
Viewpoints

Future Research Directions of Software

Engineering and Knowledge Engineering¤

Haiping Xu

Computer and Information Science Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747, USA

hxu@umassd.edu

Received 18 July 2014

Accepted 22 November 2014

Software Engineering (SE) and Knowledge Engineering (KE) are closely related disciplines with
goals of turning the development process of software systems and knowledge-based systems,

respectively, into engineering disciplines. In particular, they together can provide systematic

approaches for engineering intelligent software systems more e±ciently and cost-e®ectively. As

there is a large overlap between the two disciplines, the interplay is vital for both to be suc-
cessful. In this paper, we divide the intersection of SE and KE into three subareas, namely

Knowledge-Supported Software Engineering (KSSE), Engineering Knowledge as a Software

(EKaaS), and Intelligent Software System Engineering (ISSE). For each subarea, we describe

the challenges along with the current trends, and predict the future research directions that may
have the most potential for success.

Keywords: Software engineering; knowledge engineering; knowledge-supported software engi-
neering; intelligent software systems; knowledge as a software.

1. Introduction

To enhance the quality of software systems and e®ective management of software

development processes, the discipline of Software Engineering (SE) was ¯rst coined

in a NATO sponsored international conference in 1968 [1]. The initial goal of soft-

ware engineering was to apply engineering disciplines to the software development

process, in order to deal with the so-called \software crisis" problem. Issues related to

this problem include software quality, project time and budget being out of control,

and di±culties in software maintenance due to a lack of systematic, rigorous and

*This paper is based on an invited talk of the same title given at the 26th International Conference on

Software Engineering and Knowledge Engineering (SEKE 2014), Vancouver, Canada, July 1–3, 2014.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 25, No. 2 (2015) 415–421

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194015500035

415



measurable development methodologies. During the past decades, many of the

software engineering principles and best practices have been successfully applied to

di®erent aspects of a software development process such as requirement analysis,

software design, software testing, software maintenance, and software quality as-

surance [2]. On the other hand, in the early 1980s, much of the research in Arti¯cial

Intelligence (AI) focused on the development of Knowledge-Based Systems (KBSs)

including expert systems, supported by proper knowledge representation formalisms

and e±cient inference mechanisms. However, the development of large commercial

KBSs failed in many cases, which is comparable to the similar situation of \software

crisis" in developing traditional software systems in the late 1960s [3]. As a result, the

new discipline Knowledge Engineering (KE) emerged with its goal of applying en-

gineering disciplines to the development of scalable and large long-living commercial

KBSs. Researchers in KE initially considered the development of KBSs a transfer

process that converts existing human knowledge into knowledge bases, but later

realized that such a transfer process view could not capture an expert's tacit

knowledge for problem-solving capabilities. Thus, the process of building KBSs

should be more appropriately viewed as a modeling activity during the knowledge-

acquisition phase [3]. Since both KE and SE are essentially modeling processes, they

must share many useful principles and methodologies in system modeling and en-

gineering. In the following sections, we divide the intersection of SE and KE into a

number of subareas, and then discuss about them in more details.

2. Intersection Between Software Engineering and

Knowledge Engineering

Figure 1 shows a mapping of the relationship between SE and KE. As shown in the

¯gure, the intersection of SE and KE is identi¯ed as SEKE (Software Engineering and

Knowledge Engineering), which represents the major topic of this paper. There are

many books, journals and proceedings published in the past two decades that are

related to SEKE. Among them, the International Conference on Software Engi-

neering and Knowledge Engineering (SEKE) and its associated International Journal

of Software Engineering and Knowledge Engineering (IJSEKE) particularly welcome

Fig. 1. The intersection of software engineering and knowledge engineering.

416 H. Xu



papers for sharingmethods and results between the two disciplines. A central theme of

the IJSEKE journal is the interplay between software engineering and knowledge

engineering, for example, how knowledge engineering methods can be applied to

software engineering, and vice versa [4]. This emphasis makes the scope of IJSEKE

di®erent from that of pure SE journals such as IEEE Transactions on Software En-

gineering (TSE) and ACM Transactions on Software Engineering and Methodology

(TOSEM), and pure KE journals such as IEEE Transactions on Knowledge and Data

Engineering (TKDE) and Data and Knowledge Engineering Journal (DKE).

In order to study the current trends and the future research directions of SEKE,

we divide the intersection of SE and KE into three subareas, namely Knowledge-

Supported Software Engineering (KSSE), Engineering Knowledge as a Software

(EKaaS), and Intelligent Software System Engineering (ISSE). As shown in Fig. 2,

the top portion of the intersection, i.e. the subarea KSSE, addresses how knowledge

engineering methods can be applied to software engineering; in other words, how to

make the software engineering activities more e±cient and cost-e®ective using

knowledge-based analysis or knowledge-supported systems. A typical example of

research in this area is to analyze software engineering data using big data analysis or

data mining approaches. The bottom portion of the intersection in Fig. 2 is called

EKaaS, which studies the application of software engineering methods to knowledge

engineering. Researchers in this subarea view a knowledge-based system as a tradi-

tional software system, and studies how to make the development process of KBSs

more e±cient and cost-e®ective by applying software engineering principles and

methodologies. An example of such study is to develop large-scale domain knowledge

using modularization principle in SE. In the middle portion of the intersection in

Fig. 2, the subarea is identi¯ed as ISSE, which focuses on engineering intelligent

software systems using both SE and KE methods. There are many di®erent types of

intelligent software systems nowadays, among which some typical examples include

Fig. 2. Subareas in the intersection of software engineering and knowledge engineering.

Future Research Directions of Software Engineering and Knowledge Engineering 417



knowledge-based software information systems [5], ambient intelligent systems [6],

and slow intelligent systems [7].

3. Challenges and Future Research Directions

Current prevailing technologies such as mobile cloud computing, big data analysis

and ambient intelligence, will have strong impacts on the future research directions

of SEKE. In the following sections, we study the current and emerging trends in each

subarea of SEKE, and try to predict the possible future research directions in the

coming years.

3.1. Intelligent software system engineering (ISSE)

The initial goal of AI was to build intelligent machines that may replace human

beings; however, researchers later realized that such a goal was not practical and

realistic, at least for the time being. Therefore, in the 1990s, agent-based techniques

became one of the major themes of AI for the purpose of building intelligent systems

that could help human beings solve problems rather than replace them. Although

agent-based technologies have been quite successfully used to build intelligent soft-

ware systems in the past two decades, new computer-based technologies will inevi-

tably bring us new challenges. For example, in a recent prediction by Ann Mack, a

former Director of Trendspotting at JWT Worldwide, the smartphone screens will

eventually disappear due to the rise of the Internet of Things (IoT) and wearable

technology [8]. It is foreseeable that with the wearable devices, such as smartwatches

and smartglasses, becoming much popular, more and more intelligent software sys-

tems will be shifted from desktops to mobile devices and the cloud. Thus how to

e±ciently and cost-e®ectively develop intelligent software systems on mobile devices

as well as the cloud will be a challenging research topic in the next decade. On the

other hand, big data analysis and data mining techniques o®er us a great opportunity

to extract useful knowledge from massive unstructured data, which is critical for

predicting future events or user behaviors in constructing practical intelligent soft-

ware systems. A good example of using such techniques in a smart software system is

to achieve predictive security that can track and predict cyber threats, in order to

prevent the system from being attacked. This approach can bring obvious advan-

tages over the traditional reactive security, where only defensive actions can be taken

when a threat has been identi¯ed. There are many other possible future research

directions in the subarea ISSE, for example, it would be challenging to study how to

e®ectively develop slow intelligent systems that can gradually learn the way how

human solves problems without extensive training [7]. As another example of current

trends, Ambient Intelligence (AmI) allows high technology to be seamlessly em-

bedded in our natural surroundings. As a result, users could use such technology in

their daily life with e®ortless interactions [6]. This type of smart systems may present

software engineers new critical system requirements, for example, a scalable software

418 H. Xu



architecture that can integrate many di®erent advanced technologies. It is predict-

able that researchers in this subarea will face many interesting challenges in the next

few years.

3.2. Knowledge-supported software engineering (KSSE)

The goal of KSSE is to improve software development process using knowledge

engineering methods. Since the success of SE heavily depends on the experience of

the software developers, Experience Factory (EF) [9] has become a useful approach

in Knowledge-Based Software Engineering (KBSE). Related to this e®ort, Learning

Software Organization (LSO) studies how to improve software process through

knowledge discovery, sharing and reuse within software organizations [10]. With the

current prevailing technologies like semantic web and ontological engineering, LSO

will continue to be an important research area in the next 10 years. Similarly,

Computational Intelligence (CI) and Knowledge Discovery and Data mining (KDD)

techniques also played important roles in ¯elds such as software quality assurance,

discovery of software defects and project management. To make a software process

more e±cient and cost-e®ective, KE methods can be applied in many phases of a

software process model. A recent version of Guide to the Software Engineering Body

of Knowledge (SWEBOK Guide V3.0) de¯nes 15 Knowledge Areas (KAs) within the

¯eld of software engineering. It characterizes the contents of the software engineering

discipline, and provides a general framework to apply KE in each KA [11]. In ad-

dition, as big data analysis techniques and data mining approaches being increas-

ingly used to acquire useful knowledge from massive unstructured data, e®ectively

mining software engineering data will be an interesting research topic in the coming

years [12]. Model checking has been one of the most successful approaches in software

engineering during the past decades; however, it is not scalable due to limitations

related to the state-explosion problem. Thus, there is a pressing need to apply

knowledge-based techniques to make the model checking approach more scalable and

practical for verifying software systems of reasonable sizes. As another example, we

anticipate in the near future, smart IDEs will emerge to support e±cient software

development. Such IDEs may automatically acquire knowledge from experienced

software developers, and detect major program errors, especially in concurrent

programming.

3.3. Engineering knowledge as a software (EKaaS)

EKaaS is to use software engineering methods to solve knowledge engineering pro-

blems. KE is essentially a modeling process, which shares many common method-

ologies with SE [3]. For example, the conceptual models in KE are similar to the

software architectures in SE; therefore, principles for the development of software

architectures may be applied to the construction of conceptual models in KE. Sim-

ilarly, modularization of domain knowledge follows the same idea of Component-

Future Research Directions of Software Engineering and Knowledge Engineering 419



Based Software Engineering (CBSE). It is expected that with well-de¯ned interfaces

between di®erent modules of the domain knowledge established by various indivi-

duals or organizations, knowledge con°ict, inconsistency and uncertainty among

di®erent modules may be properly and e±ciently resolved. When large-scale domain

knowledge being developed, knowledge de¯ned previously must be reused and pos-

sibly required to be transformed. This may lead to an interesting research direction

that studies how software reuse methodologies could be applied to the reuse of

domain knowledge. Finally, formal methods play critical roles in both SE and KE.

Some formal techniques that have been successfully applied in SE, such as Petri nets

and model checking techniques, may also ¯nd their ways in KE to support e±cient

reasoning and formal veri¯cation of domain knowledge.

4. Concluding Remarks

Although software engineering and knowledge engineering are two di®erent dis-

ciplines under the subject of computer science, they are closely related and over-

lapped. As more and more knowledge being acquired using knowledge engineering

methods, many of the software systems can be implemented as intelligent software

supported by knowledge bases and e±cient reasoning mechanisms. The development

of such software systems requires both of the SE and KE disciplines, thus the in-

terplay between SE and KE has become much more important than ever before. In

this paper, we divide the intersection of SE and KE into three subareas, discuss about

the current trends in each subarea, and predict their possible future research direc-

tions. It is our belief that with the new technologies, such as big data analysis and

mobile cloud computing, getting more popular, the future research directions of

SEKE will be inevitably in°uenced.

Acknowledgments

The author appreciates the support and guidance from Dr. S. K. Chang, Editor-in-

Chief of IJSEKE, and the anonymous reviewers who help improve the paper.

References

1. P. Naur and B. Randell (eds.), Software Engineering: Report on a Conference Sponsored
by the NATO Science Committee, Garmisch, Germany, October 7–11, 1968.

2. C. L. Simons, I. C. Parmee and P. D. Coward, 35 years on: To what extent has software
engineering design achieved its goals?, IEE Proceedings ��� Software 150(6) (2003) 337–
350.

3. R. Studer, V. R. Benjamins and D. Fensela, Knowledge engineering: Principles and
methods, Data & Knowledge Engineering 25(1–2) (1998) 161–197.

4. S. K. Chang, Foreword, International Journal of Software Engineering and Knowledge
Engineering 1(1) (1991).

420 H. Xu



5. P. Devanbu, P. G. Selfridge, B. W. Ballard and R. J. Brachman, A knowledge-based
software information system, in Proc. of the 12th International Conference on Software
Engineering (ICSE'90), Nice, France, March 26–30, 1990, pp. 249–261.

6. T. Basten, L. Benini, A. Chandrakasan et al., Scaling into ambient intelligence, in Proc.
of the 6th Design, Automation, and Test in Europe Conference, Munich, Germany, March
2003, pp. 76–83.

7. S. K. Chang, A general framework for slow intelligence systems, International Journal of
Software Engineering and Knowledge Engineering 20(1) (2010) 1–16.

8. J. Widman, 8 technologies that are on the way out ��� and one that we'll never be rid of,
Computerworld, International Data Group Inc., June 20, 2014. Retrieved on June 23,
2014 from http://www.computerworld.com/slideshow/detail/152280.

9. V. R. Basilil, G. Caldiera and H. D. Rombach, Experience factory, in Encyclopedia of
Software Engineering (John Wiley & Sons, 2002).

10. A. Birk and T. Dingsøyr, Trends in learning software organizations: Current needs and
future solutions, Professional Knowledge Management, LNCS Vol. 3782 (Springer, 2005),
pp. 70–75.

11. P. Bourque and R. E. Fairley (eds.), Guide to the Software Engineering Body of
Knowledge, Version 3.0, IEEE Computer Society, 2014.

12. A. E. Hassan and T. Xie, Software intelligence: The future of mining software engineering
data, in Proc. of the FSE/SDP Workshop on Future of Software Engineering Research
(FoSER 2010), November 7–11, 2010, Santa Fe, NM, USA, pp. 161–166.

Future Research Directions of Software Engineering and Knowledge Engineering 421


