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Cloud computing allows for access to ubiquitous data storage and powerful computing resources 
through the use of web services. There are major concerns, however, with data security, reliability, 
and availability in the cloud. In this paper, we address these concerns by introducing a novel security 
mechanism for secure and fault-tolerant cloud information storage. The information storage model 
follows the RAID (Redundant Array of Independent Disks) concept by considering cloud service 
providers as independent virtual disk drives. As such, the model utilizes multiple cloud service 
providers as a cloud cluster for information storage, and a service directory for management of the 
cloud clusters including service query, key management, and cluster restoration. Our approach not 
only supports maintaining the confidentiality of the stored data, but also ensures that the failure or 
compromise of an individual cloud provider in a cloud cluster will not result in a compromise of the 
overall data set. To ensure a correct design, we present a formal model of the security mechanism 
using hierarchical colored Petri nets (HCPN), and verify some key properties of the model using 
model checking techniques.   

Keywords: Cloud computing; information storage; data security; fault tolerance; RAID; colored Petri 
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1.   Introduction 

As the Internet continues to evolve, service-oriented systems are becoming more widely 
adopted by large companies and government into their computing platforms. Cloud 
computing extends this concept, allowing for access to ubiquitous data storage and 
powerful computing resources by the general public through the use of web services. 
Although there is a large push towards cloud computing, there is a lack of work in the 
field of data security, ownership and privacy in cloud computing. A survey conducted by 
the US Government Accountability Office (GAO) states that “22 of 24 major federal 
agencies reported that they were either concerned or very concerned about the potential 
information security risks associated with cloud computing” [1]. Due to the infancy of 
cloud computing, there are not many standards or best practices in terms of securing data 
in the cloud. In addition, there is a diverse group of companies emerging as potential 
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cloud service providers, some with large financial backings such as Amazon and 
Microsoft, and some startup businesses attempting to capitalize on the increasing 
popularity of cloud computing. For those smaller entities especially, there are no 
guarantees that they have the resources available to provide successful services and 
follow best practices for securing their data centers. Examples of such best practices 
include creating secure facilities with environmental and burglar alarms, properly vetting 
employees that work closely with data stored in the cloud, and following software and 
hardware manufacturer’s suggestions and best practice configurations. In addition, the 
startup companies may not have the financial or business backing required to thrive in the 
market. There have already been instances where smaller companies have failed to 
provide reliable cloud computing services. For instance, “The Linkup,” an online cloud 
storage provider, shut down unexpectedly on August 8, 2008 after it announced that it 
had potentially lost 45% of customers’ data residing on their servers [2]. They advised 
customers to retrieve the data that still existed on their shares and if they were missing 
any data, there would be no guarantee that it could be retrieved. Even the largest 
providers have not been exempted from such issues surrounding cloud computing. For 
example, Gmail, Google’s cloud-based e-mail service, experienced a major outage in 
2009, which prevented users worldwide from accessing their e-mails for approximately 
two and a half hours [3]. In addition, services are changing frequently as product 
offerings are developed and discontinued. These changes would leave users of the service 
scrambling to find alternatives, being forced to take a migration path etched by the 
provider, or being stuck using a service that was no longer being developed, refined, and 
patched. For example, Microsoft Windows Live Spaces, a cloud-based online blogging 
site, was discontinued at the end of March 2011 [4]. Users were forced to either migrate 
their blogs to Wordpress.com or download the content from their blogs onto their own 
computer. Microsoft “shifted their strategy,” causing 30 million active users to find an 
alternative or take down their blogging sites. Note that in an enterprise environment, the 
unresolved issues of widespread outages, loss of data, and service offering changes that 
cloud computing is currently facing would be considered unacceptable. If the corporate 
world is to adopt cloud computing, there must be a reasonable guarantee that the stored 
data is secure, stable, and available in the cloud. 

Furthermore, personal information (PI), such as credit card information, that falls 
under Payment Card Industry (PCI) data security standards legislation [5], or medical 
records that fall under the Health Insurance Portability and Accountability Act (HIPAA) 
[6], are especially at question regarding if and how exactly these pieces of  data can be 
stored and managed utilizing cloud computing. Although there are some attempts to 
address HIPAA compliance in the cloud [7], there exist no widely accepted best practices 
or clear recommendations as to how such data can be stored in the cloud. Currently, users 
are advised to seek their own legal counsel on this matter since the providers are offering 
no liability for misguiding or incorrect advice. In addition, legislative acts, such as 
HIPAA, were developed with traditional network architectures in mind, with regulations 
regarding employee training and firewall configurations amongst other components. In a 
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cloud environment, all or at least most of such implementation details are hidden from 
cloud consumers, so consumers do not have direct influence or authority over the 
compliance details. Though related procedures and requests can be specified during 
contract creation time between the cloud provider and the consumer, this requires 
complex negotiation and audit procedures that the cloud provider or consumer may not 
be equipped for or willing to follow. There are efforts in the industry to certify certain 
cloud providers as being compliant with legislative mandates for handling PI, but no 
established practice can be found at this time. 

In this paper, we focus on information storage, redundancy, and privacy issues in 
cloud computing. We extend our previous work [8] by developing a security model that 
addresses these issues of cloud computing, easing concerns of legislatures and enterprise 
of storing data in the cloud. Our approach aims for securing critical data with a 
reasonable size that is under privacy and confidentiality regulations. We attempt to create 
an agile and resilient solution in the cloud, so that if a provider became unresponsive, fell 
below a certain service level, or discontinued providing a service, the storage array could 
seamlessly transfer its data to another provider. As a result, the stored information will 
still be widely available to its consumers with the transition process being transparent to 
the consumers. In addition, we attempt to secure the data so that if the information stored 
at a particular storage provider were to be compromised or leaked, the overall data stored 
in the cloud would not be revealed. As a part of our security strategy, encryption keys are 
utilized in our approach. Furthermore, we attempt to extend the level of security so that, 
under normal operating procedures, discovery of the encryption keys used to encrypt the 
data in the cloud would not be sufficient to compromise the data set.  

The rest of the paper is organized as follows. Section 2 discusses previous work 
related to our research. Section 3 presents a motivating example and an architectural 
design of our secure and fault-tolerant cloud information storage model, and introduces 
the major operations such as read, write and restore. Section 4 presents a formal colored 
Petri net model for a cloud information storage system using the proposed architecture, 
followed by the analysis of some key properties of the model in Section 5. Section 6 
concludes the paper and mentions future work. 

2.   Related Work 

Although cloud computing is still in its infancy, there has been a considerable amount of 
work on distributed data security and federation for distributed data, to which this work is 
closely related. Goodrich et al. explored efficient authentication mechanisms for web 
services with unknown providers [9]. In their approach, they utilized a third party notary 
service that could ensure users the trustworthiness of the service providers. Weaver 
studied the topic of exploring data security through the use of web services [10]. In his 
approach, he placed authentication and authorization services between the clients and the 
web services that they were trying to access in order to authorize users. He explored the 
issues of federation and authentication related to web services, which could be extended 
towards securing cloud computing. Santos et al. provided efforts to establish a secure and 
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trusted cloud computing environment [11]. They, however, assumed that providers could 
prevent physical attacks to their servers, which might not be true in the case of a poorly 
vetted employee or a poorly designed facility. Hwang and Li used data coloring and 
software watermarking techniques to protect shared data objects and massively 
distributed software modules [12]. Their approach supports multi-way authentications, 
enables single sign-on in the cloud, and enforces access control for sensitive data in both 
public and private clouds. Liu et al. further proposed a data coloring method based on 
cloud watermarking to recognize and ensure mutual reputation between data owners and 
storage service providers [13]. The proposed approach can guarantee a user’s embedded 
social reputation identification. Although the data coloring and watermarking 
mechanisms can be useful for cloud security, it is not clear how such approaches perform 
better than traditional encryption methods. Different from the above approaches, in our 
method, we address the data security, fault tolerance, and privacy issues in cloud 
computing by developing a novel cloud information storage model. Our proposed model 
utilizes a cloud cluster with multiple cloud providers to leverage the benefits of storing 
data in the cloud while minimizing the risks associated with storing data in an offsite, 
insecure, unregulated and possibly noncompliant atmosphere.   

Fault tolerance as it pertains to cloud computing has also gained momentum, as work 
related to producing fault-tolerant applications, computation, and storage in the cloud 
emerges. Deng et al. explored methods to create fault-tolerant computation in the cloud 
[14]. They examined the operation of matrix multiplication, a basis operation to solving 
multiple scientific issues, and offered techniques to outsource the computation of such 
operation to cloud providers while improving fault tolerance and reliability. However, 
they assumed that the reliability of a cloud provider was a discrete value that could be 
ascertained from previous knowledge and experience of the provider. This may not be 
always true, as even the most reputable cloud providers may have periods of 
unavailability and outages. Zhao et al. focused on the fault tolerance of cloud-based 
applications, and developed a software system called Low Latency Fault Tolerance 
(LLFT) middleware for distributed applications that could be deployed in a cloud 
computing or data center environment [15]. Their work only focused, however, on the 
application processes in the cloud, giving no guidance for data retention once it resides in 
the cloud. Cachin et al. provided general guidance for users of cloud service offerings on 
how they can protect themselves from fault and malicious behavior with regards to cloud 
storage [16]. They pointed out issues in trusting the cloud, including loss of privacy in 
data stored, the potential to lose data, and loss of access to the stored data due to either 
misdefined policy for cloud storage or software malfunction from the cloud provider. 
Different from the above approaches, we follow the RAID (Redundant Array of 
Independent Disks, originally known as Redundant Array of Inexpensive Disks) concept 
[17] by considering cloud providers as independent virtual disk drives; therefore, our 
approach is inherently a fault-tolerant data storage solution. 

Finally, there has been a considerable amount of work associated with formal 
modeling of service-oriented systems. As formal methods provide a strong backbone for 
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validation of a correct design, it has been used extensively in modeling service-oriented 
systems and is beginning to gain momentum in its application to cloud computing. Gu 
and Luo proposed an autonomic Quality of Service (QoS) control that can be adapted to 
cloud computing providers using Controlled Stochastic Petri Nets (COSTPN), a 
derivative of the traditional Petri nets [18]. They proposed a mechanism that could 
automatically manage grid services and resources, and also designed a COSTPN model 
to produce its performance characteristics. Xu et al. introduced a formal XML firewall 
security model for service-oriented systems using colored Petri nets [19]. The formal 
security model supports user authentication and Role-Based Access Control (RBAC) 
according to policy rules that can be updated dynamically. Accorsi and Lowis developed 
ComCert, which is a Petri net model for compliant business processes of cloud 
computing providers [20]. Requirements such as regulations HIPAA and the Sarbanes-
Oxley Act were drawn upon to create compliant business practice models, and the system 
was able to detect and generate reports of policy violations. A major weakness of the 
above proposed approaches is their limited capability to support only a subset of the 
regulations or policy rules. In contrast, we provide a Petri net based formal model that 
attempts to secure the data being stored so that even in the case when a provider neglects 
to adhere to a particular regulation, the overall data being stored in the cloud can still be 
kept secure. Furthermore, in our approach, we separate the security mechanism and 
policy rules to allow different applications to use the same mechanism with different 
policies. In this paper, we focus on describing and modeling the security mechanism, and 
envision specification of policy rules for specific applications as our future work. 

3.   Secure and Fault-Tolerant Cloud-Based Information Storage 

3.1.   A Motivating Example 

Consider a scenario where a medical company wishes to have all medical records of its 
patients available to its trusted partners, as well as to doctors who may be off site. First, 
the medical data is required to be highly fault tolerant, as losing patient records is not an 
option. Secondly, the data must be secure, as the company has an obligation to its patients 
to protect their personal information. Thirdly, the medical records must be guaranteed to 
be available, as it may become a matter of life or death if the data cannot be accessed 
quickly. The company realizes that storing the data on site would require a complex setup 
to make the data widely available to its central location and branch offices, with a large 
cost to purchase servers and storage devices. Furthermore, storing the data on site also 
requires a robust mechanism to ensure that the data is redundant and available in case of 
disaster, as well as a scalable infrastructure in case of growth. The company is attracted 
by the benefits of cloud computing, namely the availability of the data over the Internet 
for its remote offices and doctors, not having to invest a large amount of money to 
establish the infrastructure, the scalability, and the promise of resiliency and redundancy. 
Therefore, the company wishes to explore the option of using cloud computing for 
information storage and archiving of its data. It is, however, very concerned with moving 
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its data into the cloud since losing physical control of its data would be of high risk. 
Although the company can choose reputable cloud providers to host its data, there is no 
way to vet individual employees who are hired by the cloud provider to prevent insider 
attacks, whereas the medical company is required to do full background checks and 
audits on employees who are allowed to handle its data. The company is also concerned 
with the physical locations of its data. With a cloud provider, the medical company does 
not even know where its data resides in the cloud, let alone what safeguards are at place 
at the physical facility. The company has also seen through the media the amount of 
damage that can be caused by its data being compromised by a third party. It must 
assume that by storing its data in the cloud, it can be compromised, so it needs to ensure 
that the cloud providers and their employees absolutely do not have access to the 
underlying information. The company is finally concerned with the availability of its 
data, as although it sees cloud computing as mostly reliable, it needs to make sure that its 
data is available and that there are no extended length of outages. When the medical 
company is treating a patient, for example, it is critical to know if the patient is allergic to 
any medication. If this information became unavailable, there may be dire consequences. 
If the company chooses to build the data center by itself, it would take into account all of 
the above concerns. In the cloud, however, the environment is ever-changing with 
providers having the ability to decide critical implementation details, where data resides, 
and can at whim discontinue or radically change a service offering. Given the current 
state of cloud computing, the healthcare provider would have some very serious and 
legitimate concerns that need to be addressed. 

In order to mitigate the major concerns that the medical company faces, we design a 
reliable, fault-tolerant, and secure architecture for cloud information storage. Our 
approach can assist in resolving a major issue that resides in cloud computing, namely 
how to securely store personal or sensitive information in the cloud. Thus, our approach 
can mitigate concerns from companies that are trying to adopt cloud computing and 
regulators as well as the general public who are concerned for the security and 
confidentiality of the stored information in the cloud. 

3.2.   An Architectural Design 

Our proposed information storage model for cloud computing can be deployed on 
multiple cloud service providers. As shown in Fig. 1, the model consists of users, a 
Service Directory (SD), and groups of cloud storage providers. The users are cloud 
clients who wish to store and access data in the cloud. A user can first interact with the 
SD, which acts as a coordinator for cloud information storage. The SD first sets up a 
Cloud Provider Cluster (CPC) with multiple cloud service providers and assign it to the 
user. It also stores information regarding the addresses of all service providers in the 
CPC. Once the client obtains the address information of the cloud providers from the SD, 
it interacts with the CPC, namely a collection of available service providers that can store 
and send data using predefined protocols. Each set of data, composed of the user’s 
personal or sensitive information is split into multiple pieces using a predefined security 
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mechanism, and are stored into the CPC after they are encrypted. The cloud providers in 
the CPC have no knowledge of which cluster they belong to as well as which are the 
other members in the CPC that they are servicing. This means the CPC are virtual 
clusters in the cloud, which are generated and exclusively managed by the SD. 
Furthermore, the SD has the capability to restore data when needed. When a service 
provider, say α, in a CPC fails, the SD can automatically restore the data using a 
predefined restoration algorithm, and replace α with another cloud service provider β 
from a collection of cloud providers called Cloud Provider Pool (CPP). Note that before 
the replacement happens, the service provider β in CPP did not provide any services to 
the user; therefore, it will not charge for usage according to the elasticity feature of 
storage services in cloud computing. 

 

Fig. 1. An architectural design of cloud information storage systems 

The security mechanism defined in our model consists of two levels. In the first level, 
the information to be stored is split into multiple pieces using the RAID 5 technique with 
distributed parity [21] so that if a provider fails, the data stored collectively in the cluster 
would be recoverable. Note that the RAID 5 technique uses block-level striping with 
distributed parity in a cluster of disk drives [22]. Due to data redundancy, when a disk 
drive fails, any subsequent reads can be calculated from the distributed parity, and the 
data in the failed drive can be restored. In our approach, we consider each cloud provider 
in a CPC as a virtual disk drive; thus, our information storage model is fault tolerant 
upon the failure of any cloud provider in the CPC, and the missing piece of data can be 
recovered from the distributed parity blocks stored with the other cloud providers. 
Another advantage of our approach is, due to the distribution of data over multiple cloud 
providers in a CPC, no cloud provider is able to calculate the original data because it has 
no knowledge of who are the other members in the CPC. 
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The second level of our security mechanism provides another layer of security in our 
approach, where encryption plays an important role. To ensure that providers do not have 
access to the underlying data that is being stored, symmetric key encryption can be used. 
A symmetric key is an encryption key that is used for both encryption and decryption of 
data and should be kept secret from all entities that do not have access to the data. Prior 
to sending a data block DB out to a provider in a CPC, a user U first encrypts DB using a 
symmetric key into DB’ = E(kSYM-CPC, DB), where kSYM-CPC is the symmetric key 
associated with the CPC. The data block remains encrypted while in the cloud and is only 
decrypted by the user upon retrieval of the data into DB = D(kSYM-CPC, DB’). Note that 
cloud providers are never given access to these keys so that the data stored on their 
services are not readily compromised. In addition to symmetric key encryption, there 
needs to be some mechanism in place where the different entities of the storage model 
could positively identify themselves to one another, so that impersonation attacks could 
not take place. In order to fill this need, asymmetric key encryption is used in this model. 
Cloud users and cloud service providers are all assigned asymmetric keys, individual to 
each entity. Asymmetric key encryption consists of a pair of keys, namely a public key 
and a private key. The public key is widely published and available, whereas the private 
key should be kept secret. In our application, we utilize asymmetric key encryption to 
provide a digital signature. A message digest MD of a data block is generated by the 
sender and encrypted using the sender’s private key, kPRIV-S, into MD’ = E(kPRIV-S, MD). 
The recipient receives the data block along with the encrypted signature and decrypts the 
signature using the sender’s public key into MD = D(kPUB-S, MD’). The recipient then 
verifies the data block and its message digest to ensure that the data block was sent by the 
claimed sender and was not compromised in transmission. The private key is issued by 
the SD and stored on the individual client’s machine, whereas the public key is published 
in the SD, which can be retrieved by any users or service providers. Once the encryption 
is done, the data blocks being stored are distributed to the cloud providers in a RAID 5 
fashion with distributed parity so that if a particular provider were to fail or be 
compromised, the data stored collectively in the CPC can be recovered. On the other 
hand, when a read operation is performed, all pieces of information need to be decrypted 
after being retrieved from the cloud providers in the CPC, and then they are combined 
into the original information.  

To formalize the basic idea of our approach, we now provide the definitions of a few 
key concepts used in this paper. 

Definition 3.1. Cloud Provider Cluster (CPC) 
A Cloud Provider Cluster (CPC) Θ is a 3-tuple (RNP, SAP, SIP), where RNP is the 
required number of active cloud providers in the CPC, which must be no less than 3; SAP 
is a set of active cloud providers in the cluster; and SIP is a set of inactive cloud providers 
in the CPC, where φ=SIPSAPI . If an element α in SAP becomes unavailable, it will 
be replaced by another element β from SIP or from the cloud provider pool. In this case, 
α will be deposited into SIP for future usage; however, if it becomes unavailable for too 
long, it will be permanently removed from SIP.  
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Definition 3.2. Cloud Provider Pool (CPP) 
The Cloud Provider Pool (CPP) Ω is a 2-tuple (NRP, SRP), where NRP is the number of 
registered cloud service providers, and SRP is a set of registered cloud service providers. 
For a CPC Θ, SRPSIPSAP .)..( Ω⊂ΘΘ U , and for SRP.Ω∈∀α , α  may belong to more 
than one CPC. 

Definition 3.3 Service Directory (SD) 
The Service Directory (SD) Φ is a 7-tuple (SRP, SCPC, SCU, SSK, MSK, SPK, MPK), 
where SRP is a set of registered cloud service providers, SCPC is a set of cloud provider 
clusters, SCU is a set of cloud users, SSK is a set of symmetric keys, MSK is a mapping 
function defined as , SPK is a set of public keys, and MPK is a 
mapping function defined as . Note that the symmetric key 
assigned to a CPC is only available to a qualified user of the CPC, but it is kept invisible 
to members of the CPC.  

SSKSCPCMSK a:
SRPMPK U(: SPKSCU a)

Definition 3.4. Cloud User (CU)  
A Cloud User (CU) is a 3-tuple (UID, PRIKEY, CPC), where UID is a user identifier, 
PRIKEY is a private key of the user, and CPC is a cloud provider cluster assigned to the 
user by the SD. 

Definition 3.5. Registered Cloud Provider (RCP)  
A Registered Cloud Provider (RCP) is a 2-tuple (PID, PRIKEY), where PID is a provider 
identifier, PRIKEY is a private key of the provider, and for any RCPα , SRP.Ω∈α , 
where Ω is the CPP. Note that a RCP has no knowledge about which CPC it belongs to. 

3.3.   RAID-Based Data Distribution and Integration 

In order to provide redundancy for the underlying data, we use an adaptation of the RAID 
5 approach in our cloud storage model. In a traditional RAID 5 based system, data is 
distributed among multiple disk drives using a distributed parity-based mechanism. We 
extend this idea to multiple cloud providers in our cloud information storage model as 
illustrated in Fig. 2, which shows the RAID-based design of a CPC with 3 cloud 
providers. This design provides for resiliency and efficiency. If any cloud provider in a 
CPC becomes unavailable, the system will still be able to function due to data 
redundancy. Once the failed provider is replaced, the directory is able to restore the 
missing information by calculating the missing data blocks or parity blocks using the 
remaining ones, and recover the storage cluster back to a redundant state. Note that in our 
approach, data is stored at the block level. Let n be the number of providers per CPC, for 
every n-1 blocks of data, one block of parity is generated. For example, in Fig. 2, the 
Parity Block 1 stored with Cloud Provider 1 is calculated based on Data Blocks 1_1 and 
1_2, which are stored with Cloud Providers 2 and 3, respectively. This parity block 
provides data redundancy, which allows the SD to recover missing data blocks so that 
users may continue to read data from the storage array even when one of the providers 
were unresponsive.  
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Fig. 2. RAID-based design of Cloud Provider Cluster (CPC) 

Based on the RAID 5 technique, block-level striping is used and parity blocks are 
distributed evenly among the cloud providers of a CPC. As demonstrated in Fig. 2, there 
are 6 stripes of data with 12 data blocks and 6 parity blocks that are distributed evenly 
amongst 3 cloud providers in the CPC. Using this simple RAID 5 scheme, the number of 
data blocks and the number of stripes are calculated as in Eqs. (1) and (2).  

⎥
⎥

⎤
⎢
⎢

⎡
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blocksize

datasize
block n

nn     (1) 

⎥
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⎤
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⎢

⎡
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1dercloudprovi

block
stripe n

nn                    (2) 

where nblock is the total number of data blocks, ndatasize is the total amount of data (in 
bytes), nblocksize is the predefined block size (in bytes), nstripe is the number of stripes, and 
ncloudprovider is the required number of active cloud providers in a CPC. Note that the 
function ceiling(x) = is the smallest integer not less than x; thus, if ndatasize is not a 
multiple of nblocksize, the last block containing the remaining data will be filled up with 
random data. Similarly, if nblock is not a multiple of (ncloudprovider - 1), the last stripe shall be 
filled up by data blocks containing random data. Once the data is divided into blocks of 
the established size, and further organized into stripes based on the number of active 
cloud providers in a CPC, parity blocks can be calculated using XOR operations (denoted 
as ) as in Eq. (3).  

⎡ ⎤x

⊕

1_2_1_ ... −⊕⊕⊕= Niiii BBBP    (3) 

where 1 ≤ i ≤ nstripe, N = ncloudprovider, and Pi and Bi_m are the i-th parity block and the m-th 
data block in stripe i, respectively. 

With the parity blocks, our approach is fault tolerant because when a cloud provider 
fails, restoring the data blocks and parity block become as simple as performing the XOR 
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operation on the other blocks. For any stripe i, the missing data block or parity block can 
be calculated using Eq. (4) or (3), respectively. 

iNijijiiji PBBBBB ⊕⊕⊕⊕⊕⊕= −+− 1_1_1_1__ ......   (4) 

Note that the data blocks and parity blocks may also be distributed according to a 
predefined algorithm that is only known by the users, but appears random to the cloud 
providers. This would allow for increased security, as it assists in preventing collusions 
from cloud providers, where multiple providers from the same CPC may attempt to 
combine their pieces of data to recreate the original information. Not knowing which data 
is the parity information makes reconstructing the data much more difficult if not 
impossible. The detailed implementation of such “random” data distribution for RAID is 
out of the scope of this paper, but is envisioned as a future, and more ambitious research 
direction. 

3.4.   Major Operations for Cloud-Based Information Storage 

In order to establish a CPC, a cloud user must first communicate with the SD to join the 
service and request that a CPC be created. During this process, a trusted third party may 
perform any necessary background checks on the cloud user to ensure that the user 
should have access to the cloud. Once the request has been approved, the SD sends the 
user an approval message, followed by an assignment of a public/private key pair, which 
is used for digital fingerprinting, as discussed in Section 3.2. The private key is 
distributed to the user and the public key associated with the user is published in the SD. 
Then the SD fulfills the user’s request by finding n suitable cloud providers from the pool 
of the registered ones, where n is the required number of providers in a CPC. For each 
registered cloud provider, the directory also maintains a public/private key pair for digital 
signature purpose. Thus, any messages originated from a user or a cloud provider must be 
signed and verified using the asymmetric key pair. 

 Once initialized, three major operations, namely read, write, and restore, can be 
performed for cloud information storage. These operations are now described as follows. 

Read Operation. The read operation is initiated by a user to request information from 
the CPC for a particular file. In order to read from the CPC, the user first sends a request 
to the SD for the providers’ locations. Once the SD verifies the digital fingerprint of the 
user, it sends the user the current addresses of the providers that make up the CPC 
assigned to the user. The user then sends concurrent requests signed with its private key 
to each of the providers in the CPC. Once a provider verifies the signed message, the 
provider sends the requested data back to the user along with a signed response. The user 
allows a reasonable amount of time for the providers to respond prior to proceeding. The 
user then verifies the providers’ messages against their public keys, and decrypts the 
content of the data by utilizing the symmetric key. Once the user receives all pieces of 
data, it is able to reconstruct the file, which completes the read operation. It is interesting 
to note, however, that due to the fact that the cluster is using a RAID 5 based approach, 
once data has been received from n-1 providers, the user is able to read the data due to 
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data redundancy. This provides a needed level of availability for the requested 
information. However, the user typically waits for the last response for a reasonable 
amount of time prior to attempting to calculate the missing information utilizing the 
parity, as the user needs to make a determination whether the provider is down or not. If 
the last provider is considered to be down, the user completes its read and sends a restore 
request to the SD for the last provider’s data to be restored to another provider. Although 
read request can continue to complete, it is important that the cluster restores the data 
from the failed provider to another provider quickly, as while the provider is down, the 
CPC has lost its redundancy. Though it is not likely to happen, if another cloud provider 
in the CPC was to go down prior to the completion of the restoration, the data might be 
permanently lost. 

Write Operation. The write operation can be used to write information to a CPC for a 
particular file. When the write operation is initiated, the user first sends a request, signed 
with its private key, to the SD asking for the addresses of the providers in the CPC. If the 
user is verified and has access to the CPC, the SD responds with the provider locations. 
Then, the user calculates the distribution utilizing standard parity distribution, as 
discussed in Section 3.3, forms the requests, and concurrently sends them to each of the 
providers. Once each piece of messages is verified and stored at the provider side, each 
provider sends an acknowledgement message back to the user, signed with its private 
key. If the user receives responses from all of the providers in a reasonable amount of 
time, it considers the write operation successful; otherwise, it sends a restore request to 
the SD to restore data on a possibly failed cloud provider. Once the missing data and the 
CPC are restored, the user can resubmit the uncompleted write request. 

Restore Operation. Finally, in the case where a cloud provider falls below an expected 
QoS level, becomes unresponsive due to either failure or maintenance, or is deemed 
compromised, it is necessary to restore the information stored with the provider on a new 
provider. In a restore operation, the user initiates a request to the SD to replace a provider 
servicing the CPC with another. This would occur after a provider had not responded in a 
reasonable amount of time to a read or write operation or if a provider was sending back 
incorrectly signed messages. It is the SD’s responsibility to maintain a pool of registered 
providers and identify a suitable replacement when one is required. Once this happens, 
the SD notifies all other providers of the CPC for the restoration process. The CPC then 
temporarily becomes “ReadOnly,” so that any duplicated restore request on the CPC can 
be ignored, and no write request is allowed to go through while the system is being 
restored. The SD calculates the missing blocks using the remaining data blocks and 
streams them to a new cloud provider. Once all of the information has been recovered, 
the CPC becomes ready again and can process additional requests. 

4.   Formal Modeling of a Cloud Information Storage System 

In order to ensure a correct design of the security mechanism, we develop a formal model 
of a secure and fault-tolerant cloud information storage system, and verify some key 
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properties of the model. We adopt colored Petri net (CPN or CP-net) formalism because 
it is a well-founded process modeling technique that has formal semantics to allow 
specification, design, verification, and simulation of a complex concurrent software 
system [23]. A Petri net is a directed, connected, and bipartite graph, in which each node 
is either a place or a transition. In a Petri net model, tokens are used to specify 
information or conditions in the places, and a transition can fire when there is at least one 
token in every input place of the transition. CPN is an extension of ordinary Petri nets, 
which allows different values (represented by different colors) for the tokens. CPN has a 
formal syntax and semantics that leads to compact and operational models of very 
complex systems for modular design and analysis. The major advantage of developing a 
CPN model of the cloud information storage system is to provide a precise specification, 
and to ensure a correct design of the information storage model; therefore, design errors, 
such as a deadlock, can be avoided in the implemented system. 

To make the model easy to comprehend, we utilize hierarchical CPN (HCPN), which 
allows using substitution transitions and input/output ports to represent a secondary Petri 
net in the hierarchy. In our design, we first provide the high-level model with its key 
components. Then we utilize HCPN to refine each component into a more complete Petri 
net. Since the architecture we proposed is most suitable for storing personal or 
confidential data, in the following sections, we present the HCPN model with an example 
of medical record online storage system, which consists of a SD, a CPC with three cloud 
providers, and two clients (cloud users), namely a patient and a doctor. 

4.1.   High-Level Petri Net Model 

The HCPN model can be devloped using CPN Tools [24]. In Fig. 3, we present a high-
level model that defines the key components, namely the Doctor, the Patient, the Cloud, 
and the Directory, as well as the communications among the components. The key 
components are defined as substitution transitions, denoted as double rectangles in Fig. 3. 
The purpose of the communications among the patient, the doctor, and the cloud is to 
transfer and access the patient’s medical record. The directory serves as the SD, which 
acts as a data coordinator between the users and the cloud.  

To simulate the cloud providers that are selected as clutser providers (i.e., members of 
a CPC) as well as the data being transferred between the users and the cloud providers, a 
PROV and a MEDRECORD colored token type are defined using the ML functional language 
integrated in CPN Tools as follows: 
colset PROV = record     colset MEDRECORD = record   
  prID: STRING *           recID:STRING * 
  ready: BOOL *            data: STRING;               
  mrec: MEDRECORD;  

where prID is a provider ID, ready is a flag of the provider indicating whether the 
provider is functioning or failed, mrec  is a medical record, recID is a record ID, and 
data is the medical data stored in the record. 
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Fig. 3. High-level CPN model of the medical record cloud storage system 

The directory is responsible for initializing the cloud providers in a cloud cluster 
assigned to a user, replying queries from a user for providers’ addresses, and processing 
restore request upon the failure of a cloud provider in the cloud cluster. As shown in Fig. 
3, the cloud cluster or CPC (denoted as the place “Cluster Providers”) is initialized with 
three providers "Pr1", "Pr2" and "Pr3" of type PROV, each of which is initialized with 
initrec that contains a blank medical record. Furthermore, the place “Provider Pool” is 
initialized with one spare cloud provider "Pr4", which can be used to replace a failed 
cloud provider in the cloud cluster when needed. A read request (RDREQ) and a write 
request (WRREQ) to a cloud provider can be defined as colored tokens as follows: 
colset RDREQ = record     colset WRREQ = record 
  clID:STRING *         clID:STRING * 
  recID:STRING *         mrec:MEDRECORD * 
  prID:STRING;         prID:STRING; 

where clID is a client ID. Note that in Fig. 3, RDREQLIST and WRREQLIST are defined 
as a list of read requests, and a list of write requests, repectively. Thus, our model allows 
accessing multiple pieces of information concurrently from the cloud providers 
participating in a cloud cluster. After a read (write) request has been processed, a read 
(write) response will be returned to the user, simulated as a token of type RDRESP 
(WRRESP) being deposited in place “Read_Ack” (“Write_Ack”). The colored token types 
RDRESP and WRRESP are defined as follows: 
 colset RDRESP = record    colset WRRESP = record 
  clID:STRING *             clID:STRING * 
  prID:STRING *             prID:STRING * 
  mrec:MEDRECORD *          mrec:MEDRECORD * 
  success:BOOL;             success:BOOL; 
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where the flag success indicates if a read request or a write request is successful or 
failed. In case a read or write request fails (i.e., a cloud provider is down), the user will 
change the token in place “Restore” from false to true, and notify the directory to start the 
restoration process for the cloud cluster. 

4.2.   Petri Net Model for the Directory Component 

We now refine the Directory component (i.e., the Directory substitution transition in Fig. 
3) into a CPN model as shown in Fig. 4.  
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Fig. 4. CPN model for the Directory component 

In Fig. 4, the place “Clust_Prov_List” is initialized with a list of providers 
["Pr1","Pr2","Pr3"] due to the initial setting of the cloud cluster in place “Cluster 
Providers.” When a patient client or a doctor client starts querying the directory for the 
addresses of the providers in its assigned cloud cluster, a query token will be placed by 
the client into place “Query_Dir.” This enables the transition “Provider Locations.” 
When it fires, it creates a token of QUERYRESP type in place “Query_Resp,” which 
attaches the provider information stored in place “Clus_Prov_List.” Since the place 
“Query_Resp” is an input port of the clients, the token becomes available to the client for 
further processing. Note that to simplify our CPN model, the provider information only 
consists of the provider IDs rather than the providers’ actual endpoint addresses. 
Therefore, a service invocation to a cloud provider is simulated by matching the cloud 
provider’s ID rather than calling the service at its endpoint address. On the other hand, if 
the “Restore” place contains a true token due to an access error experienced by a user, 
the “Check Providers” transition becomes enabled as long as the directory is not 
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currently restoring the cloud cluster (denoted by a false token in place “Init_Restore”) 
and there is a failed provider, whose ready flag is set to false, in place “Cluster 
Providers.” Once the transition fires, it places a true token into the “Init_Restore” place, 
signifying that a restoration process should take place. The firing also removes the failed 
provider from the “Clust_Prov_List” place and transfers the provider from the “Cluster 
Providers” place to the “Down Provider” place. When the restoration process starts, the 
“Restore” transition fires, and deposits a copy of the remaining two providers into the 
“Restore Gather Info” place. This enables the “Calculate Replacement” transition, and its 
firing simulates the calculation of the missing piece of data based on the distributed parity 
information, and results in the restored medical record being placed in the “Replacement 
Record” place. Note that for simplicity, the detailed procedure of the parity calculation is 
not modeled in Fig. 4. 

4.3.   Petri Net Model for the Patient and Doctor Clients 

A patient client should have the permission to read its own medical record. As shown in 
Fig. 5, a patient first requests the addresses of the cloud providers in the cloud cluster 
assigned to her, which is modeled by placing a true token in the “Query Directory” 
place. With this token as well as the client ID of the patient in the “ClientID” place, the 
“Init_Query” transition can fire, and the firing results in a DIRQUERY token to be placed 
in the “Query_Dir” output port. When a response from the directory is put into the 
“Query_Resp” input port, the providers’ address information becomes available. This 
enables the “Extract Providers” transition, and the firing of the transition places a CLUST 
token in the “Provider Locations” place. The CLUST token type is defined as a list of 
providers as follows: 

colset CLUST = list STRING with 0..3; 

where the with clause specifies the minimum and maximum length of the list, and each 
item in the list contains the address of a provider (represented by its provider ID as a 
string for simplicity) that can be used by the client to communicate with the provider. To 
model a read operation, a token "P1.rec" is initialized in the “Data to Read” place, 
which is a record ID representing patient P1’s medical record. The firing of the 
“Init_Read” transition starts the read process, and places the record ID along with the 
provider information into the “Read Information” place.  

Note that in this model, we assume that there is only one record for each patient that 
can be matched with the medical data stored with the providers. Now the “Construct 
Read Req” transition can fire once for each provider in the provider list, and creates a 
token of type RDREQLIST in the “Read Request” place, such that the multiple read 
requests in the list can be made concurrently to the cloud providers in the cloud cluster. 
This makes the associated providers in place “Read Information” being removed and 
enables the “Start Read” transition. When it fires, it transmits the RDREQLIST token to 
the “Read_Req” place, which is an input port to the cloud cluster. After the requests have 
been processed by the cloud providers, multiple tokens of type RDRESP will be deposited 
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in place “Read_Ack.” If a RDRESP token contains a success flag with a true value, it 
indicates that the read request has been completed successfully by the corresponding 
cloud provider. In this case, the piece of medical record is extracted from the token and 
placed in the file store after being decrypted. Once all pieces of the medical record are 
successfully decrypted, the “Combine Data” transition becomes enabled and can fire. The 
firing simulates the process of generating the original medical record by recombining the  
data slices retrieved from the cloud providers. If one of the providers returns a token with 
the success flag set to false, a read failure occurs for the cloud provider. In this case, 
the “Read Fail” transition becomes enabled. Once it fires, it changes the token in place 
“Restore” from false to true, signifying the directory to initiate a “restore” operation. 

b

1`true

1`[]
hr

#mrec u

m

m

(NPROV-1)`m++1`m1

n

1`true

t

t

hr

hr

ins hr {clID= (#clID n),
prID= List.nth((#prov n),0),
recID= (#recID n)}

{recID=(#recID n), clID = (#clID n),
prov = (List.drop((#prov n),1))}

n

{recID=s,
clID = t,prov=h}

t

u

#mrec u u

s

h

#provlist q

q

{clID = t}
b

t

t

Combine
Data

Next_Read

Start_Read

[length(#prov n) = 0]

Construct
Read Req

[length(#prov n) > 0 ]

Read
Failure

[(#success u) = false
andalso (#clID u) = t]

Decrypt
Data

[(#success u) = true
andalso (#clID u) = t]

Extract
Providers

[(#clID (#query q)) = t]

Init_Read

Init_Query

[b=true]

Restore
Out BOOL

Data

MEDRECORD

Read
Request

1`[]

RDREQLIST

Read
Information

RDINFO

File
Store

MEDRECORD

Provider
Locations

CLUST

Query_Resp
In

QUERYRESP

Query_Dir
Out

DIRQUERY

Query
Directory

1`true

BOOL

ClientID

1`"Pat1"

STRING

Data to
Read

1` ("P1.rec")

STRING

Read_Ack
In

RDRESP

Read_Req
Out

RDREQLIST

Out

In

Out

In

Out

 

Fig. 5. CPN model for the patient client 

The CPN model for the doctor client is similar to the one for the patient client, but a 
doctor client should also have the privilege to write data into the cloud. The CPN model 
for the doctor client that replaces the Doctor substitution transition of the high-level 
model is illustrated in Fig. 6. Before the doctor client makes a write request, the “Data to 
Write” place is initialized with the medical data that the client wishes to write to the cloud 
cluster. For simulation purpose, we set the data to be written as "This is Pat1’s 
medical record!". Similar to a read request, once the “Init_Write” transition fires, it 
places the information to be written along with the provider information into the “Write 
Information” place. Once the required information is ready, the transition 
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“Split_Encrypt_Data” will fire once for each provider in the provider list, which splits the 
data using the RAID 5 techniques and encrypts the data using a symmetric key.  
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Fig. 6. CPN model for the doctor client 

Once the token of type WRREQLIST in “Write Request” place contains the correct 
number of write requests, the “Start_Write” transition becomes enabled. When it fires, it 
transmits the WRREQLIST token to the “Write_Req” place, which is an input port to the 
cloud cluster. After the cloud providers process the write requests, each of them will 
place a token of type WRRESP in place “Write_Ack.” The WRRESP token contains the 
information of the provider where the acknowledgment is coming from, the write request, 
and a success flag. Similar to a read response, the success flag represents whether or 
not the “write” operation was successfully performed by the corresponding cloud 
provider. If the flag is set to true, the “Process Response” transition may fire, and when 
it fires, it places a Boolean token into the “Write Done” place. On the other hand, if the 
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success flag of any response is false, the “Write Fail” transition becomes enabled. 
When it fires, it changes the token in place “Restore” from false to true, signifying the 
directory to initiate a “restore” operation. In either case, the “Next Write” transition may 
fire, either to start a new “write” operation or rewrite the previous medical information. 

4.4.   Petri Net Model for the Cloud Component 

Finally, we refine the Cloud substitution transition of the high-level model into a CPN 
model as shown in Fig. 7, where the cloud providers are represented as colored tokens of 
type PROV. The clouds can accept either “read” or “write” requests from the clients, 
namely the patient and the doctor. Upon receiving the requests, cloud providers invoke 
corresponding cloud services by matching their IDs in the cloud cluster, and return 
responses to the clients. In addition, the cloud providers in a cloud cluster are also 
responsible for providing their data to the directory on demand in a case that a restoration 
process is initiated when a read or write request fails due to the failure of a cloud 
provider in the cloud cluster. In this model, the “Cluster Providers” place is shared with 
the directory, where the PROV tokens in the place represent the providers selected to 
constitute the cloud cluster. In addition, the “Provider Pool,” “Down Providers,” and 
“Service Ready” places are also shared places in the directory model. The “Provider 
Pool” acts as a holding place for available providers identified by the directory. The 
“Down Providers” place contains the providers that are down and deemed needing 
replacement. Finally, the “Service Ready” place acts as an input place to the cloud for 
simulation purposes only. In our model, we only consider a maximum of one cloud 
provider going down at a time. This is a reasonable assumption because cloud providers 
should be somewhat reliable. In order to satisfy this constraint in the model, the 
“Provider Down” place is connected to the “Provider_Down” transition, which allows 
the “Provider_Down” transition to fire once. 

When a client makes a “read” request, a RDREQLIST token with a list of RDREQ 
requests will be deposited into place “Read_Req.” This enables the “Read_Start” 
transition as long as the “RW_Control” place contains a unit token, which ensures “read” 
and “write” actions are mutual exclusive. When the “Read_Start” transition fires, it splits 
the RDREQLIST token into singular RDREQ tokens, places them into place “Read_Start,” 
and removes the unit token from the “RW_Control” place. The “Read_File” transition 
then examines each of the RDREQ tokens, matches it with its respective cloud provider, 
and fires as long as the success flag of the corresponding PROV token in place “Cluster 
Provider” is true. The following ML transition guard code accomplishes this task: 
[(#recID r) = (#recID (#mrec g)) andalso  
 (#prID r) = (#prID g) andalso (#ready g)=true]  

where g represents a cloud provider that is a member of the cloud cluster and r 
represents a “read” request. The guard selects the correct provider by comparing the 
provider ID in the request (#prID r) with that of a provider from the cluster(#prID 
g), matches the medical record ID, and makes sure that the cloud provider is functioning 
(i.e., its ready flag is set to true). If all conditions are met, the transition can fire, and 
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the firing of the transition creates a RDRESP token and deposits it into the “Read_Resp” 
place. On the other hand, if a “read” request fails due to the corresponding provider being 
not ready (i.e., its ready flag is set to false), the “Read_Fail” transition can fire, and its 
firing sends a RDRESP token with a blank medical record and a success flag set to 
false to the “Read_Resp” place. Once all three tokens are in the “Read_Resp” place, the 
“Read_Resp” transition may fire. The firing of the transition returns a unit token to the 
“RW_Control” place and places the RDRESP tokens into the “Read_Ack” port, available 
for the clients to digest. 
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Fig. 7. CPN model for the cloud component 

A “write” request follows an almost identical path through the model. When the 
doctor client places a WRREQLIST token into the “Write_Req” port, the “Write_Start” 
transition becomes enabled, and the firing of the transition places the individual WRREQ 
tokens into place “Write_Start.” With the tokens in this place, the “Write_File” transition 
can fire as long as the ready flag of some PROV token in place “Cluster Providers” is 
true. The firing of the transition replaces the medical record stored in the PROV token 
with the replacement record, and also constructs a WRRESP token and places it in the 
“Write_Resp” place. On the other hand, if the ready flag of a provider is set to false, 
the “Write_Fail” transition may fire. In this case, the medical record is not altered, and a 
WRRESP token with the success flag set to false will be deposited in place 
“Write_Resp.” Once all three WRRESP tokens are in the “Write_Resp” place, the 
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“Write_Resp” transition can fire, and its firing returns a unit token back to the 
“RW_Control” place and deposits the WRRESP tokens in the “Write_Ack” place, being 
available for the client to process. 

A restoration process can be simulated in the cloud model by setting the 
SIMPROVDOWN token in place “Provider Down” to SimEnabled. When the 
“Provider_Down” transition fires, it selects the provider Pr1 from the place “Cluster 
Providers” and sets the ready flag of the provider to false. This step simulates the 
failure of a cloud provider in the cloud cluster. Furthermore, the firing of the transition 
also sets the STATUS token in place “Service Ready” to ReadOnly, which disables the 
“Next_Write” transition in the CPN model for the doctor patient. The doctor patient will 
be allowed to write again only after the STATUS token in place “Service Ready” is 
changed back to ReadWrite. Meanwhile, when a client experiences an access error to a 
cloud provider that is down, a restoration process will be initiated by the client. 
Communication with the directory for a “restore” operation is done through the shared 
port “Cluster Providers.” This port, containing the PROV tokens of the providers who 
make up the cluster, allows the directory direct access to the PROV state when required. 
When the restoration process completes, the failed cloud provider in place “Cluster 
Providers” will be replaced by a new one taken from the “Cluster Pool.” 

5.   Formal Analysis of the CPN-Based Model 

In addition to providing an accurate model for our proposed security mechanisms for 
cloud information storage, building a formal design model also has the advantage of 
ensuring a correct design through state space analysis. Utilizing the CPN Tools [24], a 
formal analysis of the CPN model can be performed to verify if the model meets certain 
system requirements. Typically, the model we developed should be live, bounded, and 
deadlock-free. When we use the CPN Tools to calculate the state space and analyze its 
major behavioral properties, the CPN Tools produce the following results: 

 
Statistics 
----------------------- 
  State Space 
     Nodes:  53226 
     Arcs:   195308 
     Secs:   201 
     Status: Full 
  Scc Graph 
     Nodes:  30300 
     Arcs:   144610 
     Secs:   6 

Liveness Properties 
--------------------------- 
  Dead Markings 
     33 [51458,51457,51316, 
     51315,39025,...] 
  Dead Transition Instances 
     None 
  Live Transition Instances 
     None 
 

The analysis shows that the state space contains dead markings, thus the model we 
developed may contain a deadlock. By tracing the firing sequence for the deadlock states 
as we did in our previous work [19], we found a subtle design error. The error is due to 
the removal of the failed cloud provider from the place “Cluster Provider” in the CPN 
model for the Directory component, which occurs when the transition “Check Providers” 
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fires. However, some “read” request in place “Read_Req” of the CPN model for the 
Cloud component would require communicating with a removed cloud provider if the 
“read” request was created before the cloud provider fails. Since there is no matched 
cloud provider in the “Cluster Provider” place of the Directory model, the system may 
enter a deadlock state. An easy way to fix this problem is to keep the failed cloud 
provider in the “Cluster Provider” place. This would allow the “Read_Fail” transition to 
fire, and return a “read” error to the client. After we add a new arc from the transition 
“Check Providers” to the place “Cluster Provider” in the Directory model, the CPN 
Tools now produce the following results: 

 
Statistics 
----------------------- 
  State Space 
     Nodes:  69679 
     Arcs:   298179 
     Secs:   529 
     Status: Full 
  Scc Graph 
     Nodes:  44449 
     Arcs:   242856 
     Secs:   11 

Liveness Properties 
--------------------------- 
  Dead Markings 
     None 
  Dead Transition Instances 
     None 
  Live Transition Instances 
     Cloud'Read_File 1 
     Cloud'Read_Resp 1 
     Cloud'Read_Start 1 
     ...  

 
Boundedness Properties 
------------------------------------------------------ 
  Place                        Upper      Lower 
  High_Level'Cluster_Providers   4          3 
  High_Level'Down_Providers      1          0 
  High_Level'Provider_Pool       1          0 
  High_Level'Read_Ack            6          0 
  High_Level'Read_Req            2          0 
  High_Level'Restore             1          1 
  High_Level'Service_Ready       1          1 
  High_Level'Write_Ack           3          0 
  High_Level'Write_Req           1          0 
  ... 
 

The analysis shows that our modified net model is deadlock-free, and all transitions 
except those related to the restoration process are live. Note that in our simulation, we 
allow the “Provider_Down” transition in the Cloud model to fire only once. The analysis 
results also show that our net model is bounded. We notice that the upper bound of the 
place “Cluster_Providers” in the high-level model is 4 rather than 3. This is because the 
failed provider can now be kept in the cloud cluster after the directory restores the cloud 
cluster by adding a replacement cloud provider.  

In addition, as demonstrated in our previous work [25], model checking techniques 
can be adopted to verify behavioral properties of our colored Petri net model, such as 
security and fault tolerance related properties. CPN Tools facilitate analysis of state 
spaces by means of CTL-like temporal logic, called ASK-CTL, for formulating queries 
about states and state changes. For example, the formula F1 listed in Table 1 defines an 
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ASK-CTL temporal formula canWrite = POS(NF("", Info_In_Cloud)). In this 
formula, POS, as a state formula, is true if it is possible, from the current state, to reach a 
state where the argument NF("", Info_In_Cloud) is true. Note that NF is a node 
function, where Info_In_Cloud is defined as follows: 
fun Info_In_Cloud n = ((Mark.Cloud'Cluster_Providers 1 n) ==   
  1`{prID="Pr1",ready=true,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}++ 
  1`{prID="Pr2",ready=true,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}++ 
  1`{prID="Pr3",ready=true,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}); 

 
Table 1. Model checking results for the revised Petri net model 

Formula ASK-CTL Temporal Formula Result 

F1 

 val canWrite = POS(NF("", Info_In_Cloud)); 
 val writeOK = OR(OR(NOT(NF("", Write_Info)),   
     NOT(NF("", Provider_Ready))), canWrite); 
 val myASKCTLformula = INV(writeOK); 
 eval_node myASKCTLformula InitNode 

True 

F2 

 val canRead = POS(NF("", DataRead)); 
 val readOK = OR(OR(NOT(NF("", Read_Info)),    
     NOT(NF("", Info_In_Cloud))), canRead); 
 val myASKCTLformula = INV(readOK); 
 eval_node myASKCTLformula InitNode 

True 

F3 

 val canRestore = POS(NF("", Pr1_Replaced)); 
 val restoreOK = OR(NOT(NF("", Pr1_Failed)),  
     canRestore); 
 val myASKCTLformula = INV(restoreOK); 
 eval_node myASKCTLformula InitNode 

True 

 

It is easy to see that the function Info_In_Cloud returns true if and only if providers 
Pr1, Pr2, and Pr3 are all ready and contain the stored medical record of patient Pat1. 
We further define two functions Write_Info and Provider_Ready as follows: 
fun Write_Info n = ((Mark.Doctor'Write_Information 1 n) == 
  1`{mrec={recID="P1.rec",data="This is Pat1's medical    
  record!"},clID="Doc1",prov=["Pr1","Pr2","Pr3"]}); 

fun Provider_Ready n = ((Mark.Cloud'Cluster_Providers 1 n) ==   
  1`{prID="Pr1",ready=true,mrec={recID="P1.rec",data=""}}++ 
  1`{prID="Pr2",ready=true,mrec={recID="P1.rec",data=""}}++ 
  1`{prID="Pr3",ready=true,mrec={recID="P1.rec",data=""}}); 

The function Write_Info returns true if the doctor has the patient record P1.rec to 
be stored with cloud providers Pr1, Pr2, and Pr3, and the function Provider_Ready 
returns true if all providers Pr1, Pr2, and Pr3 are ready for storing patient record 
P1.rec. We are now interested in knowing whether at any time (state), the security 
model satisfies the following property for writing information into the cloud: 
(Provider_Ready ˄ Write_Info → canWrite), which is equivalent to 
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((¬Provider_Ready ˅ ¬Write_Info) ˅ canWrite). This property is specified by 
the temporal formula writeOK = OR(OR(NOT(NF("", Write_Info)), 

NOT(NF("", Provider_Ready))), canWrite). Since this property must be 
satisfied at any time, the formula INV(writeOK) must be true for our Petri net models, 
where INV(writeOK) is true if from the current state, the argument writeOK is true for 
all reachable states. The model checking result shows that the Petri net model satisfies 
this property, which means information can be successfully stored with the cloud 
providers in the cloud cluster. 

Similarly, as shown in formula F2 in Table 1, we can specify the security requirement 
in terms of reading information from the cloud as (Read_Info ˄ Info_In_Cloud → 

canRead), where canRead is defined as an ASK-CTL formula POS(NF("", 

DataRead)), and  the functions Read_Info and DataRead are defined as follows: 
fun Read_Info n = ((Mark.Patient'Read_Information 1 n) == 
  1`{recID="P1.rec",clID="Pat1",prov=["Pr1","Pr2","Pr3"]}); 

fun DataRead n = ((Mark.Patient'Data 1 n) == 
  1`{recID="P1.rec",data="This is Pat1's medical record!"}); 

From Table 1, we can see that the model checking result shows that the Petri net 
model satisfies this property; thus, information stored with the cloud cluster can be 
successfully retrieved by a patient client. 

Finally, as shown in formula F3 in Table 1, we specify a property related to fault-
tolerance requirements as (Pr1_Failed → canRestore), where canRestore is 
defined as an ASK-CTL formula POS(NF("", Pr1_Replaced)), and the functions 
Pr1_Failed and Pr1_Replaced are defined as follows: 
fun Pr1_Failed n = ((Mark.Cloud'Cluster_Providers 1 n) ==   
  1`{prID="Pr1",ready=false,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}++ 
  1`{prID="Pr2",ready=true,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}++ 
  1`{prID="Pr3",ready=true,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}); 

fun Pr1_Replaced n = ((Mark.Cloud'Cluster_Providers 1 n) ==   
  1`{prID="Pr1",ready=false,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}++ 
  1`{prID="Pr2",ready=true,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}++ 
  1`{prID="Pr3",ready=true,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}++ 
  1`{prID="Pr4",ready=true,mrec={recID="P1.rec",data="This is  
  Pat1's medical record!"}}); 

From Table 1, we can see that the model checking result shows that the Petri net 
model satisfies this property; thus, when the cloud provider Pr1 fails, the cloud cluster as 
well as the stored information can be successfully restored by replacing Pr1 with Pr4. 
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6.   Conclusions and Future Work 

Cloud computing is quickly becoming a widely adopted Internet-based platform that 
allows for complex computational nodes and storage clusters, but with the tremendous 
difficulties and high costs associated with configuration and maintenance being hidden 
from the users. There are, however, major legitimate concerns from enterprises and 
sensitive data holders related to offsite storage of personal or mission-critical data. 
Studies show that given the current state of cloud computing, enterprises are very 
concerned with unresolved issues related to security, trust, and management in the cloud. 
For a majority of these enterprises, this is also the main reason why they have not yet 
adopted cloud computing into their infrastructure. In this paper, we introduced a secure 
and fault-tolerant cloud information storage model that takes into account the fact that 
cloud providers may experience outages, data breaches, and exploitations. We cope with 
these issues by developing a distributed cloud-based security mechanism following the 
RAID 5 concept. We then utilize hierarchical colored Petri nets to formally model and 
analyze our concurrent security model. The verification results show that the model we 
developed is live, bounded and deadlock-free, and satisfies major security and fault-
tolerance related requirements. 

For future work, we will consider adopting more advanced RAID techniques such as 
RAID 6 [26], to increase the fault-tolerant capability of our cloud information storage 
model. Such improvement would allow a cloud-based storage system to recover from up 
to two simultaneous cloud provider failures. We also plan to implement a prototype cloud 
information storage system with an improved distributed parity algorithm that may 
strengthen the security mechanism by preventing potential provider collusion to obtain 
information stored in a cloud cluster. In addition, we will develop a more sophisticated 
formal security model that allows more clients to access cloud clusters with shared cloud 
providers, and demonstrate how to cope with the state explosion problem using the net 
reduction approach [27]. Finally, we believe that we can further improve the cloud 
information storage model by allowing the service directory to autonomously detect 
failures, drops in QoS, and anomalies of the cloud providers, and react accordingly.  
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