[1] B. W. Johnson, Design and analysis of fault tolerant

digital systems (Boston, USA, Addison-Wesley
Longman Publishing Co. Inc., 1989).

[2] R. Manian, J. B. Dugan, D. Coppit, and K. J. Sullivan,
Combining various solution techniques for dynamic
fault tree analysis of computer systems, Proc. of the
IEEE International High-Assurance Systems
Engineering Symposium, 1998.

[3] M. Rausand and A. Høyland, System reliability theory:
models, statistical methods, and applications (New
York, USA, Wiley-Interscience, 2003).

[4] W. Wang, J. M. Loman, R. G. Arno, P. Vassiliou, E. R.
Furlong, and D. Ogden, Reliability block diagram
simulation techniques applied to the IEEE std. 493

standard network, IEEE Transactions on Industry
Applications, 40(3), May/June 2004, pp. 887-895.

[5] R. Duke, G. Rose, and G. Smith, Object-Z: a
specification language advocated for the description of
standards, Computer Standards and Interfaces, Vol. 17,
North-Holland, 1995, pp. 511-533.

[6] T. Murata, Petri nets: properties, analysis and
applications, Proc. of the IEEE, Vol. 77, No. 4, April
1989, pp. 541-580.

[7] K. Jensen, Colored Petri nets: basic concepts, analysis
methods and practical use, volume 2, analysis methods
(Monographs in Theoretical Computer Science,
Springer-Verlag, 2nd corrected printing 1997).

[8] BlockSim, System reliability analysis software using an
RBD or fault tree approach, ReliaSoft Corporation,
http://www.reliasoft.com/BlockSim/, accessed on June
12, 2007.

[9] S. Distefano and L. Xing, A new approach to modeling
the system reliability: dynamic reliability block
diagrams, Proc. of the 52nd Annual Reliability &
Maintainability Symposium, Newport Beach, CA,
January 2006, pp. 189-195.

[10] D. Coppit, K. J. Sullivan, and J. B. Dugan, Formal
semantics of models for computational engineering: a
case study on dynamic fault trees, Proc. of the
International Symposium on Software Reliability
Engineering, San Jose, California, 2000, pp. 270-282.

[11] D. Coppit and K. J. Sullivan, Formal specification in
collaborative design of critical software tools, Proc. of
the Third IEEE International High-Assurance Systems
Engineering Symposium, Washington, D.C., November
13-14, 1998, pp. 13-20.

[12] A. Bobbio, G. Franceschinis, R. Gaeta, L. Portinale,
Exploiting Petri nets to support fault tree based
dependability analysis, Proc. of the 8th International
Workshop on Petri Nets and Performance Models
(PNPM), 1999, pp. 146-155.

[13] M. H. C. Everdij, H. A. P. Blom, Petri-nets and hybrid-
state Markov processes in a power-hierarchy of
dependability models,” Proc. of the IFAC Conf. on
Analysis and Design of Hybrid Systems, June 2003,
Saint-Malo, Brittany, France.

[14] E. J. Henley and H. Kumamoto, Probabilistic Risk
Assessment: Reliability Engineering, Design, and
Analysis (IEEE Press, 1992).

[15] S. Stepney, R. Barden, and D. Cooper, editors, Object
orientation in Z, Workshops in Computing, Springer,
1992, pp. 59-77.

[16] Z. Manna and A. Pnueli, The temporal logic of reactive
and concurrent systems - specification (Springer-Verlag
New York, Inc, 1992).

[17] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking (MIT Press, 2001).

[18] G. Kassel and G. Smith, Model checking Object-Z
classes: some experiments with FDR,” Proc. of the 8th
Asia-Pacific Software Engineering Conference (APSEC
2001), 2001, pp. 445-452.

[19] A. V. Ratzer, L. Wells, H. M. Lassen, et. al., CPN Tools
for editing, simulating, and analyzing colored Petri nets,
Proc. of the 24th International Conference on the
Application and Theory of Petri Nets, Eindhoven, The
Netherlands, June 2003.

162

	ABSTRACT
	KEY WORDS
	Reliability modeling, dynamic reliability block diagrams (DR

