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Correctly measuring the reliability and availability of a cloud-based system is critical for evaluating 
its system performance. Due to the promised high reliability of physical facilities provided for cloud 
services, software faults have become one of the major factors for the failures of cloud-based 
systems. In this paper, we focus on the software aging phenomenon where system performance may 
be progressively degraded due to exhaustion of system resources, fragmentation and accumulation of 
errors. We use a proactive technique, called software rejuvenation, to counteract the software aging 
problem. The dynamic fault tree (DFT) formalism is adopted to model the system reliability before 
and during a software rejuvenation process in an aging cloud-based system. A novel analytical 
approach is presented to derive the reliability function of a cloud-based Hot SPare (HSP) gate, which 
is further verified using Continuous Time Markov Chains (CTMC) for its correctness. We use a case 
study of a cloud-based system to illustrate the validity of our approach. Based on the reliability 
analytical results, we show how cost-effective software rejuvenation schedules can be created to 
keep the system reliability consistently staying above a predefined critical level. 

Keywords: Software aging; software rejuvenation; reliability analysis; dynamic fault tree (DFT); hot 
spare (HSP) gate; Markov chain; scheduling. 

1.   Introduction 

Due to recent advances in cloud computing technologies, cloud services have been used 
in many different areas such as traffic control, real-time sensor networks, healthcare, and 
mobile cloud computing. Cloud service providers have tried to deliver products with high 
quality of services (QoS), which provide users fault-tolerant hardware and reliable 
software platforms for deploying cloud-based applications [1][2]. However, cloud 
outages are still very common due to component failures, which can affect quite 
negatively the revenue of cloud-based systems. Previous research on the reliability of 
computer-based systems has focused on hardware reliability and availability; 
consequently, the hardware fault tolerance and fault management are well understood and 
developed [3]. With the promised high reliability and availability of physical facilities, 
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including the hardware facilities and their associated redundancy mechanisms, software 
faults have now become one of the major factors of failures in a cloud-based system. 
Since software reliability is considered one of the weakest points in system reliability, 
software fault tolerance and failure forecasting require more attentions than hardware 
fault tolerance in modern computer systems [4, 5]. This work is motivated to deal with 
the software faults in cloud computing in order to assure high reliability and availability 
of cloud-based software systems. 

In many safety-critical computer-based systems, failures of the software systems may 
lead to unrecoverable loss such as human life [6]. Such systems are required to be 
perfectly reliable and never fail based on the discipline of fault-tolerant and reliable 
computing. Reliability and availability are two common ways to express system fault 
tolerance in industry. A reliable computer-based system typically has high availability if 
unreliability is the major cause for unavailability. In this paper, we focus on analyzing the 
reliability of cloud-based systems for software fault tolerance in software reliability 
engineering (SRE). Traditional SRE has been based on analysis of software defects and 
bugs such as Bohrbugs or Heisenbugs without considering software aging related bugs 
[4]. Bohrbugs are mainly design defects that can be eliminated by debugging or adopting 
design diversity; while Heisenbugs are defined as faults that would stop causing failure 
when one attempts to isolate them. The concept of software aging phenomenon was 
introduced in the middle 90s, which explains that the system resources used by the 
software degrade gradually as a function of time [7]. Software aging starts to show up 
due to multiple factors such as memory bloating, memory leaks, unterminated threads, 
data corruption, unreleased file-locks, fragmentation in storage space, and accumulation 
of round-off errors when running a piece of software. It has considerably changed the 
SRE field of study, and becomes a major factor for the reliability of fully tested and 
deployed software systems. To deal with the software aging problem and to assure 
software fault tolerance, software rejuvenation process has been introduced as a proactive 
approach to counteracting software aging and maintaining a reliable software system [8]. 
Software rejuvenation involves actions such as stopping the running software 
occasionally, and cleaning its internal state (e.g., garbage collection, flushing operating 
system kernel tables, and reinitializing internal data structures). The simplest way to 
perform software rejuvenation is to restart the software component that causes the aging 
problem, or to reboot the whole system.  

Due to the ever-growing cloud computing technology and its vast markets, the 
workload of cloud-based systems has increased dramatically. A heavy workload of a 
cloud-based system will inevitably lead to more software aging problems. In this paper, 
we propose to use cloud-based spare components as major software components in a 
computer-based system to enhance its system reliability, and introduce an analytical-
based approach to developing rejuvenation schedules for cloud-based systems in order to 
maintain their high system reliability and ensure a zero-downtime rejuvenation process. 
Dynamic Fault Trees (DFT) are adopted to model the reliability of a cloud-based system, 
and a novel analytical approach is presented to derive the reliability function of a major 
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type of dynamic gate in DFT models, called Hot SPare (HSP) gate. The analytical 
approach is then formally verified using a Continuous Time Markov Chains (CTMC) 
model to ensure its correctness. As the CTMC approach has its intrinsic limitation of only 
supporting components with constant failure rates, to the best of our knowledge, our 
proposed analytical approach is the first formal way to correctly derive the reliability 
function of an HSP gate without such a limitation. To demonstrate the practical usage of 
our approach in evaluating the system reliability of a cloud-based system, we assume a 
reliability threshold for the system under consideration. When the threshold is reached, 
the software rejuvenation process is triggered, and the reliability of the cloud-based 
system is boosted to its initial state. Our case study shows that software rejuvenation 
scheduling based on the reliability analysis of a cloud-based system can significantly 
enhance its system reliability and availability.  

This work extends our previously proposed approach to producing a reliability-based 
software rejuvenation schedule for cloud-based systems [9]. In our previous work, we use 
CTMC to derive the reliability function of an HSP gate for cloud-based systems. To 
overcome the limitation of the CTMC approach, in this paper, we present a new 
analytical approach, which is more general and intuitive, and may potentially support 
software components with non-constant failure rates in our future research. 

The rest of the paper is organized as follows. Section 2 discusses previous work 
related to our research. Section 3 presents a motivating example for rejuvenation of 
cloud-based components. Section 4 describes how to model and analyze the reliability of 
cloud-based systems using DFT. Section 5 presents a case study to demonstrate the 
validity of our approach, and Section 6 concludes the paper and mentions future work. 

2.   Related Work 

In 1995, researchers introduced the so-called software rejuvenation technique to deal with 
aging-related software faults [8]. This technique, in contrast to reactive approaches with 
actions taken only after a software failure, is considered a proactive approach that 
preemptively restarts the aging application and clean software aging related bugs [10, 
11]. Previous studies on software aging and software rejuvenation for predicting a 
rejuvenation schedule can be classified into two categories, namely analytical-based and 
measurement-based approaches [10]. In an analytical-based approach, a failure 
distribution is assumed for software faults related to the software aging phenomenon, and 
software rejuvenation is executed at a fixed interval based on the analytical results of the 
system reliability and availability. Several analytic models have been proposed to 
determine the optimal time for rejuvenation. Bobbio et al. proposed a fine-grained 
software degradation model for optimal rejuvenation policies [12]. Based on the 
assumption that the current degradation level of the system can be identified, they 
presented two different strategies to determine whether and when to rejuvenate. 
Vaidyanathan et al. presented an analytical model of a software system using inspection-
based software rejuvenation [13]. In their proposed approach, they showed that 
inspection-based maintenance was advantageous in many cases over non-inspection 
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based maintenance. Dohi et al. introduced a modified stochastic model to estimate the 
software rejuvenation schedule [14]. The proposed model is based on semi-Markov 
processes, which can maximize the system availability. Koutras and Platis applied the 
software rejuvenation technique to cluster systems in order to achieve their high 
availability [15]. In their approach, software rejuvenation is carried out when a software 
deployed on a node starts to experience degradation; thus an unscheduled reboot may be 
avoided. Although the above approaches introduce various models for software 
rejuvenation, they are not intended to address complex system components’ behaviors 
and interactions, such as dynamic relationships between software components including 
sparing relationship and functional dependency. Different from the existing analytical-
based approaches, we focus on the dynamic behaviors of software components in the 
context of cloud-based systems. We adopt the sparing relationship as an example to 
demonstrate how dynamic relationships of software components in a cloud-based system 
can be modeled and analyzed using DFT.  

On the other hand, measurement-based approach applies statistical analysis to the 
measured data of resource usage and degradation that may lead to the software aging 
problem. In a measurement-based approach, a monitoring program is used to 
continuously collect the system performance data, and analyze them in order to estimate 
the system degradation level. When exhaustion reaches a critical level, the software 
rejuvenation process is triggered. Machida et al. used Mann-Kendall test to detect 
software aging from traces of computer system metrics [16]. They tested for existence of 
monotonic trends in time series, which are often considered indication of software aging. 
Grottke et al. studied the resource usage in a web server subject to an artificial workload 
[17]. They applied non-parametric statistical methods to detect and estimate trends in the 
data sets for predicting future resource usage and software aging issues. Guo et al. 
proposed a software aging trend prediction method based on user intention [18]. The 
approach can be used to predict the trend of software aging based on the quantity of user 
requests to software components while the system is functioning. The existing 
measurement-based approaches are feasible ways to detect software aging problems in 
real-world computer-based systems, but they typically require to process large amounts 
of system data. Thus, they are not as efficient as analytical-based approaches. However, 
measurement-based approaches do provide useful insights about dynamic system 
behaviors and failure distributions related to software aging. As such, our research is 
complementary to the existing research efforts on measurement-based software 
rejuvenation technique that investigates the relationship of software metrics and software 
aging related software faults using statistical analysis [19].  

Other related work attempted to address the software aging issues in virtualized 
datacenters. Machida et al. proposed a Petri net based availability model for virtualized 
systems with time-based rejuvenation for virtual machines [20]. They compared three 
techniques in terms of steady-state availability, and suggested the optimal combination of 
rejuvenation trigger intervals for each rejuvenation technique using a gradient search 
method. Thein et al. proposed an analytical approach that models availability for 
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application servers [21]. Based on the availability model, they presented possible 
combinations of virtualization, high availability cluster and software rejuvenation. 
However, the above approaches are not explicitly based on software reliability analysis. 
In contrast, our approach analyzes system reliability using DFT models, and can generate 
rejuvenation schedules that explicitly satisfy the predefined reliability and availability 
requirements of a cloud-based system. 

3.   Rejuvenation of Cloud-Based Components  

Virtualization technology has been well-adopted in cloud computing, which allows one to 
share a machine’s physical resources among multiple virtual environments, called virtual 
machines (VM). As shown in Fig. 1, A VM is not bounded to the hardware directly; 
rather it is bounded to generic drivers that are created by a virtual machine manager 
(VMM) or a hypervisor. Since a VM can be easily created and destroyed, it is particularly 
useful in a disaster recovery process of a cloud-based system. In this paper, a cloud-based 
system is referred to as a software system that consists of multiple VMs, where each VM 
is considered a software component within the system.  

 

Fig. 1. An example of a reliable cloud-based system with spare software components 

As a proactive fault management technique, software rejuvenation has been used to 
refresh system internal states and prevent the occurrence of software failures due to 
software aging. As mentioned before, a simple way for software rejuvenation is system 
reboot, e.g., to restart a VM or all VMs in a cloud-based system. The basic idea of our 
approach is to create a new instance of VM that replaces the one to be rejuvenated. Since 
the newly deployed VM instance has not yet been affected by the software aging 
phenomenon, the reliability of the software component, after being replaced, is boosted 
back to its initial condition. To achieve high fault tolerance and reliability, we further 
adopt the software redundancy technique using two different types of software standby 
spares, namely Cold SPare (CSP) and HSP. In the context of cloud computing, cold 
standby means that a software component is available as an image of a VM, rather than 
an active VM instance. Data between a primary component and the spare one is regularly 
mirrored based on a specified schedule, e.g., multiple times a day. Since a CSP is not up 
running and does not take any workload, its reliability equals to 1 with a constant failure 
rate 0. Since a CSP can be started very quickly, the recovery time using CSP typically 
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takes just a few minutes to no more than two hours. Note that a software-defined CSP is 
quite difference from a hardware-based CSP in terms of its cost and efficiency. The cost 
of a software-defined CSP is its storage and very little CPU time for data mirroring; 
while a hardware-based CSP is a physical device that must be available all the time in 
order to assure fast failover [3]. Furthermore, a software-defined CSP can be started very 
quickly, but a hardware-based CSP typically requires manual configuration and 
adjustment in the event of partial or total failure.  

On the other hand, an HSP in the context of cloud computing is a hot standby VM 
instance. This means that the software component serving as an HSP must be installed 
and deployed, and must be instantly available when the primary component fails. 
Although an HSP is deployed and running along with the primary component, it typically 
does not take any workload for processing user requests. To ensure fault tolerance, 
critical data of an HSP is mirrored in near real time (e.g., in the range of 200 µs) from the 
primary VM instance. This generally provides a recovery time of a few seconds in case of 
a failure. Similar to CSP, a software-defined HSP also has much lower cost and works 
more efficiently than a hardware-based HSP. In our system design, each critical primary 
component must be equipped with at least one HSP and one CSP in order to maintain the 
needed reliability. However, when calculating the system reliability, we only need to 
consider the primary component and its HSP, but not its CSP, as the CSP is not 
functioning. A CSP is considered for reliability analysis only when it becomes a primary 
component or a hot spare one. In the following, for simplicity, we denote a primary VM 
instance/component as P, which is active and has a full workload, an HSP as H, which is 
active but does not take any workload, and a CSP as C, which is inactive and not 
functioning at all. 

In our approach, a rejuvenation schedule of a cloud-based system is created based on 
its reliability modeling and the analytical results. When the reliability of a system 
component or the whole system reaches a predefined threshold, the rejuvenation process 
is triggered. We assume the rejuvenation process takes about 30 minutes, which is 
typically sufficient for starting a CSP and transfer all requests to the new VM. As a 
simple example illustrated in Fig. 1, suppose we have two instances, a primary 
component P and a hot standby one H, which are deployed on two different physical 
machines. The two physical machines usually belong to two different zones (denoted as 
Zone 1 and Zone 2 in Fig. 1), so a power/network outage in one zone will not affect the 
availability of the other one [22]. To rejuvenate the whole system, we can start two CSPs 
C1 and C2, denoted as P’ and H’ in Fig. 1, to replace P and H, respectively. Although in 
Fig. 1, P’ and H’ are deployed on the same physical machine where P and H are 
deployed, respectively, in reality, this is not necessary and both P’ and H’ can be 
deployed on any physical servers.  

Once the spare components P’ and H’ are up and running, P’ serves as a new primary 
component and starts to process new user requests; while H’ serves as a new HSP, which 
is kept alive but does not take any workload. Meanwhile, we allow 30 minutes in total for 
the old components P and H to finish processing their existing requests. After 30 minutes, 
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we shut down and delete the components P and H, which shall have been successfully 
replaced by P’ and H’ after the rejuvenation process completes. Finally, two new CSPs 
C1 and C2 are created and made ready for the next round of a rejuvenation process. Note 
that in our rejuvenation strategy, we have chosen to shut down instances P and H rather 
than restart and reuse them. This is because different from a physical machine, a VM can 
be easily created and deployed, thus deploying new instances P’ and H’ is a much more 
efficient way than restarting and reusing P and H.  

During the rejuvenation procedure, we need to consider two scenarios. One scenario 
is to rejuvenate the major software components all together. In this case, we replicate the 
whole system when the system reliability reaches its threshold. We call this scenario a 
system-specific rejuvenation. The second scenario is a component-specific one, where 
each time we only rejuvenate the critical component whose reliability is typically the 
lowest one when the system reliability reaches its reliability threshold. As we can see 
from a case study presented in Section 5, the component-specific rejuvenation would be 
normally more cost-effective than the system-specific approach. 

4.   Modeling and Analysis Using DFT 

In this section, we first briefly introduce DFT, and then we show how to use DFT to 
model and analyze the reliability of a cloud-based system subject to software 
rejuvenation. To simplify matters, we assume that the time-to-failure for each software 
component (i.e., a VM) has a probability density function (pdf) that is exponentially 
distributed; in other words, all VMs have constant failure rates. 

4.1.   HSP Gate for Cloud-Based Systems 

The fault tree modeling technique was introduced in 1962 at Bell Telephone Lab, which 
provides a conceptual modeling approach to representing system level reliability in terms 
of interactions between component reliabilities [3]. Fault tree analysis (FTA) is by far the 
most commonly used technique for risk and reliability analysis, where the system failure 
is described in terms of the failure of its components. Standard fault trees are 
combinatorial models and are built using static gates (e.g., AND-gate, OR-gate, and 
K/M-gate) and basic events. As combinatorial models can only capture the combination 
of events without considering the order of occurrences of their failures, they are usually 
inadequate to model today’s complex dynamic systems [23, 24]. 

DFT augments the standard combinatorial gates of a regular fault tree, and introduces 
three novel modeling capabilities, namely spare component management and allocation, 
functional dependency, and failure sequence dependency [25]. These modeling 
capabilities are realized using three main dynamic gates: the spare gate, the functional 
dependency gate, and the priority-AND gate. The work done in this paper uses the 
dynamic spare gates, in particular the HSP and CSP gates. Note that a spare gate has one 
primary input and one or more alternate inputs (i.e., the spares). The primary input is 
initially powered on, and when it fails, it is replaced by an alternate input. The spare gate 
fails when the primary and all the alternate inputs fail. Figure 2 shows an HSP gate with 
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one primary component denoted as P and one hot spare component denoted as H. The 
HSP gate fails when both of the two components P and H fail. 

 

Fig. 2. A HSP gate with one primary component P and one hot spare component H 

 
Suppose the constant failure rates of components P and H are λP and λH, respectively. 

Since H does not take any workload when P is functioning, its failure rate λH is typically 
lower than λP. When P fails, H takes over P’s workload, and behaves as a primary 
component. H now has a higher constant failure rate λH* than λH due to the software aging 
phenomenon with H’s full workload. For this reason, we call the spare component H, 
after its role transition, H*. Note that λH* and λP do not have to be equal because P and H 
may have different configurations.  

There are two scenarios when the HSP gate fails. In the first scenario, P fails before H 
fails. This case is illustrated as “Case 1” in Fig. 3, where P fails at τ1 and H* fails at τ2, 
with τ1 < τ2. In the second scenario, H fails before P fails. In this case, H does not have a 
chance to behave as a primary component, and the failure of P immediately leads to the 
failure of the HSP gate. This case is illustrated as “Case 2” in Fig. 3, where τ2 < τ1. 

 

τ1 τ2 t

λ

λP

λH

λH*

τ2 τ1 t

λ

λP

λH

0 0

Case 1 Case 2  
Fig. 3. Two cases for the failure of an HSP gate (Case 1: P fails before H; Case 2: H fails before P) 

 
We now derive the reliability function R(t) of the HSP gate by considering the above 

two cases.  
Case 1: P fails before H fails, denoted as HP p . In this case, it is guaranteed that H 

does not fail during (0, τ1]. After P fails, H takes over the workload and becomes H*. 
Intuitively, the distribution function of the HSP gate, i.e., the probability that the 
HSP gate fails during (0, t] can be calculated as in Eq. (1). 

)(tF HPp
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However, Eq. (1) works only when HH λλ =* , i.e., the constant failure rate of H does 
not change after it switches its role from a spare component to a primary one at time τ1. 
When HH λλ >* , as we can see from Fig. 4, the integration of the pdf of H* from τ1 to t 
does not give the correct unreliability of the component at time t, because it incorrectly 
assumes that the component behaves as H* starting from time 0. Since the component 
actually behaves as H during (0, τ1], the unreliability of H* at time τ1 equals the 
unreliability of H at τ1 rather than the unreliability calculated by the integration of the pdf 
of H* from 0 to τ1. This requires us to calculate a new starting integration time τH* for H* 
such that the unreliability of H* at τH* (represented by the shaded area under the pdf of 
H*) is equal to the unreliability of H at τ1 (represented by the shaded area under the pdf of 
H). As the pdfs of H and H* are and , respectively, such a 
relationship between H and H* can be described as in Eq. (2). 
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Solving Eq. (2), we have
1* *
ττ λ

λ
H

H
H = . Since H* fails during a period of time (t-τ1), the 

integration range for H* now becomes [
1*
τλ

λ
H

H , 
11 *
ττ λ

λ
H

Ht +− ]. Based on the above analysis, 
the probability of P fails before H fails can be calculated as in Eq. (3).  

 

 
 

Fig. 4. The initial unreliability of H* when P fails (i.e., the unreliability of H at time τ1) 
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To simplify the integration range for H*, we can substitute 122 *
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λ

H

Hu −= for 
variable τ2 in Eq. (3), and derive the distribution function of the HSP gate 
appearing in Case 1 as in Eq. (4). 
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Case 2: H fails before P fails, denoted as PH p . In this case, it is guaranteed that P 

does not fail during (0, τ2]. The distribution function of the HSP gate, i.e., the 
probability that the HSP gate fails during (0, t] can be calculated as in Eq. (5). 
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As the two cases are completely independent, the unreliability of the HSP gate at time 

t is the summation of the unreliability values of the two cases at time t. Thus, we derive 
the unreliability function U(t) of the HSP gate as in Eq. (6).  
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Accordingly, the reliability function R(t) of the HSP gate can be derived as in Eq. (7). 
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It is worth noting that there is an obvious but subtle third case, where components P 
and H fail exactly at the same time, denoted as HP ≡ . As the probability of failure 
associated with the event [T = τ] is 0, i.e., the probability that either P or H fails during [τ, 
τ] is 0, the unreliability of the HSP gate in the third case HP ≡ must equal 0. This result 
can be easily derived as in Eq. (8), where P fails at time τ1 during (0, t], and H fails 
exactly at the same time τ1 when P fails. 
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4.2.   Verifying the Reliability Function Using CTMC 

To formally verify the correctness of the reliability function R(t) of the HSP gate derived 
in Section 4.1, we now use a CTMC model and solve its state equations.  

Figure 5 shows the CTMC model corresponding to the HSP gate given in Fig. 2. 
There are four states 1 to 4 defined in the CTMC model, which are denoted as PH, P, H*, 
and FAILURE, respectively. The state PH (State 1) refers to the one in which both the 
primary component and the hot spare one are functioning. When the hot spare component 
or the primary one fails, the model enters its P state (State 2) or H* state (State 3), 
respectively. Note that we denote State 3 as H* instead of H because in State 3, the hot 
spare component has a different failure rate as the one in State 1.  

  

Fig. 5. The CTMC model of the HSP gate in Fig. 2 
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Let Pi(t) be the probability of the system in state i at time t, where 1 ≤ i ≤ 4, and Pij(dt) 
= P[X(t+dt) = j | X(t) = i] be the incremental transition probability with random variable 
X(t). The following matrix [Pij(dt)], where 1 ≤ i, j ≤ 4, is the incremental one-step 
transition matrix [4] of the CTMC defined in Fig. 5.   

 

                                          (9) 

⎥
⎥
⎥
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⎦

⎤

⎢
⎢
⎢
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=

1000
100

010
0)(1

)]([
** dtdt
dtdt

dtdtdt

dtP
HH

PP

PHHP
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The matrix [Pij(dt)], where 1 ≤ i, j ≤ 4, is a stochastic matrix with each row sums to 1. 
This matrix provides the probabilities for each state either remaining (when i = j) or 
transit to a different state (when i ≠ j) during the time interval dt. Given the initial 
probabilities of the states, the matrix can be used to describe the state transition process 
completely. From the matrix defined in Eq. (9), we can derive the following relations as 
in Eqs. (10.1-10.4). 

)())(1()( 11 tPdtdttP Hp λλ +−=+                                                     (10.1) 

)()1()()()( 212 tPdttPdtdttP pH λλ −+=+                                          (10.2) 

)()1()()()( 3*13 tPdttPdtdttP HP λλ −+=+                                          (10.3) 

)()()()()()( 43*24 tPtPdttPdtdttP HP ++=+ λλ                                  (10.4)  
 

where the initial probabilities are defined by the probability of the system being at State 
1. Thus we have P1(0) = 1, and P2(0) = P3(0) = P4(0) = 0. As dt goes to 0, we derive a set 
of linear first-order differential equations as in Eqs. (11.1-11.4), which are state equations 
of the CTMC model. 
 

)()()()(lim)( 1
11

01 tPλλ
dt

tPdttPt'P HPdt
+−=

−+
=

→
                                (11.1) 

)()()()(lim)( 21
22

02 tPλtPλ
dt

tPdttPt'P PHdt
−=

−+
=

→
                             (11.2) 

)()()()(lim)( 31
33

03 tPλtPλ
dt

tPdttPt'P H*Pdt
−=

−+
=

→
                             (11.3) 

)()()()(lim)( 32
44

04 tPλtPλ
dt

tPdttPt'P H*Pdt
+=

−+
=

→
                            (11.4) 

 
The state equations defined in Eqs. (11.1-11.4) can be solved using Laplace 

transformation, which allows to transform a linear first order differential equation into a 
linear algebraic equation that is easy to solve. 

Let the Laplace transformation of Pi(t) be Fi(s) as defined in Eq. (12.1), the Laplace 
transformation of Pi’(t) can be derived as in Eq. (12.2). 
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                                                 (12.1) 
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i PssFdttPestPL −== −∫                                     (12.2) 

 
Now apply the Laplace transformations defined in Eqs. (12.1-12.2) to both sides of 

the Eqs. (11.1-11.4), we can derive Eqs. (13.1-13.4). 
 

)()()0()( 111 sFPssF HP λλ +−=−                                               (13.1) 
)()()0()( 2122 sFsFPssF PH λλ −=−                                            (13.2) 

)()()()0()( 3*133 sFsFPssF HP λλ −=−                                          (13.3) 

)()()()0()( 3*244 sFsFPssF HP λλ +=−                                         (13.4) 
 

Substituting the initial probabilities Pi(0), where 1 ≤ i ≤ 4, into Eqs. (13.1-13.4), we 
can solve F1(s), F2(s) and F3(s). By further applying inverse Laplace transformation to 
F1(s), F2(s) and F3(s), we can solve the original linear first order differential equations in 
Eqs. (10.1-10.3) as follows. 
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The reliability function R(t) is the summation of P1(t), P2(t) and P3(t), which can be 

calculated as in Eq. (14),  
 

)()()()()( )(
321

*

*

ttt HPH

HHP

PP eeetPtPtPtR λλλ
λλλ

λλ +−−
−+

− −+=++=                   (14) 

 
It is easy to see that Eq. (14) gives exactly the same formula as the one defined in Eq. 

(7); thus, it verifies the correctness of our proposed analytical approach for calculating 
the reliability of the HSP gate at time t. Note that P4(t) is the probability that the system is 
in its FAILURE state at time t. Therefore, P4(t) actually defines the system unreliability 
function U(t) =  P4(t) = 1 - R(t). 

4.3.   Modeling and Analysis Using DFT in Two Phases 

To model and analyze the reliability of a cloud-based system with spare components, we 
consider two different phases. Phase 1 represents the pre-rejuvenation stage where the 
reliability analysis is based on the failure rates of the primary components and their 
HSPs. CSPs are not considered in this phase because they cannot take over the system 
load instantly when both the primary and hot spare components fail. We model the 
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system reliability using DFT, and then calculate its reliability based on the reliability 
function of HSP gate derived in Section 4.1.  

Phase 2 is the software rejuvenation phase. When the predefined reliability threshold 
is reached, the software rejuvenation process is initiated, and the system enters this phase. 
As we have mentioned, there are two rejuvenation scenarios, namely the system-specific 
rejuvenation and the component-specific one. To illustrate the basic idea of calculating 
the system reliability in this phase, we use the first scenario as an example, where the 
whole system is rejuvenated. In this scenario, we start two CSPs P’ and H’ to replace P 
and H, respectively. During the rejuvenation period, all four software components P, H, 
P’ and H’ coexist and are functioning. As shown in Fig. 6, the dynamic fault tree model 
is decomposed into 2 subtrees, S1 and S2, which are all HSP gates that are connected by 
an AND-gate. This is because the system fails only when both of the two HSP gates fail, 
and the failure of a single HSP gate during the rejuvenation phase will not lead to the 
failure of the whole system. Subtree S1 consists of components P and H that are to be 
rejuvenated; while subtree S2 consists of the newly deployed components P’ and H’, 
which are used to replace P and H. As both S1 and S2 are defined as HSP gates, they can 
be computed using the same analysis technique as described in Phase 1.  

 

Fig. 6. A DFT model with 2 HSP gates (Phase 2) 

Once we have the distribution functions of S1 and S2, the static gate, i.e., the AND-
gate, can be easily solved using the sum-of-disjoint-products (SDP) method [3]. 
Specifically, to calculate the reliability of the whole system in this phase, we first 
calculate the unreliability functions US1(t) and US2(t) for S1 and S2, respectively. Then the 
reliability of the AND-gate can be calculated as in Eq. (15). 

)(*)(1)(1)( 21 tUtUtUtR SSAND −=−=                                              (15) 

In the following case study, we will consider both of the two scenarios during the 
rejuvenation process, where Scenario 1 involves rejuvenation of the whole system, and in 
this case, we need to replicate all major software components when the system reliability 
reaches the threshold. On the other hand, Scenario 2 is component specific, thus we only 
rejuvenate the most critical component whose reliability is the lowest when the system 
reliability reaches its threshold. 
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5.   Case Study 

A challenging task in cloud computing is to correctly measure the reliability of a cloud-
based system and maintain its high reliability. In this case study, we show how to model 
and analyze the reliability of a cloud-based system using DFT, and then estimate an 
effective rejuvenation schedule that meets the high reliability requirement of the system. 
We consider a typical cloud-based system as shown in Fig. 7, which consists of an 
application server PA and a database server PB. To enhance the system reliability, two 
hot spare components HA and HB are set up for PA and PB, respectively, which are ready 
to take over the workload once the primary ones fail. Note that each of the servers is 
deployed in different zones for fault-tolerance purpose [22]. As a clarification for the 
reliability analysis in this case study, we view a VM with its OS, the server software and 
the deployed services as a single software component. In addition, we only consider the 
reliability of the servers within the box drawn with dashed lines, and assume the proxy 
server’s reliability is ideal. Furthermore, we assume that the proxy server and the 
application server can monitor and detect failures of the application server and the 
database server, respectively. 

Zone 3

Zone 4

Proxy 
Server

Zone 1

Zone 2

DB Server PB DB Server HB

App Server PA App Server HA

replace

replace

monitor monitor

monitor monitor

 

Fig. 7. A cloud-based system with 2 servers and their HSPs 

 
To ensure a high reliability of the system, we set a reliability threshold of 0.99, and 

assume the constant failure rates of the servers be λPA = 0.004, λHA = 0.0025, λPB = 0.005, 
and λHB = 0.003. Note that the failure rates of the hot spare components are lower than 
their corresponding primary ones because the spare components do not take any 
workload when the primary ones are functioning. However, when a primary server fails, 
the associated hot spare component takes over the workload; in this case, its failure rate 
will increase accordingly. We assume the hot spare components have the same 
configurations as their associated primary ones, thus we have λHA*  = λPA = 0.004 and λHB* 

= λPB = 0.005. 
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This case study involves 8 software components that are split into two groups. The 
first group consists of the four servers shown in Fig. 7. The second group consists of four 
CSP components that are used to replace the servers in the first group during the 
rejuvenation process. We name the severs in the second group as PA’, HA’, PB’, and 
HB’. As the CSP components are undeployed VM images, their failure rates are 0. Once 
deployed, they will have the same failure rates as their corresponding software 
components due to the assumed same configurations. 

Figure 8 shows the DFT model of the cloud-based system in Phase 1. Because the 
system fails when either the application server or the database server fails, the two HSP 
gates are connected by an OR-gate. The reliability function of the OR-gate can be derived 
as in Eq. (16). 

 

Fig. 8. DFT model of the cloud-based system (Phase 1) 

 
))(*))(1()((1)(1)( 211 tUtUtUtUtR SSSOR −+−=−=                            (16) 

 
where US1(t) and US2(t) are the unreliability functions of the subtrees S1 and S2, 
respectively. According to Eq. (7), US1(t) and US2(t) can be calculated as in Eq. (17) and 
Eq. (18), respectively. Note that Eqs. (17-18) have been simplified due to the assumed 
configurations, where λHA*  = λPA and λHB* = λPB. 
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In Phase 2, we consider both of the scenarios mentioned in the end of Section 4.3, so 

their impacts on system reliability as well as their consequent rejuvenation schedules can 
be compared. Figure 9 shows the DFT model of the cloud-based system in Phase 2 based 
on Scenario 1. For the same reason as in Phase 1, the system reliability can be calculated 
as in Eq. (19). According to Eq. (15), US3(t) and US4(t) can be calculated as in Eq. (20) 
and Eq. (21), respectively. 

))(*))(1()((1)(1)( 433 tUtUtUtUtR SSSOR −+−=−=                            (19) 

)(*)()( '113 tUtUtU SSS =                                                                       (20) 

)(*)()( '224 tUtUtU SSS =                                                                      (21) 
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Note that in Eqs. (20-21), US1(t), US1’(t), US2(t) and US2’(t) can be calculated in a 
similar way as in Eqs. (17-18). 

 

Fig. 9. DFT model of the cloud-based system in Phase 2 (Scenario 1) 

 
The reliability analytical results for Scenario 1 are listed in Table 1. The table shows 

that the reliability threshold (0.99) is reached every 18 days. Hence, both the application 
and database servers are rejuvenated at the end of Phase 1. As Phase 2 has a 30-minute 
time duration, we calculate the system reliability at 5, 10, 20 and 30 minutes in Phase 2 to 
illustrate how system reliability may change during the rejuvenation process. From the 
table, we can see that the system reliability is kept very high during the transition. After 
30 minutes, the newly deployed servers completely take over the system, and the servers 
to be rejuvenated are shut down. When this happens, the system returns to its initial state, 
and starts a new life cycle with a very high initial reliability. According to Table 1, we 
suggest that the system should be rejuvenated every 18 days in order to maintain the 
system reliability above the threshold. 

By further looking into Table 1, we notice that when the system reliability reaches 
0.99 after 18 days, the reliability of the database server subsystem is always lower than 
that of the application server subsystem. This suggests that we may first rejuvenate the 
most critical components with the lowest reliability (e.g., the database servers in this case 
study) without sacrificing the system reliability too much. Then we wait until the system 
reliability reaches the threshold again, and rejuvenate the application servers next, as they 
now become the most critical components. This is exactly what happens in the 
rejuvenation schedule of Scenario 2, where the application servers and the database 
servers are rejuvenated alternatively. Figure 10 shows the DFT model of the cloud-based 
system in Phase 2 for one of the two cases in Scenario 2, where only the database servers 
are rejuvenated. In this case, the system reliability can be calculated as in Eq. (22), and 
US1(t) and US4(t) can be calculated in a similar way as in Eq. (17) and  Eq. (21), 
respectively. 
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Table 1. System reliability with software rejuvenation (Scenario 1) 

Phase Time (Days) App Servers 
Reliability 

DB Servers 
Reliability System Reliability 

1 

0 1 1 1 
1 0.99998705 0.9999801 0.99996715026 
5 0.9996806 0.9995107 0.99919145628 

10 0.998745 0.998085 0.99683240333 
18 0.996044 0.994004 0.99007172018 

2 

18.0035 0.99999999999 0.99999999999 0.99999999999 
18.0069 0.99999999999 0.99999999999 0.99999999999 
18.0139 0.99999999999 0.99999999998 0.99999999997 
18.0208 0.99999999998 0.99999999994 0.99999999992 

... ... ... ... ... 

1 

73 0.99998705 0.9999801 0.99996715026 
77 0.9996806 0.9995107 0.99919145628 
82 0.998745 0.998085 0.99683240333 
90 0.996044 0.994004 0.99007172018 

 90.0035 0.99999999999 0.99999999999 0.99999999999 
 90.0069 0.99999999999 0.99999999999 0.99999999999 
2 90.0139 0.99999999999 0.99999999998 0.99999999997 
 90.0208 0.99999999998 0.99999999994 0.99999999992 

1 

91 0.99998705 0.9999801 0.99996715026 
95 0.9996806 0.9995107 0.99919145628 

100 0.998745 0.998085 0.99683240333 
108 0.996044 0.994004 0.99007172018 

 108.0035 0.99999999999 0.99999999999 0.99999999999 

2 
108.0069 0.99999999999 0.99999999999 0.99999999999 
108.0139 0.99999999999 0.99999999998 0.99999999997 
108.0208 0.99999999998 0.99999999994 0.99999999992 

1 
109 0.99998705 0.9999801 0.99996715026 
113 0.9996806 0.9995107 0.99919145628 
118 0.998745 0.998085 0.99683240333 

 

Fig. 10. DFT model of the cloud-based system in Phase 2 (Scenario 2, rejuvenate database servers only) 

 
))(*))(1()((1)(1)( 411 tUtUtUtUtR SSSOR −+−=−=                                   (22) 
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The system reliability for the other case in Scenario 2, where only the application 
servers are rejuvenated, can be calculated in a similar way. Table 2 shows the reliability 
analytical results for Scenario 2. At the end of each Phase 1, the server subsystem with its 
reliability marked by “=>” is the one to be rejuvenated. For example, after 18 days, the 
database servers are rejuvenated, and after 27 days, the application servers are 
rejuvenated. 

 
Table 2. System reliability with software rejuvenation (Scenario 2) 

Phase Time 
(Days) 

App Servers 
Reliability DB Servers Reliability System Reliability 

1 

0 1 1 1 
1 0.99998705 0.9999801 0.99996715026 
5 0.9996806 0.9995107 0.99919145628 

10 0.998745 0.998085 0.99683240333 
18 0.996044 => 0.994004 0.99007172018 

2 

18.0035 0.9960425 0.99999999999 0.99604249999 
18.0069 0.996041 0.99999999999 0.99600409999 
18.0139 0.996038 0.99999999998 0.99603799998 
18.0208 0.996035 0.99999999994 0.99603499994 

1 
20 0.995150 0.99992069 0.99507107465 
25 0.992552 0.9990492 0.99160828156 
27 => 0.9914 0.998442 0.99000000000 

2 

27.0035 0.99999999999 0.998441 0.99844099999 
27.0069 0.99999999999 0.998439 0.99843899999 
27.0139 0.99999999999 0.998437 0.99843699999 
27.0208 0.99999999998 0.998435 0.99843499998 

1 
30 0.9998842 0.997265 0.99714951671 
35 0.999109 0.994628 0.99374178645 
39 0.998205 => 0.991942 0.99016146411 

2 

39.0035 0.998204 0.99999999999 0.99820399999 
39.0069 0.998202 0.99999999999 0.99820199999 
39.0139 0.99820 0.99999999997 0.99819999997 
39.0208 0.998199 0.99999999993 0.99819899993 

... ... ... ... ... 

1 

85 0.998486 0.99992069 0.99840681007 
90 0.996853 0.9990492 0.99590519217 
95 0.994671 0.997265 0.99195057481 
96 0.994172 0.996804 0.99099462629 
97 => 0.993652 0.99631 0.99000000000 

2 

97.0035 0.99999999999 0.99630 0.99680299999 
97.0069 0.99999999999 0.996298 0.99680099999 
97.0139 0.99999999998 0.996294 0.99679799998 
97.0208 0.99999999996 0.996291 0.99679399996 

1 100 0.9998842 0.994628 0.99451282208 
105 0.9991090 => 0.991194 0.99031084615 

2 

105.0035 0.9991902 0.99999999999 0.99874399999 
105.0069 0.9991895 0.99999999999 0.99874199999 
105.0139 0.9991882 0.99999999997 0.99873999997 
105.0208 0.9991868 0.99999999992 0.99873799992 

1 
110 0.9979 0.9995107 0.99741172753 
115 0.996044 0.998085 0.99413657574 
119 => 0.994172 0.99631 0.99050350532 
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We now illustrate the suggested rejuvenation schedules for both Scenario 1 and 
Scenario 2 as in Fig. 11. In the figure, the start of rejuvenation is indicated by a sudden 
increment of the system reliability. By comparing the two rejuvenation schedules, we can 
see that during 119 days, Scenario 1 has 6 rejuvenation processes that require us to 
rejuvenate both of the application and database servers. On the other hand, Scenario 2 has 
9 rejuvenation processes that only require us to rejuvenate either the application servers 
or the database servers each time. It is easy to see that Scenario 2 results in less 
management of the servers in order to keep the system reliability above the 0.99 
threshold during the 119 days. Suppose the rejuvenation of the application servers has the 
same cost as the that of the database servers, by using the rejuvenation schedule defined 
in Scenario 2, the cost can be reduced by (6*2 - 9)/(6*2) = 25%, comparing to the 
rejuvenation schedule used in Scenario 1. 
 

 

Fig. 11. Rejuvenation scheduling for the cloud-based system (Scenario 1 vs. Scenario 2) 

6.   Conclusions and Future Work      

In this paper, we propose a reliability-based approach to establishing cost-effective 
software rejuvenation schedules for cloud-based systems. The system requires the usage 
of hot spare components during normal running time, and cold spare components during 
the rejuvenation process in order to keep the system reliability above a predefined 
threshold. By modeling the reliability of a cloud-based system using DFT, we are able to 
derive the reliability function for each software component as well as the whole system. 
We define two phases for the software rejuvenation, and discuss about two scenarios of 
the rejuvenation process in Phase 2. The analytical results of our case study show that 
Scenario 2 is more cost-effective than Scenario 1. 

For future work, we will extend our current work for components with non-constant 
failure rates. We will adopt a measurement-based approach to collecting empirical data in 
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order to determine the pdfs of the major software components, the reliability of which is 
affected by software aging. Software tools will be developed for modeling and analyzing 
the reliability of cloud-based systems, as well as deriving effective rejuvenation 
schedules. In addition, we will expand and apply our proposed approach in more complex 
cloud environments, such as cloud-based systems using Amazon Web Services (AWS). 
Comparative analysis of system performance will be conducted for our proposed 
approach as well as existing fault-tolerant strategies that improve the reliability of cloud 
applications [26]. Finally, we envision modeling and analyzing cloud-based systems with 
active standby spare components, which can share workload with the primary ones [27], 
as a future, and more ambitious research direction. 
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