
Building a Health Care Multi-Agent
Simulation System with Role-Based
Modeling

X

iaoqin Zhang, Haiping Xu & Bhavesh Shrestha

Computer and Information Science Department
University of Massachusetts Dartmouth
North Dartmouth, MA 02747, U.S.A.
{x2zhang | hxu }@umassd.edu, bhaveshshrestha@gmail.com

A

BSTRACT

Multi-Agent System (MAS) is a suitable programming paradigm for simulating and modeling
health care systems and applications, where resources, data, control and services are widely
distributed. We have developed a multi-agent software prototype to simulate the activities and
roles inside a health care system. The prototype is developed using a framework called Role-
based Agent Development Environment (RADE). In this chapter, we present an integrated
approach for modeling, designing and implementing a multi-agent health care simulation system
using RADE. We describe the definition of role classes and agent classes, as well as the
automatic agent generation process. We illustrate the coordination problem and present a rule-
based coordination approach. In the end, we present a runtime scenario of this health care
simulation system, which demonstrates that dynamic task allocation can be achieved through the
creation of role instances and the mapping from role instances to agents. This scenario also
explains how agents coordinate their activities given their local constraints and interdependence
among distributed tasks.

KEYWORDS
Multi-agent systems, agent-based simulation, role-based modeling, coordination, task allocation.

INTRODUCTION

Multi-Agent System (MAS) is a suitable
programming paradigm for simulating and
modeling health care systems and
applications, where resources, data, control
and services are widely distributed. We have
developed multi-agent software to simulate
the activities and roles inside a health care
system. Such software can be used to assist
the collaborative scheduling of complex
tasks that involve multiple personals and
resources. In addition, it can be used to
study the efficiency of the health care
system and the influence of different
policies.

However, the application of multi-agent
system has been limited by the difficulty of
developing agent-based systems, and
considerable amount of time and highly
experienced programmers are required to
develop a multi-agent system. After such
system is built, it is also difficult to test and
maintain the system because of its
complexity. The reusability of such system
is low; it is unlikely to use an existing
system for another application domain with
little or minor change. In this chapter, we
will describe a role-based approach to
building multi-agent systems for health care
simulation and modeling. With this

 1

approach, we are able to separate the
concern on domain knowledge and the
concern on intelligent problem-solving
capabilities. In this approach, conceptual
roles, such as physicians, nurses and patients
are defined with the domain related
knowledge including goals, permissions,
organizational relationship, and interaction
protocols, etc; where an agent is a concrete
entity equipped with motivations, resources
and problem-solving capabilities, which can
be used to represent a real person in a health
care system. Each agent can be configured
based on different specifications according
to the real person’s situation and needs.
Then the agent instance is dynamically
generated for the real person who enters the
system.

In this chapter, we will also describe an
automated agent generation process, which
utilizes the existing tools and mechanisms as
much as possible. We propose to create
agents using a drag-and-drop mechanism
where the user can select components to
plug into the agent depending on application
requirements. We adopt a utility-driven
agent architecture with quantitative
reasoning capabilities. Besides the logical
reasoning on the matching of motivations
and the conflicts among different roles, we
adapt a quantitative model of motivation
named MQ (motivation quantities)
framework. Based on the MQ framework, an
agent can perform a quantitative reasoning
on how important a role instance is, given its
preference, its utility function and its current
achievement. In the definition of a role, we
introduce a formal language called RTÆMS
(Role-based Task Analyzing, Environment
Modeling, and Simulation) to represent the
domain knowledge about how to achieve a
goal. RTÆMS language is a hierarchical
task network representation language with
task interrelationships and quantitative
descriptions of different alternatives to
achieve a goal. The domain expert can
specify how a complicated health service
task should be performed with the
collaboration of multiple roles inside the
system. Each agent is also equipped with the

capability for planning, scheduling and
cooperation; hence, an agent can schedule
its local activities with the consideration of
the constraints from other agents.
Meanwhile, a user of the system can choose
different collaboration rules according to the
organizational rules and the specific needs in
the system.

In the rest of this chapter, we first discuss
related work in several research areas.
Afterwards, we describe how to construct a
health care simulation system using the
approach described above, and show how to
define roles and their interrelationships, and
how to define agent classes. Then, we
present an automatic agent generation tool
as well as a rule-based coordination
approach. Finally, we use a runtime scenario
to demonstrate how new role instances are
created, how agents are taking new roles,
planning and scheduling their tasks, and
collaborating with each other to achieve a
complex goal.

BACKGROUND

Researchers have studied a number of
approaches for defining and developing
autonomous agents and multi-agent system
from different directions. Here we discuss
related research work in four areas: agent
development framework, role-based
modeling of agent-based systems,
specification of coordination rules, and
model-driven development of multi-agent
systems.

1. Agent Development Framework

DECAF (Graham, Decker & Mersic, 2003)
and JADE (Bellifemine et. al, 2003) are
examples of the frameworks that can be
used to generate domain specific agents.
DECAF (Distributed, Environment-
Centered Agent Framework) developed in
University of Delaware, is a toolkit to build
multi-agent systems. The toolkit provides a
stable platform to design, rapidly develop,
and execute intelligent agents to achieve

 2

solutions in complex software systems.
DECAF provides the necessary architectural
services of an intelligent agent:
communication, planning, scheduling,
execution monitoring, coordination, and
eventually learning and self-diagnosis. Plan
editor is a GUI that provides the interface
for control or programming of DECAF
agents. In the Plan editor, executable actions
are treated as basic building blocks, which
can be chained together to achieve a larger
and more complex goal in the style of a
hierarchical task network. This provides a
software component-style programming
interface with desirable properties such as
component reuse and some design-time
error-checking. The chaining of activities
can involve traditional looping and if-then-
else constructs. This part of DECAF is an
extension of the RETSINA (Williamson,
Decker & Sycara, 1996) and TÆMS
(Decker, 1996). task structure frameworks.
Each action of an agent can also have a
performance profile, which is used and
updated internally by DECAF to provide
real-time local scheduling services.

JADE (Java Agent Development
Framework) (Bellifemine et. al, 2003) is a
software framework fully implemented in
Java language distributed by Telecom Italia.
It simplifies the implementation of multi-
agent systems through a middleware that
complies with the FIPA specifications. The
agent platform can be distributed across
machines and the configuration can be
controlled via a remote GUI. The
configuration can be changed at runtime by
moving agents from one machine to another,
when required. The communication
architecture offers flexible and efficient
messaging, where JADE creates and
manages a queue of incoming ACL
messages, private to each agent; agents can
access their queue via a combination of
several modes: blocking, polling, timeout
and pattern matching. JADE implements a
full FIPA communication model, and its
components have been clearly distinct and
fully integrated: interaction protocols,
envelope, ACL, content languages, encoding

schemes, ontology, and finally, transport
protocols. Most of the interaction protocols
defined by FIPA are available and can be
instantiated after defining the application-
dependent behaviour of each state of the
protocol. Agent management ontology has
been implemented, as well as the support for
user-defined content languages and ontology
that can be implemented, registered with
agents, and automatically used by the
framework. JADE has also been integrated
with JESS, a Java shell of CLIPS, in order to
exploit its reasoning capabilities.

The goals of both these frameworks are to
develop a modular platform to allow for
rapid development of third-party domain
agents, and provide a means to quickly
develop complete multi-agent solutions
using combinations of domain-specific
agents and standard middle-agents. These
frameworks specify agents in terms of roles
they play, and assume that agents do not
change their roles at run time. In contrast,
we implemented an automated agent
generation mechanism using the RADE
framework. Using this framework, we can
separate the domain knowledge and the
intelligent problem solving capabilities. So
an agent can be created with intelligent
capabilities and motivations, and can take up
different roles dynamically.

2 Role-Based Modeling
The related work in the second area is to
propose role-based methodology for
developing multi-agent systems. Approaches
like Gaia (Wooldridge, Jenning, & Kinny,
2000; Zambonelli, Jennings & Wooldridge,
2003) and MaSE (DeLoach, Wood, &
Sparkman, 2001) can be used to model
multi-agent system societies in terms of
organizations or groups composed of a
collection of roles related to one another and
participating in patterns of interactions with
other roles. The agents are then specified in
terms of a set of roles they play. These
approaches explicitly assume that the inter-
agent relationships and the abilities of agents
do not change at run-time and that all the

 3

agents are explicitly designed to
cooperatively achieve common goals.

The Gaia methodology can be used to model
both the macro aspect and the micro aspect
of a multi-agent system. It covers the
analysis phase and the design phase. In the
analysis phase, the role model and
interaction model are constructed. Based on
the analysis models, in the design phase,
three models, the agent model, service
model and acquaintance model are
constructed during the initial design of the
system, and then are refined during the
detailed design phase using conventional
object-oriented methodology. The later
version of Gaia (Zambonelli, Jennings &
Wooldridge, 2003) extends the former one
in order to better suit to open multi-agent
systems by introducing two new
abstractions: (1) organizational rules
(explicit identification of relationships and
constraints between roles and protocols),
and (2) organizational structures (explicit
specification of organizations in terms of
their topology and control regime).

The MaSE methodology is a specialization
of more traditional software engineering
methodologies (DeLoach, Wood, &
Sparkman, 2001). During the analysis phase
of the MaSE methodology, a set of roles are
produced, which describes entities that
perform some function within the system. In
MaSE, each role is responsible for achieving
or helping to achieve specific system goals
and sub-goals. During the design phase,
agent classes are created according to the
roles defined in the analysis phase.

In our approach, the components of role
instances and agent instances are loosely
coupled, where agents can take or release
role instances at runtime without knowing
the internal structure of role instances. Thus,
role classes and agent classes can be
designed and implemented independently.

3 Coordination Rules
The related work in the third area is
definition of coordination rules. Projects
such as AgenTalk (Kuwabara, Ishida, &
Osato, 1995) use scripts and finite state
machine to define coordination rules.
AgenTalk is a language for describing
coordination protocols for multi-agent
systems co-developed by NTT
Communication Science Laboratories and
Ishida Laboratory, Department of
Information Science, Kyoto University. It
provides an explicit state representation of a
protocol, and a finite state machine that
allows variables to be used as a basis to
describe coordination protocols, called a
script. Using this model, states of a protocol
are explicitly defined, and actions of an
agent can be defined for each state.
Protocols can be defined incrementally by
extending existing scripts. It provides a
programming interface that specifies the
portion of a state transition rule that needs to
be customized for each agent. The AgenTalk
has been implemented in Common Lisp.

In ROPE project (Becht et. al., 1999),
cooperation process is built as a separated
component from the concrete agents; the
ROPE engine provides execution of the
cooperation process, which is described as a
high-level Petri net class. However, the
implementation of ROPE engine is based on
shared memory, which is not always feasible
for agents that are widely distributed on
different machines. Additionally, the
cooperation process in ROPE is based on
token and transition firing, which is not
feasible enough to support more proactive
cooperation and collaboration, i.e. agents are
able to consider the cooperation and
coordination needs when they are planning
their own activities.

A set of domain-independent general
collaboration mechanisms, Generalized
Partial Global Planning (GPGP) (Lesser, et.
al. 2004), based on TÆMS language
(Decker, 1996) has been developed. We
have reused some of GPGP similar

 4

mechanisms in RADE (Zhang & Xu, 2006)
framework based on RTÆMS language. In
framework such as AgenTalk, the emphasis

is on the flow of messages and how the
dialog between agents is structured. Such

Figure 1. RADE Concept (© [2007], [Journal of Computational Intelligence Theory and
Practice]. Used with permission.)

framework combines finite state machines
with enhancements. In contrast, GPGP
focuses on a domain independent and
quantitative evaluation of the interactions
among tasks and the dynamic formation of
temporal constraints to resolve and to
exploit these interactions. Our
implementation gives a user the freedom to
choose the appropriate coordination rule
according to the application domain.

4 Model-Driven Development
Previous work on model-driven
development of multi-agent systems can be
summarized as follows. Gracanina, Boher
and Hincey proposed a model-driven
architecture framework as an extension to
Cognitive Agent Architecture (COUGAAR)
(Gracanin, Bohner & Hinchey, 2004). The
Cognitive Agent Architecture is a
distributed agent architecture that has been
developed primarily for very large-scale,
distributed applications that are
characterized by hierarchical task

decompositions, and as such, it is well suited
for autonomic systems. The framework
consists of two main parts, General
COUGAAR Application Model (GCAM)
and General Domain Application Model
(GDAM). The GCAM provides
representation in its model of the
COUGAAR basic constructs, and the
GDAM defines the requirements and the
detailed design.

Maria, Silva and Lucena (2005) proposed an
MDA-based approach to developing multi-
agent systems. They first use MAS
modeling language (MAS-ML) to model
MAS by creating the platform independent
models (PIM). Then the MAS-ML models
are transformed into UML models using the
ASF framework, which defines a set of
object-oriented models for MAS entities
specified in MAS-ML. The UML models
are then transformed into code.

We have proposed three levels of models
for developing role‐based open multi‐

 5

agent systems (Xu, Zhang & Patel, 2007),
namely AIPIM (Application Independent
Platform Independent Model), ASPIM
(Application Specific Platform
Independent Model), and ASPSM
(Application Specific Platform Specific
Model), as a refinement process. In each
level of the models, role components and
agent components are always separated
and designed independently. Role
instances and agent instances interact
with each other only at runtime through
an A‐R (Agent‐Role) mapping mechanism.

ROLE-BASE MODELING
APPROACH

 The basic idea of the role-based agent
development environment (RADE) is
illustrated in Figure 1. The top level is the
role organization, which defines the
conceptual roles and their relationships such
as inheritance, aggregation, association and
incompatibility. In health care systems,
conceptual roles represent all possible job
titles in the system, such as physician and
nurse. The relationships describe how these
roles relate to each other. The second level
is the role space, which consists of multiple
role instances; each role instance is
instantiated from a conceptual role
dynamically. For example, whenever there
is a need to cure a patient, a new physician
role instance is created with the goal to cure
a patient. A role instance represents the task
that needs to be accomplished in the system.
The bottom level is the agent society, which
consists of multiple agent entities. Agent can
take or release role instances dynamically,
where the mapping from role instances to
agents is called A-R mapping, which
represents that a real person takes a task in
the system.

In an actual software system, agent instances
are automatically generated based on the
definition of agent classes. Each agent
instance is a software entity that performs
specific functions and also coordinates and
communicates with other agent instances.

On the contrary, role classes are defined to
incorporate domain knowledge and
organizational relationships. Each role class
is associated with specific goals and detailed
descriptions of how to achieve such goals.
The relationships among different role
classes also depict the organizational
relationships among the real-world entities
represented by these roles. Such information
is expected to be provided by domain
experts rather than software engineers. At
system runtime, role instances are created
dynamically either by a human user or by an
agent when certain goals are needed to be
realized. Those role instances mainly carry
domain knowledge; however, they do not
actually perform any actions like agents.
When an agent takes a role instance, the
agent uses the knowledge incorporated in
the role instance in order to achieve the
goals defined in it.

One major advantage of the RADE approach
is that it supports the separation of domain
knowledge and the agent framework for the
simulation system. Any domain knowledge
relates to the health care domain can be
specified by domain experts through
definition of roles and their
interrelationships. On the other hand,
software engineers are responsible to
develop automatic agents that actually
perform tasks in the simulation system.

DEFINING ROLES AND ROLE
SPACE

The definition of a role class includes the
following information:

1. A set of attributes, such as role name
and identification.

2. A set of goals; each goal is associated
with a plan tree, which is a hierarchal
description of the alternatives to
accomplish a goal.

 6

3. A set of actions that can be performed
by this role, i.e. a Physician role can
perform an action of Prescribe
Medicine.

4. Qualification: the requirement needed to
take such a role.

5. The permission of this role, which
specifies what information and resource
are allowed to be access by this role. For
instance, a Physician role has the
permission to access the patient’s
medical record.

6. A set of protocols, which describe how
this role should interact with other roles.

All above information is domain-dependent;
hence an expert in health care domain who
is familiar with all those rules and
regulations can define those role classes.
The formal definition of role class in Object-
Z can be found in (Xu & Zhang 2005).

In the health care simulation system, we
have defined the following role classes:

1. Patient: A person who seeks for health

care.

2. Physician: A person who determines
whether diagnostics are to be
undertaken, provides prescriptions,
performs medical and surgical
interventions, has the ability to direct
patient care and advance a patient to the
next step of care.

3. Medical Assistant: A health care

professional who performs a variety of
clinical, clerical and administrative
duties within a health care setting. There
are two roles defined as subclasses of
this role class:

a. Administrative Medical
Assistant (MA Admin): Medical
assistant who performs the
administrative job.

b. Clinical Medical Assistant (MA
Clinical): Medical assistant who
performs the clinical job.

4. Nurse: There are two roles defined as
subclasses of this role class:

a. Nurse Assistant is a nurse who
assesses the patient’s medical
problem, provides care and
helps to set up laboratory
specimen and medical
instruments.

b. Nurse Practitioner: a registered
nurse who has completed an
advanced training program in
primary health care delivery,
and may provide primary care
for non-emergency patients,
usually in an outpatient setting.

Figure 2 shows the RADE interface for a
user to create role classes and define the
interrelationships among role classes. In this
example, the interrelationships include
inheritance, association and incompatibility.
An inheritance relationship describes the
generalization/specification relationship
between two role classes. For example, both
MA Admin and MA Clinical inherit the
Medical Assistant role class since they are
specified medical assistants. Association is a
very common relationship between role
classes; it indicates that an instance of one
role class may perform an action on an
instance of another role class. Association
relationships exist between Physician and
Nurse, Physician and Patient, etc.
Incompatibility relationship describes the
constraints that the role instances of two role
classes cannot be taken by the same agent in
the same interaction scenario. For example,
an agent cannot take a Physician role
instance for treating a Patient role instance if
the agent is already taking this Patient role
instance; however, the agent can take
another Physician role instance for treating
another Patient role instance that is not taken
by this agent. The definition of such
relationships depends on the domain
knowledge, so we feel that the domain
experts are the best candidate to use this
interface to define the role classes and their
interrelationships.

 7

Figure 2 RADE Interface for creating roles (© [2007], [Journal of the Brazilian Computer
Society]. Used with permission)

In this example, Physician role is defined
with a goal to provide cure. The plan tree
provides domain knowledge of how to
accomplish this goal. To represent the
domain knowledge, we introduce RTÆMS
(Role-Based Task Analyzing, environment
Modeling, and Simulation) language as an
extension of the TÆMS language (Decker,
1996). TÆMS is a hierarchical task
representation language, which supports
representation of relationships among goals
and sub-goals, the quantitative description of
the atomic approaches and uncertainties, and
resources. We extend the TÆMS language
by introducing a role attribute for task nodes
that represent goals and sub-goals. The
attribute role specifies what roles are needed
to carry out this goal or sub-goal. Figure 3
shows the plan tree for the goal ‘Provide
Cure’, which includes two sub-goals:
‘Examine Patient’ and ‘Provide Treatment’.
The goal ‘Provide Cure’ is associated with a

min quality accumulative function (qaf),
which specifies the following relationship:

Quality(ProvideCure) =
min(Quality(ExaminePatient),
Quality(ProvideTreatment))

Each role is defined with a goal, a plan tree,
a motivational quantity production set
(MQPS), a certificate and other attributes. A
goal represents a task that the role needs to
accomplish, and the plan tree specifies the
domain knowledge of how to accomplish the
goal in terms of decomposing it as sub-
goals. Consider the following role class.

ROLE: Physician
GOAL: Provide Cure
MQPS: (MQ_professional, p1),
(MQ_moral, p2), (MQ_experience, p3)
CERTIFICATE: MD (Doctor of Medicine)

 8

Figure 3 Plan tree for goal Provide Cure in RTÆMS representation (© [2007], [Journal of the
Brazilian Computer Society]. Used with permission)

This min quality function associated with a
goal means that the success of this goal
depends on the success of all of its sub-
goals. Meanwhile, the use of max quality
function specifies that there are several
alternatives to achieve the goal. For
instance, to ‘Provide Treatment’ for the
patient, the Physician can choose either
‘Prescribe Treatment’ or ‘Administer
Treatment’. Other available quality
accumulation functions in RTÆMS
language are: sum and seq_sum.

Each sub-goal can be decomposed into
smaller goals, i.e. ‘Examine Patient’ consists
of three sub-goals: ‘(Read) Medical History
Record’, ‘Clinical Test ‘and ‘Test

Interpretation’. For those non-local goals,
where the tasks need to be performed by
other roles, the specification of other roles is
included in the plan tree description. For
example, ‘Clinical Test’ should be
performed by a Clinical Medical Assistant
(MA Clinical), and task ‘Setup Equipment’
and ‘Provide Care’ belongs to the Nurse
Assistant role. The dash lines represent the
interrelationship between goals/sub-goals.
For example, ‘Clinical Test’, which enables
‘Test Interpretation,’ means that the first
goal ‘Clinical Test’ needs to be achieved
successfully before it is possible to
implement the second goal ‘Test
Interpretation’. In addition, ‘(Read) Medical
History Record’ facilitates the ‘Clinical

 9

Test’ process because it can provide some
useful information about the patient. Other
types of interrelationships defined in TÆMS
include disables and hinders. The primitive
goal (lowest-level goal) in the TÆMS
representation can be specified with more
details in another plan tree that is associated
with another role. For example, the plan tree
for the sub-goal ‘Provide Care ‘ is described
in Figure 3, this information belongs to the
role Nurse Assistant. The plan tree
represented in RTÆMS shows all
possibilities to achieve a goal and the
interrelationship among goals/sub-goals. It
provides fundamental knowledge for agents
to plan and schedule its local activities, and
it also supports the collaboration and
cooperation among agents. More details
about the plan tree will be discussed later in
the Section of Coordination.

Each goal is associated with a motivational
quantity production set (MQPS): MQPS =
{(MQi, qi), (MQj, qj), (MQk, qk)...}, which
represents the success accomplishment of
the goal that generates qi amount of MQi, qj
amount of MQj, qk amount of MQk, etc.
The MQPS describes how this goal
contributes quantitatively to some higher-
level goals (abstract goals), which are built
in an agent’s motivation. For instance, when
an agent fulfills a goal ‘Provide Cure’, it
collects p1 units of MQ_professional, p2
units of MQ_moral and p3 units of
MQ_experience. The agent uses the MQPS
specification in the goal definition and its
motivation to determine whether it is
interested in a role instance, and how
interested it is.

The Qualification defined in a role class
describes the requirements for a particular
role. Only an agent who has the specified
certificate can take a role instance of that
role class. For example, Physician role is
defined with a certificate of MD (Medical
Doctor); only an agent with a MD certificate
can take a Physician role instance.

DEFINING AND DEVELOPING
AGENT CLASSES

Agents are the real programmed entities
running in the system. In the health care
simulation system, each agent represents a
personal assistant for a human user in the
real world. The agent is responsible for
scheduling a user’s daily tasks according to
the user’s preference and constraints. The
agent is also responsible for coordinating
with other agents when coordination is
needed between its own user and other
users. A formal definition of agent class in
Object-Z can be found in (Zhang, Xu &
Shrestha 2007). An agent class definition
includes: a set of attributes, motivations,
utility function, sensor data, a set of
reasoning mechanisms, and execution
mechanisms.

Agent attributes include agent names, user,
identification, and other descriptive
characteristics. The values of these attributes
are set when an agent instance is instantiated
from the agent class. Different agent
instances have different attribute values.

Motivation is defined as “any desire or
preference that can lead to the generation
and adoption of goals, and which affects the
outcome of the reasoning or behavioral task
intended to satisfy those goals” (Luck &
d’Inverno, 1995). Motivation is the key for
an agent to decide which goals it should
pursue and how to pursue a goal. We adopt a
quantitative view of motivation in our
practice. Motivation is defined as a set of
motivation quantities (MQs) (Wagner &
Lesser 2002).) that the agent tracks and
accumulates. Each MQ is associated with a
preference function and represents
progresses towards an abstract goal. An
abstract goal is a long-term commitment to
make progress toward certain direction but
not a concrete task with a specified plan. For
example, a user creates an assistant agent
named Adam. The user specifies his
preference on choosing tasks by defining the
motivation of this agent as:

Motivation: {MQ_Professional, 0, 0;
MQ_Moral, 1, 1; MQ_Experience, 2, 2}

 10

Figure 4 Automatic agent generation interface (© [2007], [Journal of the Brazilian Computer
Society]. Used with permission)

The motivation specifies three long-term
goals the user has: professional
achievement, moral achievement and
experience achievement, which are
represented by three types of MQs due to the
user’s Physician role. The two numbers
following the MQ name is the function
index and the initial amount of this type of
MQ. The function index specifies a utility
function that maps a certain number of units
of MQ of this type into the agent’s local
utility. Since the function could be a non-
linear function and is also context sensitive,
the initial amount of this type MQ is also
important. The user also provides this agent

his qualification MD, so this agent can be
qualified for a Physician role.

Each agent collects sensor data from the
environment. For software agents built in
this system, sensor data refers to the
messages and information the agent receives
from the environment including other
agents. Based on the sensor data it collects
and its motivation, the agent uses its
reasoning mechanisms to make decisions.
The decisions are made at different levels:
selection of roles, selection of goals, and
selection of the approach to fulfilling the
goals. The first issue is resolved by A-R

 11

mapping mechanisms, and the later two
issues are inter-related, which are solved by
planning /scheduling mechanisms. Given
the formal definition of motivations, goals
and the detailed description of alternatives to
achieve a goal, it is possible to build some
general, domain-independent reasoning
mechanisms/toolkits. The user can select
appropriate components from such toolkits
and add them to the agent; the user can also
customize these general mechanisms and
toolkits by setting up certain parameters.
These general mechanisms and toolkits are
reusable for agents in different application
domains.

Each agent is equipped with some execution
mechanisms that can be used to generate the
output, which changes the environment. For
software agents, the execution mechanisms
are the primitive actions to change the
environment state. Some of these execution
mechanisms are domain-dependent. For
example, in our health care simulation
system, an agent representing a hospital
worker is built with an execution mechanism
to set up medical equipment, which is an
action the person can perform in real world.
Other execution mechanisms could be
application-independent, such as sending a
message to another agent.

AUTOMATIC AGENT
GENERATION PROCESS

After the user has defined role classes and
agent classes, agent can be automatically
created using a tool we developed. The basic
idea of automatic generation of agents is to
use component-based agent architecture,
where the user can select the components to
be included in this agent, and specify a set of
attributes of the agent.

The designer or the user of the agent needs
to decide what reasoning tool should be built
in and select the appropriate execution tools
for the agent according to the design
purpose of the agent. It is assumed that there
are a set of reasoning and execution
mechanisms available in the toolkit, which

can be selected and plugged into the agent
seamlessly.

Based on the general agent architecture, we
developed a tool to support the automatic
agent generation process. This tool is
created by extending the JAF framework
(Vincent, Horling & Lesser, 2001)
developed by MAS lab at University of
Massachusetts, Amherst. This tool includes
a graphic user interface (GUI), which can be
used to create new agents, modify existing
agents, run agents and delete agents. A
screen shot of the graphic user interface is
shown in Figure 4.

The user also defines the agent’s reasoning
and execution mechanisms by selecting a
number of ready-to-plug-in components
such as: planning, scheduling,
communication, etc. The user can select
what coordination rule should be used by
this agent. We will discuss more about the
coordination rule in the next section. After
an agent class is created, one or multiple
agent instances (the executable programs)
can be created from this class definition.
Each agent instance is an independent
program, and the agent is named after its
class with a unique number ID. For
example, when a user creates an agent class
“X” and three agent instances of this class,
the three agents are named as “X_1”, “X_2”
and “X_3,” respectively. The user can run
agents from this interface by clicking on the
“RUN AGENT” menu box on the top, and
selecting a number of agents to run from a
list of agents that have already been created.
Multiple agents can be created and run on
difference machines. The user can choose to
delete existing agents by clicking on the
“DELETE AGENT” menu box. Finally, the
user has an option to choose the
coordination rules from three types of rules,
namely simple rules, hard and soft
relationships based rules, and priority based
rules.

AGENT COORDINATION AND
COOPERATION

 12

In a health care simulation system with
complex activities, distributed information
and resources, agents need to coordinate and
cooperate on their actions. Efficient
coordination and cooperation mechanisms
are important for the performance of the
system. An agent should coordinate its own
actions with those of other agents when
there are constraints and interdependencies
among their actions.

The RTÆMS language supports
collaborations and cooperation by specifying
interrelationship among goals and sub-goals,
so agents know when and with whom they
need to collaborate and cooperate. A set of
domain-independent general collaboration
mechanisms (GPGP) based on TÆMS
language (Lesser et. al., 2004), has been
developed, where some of GPGP similar
mechanisms are reused in RADE framework
based on RTÆMS language. Agents can
coordinate and cooperate with each other
using the set of mechanisms according to the
protocols defined in the role, which specify
how the interaction between roles should
proceed.

Figure 5 Plan tree for ‘Setup-Equipment’ in
RTÆMS representation

Figure 3 and Figure 5 illustrate pictorially
the information that are captured in a
RTEAMS representation, which include:

1. Top-level goals that an agent intends to

achieve including the deadline for their
completion. In Figure 3, ‘Provide Cure’
is the top-level goal that needs to be
completed and in Figure 5, ‘Setup
Equipment’ is the top-level goal that
needs to be completed.

2. One or more of the possible ways of

achieving goals is expressed as an

abstraction hierarchy whose leaves are
basic action instantiations, called
methods. In Figure 5, the top-level goal
‘Setup Equipment’ has sub-goals
“Laboratory Specimen’ and ‘Medical
Instrument’, which are the methods.
These sub-goals need to be completed
before the top-level goal can be
achieved.

3. Quantitative definition of the degree of

achievement in terms of measurable
characteristics, such as solution quality
and time, is called the quality
accumulation function (qaf). In Figure
5, there exits a quality accumulation
function seq_sum between the sub-goals
“Laboratory Specimen’ and ‘Medical-
Instrument’. The total quality of the goal
“Setup Equipment” is the sum of the
quality of its sub-goals “Laboratory
Specimen’ and ‘Medical Instrument’,
and these two sub-goals need to be
accomplished in a sequence order.

4. Task relationships indicate how basic

actions or abstract task achievement
affect task characteristics such as its
quality and time, elsewhere in the task
structure. In Figure 3, there exits a
“facilitates” relationship between the
task ‘Medical History Record’ and
‘Clinical Test’. A facilitates relationship
indicates that if the task ‘Medical
History Record’ is completed before the
start of task ‘Clinical Test’, it will
increase the quality, and reduce the cost
and duration of task ‘Clinical Test’ by
some value.

Task relationships represent a measure view
of temporal constraints among activities as a
result of information sharing relationships.
An enables relationship is a hard
relationship that essentially acts as a binary
switch. In this case, the target method or
task cannot accrue quality until the enabling
interrelationship is active. A disables
relationship indicates the exact converse of
an enables relationship, which precludes the
possibility of performing an activity when

 13

another activity is performed,. Both a
facilitates and hinders relationship are soft
relationships. When a ‘facilitates’
relationship is active, the targets’ quality is
increased by some quality power, and the
duration and cost are reduced by the
duration power and cost power, respectively.
Similarly, when a ‘hinders’ relationship is
active, the target’s quality is reduced, while
the duration and cost are increased. These
relationships are called non-local effects if
they are relationships between tasks situated
in different agents for coordination.
Relationships among tasks in the same agent
are not of direct concern of the coordination
component. The measured view of these
relationships indicates how the quality of the
information generated by an activity will
affect the performance characteristics of the
activity using this information, such as the
length of its execution and the quality of its
resulting solution.

There is a strong connection between the
coordination module and a local scheduler
module that is part of each agent’s
architecture. In our work, the agent’s local
optimization expert is the Design-to-Criteria
Scheduler (DTC) (Wagner, Garvey &
Lesser, 1998). During the coordination
process, the coordination module queries the
DTC scheduler repeatedly to explore the
implications of constraints. The
coordination and DTC module present in
each agent can guide the agent’s activities
using knowledge of its own local situation
and partial knowledge of the activities being
carried by other agents. The coordination
component in each agent also coordinates
with that of other agents to generate
constraints on local control that leads to
more coherent agent activities.

Each agent starts its coordination component
by constructing its own local view of the
activities that the agent intends to pursue, as
well as the relationships among these
activities (Lesser et. al., 2004). The RTÆMS

representation is used by the problem
solving, coordination and scheduling
components as a common communication
language. The coordination component
helps to construct a global view for an agent,
and to recognize and respond to particular
inter-agent task structure relationships by
making commitments to other agents. The
commitments result in coordinated behavior
by affecting the tasks an agent executes and
the results transmitted. The DTC scheduler,
based on commitments, agent’s goal, the
local and non-local values of tasks, and
other agent activity constraints, creates a
schedule of activities for the agent, which
must meet the real-time deadlines. The
coordination component coordinates the
activities of an agent through modulating its
local control as a result of placing
commitments and constraints on the local
scheduler.

The coordination component uses the
RTÆMS task structure representation to add
an extension of local and non-local
commitments to task achievement. The
coordination includes the goals that the
agent is currently pursuing, the goals it will
likely pursue in the near future, the
characteristics of the abstract tasks and basic
actions available to achieve these goals,
their relationships to other tasks, and the
degree of achievement necessary for each
goal.

A user can choose a coordination rule from
three types of coordination rules, namely
Rule1 (simple), Rule 2 (hard and soft
relation), and Rule 3 (priority based). The
coordination mechanism between agents
depends on selection of a specific rule.

Suppose we have two agents A and B shown
in Figure 6. Agent B is performing task B1.
Task B1 has subtask A1 and B2. Subtask A1
is performed by agent A and subtask B2 is
performed by agent B itself. There is an
‘enables’ relationship from A1 to B2.

 14

Figure 6 Agent A and Agent B’s initial task
view with enables relationship

When a user selects Rule 1 (simple), the
agents use a very simple coordination

mechanism - they only consider the quality
accumulation function but not the hard and
soft relationships between the tasks. As
shown in Figure 6, suppose there is a
seq_sum quality accumulation function
associated with task B1, agent B recognizes
that the quality achievement of B1 depends
on the accomplish of task A1 and it has to be
performed before task B1, it then sends a
message to agent A asking it to perform task
A1 by a given deadline. Agent A replies
with the start time and finish time for task
A1 according to its local schedule. Upon
receiving this message agent B reschedules
the start time of its task B1 to the finish time
of task A1. This is the Scenario 1 described
in Table 1.

Table 1 Coordination scenarios using different rules

Rule 2 deals with both hard and soft
relationships together with the quality
accumulation functions and non-local tasks.
Hard relationships include the enables and
disables relationship, and soft relationships
include facilitates and hinders relationships.

As shown in Figure 6, task A1 has enables
relationship with task B2. Agent B sends a
message to agent A saying that task B2 has
an enables relationship with task A1 and
should complete task A1 by a given
deadline. Agent A checks the start time of
task A1. If the start time of task A1 is less
than or equal to the start time of task B2,
then agent A makes a commitment to agent
B that it can finish the task B2 by the given
deadline. If the finish time of task A1 is

greater than the start time of task B2, agent
A then moves task A1’s start time to task
A1’s earliest start time. Agent A sends the
new start time and finish time of task A1 to
agent B. If the finish time of task A1
proposed by agent A is less than or equal to
the start time of task B2, agent B follows its
normal schedule. Otherwise, agent B
temporarily sets task B2’s start time to the
finish time of task A1 as proposed by agent
A and calculates its new finish time for task
B2. If the new finish time falls within the
deadline of task B2, then agent B
reschedules its task B2 with new values.
Otherwise, task B2 is not performed.

Scenario 2 in Table 2 explains how agents
coordinate with each other using Rule 2. In

 15

the initial schedule for task B2, the start time
is 5. Agent A sets its start time to its earliest
start time (0). Now the new finish time for
task A1 is 5. Since the new finish time for
task A1 is equal to the start time of task B2,
the schedule for task B2 remains unchanged.

Scenario 3 shows a different case. In the
initial schedule for task B2, the start time is
5. Agent A sets its start time to its earliest
start time (0). Now the new finish time for
task A1 is 6. Since the new finish time for
task A1 is greater than the start time of task
B2, rescheduling of task B2 is needed. Task
B2 has a new start time as 6 after
rescheduling.

Rule 3 is based upon priority of a task,
which takes into consideration the hard and
the soft relationships. Rule 3 is useful when
an agent is performing more than one task.
In the RTÆMS representation, each task has
a new attribute called “priority”, with its
value ranging from 1 (i.e., the highest
priority) to 10 (i.e., the lowest priority).

Let us assume that agent A has two tasks A2
and A1. Task A1 has enables relationship
with task B2. Agent B sends a message to
agent A saying that task A1 has an enables
relationship with task B2 and requires task
A1 to be completed by a given deadline.
Agent A checks the start time of task A1. If
the start time of task A1 is less than or equal
to the start time of task B2, agent A makes a
commitment to agent B that it can finish the
task B2 by the given deadline. If the finish
time of task A1 is greater than the start time
of task B2, agent A then checks the start
time and finish time of task A2. If task A2 is
performed before task A1, agent A
compares the priority of task A1 and A2. If
the priority of task A1 is higher than that of
task A2, agent A reschedules task A1 to be
performed before task A2, and the new start
time and finish time of task A1 is sent to
agent B. Otherwise, agent A sets the start
time to task A1 to its earliest start time.
Agent A sends its new start time and finish
time to agent B. If the finish time of task A1
proposed by Agent A is less than the start

time of task B2, agent B follows its normal
schedule. If the proposed finish time of task
A1 is greater, agent B temporarily sets B2’s
start time to A1’s finish time and calculates
the new finish time for task B2. If the new
finish time is no later than the deadline of
task B2, agent B reschedules its task B2
with new values; otherwise, task B2 is not
performed.

Table 1 shows how Rule 3 works. The initial
start time of task B2 is 6 and agent A cannot
complete the task A1 before 6. Hence, agent
A compares the priority of task A2 and A1.
Since priority of task A1 is higher, A1 is
performed before A2, and the new schedule
is sent to agent B.

Similarly, these coordination rules can be
used to support other non-local
relationships, including disables, facilitates
and hinders.

RUNTIME SCENARIO

Now we present a runtime scenario for a
hospital organization to describe how the
health care simulation system works. The
scenario demonstrates how the dynamic task
allocation is accomplished through the A-R
mapping mechanism, and how agents
coordinate with each other in their activities.
In this scenario, a special agent role space is
first created. Role space agent is initially not
taking any active role in the system; rather,
it is mainly responsible for maintaining and
managing the role instances in the system.
The role space checks the plan tree of a role
instance, when this role instance is taken by
an agent, which recognizes the needs to
create new role instances. The role space
selects the appropriate agent for the role
instance after verifying the qualification and
consistency of the candidates.

When the system is initialized, the system
administer creates several Patient role
instances to express the expected service
requirements from patients. The number of
Patient role instances depends on the
capability of the hospital. These patient role

 16

instances are posted in the role space and are
not active until they are taken by some
agents. When a (real) patient Bryan enters
the hospital for services, a personal assistant
agent named Bryan is created for this
patient, and the agent takes one Patient role
instance. In this case, Bryan uses the
coordination Rule 3, which is specified
when the user defines the Patient agent
class.

When agent Bryan takes the Patient role
instance, it has one goal to achieve: ‘Get
Cure’. The plan tree of this goal describes
that two sub goals ‘Assist Patient’ and
‘Provide Cure’ must be achieved so that the
goal ‘Get Cure’ can succeed. The goal
‘Assist Patient’ belongs to a MA Admin
(Administrative Medical Assistant) role and
the goal ‘Provide Cure’ belongs to a
Physician role. Based on this information, a
Physician role instance and an MA Admin
role instance are created by the role space.

Four other agents, Adam, Cathy, Kevin and
David that represent four medical
professionals are also created and active in
the system. Both agent Adam and the
remaining agents are initialized with
coordination Rule 3. They have been idle
and sent requests to the role space for
available role instances. When the MA
Admin and Physician role instances are
created in the role space, all three agents
who are interested in taking any additional
role instances receive a message for this
update. After receiving the message, the
agent checks the goal associated with the
role instance, especially the MQPS, to see if
it matches its own motivation. If the MQPS
contains the same type of the agent’s MQ in
its motivation, the agent is said to be
interested in taking that role instance.

For example, the Physician role instance has
MQPS as: (MQ_professional, p1),
(MQ_moral, p2), (MQ_experience, p3), all
these three types MQ’s belong to agent
Adam’s motivation. So Adam is interested
in this role instance. How interested Adam is
for this role instances depends on the actual

values of p1, p2 and p3, the exact structures
of the mapping functions with index 0, 1,
and 2, and the current accumulation of these
MQ’s for agent Adam.

If agent Adam is interested in multiple role
instance openings, it will compare the
degree of interests in these role instances
and select the most interested ones, and send
requests to the role space. It is also possible
that the role space receives requests from
multiple agents for the same role instance. In
this case, the role space verifies the
qualification of each agent by matching the
agent’s qualification with the certificate
requirement defined in the corresponding
role class. For example, agent Adam is
qualified for this role instance because it has
a MD qualification that matches the
certificate requirement of the Physician role
class. The role space also checks if this role
instance is compatible with other role
instances the agent is taking right now. For
instance, suppose agent Bryan has a MD
qualification and it is also interested in this
Physician role instance; however, according
to the incompatibility relationship between
the Physician role and the Patient role, agent
Bryan cannot take this role instance because
it takes the Patient role instance related to
this Physician role instance.

After verifying the qualification and
checking the consistency, the role space
selects an appropriate agent (agent Cathy)
for the MA Admin role instance, whose goal
is to ‘Assist Patient’. The role space then
tells agent Cathy that the task ‘Assist
Patient’ has an enables relationship with the
task “Provide Cure’. The plan tree for the
goal ‘Assist Patient’ consists of four sub
goals: ‘Greet Patient’, ‘Schedule
Appointment’, ‘Admit Patient’, and ‘Answer
Telephone’. All of these sub-goals can be
performed by the same agent who takes the
MA Admin role instance, so no new role
instance has to be created.

After assigning the MA Admin role instance
to agent Cathy, the role space assigns the
Physician role instance to another

 17

appropriate agent - Adam, based on its
qualification. The role space then tells agent
Adam that task ‘Assist Patient’ enables its
task ‘Provide Cure’. The goal of taking the
Physician role by agent Adam is to ‘Provide
Cure’. The role space reads the plan tree
associated with the goal, and finds that in
order to accomplish this goal, sub-goals
‘Setup Equipment’ and ‘Provide Care’ must
be accomplished by other roles. In response
to this need, new role instances Nurse
Assistant and MA Clinical (Clinical Medical
Assistant) are created. The role space then
selects appropriate agents Kevin and David
to take these role instances respectively.
This process will continue until no more
new role instance is needed, and all role
instances have been taken. After a goal
defined in a role instance is accomplished,
the agent will collect the utility as defined in
the MQPS of this role instance, and release
the role instance, which will be further
deleted by the role space.

After all role instances have been assigned
to appropriate agents, the role space sends a
table of roles to the agent who is performing
that role, followed by a message to start the
coordination. The agents can now begin the
coordination process. For example, as
shown in Figure 7, Patient Bryan a goal to
‘Get Cure”, which has two non-local
subtasks ‘Assist Patient’ and ‘Provide Cure’
performed by MA Admin Cathy and
Physician Adam, respectively. Patient Bryan
sends a message to both agents to ask them
to complete the task within the deadline.
Agents Cathy and Adam reply to Patient
Bryan with their scheduled execution time.
The Physician Adam coordinates with MA
Admin Cathy using coordination Rule 3 to
schedule the task ‘Assist Patient’ before
‘Provide Cure’. There is a facilitates
relationship between task ‘(Read) Medical
History Record’ and task ‘Clinical Test’.
Since both tasks belong to the same agent,

so the ‘facilitates’ relationship is taken care
of by agent Cathy’s local scheduler.

Since task ‘Assist Patient’ has an enables
relationship with task ‘Provide Cure’,
Physician Adam requests MA Admin Cathy
to complete the task by 12. However, Cathy
has another task ‘Clean’ that is scheduled
for time 0 to 12, and the task ‘Assist Patient’
is scheduled for time 12 to 24. Cathy
compares the priority of task ‘Assist Patient’
and task ‘Clean’: priority of task ‘Assist
Patient’ is higher so this task is rescheduled
before the task ‘Clean’. Nurse Assistant
Kevin can perform the task ‘Provide Care’
after task ‘Operate’ performed by Physician
Adam. Similarly, Clinical MA David can
perform the task ‘Setup Equipment’ before
task ‘Operate’ and meet the deadline
requested by Physician Adam. So no more
rescheduling is necessary. The initial
schedule for all tasks and new schedule for
task ‘Clean’ are shown in Table 2.

After the coordination is complete the agents
can now begin execution, Patient Bryan can
now begin executing its task ‘Get Cure’,
which has subtasks ‘Assist Patient’ and
‘Provide Cure’. The task ‘Assist Patient’
should be performed by MA Admin Cathy.
Patient Bryan agent sends a message to MA
Admin Cathy to begin the task ‘Assist
Patient’. MA Admin Cathy then begins
executing the task ‘Assist Patient’, which
has the subtasks ‘Answer Telephone’,
‘Schedule Appointment’, ‘Greet Patient’ and
‘Admit Patient’. The quality of the task
‘Assist Patient’ is defined by the quality
accumulative function “seq_sum”, which is
the total quality of all of its sub-tasks
performed in sequence. Since MA Admin
Cathy itself can perform all of the subtasks,
it starts the execution immediately. After
Cathy completes the task ‘Assist Patient’, it
collects the motivation quantities as defined
in the MQPS of this role instance.

 18

Table 2 Task schedules

 19

Figure 7 Plan tree for ‘Assist-Patient’ in RTÆMS representation

Figure 8 Plan tree for updated ‘Get-Cure’
in RTÆMS representation

Upon receiving this message, patient Bryan
updates its own task structure. MA Admin
Cathy has rescheduled this task after the task
‘Assist Patient’. So when Cathy completes
the task ‘Assist Patient’, it begins executing
the task ‘Clean’. Now Patient Bryan can
start executing the task ‘Provide Cure’.
Since the task ‘Provide Cure’ is performed
by Physician Adam, so Patient Bryan sends
a message to Physician Adam saying that it
can start the execution. Physician Adam
begins the execution of the task ‘Provide
Cure’. The task ‘Provide Cure’ has subtasks
‘Examine Patient’ and ‘Provide Treatment’
as shown in Figure 3.

Physician Adam begins executing ‘Examine
Patient’, which has subtasks ‘(Read)
Medical History Record’, ‘Clinical Test’ and
‘Test Interpretation’, which can all be
performed by Physician Adam. After
completion of these subtasks, it then begins
executing task ‘Provide Treatment’, which
has subtasks ‘Prescribe Treatment’ and

‘Administer Treatment’ with the quality
accumulative function “max”, which means
only one of these two subtask needs to be
accomplished.

If Physician Adam decides to perform the
task ‘Administer Treatment’, then the three
subtasks ‘Setup Equipment’, ‘Operate’ and
‘Provide Care’ need to be accomplished.
The task ‘Setup Equipment’ is performed by
MA Clinical agent David. So Physician
Adam sends a request to Clinical MA David
to perform the task ‘Setup Equipment’.
David starts executing the task ‘Setup
Equipment’, which has subtasks ‘Laboratory
Specimen’ and ‘Medical Instrument’. After
the completion, David sends a message to
Physician Adam, saying that the task has
been completed, together with the quality
accumulated, cost accrued and the time
taken. Upon receiving this message,
physician Adam updates its task structure
and begins executing ‘Operation’, which is
performed by itself.

Similarly, the task ‘Provide Care’ is
performed by Nurse Assistant Kevin.
Physician Adam sends a request to Kevin to
execute the task. Kevin begins executing the
task ‘Provide Care’, which has the subtasks
‘Serve Patient’, ‘Provide Skin Care’ and
‘Observe Patient’. Nurse Assistant Kevin
itself can perform all of these subtasks.

.

 20

Figure 9 Plan tree for updated ‘Provide Care’ in RTÆMS representation

After the completion of the task, Kevin sends a
message to Physician Adam, saying that the task
has been completed, together with the quality
accumulated, cost accrued and time taken. Upon
receiving this message, physician Adam updates
its task structure. Since task ‘Provide Cure’ has
now been completed, Adam sends a message to
Patient Bryan that the task has been completed,
together with the quality accumulated, cost
accrued and time taken. Upon receiving this
message, Patient Bryan updates its task
structure.

FUTURE TRENDS

The future work includes further development of
the system based on the current prototype.
Especially, we are interested providing support
for users to define interaction protocols in role
classes, and integrating those domain-dependent
protocols with domain-independent
communication mechanisms in agents. We are
also interested in experimenting with large
systems, more complex scenario and analyzing
the system performance.

CONCLUSIONS

In this chapter, we describe a multi-agent health
care simulation system built using RADE
framework. The integrated framework supports
role-based design of multi-agent systems as well
as implementation of utility-driven agents that
can use a variety of existing agent reasoning and

coordination mechanisms. We describe how the
roles are defined, how agents are created, and
how the role instances are mapped to agents. We
also describe the rule-based coordination
mechanisms and present a runtime scenario that
shows how the simulation system works and
how agents coordinate with each other to
schedule their local activities. This work verifies
the feasibility of modeling health care system
with multi-agent approach and demonstrates the
strength of automatic coordination, planning and
scheduling.

REFERENCES

[1] Becht, M., Gurzki, T., Klarmann, J. &

Muscholl, M. (1999). ROPE: Role-Oriented
Programming Environment for Multi-Agent
Systems. Conference on Cooperative
Information Systems. pp. 325–333.

[2] Bellifemine, F., Caire, G., Poggi, A. &
Rimassa, G. (2003). JADE A White Paper.
EXP in search of innovation - Special Issue
on JADE, TILAB Journal, 3, 6-19.

[3] Decker, K. (1996). TAEMS: A Framework
for Environment Centered Analysis and
Design of Coordination Mechanisms. In G.
O’Hare and N. Jennings (Eds.), Foundations
of Distributed Artificial Intelligence, (pp.
429-448). Wiley Inter-Science.

[4] DeLoach, S., Wood, M., & Sparkman, C.H.
(2001). Multiagent Systems Engineering.
International Journal of Software
Engineering and Knowledge Engineering,
11, 231–258.

 21

[5] Graham, J. R., Decker, K. S. & Mersic, M.
(2003). DECAF – A Flexible Multi Agent
System Architecture. Autonomous Agents
and Multi-Agent Systems, 7(1-2), 7-27.

[6] Gracanin, D., Bohner, S. A., Hinchey, M.
(2004). Towards a Model-Driven
Architecture for Autonomic Systems.
Proceeding of 11th IEEE International
Conference and Workshop on the
Engineering of Computer-Based Systems
(ECBS’04). pp. 500-505.

[7] Kuwabara, K. , Ishida, T., & Osato, N.
(1995). AgenTalk: Describing Multiagent
Coordination Protocols with Inheritance.
Proc. 7th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI
'95). pp. 460-465.

[8] Lesser, V., Decker, K., Wagner, T., Carver,
N., Garvey, A., Horling, B., Neiman, D.,
Podorozhny, R., NagendraPrasad, M., Raja,
A., Vincent, R., Xuan, P. & Zhang, X.Q.
(2004). Evolution of t he GPGP/TAEMS
Domain- Independent Coordination
Framework. Autonomous Agents and Multi-
Agent Systems. 9(1):87–143.

[9] Luck M. & d’Inverno, M. (1995). A Formal
Framework for Agency and Autonomy.
Proceedings of the First International
Conference on Multi-Agent Systems
(ICMAS-95). pp. 254-260. AAAI Press/
MIT Press.

[10] Maria, D. B.A., Silva, V.T. & Lucena, C.J.P.
(2005). Developing Multi-Agent Systems
Based on MDA. Proceedings of the 17th
Conference on Advanced Information
Systems Engineering (CAiSE’05). Porto,
Portugal.

[11] Vincent, R., Horling, B., & Lesser, V.
(2001). An Agent Infrastructure to Build
and Evaluate Multi-Agent Systems: The
Java Agent Framework and Multi-Agent
System Simulator. Lecture Notes in
Artificial Intelligence: Infrastructure for
Agents, Multi-Agent Systems and Scalable
Multi-Agent Systems, 1887.

[12] Wagner, T., Garvey, A., & Lesser, V. R.
(1997). Complex Goal Criteria and its

Application in Design-to-Criteria
Scheduling. Proceedings of the Fourteenth
National Conference on Artificial
Intelligence.

[13] Wagner, T. & Lesser, V. (2002). Evolving
Real-Time Local Agent Control for Large-
Scale MAS. In J.J. Meyer and M. Tambe
(Eds.), Intelligent Agents VIII (Proceedings
of ATAL-01), Lecture Notes in Artificial
Intelligence. Springer-Verlag, Berlin.

[14] Williamson, M., Decker, K.S., & Sycara, K.
(1996). Unified information and control
flow in hierarchical task networks.
Proceeding of the AAAI-96 workshop on
Theories of Planning, Action and Control.

[15] Wooldridge, M., Jennings, N., & Kinny, D.
(2000). The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of
Autonomous Agents and Multi-Agent
Systems, 3, 285–312.

[16] Xu, H. & Zhang, X. (2005). A Methodology
for Role-Based Modeling of Open Multi-
Agent Software Systems. ICEIS (3). pp.
246–253.

[17] Xu, H., Zhang, X. & Patel, R. J. (2007).
Developing Role-Based Open Multi-Agent
Software Systems. International Journal of
Computational Intelligence Theory and
Practice (IJCITP), 2(1): 39-56.

[18] Zambonelli, F., Jennings, N. & Wooldridge,
M. (2003). Developing Multiagent Systems:
The Gaia Methodology. ACM Trans. on
Software Engineering and Methodology, 12,
317–370.

[19] Zhang, X. & Xu, H. (2006) Towards
Automated Development of Multi-Agent
Systems Using RADE. Proceedings of the
2006 International Conference on Artificial
Intelligence (ICAI’06) (pp. 44-50). Las
Vegas, Nevada.

[20] Zhang, X., Xu, H. & Shrestha, B. (2007). An
Integrated Role-Based Approach for
Modeling, Designing and Implementing
Multi-Agent Systems. Journal of the
Brazilian Computer Society (JCBS): Special
Issue on Software Engineering for Multi-
Agent Systems. 13(2): 45-60.

 22

