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BSTRACT 

Multi-Agent System (MAS) is a suitable programming paradigm for simulating and modeling 
health care systems and applications, where resources, data, control and services are widely 
distributed. We have developed a multi-agent software prototype to simulate the activities and 
roles inside a health care system. The prototype is developed using a framework called Role-
based Agent Development Environment (RADE). In this chapter, we present an integrated 
approach for modeling, designing and implementing a multi-agent health care simulation system 
using RADE.  We describe the definition of role classes and agent classes, as well as the 
automatic agent generation process. We illustrate the coordination problem and present a rule-
based coordination approach. In the end, we present a runtime scenario of this health care 
simulation system, which demonstrates that dynamic task allocation can be achieved through the 
creation of role instances and the mapping from role instances to agents. This scenario also 
explains how agents coordinate their activities given their local constraints and interdependence 
among distributed tasks.  
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INTRODUCTION 
 
Multi-Agent System (MAS) is a suitable 
programming paradigm for simulating and 
modeling health care systems and 
applications, where resources, data, control 
and services are widely distributed. We have 
developed multi-agent software to simulate 
the activities and roles inside a health care 
system. Such software can be used to assist 
the collaborative scheduling of complex 
tasks that involve multiple personals and 
resources. In addition, it can be used to 
study the efficiency of the health care 
system and the influence of different 
policies.   

 
However, the application of multi-agent 
system has been limited by the difficulty of 
developing agent-based systems, and 
considerable amount of time and highly 
experienced programmers are required to 
develop a multi-agent system.  After such 
system is built, it is also difficult to test and 
maintain the system because of its 
complexity. The reusability of such system 
is low; it is unlikely to use an existing 
system for another application domain with 
little or minor change. In this chapter, we 
will describe a role-based approach to 
building multi-agent systems for health care 
simulation and modeling.  With this 
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approach, we are able to separate the 
concern on domain knowledge and the 
concern on intelligent problem-solving 
capabilities.  In this approach, conceptual 
roles, such as physicians, nurses and patients 
are defined with the domain related 
knowledge including goals, permissions, 
organizational relationship, and interaction 
protocols, etc; where an agent is a concrete 
entity equipped with motivations, resources 
and problem-solving capabilities, which can 
be used to represent a real person in a health 
care system. Each agent can be configured 
based on different specifications according 
to the real person’s situation and needs.  
Then the agent instance is dynamically 
generated for the real person who enters the 
system.  
 
In this chapter, we will also describe an 
automated agent generation process, which 
utilizes the existing tools and mechanisms as 
much as possible. We propose to create 
agents using a drag-and-drop mechanism 
where the user can select components to 
plug into the agent depending on application 
requirements. We adopt a utility-driven 
agent architecture with quantitative 
reasoning capabilities. Besides the logical 
reasoning on the matching of motivations 
and the conflicts among different roles, we 
adapt a quantitative model of motivation 
named MQ (motivation quantities) 
framework. Based on the MQ framework, an 
agent can perform a quantitative reasoning 
on how important a role instance is, given its 
preference, its utility function and its current 
achievement. In the definition of a role, we 
introduce a formal language called RTÆMS 
(Role-based Task Analyzing, Environment 
Modeling, and Simulation) to represent the 
domain knowledge about how to achieve a 
goal. RTÆMS language is a hierarchical 
task network representation language with 
task interrelationships and quantitative 
descriptions of different alternatives to 
achieve a goal.  The domain expert can 
specify how a complicated health service 
task should be performed with the 
collaboration of multiple roles inside the 
system. Each agent is also equipped with the 

capability for planning, scheduling and 
cooperation; hence, an agent can schedule 
its local activities with the consideration of 
the constraints from other agents.  
Meanwhile, a user of the system can choose 
different collaboration rules according to the 
organizational rules and the specific needs in 
the system. 
  
In the rest of this chapter, we first discuss 
related work in several research areas. 
Afterwards, we describe how to construct a 
health care simulation system using the 
approach described above, and show how to 
define roles and their interrelationships, and 
how to define agent classes. Then, we 
present an automatic agent generation tool 
as well as a rule-based coordination 
approach. Finally, we use a runtime scenario 
to demonstrate how new role instances are 
created, how agents are taking new roles, 
planning and scheduling their tasks, and 
collaborating with each other to achieve a 
complex goal. 

 
BACKGROUND 

 
Researchers have studied a number of 
approaches for defining and developing 
autonomous agents and multi-agent system 
from different directions. Here we discuss 
related research work in four areas:  agent 
development framework, role-based 
modeling of agent-based systems, 
specification of coordination rules, and 
model-driven development of multi-agent 
systems.  

1. Agent Development Framework 
 
DECAF (Graham, Decker & Mersic, 2003) 
and JADE (Bellifemine et. al, 2003) are 
examples of the frameworks that can be 
used to generate domain specific agents. 
DECAF (Distributed, Environment-
Centered Agent Framework) developed in 
University of Delaware, is a toolkit to build 
multi-agent systems. The toolkit provides a 
stable platform to design, rapidly develop, 
and execute intelligent agents to achieve 
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solutions in complex software systems. 
DECAF provides the necessary architectural 
services of an intelligent agent: 
communication, planning, scheduling, 
execution monitoring, coordination, and 
eventually learning and self-diagnosis. Plan 
editor is a GUI that provides the interface 
for control or programming of DECAF 
agents. In the Plan editor, executable actions 
are treated as basic building blocks, which 
can be chained together to achieve a larger 
and more complex goal in the style of a 
hierarchical task network. This provides a 
software component-style programming 
interface with desirable properties such as 
component reuse and some design-time 
error-checking. The chaining of activities 
can involve traditional looping and if-then-
else constructs. This part of DECAF is an 
extension of the RETSINA (Williamson, 
Decker & Sycara, 1996) and TÆMS 
(Decker, 1996). task structure frameworks. 
Each action of an agent can also have a 
performance profile, which is used and 
updated internally by DECAF to provide 
real-time local scheduling services.  
 
JADE (Java Agent Development 
Framework) (Bellifemine et. al, 2003) is a 
software framework fully implemented in 
Java language distributed by Telecom Italia. 
It simplifies the implementation of multi-
agent systems through a middleware that 
complies with the FIPA specifications. The 
agent platform can be distributed across 
machines and the configuration can be 
controlled via a remote GUI. The 
configuration can be changed at runtime by 
moving agents from one machine to another, 
when required. The communication 
architecture offers flexible and efficient 
messaging, where JADE creates and 
manages a queue of incoming ACL 
messages, private to each agent; agents can 
access their queue via a combination of 
several modes: blocking, polling, timeout 
and pattern matching. JADE implements a 
full FIPA communication model, and its 
components have been clearly distinct and 
fully integrated: interaction protocols, 
envelope, ACL, content languages, encoding 

schemes, ontology, and finally, transport 
protocols. Most of the interaction protocols 
defined by FIPA are available and can be 
instantiated after defining the application-
dependent behaviour of each state of the 
protocol. Agent management ontology has 
been implemented, as well as the support for 
user-defined content languages and ontology 
that can be implemented, registered with 
agents, and automatically used by the 
framework. JADE has also been integrated 
with JESS, a Java shell of CLIPS, in order to 
exploit its reasoning capabilities. 
 
The goals of both these frameworks are to 
develop a modular platform to allow for 
rapid development of third-party domain 
agents, and provide a means to quickly 
develop complete multi-agent solutions 
using combinations of domain-specific 
agents and standard middle-agents. These 
frameworks specify agents in terms of roles 
they play, and assume that agents do not 
change their roles at run time. In contrast, 
we implemented an automated agent 
generation mechanism using the RADE 
framework. Using this framework, we can 
separate the domain knowledge and the 
intelligent problem solving capabilities. So 
an agent can be created with intelligent 
capabilities and motivations, and can take up 
different roles dynamically. 

2 Role-Based Modeling 
The related work in the second area is to 
propose role-based methodology for 
developing multi-agent systems. Approaches 
like Gaia (Wooldridge, Jenning, & Kinny, 
2000; Zambonelli, Jennings & Wooldridge, 
2003) and MaSE (DeLoach, Wood, & 
Sparkman, 2001) can be used to model 
multi-agent system societies in terms of 
organizations or groups composed of a 
collection of roles related to one another and 
participating in patterns of interactions with 
other roles. The agents are then specified in 
terms of a set of roles they play. These 
approaches explicitly assume that the inter-
agent relationships and the abilities of agents 
do not change at run-time and that all the 
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agents are explicitly designed to 
cooperatively achieve common goals. 
 
The Gaia methodology can be used to model 
both the macro aspect and the micro aspect 
of a multi-agent system. It covers the 
analysis phase and the design phase. In the 
analysis phase, the role model and 
interaction model are constructed. Based on 
the analysis models, in the design phase, 
three models, the agent model, service 
model and acquaintance model are 
constructed during the initial design of the 
system, and then are refined during the 
detailed design phase using conventional 
object-oriented methodology. The later 
version of Gaia (Zambonelli, Jennings & 
Wooldridge, 2003) extends the former one 
in order to better suit to open multi-agent 
systems by introducing two new 
abstractions: (1) organizational rules 
(explicit identification of relationships and 
constraints between roles and protocols), 
and (2) organizational structures (explicit 
specification of organizations in terms of 
their topology and control regime). 
 
The MaSE methodology is a specialization 
of more traditional software engineering 
methodologies (DeLoach, Wood, & 
Sparkman, 2001).  During the analysis phase 
of the MaSE methodology, a set of roles are 
produced, which describes entities that 
perform some function within the system. In 
MaSE, each role is responsible for achieving 
or helping to achieve specific system goals 
and sub-goals. During the design phase, 
agent classes are created according to the 
roles defined in the analysis phase. 
 
In our approach, the components of role 
instances and agent instances are loosely 
coupled, where agents can take or release 
role instances at runtime without knowing 
the internal structure of role instances. Thus, 
role classes and agent classes can be 
designed and implemented independently.  

3 Coordination Rules 
The related work in the third area is 
definition of coordination rules. Projects 
such as AgenTalk (Kuwabara, Ishida, & 
Osato, 1995) use scripts and finite state 
machine to define coordination rules. 
AgenTalk is a language for describing 
coordination protocols for multi-agent 
systems co-developed by NTT 
Communication Science Laboratories and 
Ishida Laboratory, Department of 
Information Science, Kyoto University. It 
provides an explicit state representation of a 
protocol, and a finite state machine that 
allows variables to be used as a basis to 
describe coordination protocols, called a 
script. Using this model, states of a protocol 
are explicitly defined, and actions of an 
agent can be defined for each state. 
Protocols can be defined incrementally by 
extending existing scripts. It provides a 
programming interface that specifies the 
portion of a state transition rule that needs to 
be customized for each agent. The AgenTalk 
has been implemented in Common Lisp. 
 
In ROPE project (Becht et. al., 1999), 
cooperation process is built as a separated 
component from the concrete agents; the 
ROPE engine provides execution of the 
cooperation process, which is described as a 
high-level Petri net class. However, the 
implementation of ROPE engine is based on 
shared memory, which is not always feasible 
for agents that are widely distributed on 
different machines. Additionally, the 
cooperation process in ROPE is based on 
token and transition firing, which is not 
feasible enough to support more proactive 
cooperation and collaboration, i.e. agents are 
able to consider the cooperation and 
coordination needs when they are planning 
their own activities. 
 
A set of domain-independent general 
collaboration mechanisms, Generalized 
Partial Global Planning (GPGP) (Lesser, et. 
al. 2004), based on TÆMS language 
(Decker, 1996) has been developed. We 
have reused some of GPGP similar 
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mechanisms in RADE (Zhang & Xu, 2006) 
framework based on RTÆMS language. In 
framework such as AgenTalk, the emphasis 

is on the flow of messages and how the 
dialog between agents is structured. Such 

Figure 1. RADE Concept (© [2007], [Journal of Computational Intelligence Theory and 
Practice]. Used with permission.) 
 
framework combines finite state machines 
with enhancements. In contrast, GPGP 
focuses on a domain independent and 
quantitative evaluation of the interactions 
among tasks and the dynamic formation of 
temporal constraints to resolve and to 
exploit these interactions. Our 
implementation gives a user the freedom to 
choose the appropriate coordination rule 
according to the application domain. 

4 Model-Driven Development 
Previous work on model-driven 
development of multi-agent systems can be 
summarized as follows. Gracanina, Boher 
and Hincey proposed a model-driven 
architecture framework as an extension to 
Cognitive Agent Architecture (COUGAAR) 
(Gracanin, Bohner & Hinchey, 2004). The 
Cognitive Agent Architecture is a 
distributed agent architecture that has been 
developed primarily for very large-scale, 
distributed applications that are 
characterized by hierarchical task 

decompositions, and as such, it is well suited 
for autonomic systems. The framework 
consists of two main parts, General 
COUGAAR Application Model (GCAM) 
and General Domain Application Model 
(GDAM).  The GCAM provides 
representation in its model of the 
COUGAAR basic constructs, and the 
GDAM defines the requirements and the 
detailed design. 
 
Maria, Silva and Lucena (2005) proposed an 
MDA-based approach to developing multi-
agent systems. They first use MAS 
modeling language (MAS-ML) to model 
MAS by creating the platform independent 
models (PIM). Then the MAS-ML models 
are transformed into UML models using the 
ASF framework, which defines a set of 
object-oriented models for MAS entities 
specified in MAS-ML. The UML models 
are then transformed into code. 
 
We have proposed three levels of models 
for  developing  role‐based  open  multi‐

 5



agent systems (Xu, Zhang & Patel, 2007), 
namely  AIPIM  (Application  Independent 
Platform  Independent  Model),  ASPIM 
(Application  Specific  Platform 
Independent  Model),  and  ASPSM 
(Application  Specific  Platform  Specific 
Model),  as  a  refinement  process.  In  each 
level of  the models, role components and 
agent  components  are  always  separated 
and  designed  independently.  Role 
instances  and  agent  instances  interact 
with  each  other  only  at  runtime  through 
an A‐R (Agent‐Role) mapping mechanism.  
 
ROLE-BASE MODELING 
APPROACH 
 
 The basic idea of the role-based agent 
development environment (RADE) is 
illustrated in Figure 1.  The top level is the 
role organization, which defines the 
conceptual roles and their relationships such 
as inheritance, aggregation, association and 
incompatibility. In health care systems, 
conceptual roles represent all possible job 
titles in the system, such as physician and 
nurse. The relationships describe how these 
roles relate to each other. The second level 
is the role space, which consists of multiple 
role instances; each role instance is 
instantiated from a conceptual role 
dynamically.  For example, whenever there 
is a need to cure a patient, a new physician 
role instance is created with the goal to cure 
a patient. A role instance represents the task 
that needs to be accomplished in the system. 
The bottom level is the agent society, which 
consists of multiple agent entities. Agent can 
take or release role instances dynamically, 
where the mapping from role instances to 
agents is called A-R mapping, which 
represents that a real person takes a task in 
the system. 

 
In an actual software system, agent instances 
are automatically generated based on the 
definition of agent classes. Each agent 
instance is a software entity that performs 
specific functions and also coordinates and 
communicates with other agent instances.  

On the contrary, role classes are defined to 
incorporate domain knowledge and 
organizational relationships. Each role class 
is associated with specific goals and detailed 
descriptions of how to achieve such goals. 
The relationships among different role 
classes also depict the organizational 
relationships among the real-world entities 
represented by these roles. Such information 
is expected to be provided by domain 
experts rather than software engineers. At 
system runtime, role instances are created 
dynamically either by a human user or by an 
agent when certain goals are needed to be 
realized. Those role instances mainly carry 
domain knowledge; however, they do not 
actually perform any actions like agents. 
When an agent takes a role instance, the 
agent uses the knowledge incorporated in 
the role instance in order to achieve the 
goals defined in it.   

 
One major advantage of the RADE approach 
is that it supports the separation of domain 
knowledge and the agent framework for the 
simulation system. Any domain knowledge 
relates to the health care domain can be 
specified by domain experts through 
definition of roles and their 
interrelationships. On the other hand, 
software engineers are responsible to 
develop automatic agents that actually 
perform tasks in the simulation system. 
 
DEFINING ROLES AND ROLE 
SPACE  
 
The definition of a role class includes the 
following information: 

 

1. A set of attributes, such as role name 
and identification.  

2. A set of goals; each goal is associated 
with a plan tree, which is a hierarchal 
description of the alternatives to 
accomplish a goal.   
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3. A set of actions that can be performed 
by this role, i.e. a Physician role can 
perform an action of Prescribe 
Medicine.  

4. Qualification: the requirement needed to 
take such a role. 

5. The permission of this role, which 
specifies what information and resource 
are allowed to be access by this role. For 
instance, a Physician role has the 
permission to access the patient’s 
medical record.  

6. A set of protocols, which describe how 
this role should interact with other roles.  

All above information is domain-dependent; 
hence an expert in health care domain who 
is familiar with all those rules and 
regulations can define those role classes. 
The formal definition of role class in Object-
Z can be found in (Xu & Zhang 2005). 
 
In the health care simulation system, we 
have defined the following role classes: 
 
1. Patient: A person who seeks for health 

care. 
 

2. Physician: A person who determines 
whether diagnostics are to be 
undertaken, provides prescriptions, 
performs medical and surgical 
interventions, has the ability to direct 
patient care and advance a patient to the 
next step of care. 

 
3. Medical Assistant: A health care 

professional who performs a variety of 
clinical, clerical and administrative 
duties within a health care setting. There 
are two roles defined as subclasses of 
this role class: 

a. Administrative Medical 
Assistant (MA Admin): Medical 
assistant who performs the 
administrative job. 

b. Clinical Medical Assistant (MA 
Clinical): Medical assistant who 
performs the clinical job. 

4. Nurse: There are two roles defined as 
subclasses of this role class: 

a. Nurse Assistant is a nurse who 
assesses the patient’s medical 
problem, provides care and 
helps to set up laboratory 
specimen and medical 
instruments. 

b. Nurse Practitioner: a registered 
nurse who has completed an 
advanced training program in 
primary health care delivery, 
and may provide primary care 
for non-emergency patients, 
usually in an outpatient setting. 

 
Figure 2 shows the RADE interface for a 
user to create role classes and define the 
interrelationships among role classes. In this 
example, the interrelationships include 
inheritance, association and incompatibility. 
An inheritance relationship describes the 
generalization/specification relationship 
between two role classes. For example, both 
MA Admin and MA Clinical inherit the 
Medical Assistant role class since they are 
specified medical assistants. Association is a 
very common relationship between role 
classes; it indicates that an instance of one 
role class may perform an action on an 
instance of another role class. Association 
relationships exist between Physician and 
Nurse, Physician and Patient, etc. 
Incompatibility relationship describes the 
constraints that the role instances of two role 
classes cannot be taken by the same agent in 
the same interaction scenario. For example, 
an agent cannot take a Physician role 
instance for treating a Patient role instance if 
the agent is already taking this Patient role 
instance; however, the agent can take 
another Physician role instance for treating 
another Patient role instance that is not taken 
by this agent. The definition of such 
relationships depends on the domain 
knowledge, so we feel that the domain 
experts are the best candidate to use this 
interface to define the role classes and their 
interrelationships. 
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Figure 2 RADE Interface for creating roles (© [2007], [Journal of the Brazilian Computer 
Society]. Used with permission) 

In this example, Physician role is defined 
with a goal to provide cure. The plan tree 
provides domain knowledge of how to 
accomplish this goal. To represent the 
domain knowledge, we introduce RTÆMS 
(Role-Based Task Analyzing, environment 
Modeling, and Simulation) language as an 
extension of the TÆMS language (Decker, 
1996). TÆMS is a hierarchical task 
representation language, which supports 
representation of relationships among goals 
and sub-goals, the quantitative description of 
the atomic approaches and uncertainties, and 
resources. We extend the TÆMS language 
by introducing a role attribute for task nodes 
that represent goals and sub-goals. The 
attribute role specifies what roles are needed 
to carry out this goal or sub-goal. Figure 3 
shows the plan tree for the goal ‘Provide 
Cure’, which includes two sub-goals: 
‘Examine Patient’ and ‘Provide Treatment’.  
The goal ‘Provide Cure’ is associated with a 

min quality accumulative function (qaf), 
which specifies the following relationship: 
 
Quality(ProvideCure) = 
min(Quality(ExaminePatient), 
Quality(ProvideTreatment)) 
 
Each role is defined with a goal, a plan tree, 
a motivational quantity production set 
(MQPS), a certificate and other attributes. A 
goal represents a task that the role needs to 
accomplish, and the plan tree specifies the 
domain knowledge of how to accomplish the 
goal in terms of decomposing it as sub-
goals. Consider the following role class. 
   
ROLE: Physician 
GOAL: Provide Cure 
MQPS: (MQ_professional, p1), 
(MQ_moral, p2), (MQ_experience, p3) 
CERTIFICATE: MD  (Doctor  of  Medicine) 
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Figure 3 Plan tree for goal Provide Cure in RTÆMS representation (© [2007], [Journal of the 
Brazilian Computer Society]. Used with permission) 

 
This min quality function associated with a 
goal means that the success of this goal 
depends on the success of all of its sub-
goals. Meanwhile, the use of max quality 
function specifies that there are several 
alternatives to achieve the goal. For 
instance, to ‘Provide Treatment’ for the 
patient, the Physician can choose either 
‘Prescribe Treatment’ or ‘Administer 
Treatment’. Other available quality 
accumulation functions in RTÆMS 
language are: sum and seq_sum. 
 
Each sub-goal can be decomposed into 
smaller goals, i.e. ‘Examine Patient’ consists 
of three sub-goals: ‘(Read) Medical History 
Record’, ‘Clinical Test ‘and ‘Test 

Interpretation’. For those non-local goals, 
where the tasks need to be performed by 
other roles, the specification of other roles is 
included in the plan tree description. For 
example, ‘Clinical Test’ should be 
performed by a Clinical Medical Assistant 
(MA Clinical), and task ‘Setup Equipment’ 
and ‘Provide Care’ belongs to the Nurse 
Assistant role. The dash lines represent the 
interrelationship between goals/sub-goals. 
For example, ‘Clinical Test’, which enables 
‘Test Interpretation,’ means that the first 
goal ‘Clinical Test’ needs to be achieved 
successfully before it is possible to 
implement the second goal ‘Test 
Interpretation’. In addition, ‘(Read) Medical 
History Record’ facilitates the ‘Clinical 
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Test’ process because it can provide some 
useful information about the patient. Other 
types of interrelationships defined in TÆMS 
include disables and hinders. The primitive 
goal (lowest-level goal) in the TÆMS 
representation can be specified with more 
details in another plan tree that is associated 
with another role. For example, the plan tree 
for the sub-goal ‘Provide Care ‘ is described 
in Figure 3, this information belongs to the 
role Nurse Assistant. The plan tree 
represented in RTÆMS shows all 
possibilities to achieve a goal and the 
interrelationship among goals/sub-goals. It 
provides fundamental knowledge for agents 
to plan and schedule its local activities, and 
it also supports the collaboration and 
cooperation among agents. More details 
about the plan tree will be discussed later in 
the Section of Coordination. 
 
Each goal is associated with a motivational 
quantity production set (MQPS): MQPS = 
{(MQi, qi), (MQj, qj), (MQk, qk)...}, which 
represents the success accomplishment of 
the goal that generates qi amount of MQi, qj 
amount of MQj, qk amount of MQk, etc. 
The MQPS describes how this goal 
contributes quantitatively to some higher-
level goals (abstract goals), which are built 
in an agent’s motivation. For instance, when 
an agent fulfills a goal ‘Provide Cure’, it 
collects p1 units of MQ_professional, p2 
units of MQ_moral and p3 units of 
MQ_experience. The agent uses the MQPS 
specification in the goal definition and its 
motivation to determine whether it is 
interested in a role instance, and how 
interested it is.  
 
The Qualification defined in a role class 
describes the requirements for a particular 
role. Only an agent who has the specified 
certificate can take a role instance of that 
role class.  For example, Physician role is 
defined with a certificate of MD (Medical 
Doctor); only an agent with a MD certificate 
can take a Physician role instance. 
 
DEFINING AND DEVELOPING 
AGENT CLASSES 

Agents are the real programmed entities 
running in the system. In the health care 
simulation system, each agent represents a 
personal assistant for a human user in the 
real world. The agent is responsible for 
scheduling a user’s daily tasks according to 
the user’s preference and constraints. The 
agent is also responsible for coordinating 
with other agents when coordination is 
needed between its own user and other 
users. A formal definition of agent class in 
Object-Z can be found in (Zhang, Xu & 
Shrestha 2007). An agent class definition 
includes: a set of attributes, motivations, 
utility function, sensor data, a set of 
reasoning mechanisms, and execution 
mechanisms. 
 
Agent attributes include agent names, user, 
identification, and other descriptive 
characteristics. The values of these attributes 
are set when an agent instance is instantiated 
from the agent class. Different agent 
instances have different attribute values.  
 
Motivation is defined as “any desire or 
preference that can lead to the generation 
and adoption of goals, and which affects the 
outcome of the reasoning or behavioral task 
intended to satisfy those goals” (Luck & 
d’Inverno, 1995). Motivation is the key for 
an agent to decide which goals it should 
pursue and how to pursue a goal. We adopt a 
quantitative view of motivation in our 
practice. Motivation is defined as a set of 
motivation quantities (MQs) (Wagner & 
Lesser 2002).) that the agent tracks and 
accumulates. Each MQ is associated with a 
preference function and represents 
progresses towards an abstract goal. An 
abstract goal is a long-term commitment to 
make progress toward certain direction but 
not a concrete task with a specified plan. For 
example, a user creates an assistant agent 
named Adam. The user specifies his 
preference on choosing tasks by defining the 
motivation of this agent as: 
 
Motivation: {MQ_Professional, 0, 0; 
MQ_Moral, 1, 1; MQ_Experience, 2, 2} 
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Figure 4 Automatic agent generation interface (© [2007], [Journal of the Brazilian Computer 
Society]. Used with permission)

The motivation specifies three long-term 
goals the user has: professional 
achievement, moral achievement and 
experience achievement, which are 
represented by three types of MQs due to the 
user’s Physician role.  The two numbers 
following the MQ name is the function 
index and the initial amount of this type of 
MQ. The function index specifies a utility 
function that maps a certain number of units 
of MQ of this type into the agent’s local 
utility. Since the function could be a non-
linear function and is also context sensitive, 
the initial amount of this type MQ is also 
important. The user also provides this agent 

his qualification MD, so this agent can be 
qualified for a Physician role. 
 
Each agent collects sensor data from the 
environment. For software agents built in 
this system, sensor data refers to the 
messages and information the agent receives 
from the environment including other 
agents. Based on the sensor data it collects 
and its motivation, the agent uses its 
reasoning mechanisms to make decisions. 
The decisions are made at different levels: 
selection of roles, selection of goals, and 
selection of the approach to fulfilling the 
goals. The first issue is resolved by A-R 
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mapping mechanisms, and the later two 
issues are inter-related, which are solved by 
planning /scheduling mechanisms.  Given 
the formal definition of motivations, goals 
and the detailed description of alternatives to 
achieve a goal, it is possible to build some 
general, domain-independent reasoning 
mechanisms/toolkits. The user can select 
appropriate components from such toolkits 
and add them to the agent; the user can also 
customize these general mechanisms and 
toolkits by setting up certain parameters. 
These general mechanisms and toolkits are 
reusable for agents in different application 
domains.  
 
Each agent is equipped with some execution 
mechanisms that can be used to generate the 
output, which changes the environment. For 
software agents, the execution mechanisms 
are the primitive actions to change the 
environment state. Some of these execution 
mechanisms are domain-dependent. For 
example, in our health care simulation 
system, an agent representing a hospital 
worker is built with an execution mechanism 
to set up medical equipment, which is an 
action the person can perform in real world.  
Other execution mechanisms could be 
application-independent, such as sending a 
message to another agent. 
 
AUTOMATIC AGENT 
GENERATION PROCESS 
 
After the user has defined role classes and 
agent classes, agent can be automatically 
created using a tool we developed. The basic 
idea of automatic generation of agents is to 
use component-based agent architecture, 
where the user can select the components to 
be included in this agent, and specify a set of 
attributes of the agent.  
 
The designer or the user of the agent needs 
to decide what reasoning tool should be built 
in and select the appropriate execution tools 
for the agent according to the design 
purpose of the agent. It is assumed that there 
are a set of reasoning and execution 
mechanisms available in the toolkit, which 

can be selected and plugged into the agent 
seamlessly.  

Based on the general agent architecture, we 
developed a tool to support the automatic 
agent generation process. This tool is 
created by extending the JAF framework 
(Vincent, Horling & Lesser, 2001) 
developed by MAS lab at University of 
Massachusetts, Amherst. This tool includes 
a graphic user interface (GUI), which can be 
used to create new agents, modify existing 
agents, run agents and delete agents. A 
screen shot of the graphic user interface is 
shown in Figure 4. 
 
The user also defines the agent’s reasoning 
and execution mechanisms by selecting a 
number of ready-to-plug-in components 
such as: planning, scheduling, 
communication, etc. The user can select 
what coordination rule should be used by 
this agent. We will discuss more about the 
coordination rule in the next section. After 
an agent class is created, one or multiple 
agent instances (the executable programs) 
can be created from this class definition. 
Each agent instance is an independent 
program, and the agent is named after its 
class with a unique number ID. For 
example, when a user creates an agent class 
“X” and three agent instances of this class, 
the three agents are named as “X_1”, “X_2” 
and “X_3,” respectively. The user can run 
agents from this interface by clicking on the 
“RUN AGENT” menu box on the top, and 
selecting a number of agents to run from a 
list of agents that have already been created. 
Multiple agents can be created and run on 
difference machines. The user can choose to 
delete existing agents by clicking on the 
“DELETE AGENT” menu box. Finally, the 
user has an option to choose the 
coordination rules from three types of rules, 
namely simple rules, hard and soft 
relationships based rules, and priority based 
rules. 
 

AGENT COORDINATION AND 
COOPERATION 
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In a health care simulation system with 
complex activities, distributed information 
and resources, agents need to coordinate and 
cooperate on their actions. Efficient 
coordination and cooperation mechanisms 
are important for the performance of the 
system. An agent should coordinate its own 
actions with those of other agents when 
there are constraints and interdependencies 
among their actions. 
 
The RTÆMS language supports 
collaborations and cooperation by specifying 
interrelationship among goals and sub-goals, 
so agents know when and with whom they 
need to collaborate and cooperate. A set of 
domain-independent general collaboration 
mechanisms (GPGP) based on TÆMS 
language (Lesser et. al., 2004), has been 
developed, where some of GPGP similar 
mechanisms are reused in RADE framework 
based on RTÆMS language. Agents can 
coordinate and cooperate with each other 
using the set of mechanisms according to the 
protocols defined in the role, which specify 
how the interaction between roles should 
proceed. 

 
Figure 5 Plan tree for ‘Setup-Equipment’ in 
RTÆMS representation 

Figure 3 and Figure 5 illustrate pictorially 
the information that are captured in a 
RTEAMS representation, which include: 
 
1. Top-level goals that an agent intends to 

achieve including the deadline for their 
completion. In Figure 3, ‘Provide Cure’ 
is the top-level goal that needs to be 
completed and in Figure 5, ‘Setup 
Equipment’ is the top-level goal that 
needs to be completed. 

 
2. One or more of the possible ways of 

achieving goals is expressed as an 

abstraction hierarchy whose leaves are 
basic action instantiations, called 
methods. In Figure 5, the top-level goal 
‘Setup Equipment’ has sub-goals 
“Laboratory Specimen’ and ‘Medical 
Instrument’, which are the methods. 
These sub-goals need to be completed 
before the top-level goal can be 
achieved. 

 
3. Quantitative definition of the degree of 

achievement in terms of measurable 
characteristics, such as solution quality 
and time, is called the quality 
accumulation function (qaf). In Figure 
5, there exits a quality accumulation 
function seq_sum between the sub-goals 
“Laboratory Specimen’ and ‘Medical-
Instrument’. The total quality of the goal 
“Setup Equipment” is the sum of the 
quality of its sub-goals “Laboratory 
Specimen’ and ‘Medical Instrument’, 
and these two sub-goals need to be 
accomplished in a sequence order. 

 
4. Task relationships indicate how basic 

actions or abstract task achievement 
affect task characteristics such as its 
quality and time, elsewhere in the task 
structure. In Figure 3, there exits a 
“facilitates” relationship between the 
task ‘Medical History Record’ and 
‘Clinical Test’. A facilitates relationship 
indicates that if the task ‘Medical 
History Record’ is completed before the 
start of task ‘Clinical Test’, it will 
increase the quality, and reduce the cost 
and duration of task ‘Clinical Test’ by 
some value. 

 
Task relationships represent a measure view 
of temporal constraints among activities as a 
result of information sharing relationships. 
An enables relationship is a hard 
relationship that essentially acts as a binary 
switch. In this case, the target method or 
task cannot accrue quality until the enabling 
interrelationship is active. A disables 
relationship indicates the exact converse of 
an enables relationship, which precludes the 
possibility of performing an activity when 

 13



another activity is performed,.  Both a 
facilitates and hinders relationship are soft 
relationships. When a ‘facilitates’ 
relationship is active, the targets’ quality is 
increased by some quality power, and the 
duration and cost are reduced by the 
duration power and cost power, respectively.  
Similarly, when a ‘hinders’ relationship is 
active, the target’s quality is reduced, while 
the duration and cost are increased.  These 
relationships are called non-local effects if 
they are relationships between tasks situated 
in different agents for coordination. 
Relationships among tasks in the same agent 
are not of direct concern of the coordination 
component. The measured view of these 
relationships indicates how the quality of the 
information generated by an activity will 
affect the performance characteristics of the 
activity using this information, such as the 
length of its execution and the quality of its 
resulting solution. 
 
There is a strong connection between the 
coordination module and a local scheduler 
module that is part of each agent’s 
architecture. In our work, the agent’s local 
optimization expert is the Design-to-Criteria 
Scheduler (DTC) (Wagner, Garvey & 
Lesser, 1998). During the coordination 
process, the coordination module queries the 
DTC scheduler repeatedly to explore the 
implications of constraints.  The 
coordination and DTC module present in 
each agent can guide the agent’s activities 
using knowledge of its own local situation 
and partial knowledge of the activities being 
carried by other agents. The coordination 
component in each agent also coordinates 
with that of other agents to generate 
constraints on local control that leads to 
more coherent agent activities. 
 
Each agent starts its coordination component 
by constructing its own local view of the 
activities that the agent intends to pursue, as 
well as the relationships among these 
activities (Lesser et. al., 2004). The RTÆMS 

representation is used by the problem 
solving, coordination and scheduling 
components as a common communication 
language. The coordination component 
helps to construct a global view for an agent, 
and to recognize and respond to particular 
inter-agent task structure relationships by 
making commitments to other agents. The 
commitments result in coordinated behavior 
by affecting the tasks an agent executes and 
the results transmitted. The DTC scheduler, 
based on commitments, agent’s goal, the 
local and non-local values of tasks, and 
other agent activity constraints, creates a 
schedule of activities for the agent, which 
must meet the real-time deadlines. The 
coordination component coordinates the 
activities of an agent through modulating its 
local control as a result of placing 
commitments and constraints on the local 
scheduler. 
 
The coordination component uses the 
RTÆMS task structure representation to add 
an extension of local and non-local 
commitments to task achievement. The 
coordination includes the goals that the 
agent is currently pursuing, the goals it will 
likely pursue in the near future, the 
characteristics of the abstract tasks and basic 
actions available to achieve these goals, 
their relationships to other tasks, and the 
degree of achievement necessary for each 
goal. 
 
A user can choose a coordination rule from 
three types of coordination rules, namely 
Rule1 (simple), Rule 2 (hard and soft 
relation), and Rule 3 (priority based). The 
coordination mechanism between agents 
depends on selection of a specific rule. 
 
Suppose we have two agents A and B shown 
in Figure 6. Agent B is performing task B1. 
Task B1 has subtask A1 and B2. Subtask A1 
is performed by agent A and subtask B2 is 
performed by agent B itself.  There is an 
‘enables’ relationship from A1 to B2. 
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Figure 6 Agent A and Agent B’s initial task 
view with enables relationship 

When a user selects Rule 1 (simple), the 
agents use a very simple coordination 

mechanism - they only consider the quality 
accumulation function but not the hard and 
soft relationships between the tasks. As 
shown in Figure 6, suppose there is a 
seq_sum quality accumulation function 
associated with task B1, agent B recognizes 
that the quality achievement of B1 depends 
on the accomplish of task A1 and it has to be 
performed before task B1, it then sends a 
message to agent A asking it to perform task 
A1 by a given deadline. Agent A replies 
with the start time and finish time for task 
A1 according to its local schedule. Upon 
receiving this message agent B reschedules 
the start time of its task B1 to the finish time 
of task A1.  This is the Scenario 1 described 
in Table 1.  

Table 1 Coordination scenarios using different rules

Rule 2 deals with both hard and soft 
relationships together with the quality 
accumulation functions and non-local tasks. 
Hard relationships include the enables and 
disables relationship, and soft relationships 
include facilitates and hinders relationships.  
 
As shown in Figure 6, task A1 has enables 
relationship with task B2. Agent B sends a 
message to agent A saying that task B2 has 
an enables relationship with task A1 and 
should complete task A1 by a given 
deadline. Agent A checks the start time of 
task A1. If the start time of task A1 is less 
than or equal to the start time of task B2, 
then agent A makes a commitment to agent 
B that it can finish the task B2 by the given 
deadline. If the finish time of task A1 is 

greater than the start time of task B2, agent 
A then moves task A1’s start time to task 
A1’s earliest start time. Agent A sends the 
new start time and finish time of task A1 to 
agent B. If the finish time of task A1 
proposed by agent A is less than or equal to 
the start time of task B2, agent B follows its 
normal schedule. Otherwise, agent B 
temporarily sets task B2’s start time to the 
finish time of task A1 as proposed by agent 
A and calculates its new finish time for task 
B2. If the new finish time falls within the 
deadline of task B2, then agent B 
reschedules its task B2 with new values. 
Otherwise, task B2 is not performed. 
 
Scenario 2 in Table 2 explains how agents 
coordinate with each other using Rule 2.  In 
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the initial schedule for task B2, the start time 
is 5. Agent A sets its start time to its earliest 
start time (0). Now the new finish time for 
task A1 is 5. Since the new finish time for 
task A1 is equal to the start time of task B2, 
the schedule for task B2 remains unchanged. 
 
Scenario 3 shows a different case. In the 
initial schedule for task B2, the start time is 
5. Agent A sets its start time to its earliest 
start time (0). Now the new finish time for 
task A1 is 6. Since the new finish time for 
task A1 is greater than the start time of task 
B2, rescheduling of task B2 is needed. Task 
B2 has a new start time as 6 after 
rescheduling.  
 
Rule 3 is based upon priority of a task, 
which takes into consideration the hard and 
the soft relationships. Rule 3 is useful when 
an agent is performing more than one task. 
In the RTÆMS representation, each task has 
a new attribute called “priority”, with its 
value ranging from 1 (i.e., the highest 
priority) to 10 (i.e., the lowest priority). 
 
Let us assume that agent A has two tasks A2 
and A1. Task A1 has enables relationship 
with task B2. Agent B sends a message to 
agent A saying that task A1 has an enables  
relationship with task B2 and requires task 
A1 to be completed by a given deadline. 
Agent A checks the start time of task A1. If 
the start time of task A1 is less than or equal 
to the start time of task B2, agent A makes a 
commitment to agent B that it can finish the 
task B2 by the given deadline. If the finish 
time of task A1 is greater than the start time 
of task B2, agent A then checks the start 
time and finish time of task A2. If task A2 is 
performed before task A1, agent A 
compares the priority of task A1 and A2. If 
the priority of task A1 is higher than that of 
task A2, agent A reschedules task A1 to be 
performed before task A2, and the new start 
time and finish time of task A1 is sent to 
agent B. Otherwise, agent A sets the start 
time to task A1 to its earliest start time. 
Agent A sends its new start time and finish 
time to agent B. If the finish time of task A1 
proposed by Agent A is less than the start 

time of task B2, agent B follows its normal 
schedule. If the proposed finish time of task 
A1 is greater, agent B temporarily sets B2’s 
start time to A1’s finish time and calculates 
the new finish time for task B2. If the new 
finish time is no later than the deadline of 
task B2, agent B reschedules its task B2 
with new values; otherwise, task B2 is not 
performed.  
 
Table 1 shows how Rule 3 works. The initial 
start time of task B2 is 6 and agent A cannot 
complete the task A1 before 6. Hence, agent 
A compares the priority of task A2 and A1. 
Since priority of task A1 is higher, A1 is 
performed before A2, and the new schedule 
is sent to agent B. 
 
Similarly, these coordination rules can be 
used to support other non-local 
relationships, including disables, facilitates 
and hinders. 
 
RUNTIME SCENARIO 
 
Now we present a runtime scenario for a 
hospital organization to describe how the 
health care simulation system works. The 
scenario demonstrates how the dynamic task 
allocation is accomplished through the A-R 
mapping mechanism, and how agents 
coordinate with each other in their activities. 
In this scenario, a special agent role space is 
first created. Role space agent is initially not 
taking any active role in the system; rather, 
it is mainly responsible for maintaining and 
managing the role instances in the system. 
The role space checks the plan tree of a role 
instance, when this role instance is taken by 
an agent, which recognizes the needs to 
create new role instances.  The role space 
selects the appropriate agent for the role 
instance after verifying the qualification and 
consistency of the candidates. 
 
When the system is initialized, the system 
administer creates several Patient role 
instances to express the expected service 
requirements from patients. The number of 
Patient role instances depends on the 
capability of the hospital. These patient role 
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instances are posted in the role space and are 
not active until they are taken by some 
agents. When a (real) patient Bryan enters 
the hospital for services, a personal assistant 
agent named Bryan is created for this 
patient, and the agent takes one Patient role 
instance. In this case, Bryan uses the 
coordination Rule 3, which is specified 
when the user defines the Patient agent 
class. 
 
When agent Bryan takes the Patient role 
instance, it has one goal to achieve: ‘Get 
Cure’. The plan tree of this goal describes 
that two sub goals ‘Assist Patient’ and 
‘Provide Cure’ must be achieved so that the 
goal ‘Get Cure’ can succeed. The goal 
‘Assist Patient’ belongs to a MA Admin 
(Administrative Medical Assistant) role and 
the goal ‘Provide Cure’ belongs to a 
Physician role. Based on this information, a 
Physician role instance and an MA Admin 
role instance are created by the role space. 
 
Four other agents, Adam, Cathy, Kevin and 
David that represent four medical 
professionals are also created and active in 
the system. Both agent Adam and the 
remaining agents are initialized with 
coordination Rule 3. They have been idle 
and sent requests to the role space for 
available role instances. When the MA 
Admin and Physician role instances are 
created in the role space, all three agents 
who are interested in taking any additional 
role instances receive a message for this 
update. After receiving the message, the 
agent checks the goal associated with the 
role instance, especially the MQPS, to see if 
it matches its own motivation. If the MQPS 
contains the same type of the agent’s MQ in 
its motivation, the agent is said to be 
interested in taking that role instance.  
 
For example, the Physician role instance has 
MQPS as: (MQ_professional, p1),  
(MQ_moral, p2), (MQ_experience, p3), all 
these three types MQ’s belong to agent 
Adam’s motivation. So Adam is interested 
in this role instance. How interested Adam is 
for this role instances depends on the actual 

values of p1, p2 and p3, the exact structures 
of the mapping functions with index 0, 1, 
and 2, and the current accumulation of these 
MQ’s for agent Adam.  
 
If agent Adam is interested in multiple role 
instance openings, it will compare the 
degree of interests in these role instances 
and select the most interested ones, and send 
requests to the role space. It is also possible 
that the role space receives requests from 
multiple agents for the same role instance. In 
this case, the role space verifies the 
qualification of each agent by matching the 
agent’s qualification with the certificate 
requirement defined in the corresponding 
role class. For example, agent Adam is 
qualified for this role instance because it has 
a MD qualification that matches the 
certificate requirement of the Physician role 
class. The role space also checks if this role 
instance is compatible with other role 
instances the agent is taking right now. For 
instance, suppose agent Bryan has a MD 
qualification and it is also interested in this 
Physician role instance; however, according 
to the incompatibility relationship between 
the Physician role and the Patient role, agent 
Bryan cannot take this role instance because 
it takes the Patient role instance related to 
this Physician role instance. 
 
After verifying the qualification and 
checking the consistency, the role space 
selects an appropriate agent (agent Cathy) 
for the MA Admin role instance, whose goal 
is to ‘Assist Patient’. The role space then 
tells agent Cathy that the task ‘Assist 
Patient’ has an enables relationship with the 
task “Provide Cure’. The plan tree for the 
goal ‘Assist Patient’ consists of four sub 
goals: ‘Greet Patient’, ‘Schedule 
Appointment’, ‘Admit Patient’, and ‘Answer 
Telephone’. All of these sub-goals can be 
performed by the same agent who takes the 
MA Admin role instance, so no new role 
instance has to be created.  
 
After assigning the MA Admin role instance 
to agent Cathy, the role space assigns the 
Physician role instance to another 
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appropriate agent - Adam, based on its 
qualification. The role space then tells agent 
Adam that task ‘Assist Patient’ enables its 
task ‘Provide Cure’. The goal of taking the 
Physician role by agent Adam is to ‘Provide 
Cure’. The role space reads the plan tree 
associated with the goal, and finds that in 
order to accomplish this goal, sub-goals 
‘Setup Equipment’ and ‘Provide Care’ must 
be accomplished by other roles. In response 
to this need, new role instances Nurse 
Assistant and MA Clinical (Clinical Medical 
Assistant) are created. The role space then 
selects appropriate agents Kevin and David 
to take these role instances respectively. 
This process will continue until no more 
new role instance is needed, and all role 
instances have been taken. After a goal 
defined in a role instance is accomplished, 
the agent will collect the utility as defined in 
the MQPS of this role instance, and release 
the role instance, which will be further 
deleted by the role space. 
 
After all role instances have been assigned 
to appropriate agents, the role space sends a 
table of roles to the agent who is performing 
that role, followed by a message to start the 
coordination. The agents can now begin the 
coordination process. For example, as 
shown in Figure 7, Patient Bryan a goal to 
‘Get Cure”, which has two non-local 
subtasks ‘Assist Patient’ and ‘Provide Cure’ 
performed by MA Admin Cathy and 
Physician Adam, respectively. Patient Bryan 
sends a message to both agents to ask them 
to complete the task within the deadline. 
Agents Cathy and Adam reply to Patient 
Bryan with their scheduled execution time. 
The Physician Adam coordinates with MA 
Admin Cathy using coordination Rule 3 to 
schedule the task ‘Assist Patient’ before 
‘Provide Cure’. There is a facilitates 
relationship between task ‘(Read) Medical 
History Record’ and task ‘Clinical Test’. 
Since both tasks belong to the same agent, 

so the ‘facilitates’ relationship is taken care 
of by agent Cathy’s local scheduler.  
 
Since task ‘Assist Patient’ has an enables 
relationship with task ‘Provide Cure’, 
Physician Adam requests MA Admin Cathy 
to complete the task by 12. However, Cathy 
has another task ‘Clean’ that is scheduled 
for time 0 to 12, and the task ‘Assist Patient’ 
is scheduled for time 12 to 24. Cathy 
compares the priority of task ‘Assist Patient’ 
and task ‘Clean’: priority of task ‘Assist 
Patient’ is higher so this task is rescheduled 
before the task ‘Clean’. Nurse Assistant 
Kevin can perform the task ‘Provide Care’ 
after task ‘Operate’ performed by Physician 
Adam. Similarly, Clinical MA David can 
perform the task ‘Setup Equipment’ before 
task ‘Operate’ and meet the deadline 
requested by Physician Adam. So no more 
rescheduling is necessary. The initial 
schedule for all tasks and new schedule for 
task ‘Clean’ are shown in Table 2.  

After the coordination is complete the agents 
can now begin execution, Patient Bryan can 
now begin executing its task ‘Get Cure’, 
which has subtasks ‘Assist Patient’ and 
‘Provide Cure’. The task ‘Assist Patient’ 
should be performed by MA Admin Cathy. 
Patient Bryan agent sends a message to MA 
Admin Cathy to begin the task ‘Assist 
Patient’. MA Admin Cathy then begins 
executing the task ‘Assist Patient’, which 
has the subtasks ‘Answer Telephone’, 
‘Schedule Appointment’, ‘Greet Patient’ and 
‘Admit Patient’. The quality of the task 
‘Assist Patient’ is defined by the quality 
accumulative function “seq_sum”, which is 
the total quality of all of its sub-tasks 
performed in sequence. Since MA Admin 
Cathy itself can perform all of the subtasks, 
it starts the execution immediately. After 
Cathy completes the task ‘Assist Patient’, it 
collects the motivation quantities as defined 
in the MQPS of this role instance.  
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Table 2 Task schedules 
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Figure 7 Plan tree for ‘Assist-Patient’ in RTÆMS representation 

Figure 8 Plan tree for updated ‘Get-Cure’ 
in RTÆMS representation  

Upon receiving this message, patient Bryan 
updates its own task structure. MA Admin 
Cathy has rescheduled this task after the task 
‘Assist Patient’. So when Cathy completes 
the task ‘Assist Patient’, it begins executing 
the task ‘Clean’. Now Patient Bryan can 
start executing the task ‘Provide Cure’. 
Since the task ‘Provide Cure’ is performed 
by Physician Adam, so Patient Bryan sends 
a message to Physician Adam saying that it 
can start the execution. Physician Adam 
begins the execution of the task ‘Provide 
Cure’. The task ‘Provide Cure’ has subtasks 
‘Examine Patient’ and ‘Provide Treatment’ 
as shown in Figure 3. 

Physician Adam begins executing ‘Examine 
Patient’, which has subtasks ‘(Read) 
Medical History Record’, ‘Clinical Test’ and 
‘Test Interpretation’, which can all be 
performed by Physician Adam. After 
completion of these subtasks, it then begins 
executing task ‘Provide Treatment’, which 
has subtasks ‘Prescribe Treatment’ and 

‘Administer Treatment’ with the quality 
accumulative function “max”, which means 
only one of these two subtask needs to be 
accomplished. 
 
If Physician Adam decides to perform the 
task ‘Administer Treatment’, then the three 
subtasks ‘Setup Equipment’, ‘Operate’ and 
‘Provide Care’ need to be accomplished. 
The task ‘Setup Equipment’ is performed by 
MA Clinical agent David. So Physician 
Adam sends a request to Clinical MA David 
to perform the task ‘Setup Equipment’.  
David starts executing the task ‘Setup 
Equipment’, which has subtasks ‘Laboratory 
Specimen’ and ‘Medical Instrument’.  After 
the completion, David sends a message to 
Physician Adam, saying that the task has 
been completed, together with the quality 
accumulated, cost accrued and the time 
taken.  Upon receiving this message, 
physician Adam updates its task structure 
and begins executing ‘Operation’, which is 
performed by itself.   
 
Similarly, the task ‘Provide Care’ is 
performed by Nurse Assistant Kevin. 
Physician Adam sends a request to Kevin to 
execute the task. Kevin begins executing the 
task ‘Provide Care’, which has the subtasks 
‘Serve Patient’, ‘Provide Skin Care’ and 
‘Observe Patient’. Nurse Assistant Kevin 
itself can perform all of these subtasks.

.
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Figure 9 Plan tree for updated ‘Provide Care’ in RTÆMS representation 

After the completion of the task, Kevin sends a 
message to Physician Adam, saying that the task 
has been completed, together with the quality 
accumulated, cost accrued and time taken. Upon 
receiving this message, physician Adam updates 
its task structure. Since task ‘Provide Cure’ has 
now been completed, Adam sends a message to 
Patient Bryan that the task has been completed, 
together with the quality accumulated, cost 
accrued and time taken. Upon receiving this 
message, Patient Bryan updates its task 
structure. 
 
FUTURE TRENDS 
 
The future work includes further development of 
the system based on the current prototype. 
Especially, we are interested providing support 
for users to define interaction protocols in role 
classes, and integrating those domain-dependent 
protocols with domain-independent 
communication mechanisms in agents. We are 
also interested in experimenting with large 
systems, more complex scenario and analyzing 
the system performance. 
 
CONCLUSIONS 
 
In this chapter, we describe a multi-agent health 
care simulation system built using RADE 
framework. The integrated framework supports 
role-based design of multi-agent systems as well 
as implementation of utility-driven agents that 
can use a variety of existing agent reasoning and 

coordination mechanisms. We describe how the 
roles are defined, how agents are created, and 
how the role instances are mapped to agents. We 
also describe the rule-based coordination 
mechanisms and present a runtime scenario that 
shows how the simulation system works and 
how agents coordinate with each other to 
schedule their local activities. This work verifies 
the feasibility of modeling health care system 
with multi-agent approach and demonstrates the 
strength of automatic coordination, planning and 
scheduling.  
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