
International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

1

RELIABLE AND SECURE DISTRIBUTED CLOUD DATA STORAGE USING
REED-SOLOMON CODES

HAIPING XU* and DEEPTI BHALERAO†

Computer and Information Science Department, University of Massachusetts Dartmouth
North Dartmouth, MA 02747, USA

*hxu@umassd.edu
†dbhalerao@umassd.edu

Received (28 August 2015)
Revised (18 October 2015)

Accepted (Day Month Year)

Despite the popularity and many advantages of using cloud data storage, there are still major
concerns about the data stored in the cloud, such as security, reliability and confidentiality. In this
paper, we propose a reliable and secure distributed cloud data storage schema using Reed-Solomon
codes. Different from existing approaches to achieving data reliability with redundancy at the server
side, our proposed mechanism relies on multiple cloud service providers (CSP), and protects users’
cloud data from the client side. In our approach, we view multiple cloud-based storage services as
virtual independent disks for storing redundant data encoded with erasure codes. Since each CSP has
no access to a user’s complete data, the data stored in the cloud would not be easily compromised.
Furthermore, the failure or disconnection of a CSP will not result in the loss of a user’s data as the
missing data pieces can be readily recovered. To demonstrate the feasibility of our approach, we
developed a prototype distributed cloud data storage application using three major CSPs. The
experimental results show that, besides the reliability and security related benefits of our approach,
the application outperforms each individual CSP for uploading and downloading files.

Keywords: Distributed cloud data storage; software reliability; data security; erasure codes; cloud
service provider (CSP); integer linear programming.

1. Introduction

In the past decades, many businesses have provided their online services to users in a
variety of convenient ways such as search engines, webmail, social networks, online
shopping, online backup, and online information storage [1]. Online services with large
groups of users inevitably generate tremendous amounts of personal and professional
digital data, and thus, they require efficient and cost-effective mechanisms to store them.
As an ever-growing data storage solution, cloud-based storage services have become a
highly practical way for both people and businesses to store their data online [2]. The
pay-as-per-use model of cloud computing eliminates the upfront commitment from cloud
customers; thereby it allows the customers to start small businesses quickly, and increase
resources only when they are needed. Although cloud computing and its underlying

* Corresponding author: Dr. Haiping Xu, Associate Professor, Computer and Information Science Department,
University of Massachusetts Dartmouth, Email: hxu@umassd.edu.

2 H. Xu & D. Bhalerao

virtualization technique bring customers many advantages such as elasticity, scalability,
flexibility, zero maintenance overhead and reduced costs, there are still major concerns
about the data stored in the cloud, e.g., reliability, security and confidentiality [3].
Reliability has been one of the most important concerns for cloud data storage since users
typically expect services to be available whenever they need them. This requirement
pushes cloud service providers (CSP) to deliver reliable cloud services, which can
perform as expected, handle failures without downtime, and recover from failures
without affecting the large set of customers. However, cloud downtime statistics studies
show an average 7.5 hours of unavailability per year, which is 99.9% availability [4].
This is quite far away from the expected availability for critical businesses, which is
99.99% availability (i.e., 1 hour of unavailability per year). Major CSPs have addressed
the issue of availability using data redundancy distributed over multiple physical
machines at their server sites; however, recent cloud outage examples show that the
added redundancy is not sufficient in case of a complete cloud service failure. In May
2014, Adobe’s ID service went down, leaving Creative Cloud users locked out of their
software and account for over 24 hours [5]. In early 2013, Dropbox service had a major
cloud outage that kept users offline and unable to synchronize using their desktop apps
for more than 15 hours [6]. In the same year, Amazon EC2 suffered from an outage for
about an hour causing many dependent businesses such as Vine and Instagram, to fall
down [7]. Such incidents have made data-critical business owners apprehensive of
completely relying on cloud data storage, and also made cloud users question the
reliability of cloud storage services provided by even the world-leading CSPs.

In addition to the reliability of cloud storage services, there are also many known
security breaches of cloud data in recent years [8]. For example, Amazon’s simple
storage service has been compromised twice in 2009, which brought many dependent
network sites become unavailable [9]. In a recent security breach in Amazon cloud,
hackers broke into LinkedIn user accounts and created fake profiles [10]. In spite of
several security measures, hackers managed to copy information from thousands of
LinkedIn users. From the above examples, we can see that even the largest and the most
reputable CSPs have been affected by security and data breaches. As the cloud computing
environment becomes more and more open and ubiquitous, it becomes very difficult for a
CSP to apply traditional security measures, designed for closed systems, to the open and
multi-shared computing environment. On the other hand, since data storage locations and
security measures at the server sites are unknown, most of the users have not yet started
to feel comfortable with exploiting the full potential of the cloud.

Prolonged cloud data service outages and security concerns can be fatal for businesses
with data critical domains such as healthcare, banking and finance. Today, almost all
major CSPs have implemented fault-tolerance and security mechanisms at their server
sides to recover original data from service failure or data corruption, and to prevent data
from being compromised by hackers. Such mechanisms are suitable for a small number
of hard disk failures as well as attacks from external hackers; however, they are of no use
for the end users to ensure the reliability and security of their cloud data when major

Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes 3

cloud services fail or the cloud services have been compromised by internal hackers, such
as employees of the CSP companies. Hence, to achieve high reliability and security of
critical data, users should not depend upon a single CSP.

In this paper, we propose an approach that can provide security and fault tolerance to
the user’s data from the client side. In our approach, we decompose an original data file
into multiple data pieces, and generate checksum pieces using erasure codes [11]. The
pieces of data are spread over multiple cloud storage services, which can be retrieved and
combined to recover the original file. We achieve data redundancy in our approach using
erasure codes at the software level across multiple CSPs. Therefore, the original data can
be recovered even when there is a cloud outage where some cloud service fails
completely. Using this approach, users’ data would not be easily compromised by
unauthorized access and security breach, as no single cloud service has the complete
knowledge of the users’ data. Users could have the sole control of their cloud data, and
do not need to completely rely on the security measures provided by the CSPs. In
addition, due to the ever changing and growing set of users and data centers, the
performance of cloud services is also a major concern. With more and more users share
the same cloud storage infrastructure provided by a CSP, the cloud performance issue is
getting more and more serious than ever before. To improve the network performance of
our approach, we adopt the multithreading technology, and fully utilize the network
bandwidth in order to minimize the time required to access data over the cloud.

This work is based on our previously proposed reliable and secure cloud storage
schema using multiple CSPs [12]. In this paper, we provide additional details about how
to use Reed-Solomon codes [13] to achieve high reliability and security of cloud data.
We also perform further experiments to demonstrate the consistently high performance of
our approach.

The rest of the paper is organized as follows. Section 2 discusses previous work
related to our research. Section 3 presents a framework for reliable and secure distributed
cloud data storage. Section 4 describes how to use erasure codes, in particular, the Reed-
Solomon codes to implement such a framework. Section 5 discusses how to calculate the
optimal number of checksum pieces. Section 6 presents a case study to demonstrate the
feasibility and high performance of our approach. Section 7 concludes the paper and
mentions future work.

2. Related Work

There have been many research efforts on using erasure codes at the server side to make
cloud storage service reliable. Huang et al. proposed to use erasure codes in Windows
Azure storage [14]. They introduced a new set of codes for erasure coding called Local
Reconstruction Codes (LRC) that could reduce the number of erasure coding fragments
required for data reconstruction. Their approach divides redundant data into both local
and global sets of parities, and stores them in geographically separated servers. Since
local parities minimize I/O and network overhead during data recovery, the overall
reconstruction cost can be significantly reduced. Gomez et al. introduced a novel

4 H. Xu & D. Bhalerao

persistency technique that leverages erasure codes to save data in a reliable fashion on
IaaS clouds [15]. They presented a scalable erasure coding algorithm that could support a
high degree of reliability for local storage with the cost of low computational overhead
and a minimal amount of communication. Experimental results show that their approach
may improve the overall performance of real-life High Performance Computing (HPC)
applications. Khan et al. provided some guidance for applying erasure coding techniques
in cloud file systems to support load balance and incremental scalability in data centers
[16]. Their proposed approach can prevent correlated failures with data loss and mitigate
the effect of any single failure on a data set or an application. Although the above
approaches can significantly enhance the reliability of cloud data at data centers, they
provide no support for end users to deal with cloud outage of the service providers.
Different from the existing approaches, we apply erasure-coding techniques at the
application level using multiple CSPs. By deploying a user’s encoded redundant data
across multiple cloud storage services, our approach is fault tolerant for storing cloud
data when any of the cloud services fails.

There is also a considerable amount of work on securing cloud data, to which this
work is closely related. Santos et al. proposed a secure and trusted cloud computing
platform (TCCP) for Infrastructure as a Service (IaaS) providers such as Amazon EC2
[17]. The platform provides a closed box execution environment that guarantees
confidential execution of guest virtual machines on a cloud infrastructure. Hwang and Li
proposed to use data coloring and software watermarking techniques to protect shared
cloud data objects [18]. Their approach can effectively prevent data objects from being
damaged, stolen, altered or deleted, and users may have their sole access to their desired
cloud data. Wang et al. described an effective and flexible distributed schema that
integrates storage correctness insurance and identification of misbehaving servers [19].
Using erasure coding techniques, the schema provides security to cloud data storage
servers against Byzantine failures as well as malicious data modification attacks. The
existing approaches to securing cloud data typically assume that the CSPs are trustable
and they can prevent physical attacks to their servers. However, this might not be true in
reality because service providers typically tend to collect users’ cloud data for their
commercial purposes such as targeted adverting. Furthermore, there have been many
incidents that cloud services were compromised by either internal or external hackers,
and thousands of users’ critical data was compromised. Therefore, merely relying on
service providers’ security mechanisms is not a feasible solution for both people and
businesses to store their critical data in the cloud. It is required that users should be
allowed to apply security mechanisms to their own data at the client side. Different from
the aforementioned methods to securing users’ data in the cloud, our approach does not
rely on any security measures at the server side. Instead, the cloud data storage
application running at the client side can split users’ data into pieces, encode them using
erasure codes, and distribute them to multiple CSPs. Assume there are no collusions
among the CSPs, users can securely store their data in the cloud.

Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes 5

Additional work on cloud storage emphasizes on improving the cloud storage
performance. Shue et al. presented a cloud-based system for balancing workloads in
multi-tenant systems to achieve fairness in shared storage systems [20]. They distributed
workload uniformly across virtual machines in order to achieve high utilization and
improve the system performance at the server side. Zia and Khan identified a number of
key challenges in performance issues in cloud computing [21]. They summarized
potential performance improvement in different areas such as storage services, scaling,
network services, scheduling, optimal location of data centers, and efficient SQL query
processing. Different from the above methods, our approach focuses on network service
performance and adopts the multithreading technique for uploading and downloading
pieces of data with multiple CSPs. Experimental results show that with reasonable
number of data pieces, the system performance can be significantly improved.

In this paper, we extend the methodology and results of a preliminary study on secure
and fault-tolerant model of cloud information storage [3]. In the previous work, we
followed the RAID (Redundant Array of Independent Disks) approach to encode users’
data using XOR parity, and developed a hierarchical colored Petri nets (HCPN) model for
secure and fault-tolerant cloud information storage systems. In this paper, we adopted
more advanced erasure coding techniques to achieve security and fault tolerance for
cloud data storage, and presented a detailed design for a reliable and secure distributed
cloud data storage schema. To demonstrate the effectiveness of our proposed approach,
we implemented a prototype using three major CSPs, which allows users to securely,
reliably and efficiently store their critical data in the cloud.

3. A Framework for Reliable and Secure Distributed Cloud Data Storage

To address the aforementioned major concerns in cloud storage services, we propose a
reliable and secure distributed cloud data storage schema using multiple CSPs. Figure 1
shows a framework for such a distributed storage system. The major component of the
system is the cloud data storage application that uses erasure codes to encode and decode
file pieces at the client side, and upload and download encoded file pieces concurrently at
multiple CSPs. Note that each CSP typically stores more than one file piece; therefore,
concurrent file transfers happen at two different levels, namely among multiple CSPs and
within a single CSP. As shown in the figure, when a user wants to upload a file into the
cloud, the application first splits the file into multiple data pieces, say n pieces, and then
encode them into optimal number of m checksum pieces using the erasure coding
technique. Once the data pieces and checksum pieces are ready, they are concurrently
uploaded into multiple cloud storages maintained by different CSPs, noted as CSP_1,
CSP_2, …, and CSP_N in Fig. 1. As none of the CSPs has the complete knowledge about
the user’s data, this approach can effectively defend against data breaches from any
single CSP.

On the other hand, when a user wants to download a stored file, the application will
first try to download the n data pieces from the multiple cloud services concurrently. If all
data pieces are available, they can be efficiently combined into the original file without

6 H. Xu & D. Bhalerao

any additional decoding related cost. However, in the case when one or more service
providers fail, the application will automatically download all available data pieces (n’)
and available checksum pieces (m’). As long as n’ + m’ ≥ n, due to the erasure coding
technique, the application can always successfully decode the missing data pieces using
the available pieces of data, and restore the original file. Note that the checksum pieces
serve as the redundant information of the original file, which makes our approach reliable
and fault tolerant.

Fig. 1. A framework for reliable and secure distributed cloud data storage systems

4. Erasure Codes and Reed-Solomon Coding

4.1. Erasure Codes

In early days, fault tolerance of cloud data is commonly achieved through simple data
replication. Multiple copies of original data have to be maintained on different cloud
servers in order to make data more reliable. However, data replication now becomes
highly unfeasible due to its low space efficiency and the ever-increasing amount of cloud
data. Erasure codes, also known as forward error correction (FEC) codes, manage to
overcome the disadvantages of the data replication approach, and can achieve a high
degree of fault tolerance with a much lower cost of physical storage [11]. Erasure codes
use mathematical functions to convert original data words into encoded code words, and
to decode the code words in order to recover the data words when some of them are lost.
They can be very efficient in providing fault tolerance for large quantities of data, hence
they are very appropriate for large-scale cloud data storage systems.

Data redundancy through parity codes represents the simplest form of erasure codes,
which overcomes the drawback of data replication. RAID-5 is the most commonly used
technique that uses parity codes. It calculates parities from the original data to achieve
fault tolerance. However, this technique is typically used by CSPs at the hardware level,

Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes 7

and very few research efforts attempted to apply the RAID concept at the software level
to resolve issues related to the major data failures of a service provider, which happen
quite often nowadays [3].

4.2. Reed-Solomon Coding for Cloud Data Storage

Use of error-correction codes for redundancy has become prevalent due to its various
advantages. Reed-Solomon (RS) coding is a type of optimal erasure codes, which follows
the basic error-correction techniques [22]. There are many different ways to implement
error-correction using erasure codes, such as parity check, polynomial oversampling,
Tornado codes and RS codes, but RS technique is a good compromise between efficiency
and complexity [23]. Traditionally, RS technique has been used in various applications
such as error-correction in CD-ROM and DVDs, satellite communications, digital
television, and wireless or mobile communications [13]. The use of RS technique to
provide fault tolerance over the cloud is a fairly new idea. Our approach to distributing
data and checksum pieces with multiple cloud data services could build a RAID-like
system with less storage overhead and more flexibility in the degree of fault tolerance for
the stored data. Different from the RAID-5 based approach in previous work [3], the RS-
based approach allows multiple failures of cloud services. As a brief introduction to the
RS algorithm, let there be n data pieces. We encode all data pieces using the RS
algorithm into m checksum pieces such that out of (n+m) pieces, any n pieces are enough
to recover the original n data pieces. If the (n+m) pieces of data are distributed over
(n+m) cloud services, this algorithm can be used to handle m failures of the services.

To simplify matters, we assume each data piece is an unsigned byte ranged from 0 to
255. In order to calculate the checksum bytes, we first create an (m+n)×n Vandermonde
matrix A as in Eq. (1), where the i, j-th element of A is defined to be [22]. Based on
this definition, when m rows are deleted from A, the newly formed matrix is invertible.
Then we derive the information dispersal matrix B from A using a finite sequence of row
elementary operations. The information dispersal matrix B is defined as in Eq. (2), where
I is an n×n identity matrix, and F is an m×n matrix. Note that elementary matrix
transformation does not change the rank of a matrix and each row in A is linear
independent, thus the information dispersal matrix B maintains this property from matrix
A such that when m rows are deleted from B, the newly formed matrix is invertible.

ji

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

−−−−−−−−−−−−−
−

=

−

−

−

−

1

1

1

1

)1(1

1

)1(1

01

n

n

n

n

nm

n

n

L

MOM

L

L

MOM

L

A

(1)

(2)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−=

−−−

− F

I
B

1,10,1

1,00,0

10

01

nmm

n

ff

ff

L

MOM

L

L

MOM

L

8 H. Xu & D. Bhalerao

Let D be a vector of n-byte data [d0, d1, ..., dn-1], and C be a vector of m-byte
checksum [c0, c1, ..., cm-1]. With the information dispersal matrix B, we can calculate the
checksum vector C from the data vector D as in Eqs. (3.1) and (3.2), where fi, j, for 0 ≤ i ≤
m-1 and 0 ≤ j ≤ n-1, are elements of the m×n matrix F.

E
C

D
D

F

I
BD =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

−

−

−

−−−

−

1

0

1

0

1

0

1,10,1

1,00,0

10

01

m

n

n

nmm

n

c

c

d

d

d

d

ff

ff
M

M

M

L

MOM

L

L

MOM

L

(3.1)

⎪
⎪
⎭

⎪⎪
⎬

⎫

+++=

+++=
+++=

−−−−−−

−−

−−

11,111,100,11

11,111,100,11

11,011,000,00

*...**
...

*...**
*...**

nnmmmm

nn

nn

dfdfdfc

dfdfdfc
dfdfdfc

 (3.2)

Now suppose k bytes, where k ≤ m, are missing from vector D. By deleting the

missing k elements from D as well as any m-k elements from C, we derive a new n-byte
vector as in Eq. (4), where is a (n-k)-byte vector [], and is a k-byte
vector [].

'E
'
0c

'D '
1

'
1

'
0 ,...,, −−knddd 'C

'
1

'
1,...,, −kcc

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=
'

'
'

C

D
E

(4) (5) (6)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=
'

'
'

F

I
B '

'

'

'

'
' E

C

D
D

F

I
DB =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

 Similarly, in Eq. (2), by deleting m rows from B that correspond to the deleted rows
in E, we drive an n×n matrix as in Eq. (5), where is an (n-k)×n matrix, and is a k×n
matrix. After the row deletion, Eq. (3.1) becomes Eq. (6). Since matrix is invertible,
we can calculate the inverse matrix using Gaussian elimination method, and
recover the data vector D as in Eqs. (7.1) and (7.2), where gi, j, for 0 ≤ i ≤ n-1 and 0 ≤ j ≤
n-1, are elements of the n×n matrix G.

'B 'I 'F
'B

1'−= BG

 (7.1)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−==

−

−−

−−−

−
−

'
1

'
0

'
1

'
0

1,10,1

1,00,0
1

'

'
''

k

kn

nnn

n

c

c

d

d

gg

gg

M

M

L

MOM

L

C

D
GEBD

Reliable and Secure Distributed Cloud Data Storage Using Reed-

⎪
⎪
⎪
⎪

⎪⎪
⎪
⎪
⎪

⎬

⎫

++++=

+++

++++=
+++

++++=

−−−−−−−

−−+−−

−−−−

−−+−−

−−−−

'
11,1

'
21,1

'
00,1

'
11,1

'
11,1

'
0,1

'
11,1

'
21,1

'
00,11

'
11,0

'
11,0

'
0,0

'
11,0

'
21,0

'
00,00

*...**
...

*...**

*...**
*...**

*...**

knknnnnn

knknkn

knkn

knknkn

knkn

dgdgdgd

cgcgcg

dgdgdgd
cgcgcg

dgdgdgd

Solomon Codes 9

⎪⎭
+++ −−−+−−−−

'
11,1

'
11,1

'
0,1 *...** knnknnknn cgcgcg

(7.2)

Once the n-byte vector D is restored, the m-byte vector C can be recalculated using

vector D and the information dispersal matrix B as in Eq. (3.2).

4.3. Computation over Galois Field Using Signed Bytes

Implementation of the RS algorithm for data files requires performing computations on
binary words of a fixed length w. For example, when the binary word is a byte, w equals
8. To ensure that the RS algorithm works correctly for fixed-size words, all arithmetic
operations must be performed over a Galois Field with 2w elements, denoted as GF(2w)
[22]. A Galois Field GF(2w) is also known as a finite field, which contains finitely many
elements, namely 0, 1, ..., 2w-1. Arithmetic operations performed over Galois Fields result
in finite values in GF(2w). Addition and subtraction of elements over GF(2w) are simply
XOR operations, but multiplication and division must use two tables called gflog and
gfilog for their computations, where the gflog and gfilog tables map an index to its
logarithm and inverse logarithm in GF(2w), respectively. Table 1 shows a partial
logarithm and inverse logarithm table for GF(2w), where w = 8.

Table 1. Partial logarithm and inverse logarithm table for GF(2w), where w = 8

i 0 1 2 3 4 5 6 7 ... 12 ... 155 ... 205 ... 217 ... 254 255
gflog[i] 0 0 1 25 2 50 26 198 ... 27 ... 217 ... 12 ... 96 ... 88 175
gfilog[i] 1 2 4 8 16 32 64 128 ... 205 ... 114 ... 167 ... 155 ... 142 0

In this paper, we use a byte as a word; therefore, w equals 8, and the elements in

GF(2w) are 0, 1, 2, ..., 255. This allows us to perform arithmetic on single bytes. When a
program language supports unsigned byte directly, such as language C, the algorithms for
multiplication and division over GF(28) could be straightforward [24]. However, for a
programming language that does not support unsigned byte, such as Java, the range of
bytes is -127 to 128 rather than 0 to 255. To avoid calculation with negative values, it is
important to convert signed bytes into nonnegative integers in GF(28), which must be
within the range of [0, 255]. The following two methods gf_multiply and gf_divide,
which support multiplication and division operations over GF(28) using signed bytes,
respectively, are adapted from reference [24].

10 H. Xu & D. Bhalerao

byte gf_multiply(byte a, byte b) {
 int int_a, int_b, int_ sum;
 if (a == | b == 0) return 0; 0 |
 int_a = (int) (a & 0xFF);
 int_b = (int) (b & 0xFF);
 int_sum = (int)(gflog[int_a] & 0xFF) +
 (int)(gflog[int_b] & 0xFF);
 if t_sum >= 255) int_sum -= 255; (in
 return gfilog[int_sum];
}

byte gf_divide(byte a, byte b) {
 int int_a, int_b, int_diff;
 if (a == 0) return 0;
 if (b == 0) return -1;
 int_a = () (a & 0xFF); int
 int_b = (int b & 0xFF);) (
 int_diff = (int)(gflog[int_a] & 0xFF) -
 (int)(gflog[int_b] & 0xFF);
 if t_diff < 0) int_diff += 255; (in
 return gfilog[int_diff];
}

In the above two methods, the two byte arrays gflog[0..255] and
gfilog[0..255] define the tables that map an index in [0, 255] to its logarithm and
inverse logarithm for GF(28), respectively. By applying the bit operation “& 0xFF”, it
masks a signed byte into a nonnegative integer in [0, 255]. Note that all arithmetic
operations mentioned in Section 4.2, including the matrix inverse, encoding and recovery
of data, must be calculated using Galois Field arithmetic operations. To demonstrate how
multiplication and division can be done over GF(28) using signed bytes, we provide two
examples as follows.

Before conversion: a = (byte)0b10011011, b = (byte)0b00000101

After conversion: int_a = 155, int_b = 5

gf_multiply(a, b) = gfilog[gflog[155] + gflog[5]]

 = gfilog[217 + 50 - 255] // (217 + 50) > 255

 = gfilog[12]

 = 205

Before conversion: a = (byte)0b11001101, b = (byte)0b00000101

After conversion: int_a = 205, int_b = 5

gf_divide(a, b) = gfilog[gflog[205] - gflog[5]]

 = gfilog[12 - 50 + 255] // (12 - 50) < 0

 = gfilog[217]

 = 155

Note that in the above examples, the results would not be correct if the signed bytes
were not properly converted into nonnegative integers within [0, 255]. In addition, it is
easy to see that the regular operations of multiplication and division are not suitable for

Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes 11

the calculations on single bytes, as in the above examples, the value of (155 * 5) goes out
of the range of an unsigned byte.

5. Optimal Number of Checksum Pieces

5.1. Calculating the Optimal Number of Checksum Pieces

In order to achieve the highest space efficiency in our approach, we propose a procedure
to compute the minimal number of checksum pieces that allow the failures of multiple
CSPs. Let N be the total number of CSPs, where N ≥ 2, Г = {1, 2, ..., N} be the set of
CSPs, and M be the maximal number of services allowed to fail or become unavailable at
the same time, where 1 ≤ M ≤ N-1. We define a failure set Φ as follows:

Φ∈P(Г), where P(Г) is the power set of Г, and |Φ| ≤ M.

The set of available CSPs Ω due to the failure set Φ can be defined as in Eq. (8).

Ω = Г - Φ (8)

Suppose we divide a user’s file into n data pieces, where n ≥ 2. To distribute n data
pieces evenly over N CSPs, where 2 ≤ N ≤ (n+1), we calculate the number of data pieces
n1, n2, ..., and nN stored at CSP1, CSP2, ..., and CSP_N, respectively, as in Eq. (9).

⎡ ⎤
⎡ ⎤
⎪
⎪
⎩

⎪⎪
⎨

⎧

=−

<<+−−
=

=

∑
∑

−

=

−

=
1

1

1

1

when

1when)1/()(
1when/

N

j j

i

j ji

Ninn

NiiNnn
iNn

n (9)

where n = n1 + n2 + ... + nN. Eq. (9) allows even distribution of n data pieces over N CSPs
such that |ni - nj| ≤ 1 for 1 ≤ i, j ≤ N. For example, when N = 3 and n = 7, the numbers of
data pieces distributed over the three cloud service providers CSP1, CSP2 and CSP3 will
be 3, 2, 2, respectively.

As a major requirement for fault tolerance, when up to M CSPs become unavailable,
the original data must be recovered from the remaining CSPs in the available set Ω. Let m
be the number of checksum pieces required, and m1, m2, ..., mN are the numbers of
checksum pieces distributed over CSP1, CSP2, ..., and CSP_N, respectively. Obviously,
we have m = m1 + m2 + ... + mN. To calculate the minimal number of checksum pieces m,
we can solve the integer linear programming (ILP) problem as in Eq. (10).

MΦΓΡΦ

nm
Φfor

m

Φj jΩi i

N

i i

=∈

≥∑∑

∑

∈∈

=

 || and)(where

set failure eachtosubject

minimize
1

 (10)

12 H. Xu & D. Bhalerao

Note that a solution to the above optimal problem automatically satisfies the fault-

tolerance requirement when |Φ| < M. The space efficiency e of a solution can be
calculated as in Eq. (11).

∑ ∑=
==+−=

N

i

N

i ii mmnnmnme
1

andwhere),/(1
=1

 (11)

As an example, when N = 3 and M = 1, the ILP problem defined in Eq. (10) can be

simplified as the one in Eq. (12).

}2{//
}1{//
}3{//tosubject

minimize

231

132

321

321

=≥+
=≥+
=≥+

++

Φnmm
Φnmm
Φnmm

mmm

(12)

Table 2 shows the optimal solutions and their space efficiency for the case when N =

3, M = 1, and n from 2 to 15. For example, when n = 8 (n1 = 3, n2 = 3, n3 = 2), the optimal
solution is (m1 = 1, m2 = 1, m3 = 2), and the space efficiency e = 1 - 4/(8+4) = 0.6667. For
this example, if any service provider becomes unavailable, the missing 4 pieces of data
can always be recovered from the remaining data pieces and the checksum pieces stored
with the other two service providers.

Table 2. Optimal number of checksum pieces and space efficiency

Data Pieces
(n) (n1, n2, n3) (m1, m2, m3)

Checksum
Pieces(m)

Space
Efficiency(e)

2 (1, 1, 0) (0, 0, 1) 1 0.6667

3 (1, 1, 1) (1, 1, 0) 2 0.6000

4 (2, 1, 1) (0, 1, 1) 2 0.6667

5 (2, 2, 1) (1, 1, 1) 3 0.6250

6 (2, 2, 2) (1, 1, 1) 3 0.6667

7 (3, 2, 2) (1, 2, 1) 4 0.6364

8 (3, 3, 2) (1, 1, 2) 4 0.6667

9 (3, 3, 3) (2, 2, 1) 5 0.6429

10 (4, 3, 3) (1, 2, 2) 5 0.6667

11 (4, 4, 3) (2, 2, 2) 6 0.6471

12 (4, 4, 4) (2, 2, 2) 6 0.6667

13 (5, 4, 4) (2, 3, 2) 7 0.6500

14 (5, 5, 4) (2, 2, 3) 7 0.6667

15 (5, 5, 5) (3, 3, 2) 8 0.6522

Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes 13

5.2. Distribution of Data and Checksum Pieces over multiple CSPs

When dealing with a file with k bytes, if k is not a multiple of n, we need to append r
bytes with random values to the end of the file such that ((k + r) mod n) = 0. Then we
split the (k+r) bytes into n data pieces so that each of them contains exactly (k+r)/n bytes.
By applying Eq. (9) and solving the ILP problem in Eq. (10), we can calculate the
distribution of the n data pieces over multiple CSPs and the optimal number of checksum
pieces, respectively. Finally, using the equations defined in Eq. (3.2), we can calculate
the checksum pieces. Fig. 2 shows an example of file distribution at service providers
CSP1, CSP2 and CSP3 when N = 3, M =1, n = 8 and m = 4.

Fig. 2. Distribution of data and checksum pieces at three CSPs

As shown in Fig. 2, we distribute 3, 3 and 2 data pieces (denoted by the file names
starting with the letter “D”) over CSP1, CSP2 and CSP3, respectively. Based on the
optimal solution given in Table 2, we also distribute 1, 1 and 2 checksum pieces (denoted
by the file names starting with the letter “C”) over CSP1, CSP2 and CSP3, respectively.
When any of the service providers fails, the original data can be recovered from the
remaining 8 pieces of data using the equations defined in Eq. (7.2). It is worth noting that
by the definition of the RS coding algorithm, when the 4 missing or corrupted data pieces
are from more than one CSPs, the original file can still be recovered using the same
equations defined in Eq. (7.2).

6. Case Study

To demonstrate the feasibility as well as the high performance of our RS-based approach,
we developed a prototype secure and reliable distributed cloud data storage application in
Java. We adopt three different cloud storage services supported by major CSPs to store
our data pieces and checksum pieces in the cloud. The selected cloud storage services are
Amazon S3, Google App Engine, and Core Dropbox APIs with free user accounts. The
application was running on a Windows machine with a 3.40 GHz Intel Core i7 processor
and 8.00 GB of RAM. All experiments have been conducted with excellent Internet

14 H. Xu & D. Bhalerao

connections at University of Massachusetts Dartmouth, where the download speed was
around 160 Mbps (~20MB/s) and the upload speed was around 400 Mbps (~50MB/s).
Therefore, the network connection at the client side would not become a bottleneck for
all of our experiments. For each experiment in our case study, we repeat it at least 3 times
and choose the median in an attempt to estimate the typical upload or download time for
each particular setting. Table 3 shows the upload time and download time for two files
with different file sizes using a single CSP. From the table, we can see that among the
three CSPs, Dropbox has the best performance for file uploading; while Google App
Engine has the worst performance. On the other hand, Google App Engine and Dropbox
have the almost equivalently best performance for file downloading; while Amazon S3
has the worst performance. As our approach requires using the three CSPs concurrently,
the overall performance of the application would be restricted by the ones with the worst
performance. In other words, the upload speed and download speed of the application
may be held back by Google App Engine and Amazon S3, respectively.

Table 3. File uploading and downloading time using a single CSP

File Size CSP Upload Time Download Time

156 MB

Amazon S3 2 min 52 sec 1 min 9 sec

Google App Engine 5 min 39 sec 33 sec

Dropbox 2 min 19 sec 39 sec

317 MB

Amazon S3 5 min 8 sec 2 min 17 sec

Google App Engine 11 min 36 sec 1 min 3 sec

Dropbox 4 min 13 sec 1 min 1 sec

Figure 3 shows the user interface of the application that allows one to select a file and

upload it into the cloud. After choosing the number of data pieces (n), the optimal
number of checksum pieces (m) can be automatically calculated by solving the
corresponding ILP problem. When clicking on the “Encode and Upload” button, the
selected file is divided into n data pieces, which are then automatically encoded into m
checksum pieces by the application. Once all pieces of data become ready, they are
uploaded into the selected cloud storages using multithreading techniques. The message
box in the user interface displays the encoding time, the uploading time and the total
processing time.

Figure 4 shows the user interface for downloading and decoding an uploaded file in
the cloud. As shown in the figure, a user first selects a file from the list of uploaded files,
and then chooses at least two CSPs because the maximal number of failed cloud services
M equals 1. Note that in Fig. 4, the Dropbox service is not selected as we assume it is not
available at this moment. When clicking on the “Download and Decode” button, the
available file pieces are concurrently downloaded to the local computer, where the
original file is recovered using the RS coding techniques. The message box in the user
interface displays the downloading time, the decoding time and the total processing time,
as well as the location of the downloaded file on the user’s local computer.

Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes 15

Fig. 3. Encode and upload a file to multiple cloud data storages

Fig. 4. Download and decode a file from the cloud with a failed service

16 H. Xu & D. Bhalerao

To analyze the performance of our approach, we selected a video file with a file size
of 156 MB. Figure 5 shows the encoding and uploading time vs. the number of data
pieces set by the user. From the figure, we can see that when we increase the number of
data pieces from 2 to 8, the uploading time drops down significantly; while the encoding
time has slightly increased. The significant performance improvement for uploading is
due to the use of multithreading technique; while the increased number of data pieces
along with more checksum pieces results in more overhead for encoding. However, when
the number of data pieces n is further increased, the uploading time and the total
processing time become relatively stable. This result is quite different from our previous
findings, where the uploading time dramatically goes up when the number of data pieces
n ≥ 10 [12]. Based on our further investigation, we notice that the former result is due to a
sudden performance drop at Amazon S3 when the file size of a data piece becomes less
than 16 MB. Note that when n = 10, the size of each data piece equals 156MB/10, i.e.,
15.6MB. With the default configuration, the TransferManager from the Amazon S3
API uses a single low-speed thread for uploading files of less than 16 MB. In this case
study, we modify the configuration to allow multi-part upload of small files. As a result,
the sudden performance drop (when n ≥ 10) disappeared. As shown in Fig. 5, the total
processing time becomes constantly less than one minute. Comparing to the best
performance for uploading the 156 MB file using a single CSP (as listed in Table 3),
where Dropbox used 2 minutes 19 seconds, our approach demonstrates a significant
performance improvement for uploading the file.

Fig. 5. Encoding & uploading time vs. number of data pieces (156 MB file)

Figure 6 shows the downloading and decoding time vs. the number of data pieces set

by the user. From the figure, we can see that when we increase the number of data pieces

Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes 17

from 2 to 8, the downloading time drops down significantly; while the decoding time has
slightly increased. Similar to the case of uploading, the significant performance
improvement for downloading is also due to the use of multithreading technique, and the
increased number of data pieces along with more checksum pieces results in more
overhead for decoding. When the number of data pieces n is further increased, the total
processing time only slightly goes up due to the overhead of decoding files. However,
when n ≥ 8, the total processing time is constantly below 15 seconds. Comparing to the
best performance for downloading the 156 MB file using a single CSP (as listed in Table
3), where Google App Engine used 33 seconds, our approach demonstrates a significant
performance improvement for downloading the file.

Fig. 6. Downloading and decoding time vs. number of data pieces (156 MB file)

From the above experimental results, we can see that both the uploading and

downloading time can be significantly reduced by selecting a reasonable number of data
pieces. For example, when the file size is about 156 MB, based on our experiments, the
number of data pieces should normally be set to 8 as long as the network condition is
excellent, and the client machine has similar performance as the one used in the case
study. Note that according to Table 2, when n = 8 and m = 4, the space efficiency e
reaches its highest value 0.6667. It is also worth noting that when no service provider
fails, the application only requires downloading the data pieces, and no checksum pieces
are needed for restoring the original file. In this case, the downloading time can be further
reduced, and the decoding time becomes merely the time needed to combine the data
pieces into the original file. Therefore, in a usual case with no failures of service
providers, the overall performance for file retrieval could be better than the results
demonstrated as in Fig. 6.

18 H. Xu & D. Bhalerao

To further investigate the system performance for larger files, we use another video
file with a file size of 317 MB for this case study. Figure 7 shows the encoding and
uploading time vs. the number of data pieces set by the user. From the figure, we can see
that when we increase the number of data pieces from 2 to 8, the uploading time drops
down significantly; while the encoding time has slightly increased. When n > 8, the
uploading time is further decreased along with the encoding time being slightly
increased. As shown in the figure, for n ≥ 8, the total processing time is constantly below
100 seconds, i.e., 1 minute and 40 seconds. Comparing to the best performance for
uploading the 317 MB file using a single CSP (as listed in Table 3), where Dropbox used
4 minutes and 13 seconds to upload the file, our approach again demonstrates a
significant performance improvement for uploading the file.

Fig. 7. Encoding & uploading time vs. number of data pieces (317 MB file)

Figure 8 shows the downloading and decoding time vs. the number of data pieces set

by the user for the 317 MB file. From the figure, we can see that when we increase the
number of data pieces from 2 to 8, the downloading time drops down significantly; while
the decoding time has slightly increased. When the number of data pieces n is further
increased, the total processing time slightly goes up and then goes down. However, for n
≥ 8, the total processing time is constantly below 45 seconds. Comparing to the best
performance for downloading the 317 MB file using a single CSP (as listed in Table 3),
where Dropbox used 1 minute and 1 second to download the file, our approach again
demonstrates a significant performance improvement for downloading the file.

Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes 19

Fig. 8. Downloading and decoding time vs. number of data pieces (317 MB file)

From the above experimental results, we notice that the number of data pieces should
also be normally set to 8 for a file of about 317 MB, as long as the network condition is
excellent, and the performance of the client machine is good enough. Note that when n >
8, although the uploading and downloading time may be slightly reduced, the overhead of
encoding and decoding files can be increased; thus the benefits of having too many data
pieces and checksum pieces is not significant. To reduce the overhead of encoding and
decoding a large number of file pieces, especially on a low-end PC or a tablet, selecting a
reasonably small number of data pieces might be more desirable.

To gain insights for more general cases, we further performed many experiments with
different file types and file sizes. As our approach is applied at the byte-level of a file, the
file type does not affect the system performance. This is consistent with our experimental
results. In addition, with much smaller file sizes (e.g., less than 50 MB), the overhead for
encoding and decoding also becomes very small, which can usually be ignored.

7. Conclusions and Future Work

In this paper, we addressed three major issues with cloud storage, namely reliability,
security and performance. Instead of achieving data reliability using redundancy at the
server side, we presented a reliable and secure distributed cloud data storage schema for
end users. In our approach, we view multiple cloud storage services as virtual disks, and
upload redundant data files into multiple cloud storages. The redundant data files are
calculated using erasure codes techniques, which allow multiple failures of the cloud data
services. By forming an optimal problem for calculating the number of checksum pieces,
we can achieve the best space efficiency in our approach. Furthermore, we divide the
user’s data into pieces, and distribute them across multiple cloud services; therefore, no

20 H. Xu & D. Bhalerao

single CSP can understand the uploaded user’s data. As a result, our approach can
effectively protect user data from unauthorized access in the cloud, and provide security
at the software level for the end users. Finally, our experimental results show that besides
the advantages of being secure and fault tolerant, our approach provides very good
performance in both file uploading and downloading using the multithreading techniques,
with the cost of minor overhead for encoding and decoding data.

For future work, we will investigate possible ways to automatically select a suitable
number of data pieces based on the network condition, machine performance and the file
size. We will consider other major aspects of cloud data, such as data integrity and
confidentiality. For example, it would be feasible to adopt the digital signature technique
to verify the integrity of the data stored in the cloud to ensure they were not altered by the
service providers. Furthermore, when large cloud files are involved, the overhead for
encoding and decoding may become a concern, especially for resource constrained
devices such as a smartphone or a tablet. To improve the overall performance in this case,
we need to look into more advanced techniques for erasure codes, such as regenerating
codes and non-MDS codes [11, 25]. Finally, as a worthy future direction, we will attempt
to integrate our approach with cloud-based big data analysis for reliable and secure
massive datasets stored in the cloud.

Acknowledgments

We thank Ashok Peeta for his useful insights about erasure codes, and Kirti Dighe for her
contribution to the implementation using Dropbox Core API. We also thank all
anonymous referees for the careful review of this paper and the many suggestions for
improvements they provided.

References
1. C. Kozyrakis, A. Kansal, S. Sankar and K. Vaid, Server engineering insights for large-scale online

services, IEEE Micro 30(4) (2010) 8-19.
2. E. K. Kolodner, S. Tal, D. Kyriazis, D. Naor et al., A cloud environment for data-intensive storage

services, in Proc. of the IEEE Third International Conference on Cloud Computing Technology and
Science (CloudCom), Athens, Greece, November 29-December 1, 2011, pp. 357-366.

3. D. Fitch and H. Xu, A RAID-based secure and fault-tolerant model for cloud information storage,
International Journal of Software Engineering and Knowledge Engineering (IJSEKE) 23(5) (2013) 627-
654.

4. M. Gagnaire, F. Diaz , C. Coti, et al., Downtime Statistics of Current Cloud Solutions, International
Working Group on Cloud Computing Resiliency, 2014. Retrieved on March 8, 2015 from http://iwgcr.org/
category/downtime/

5. S. Yegulalp, Adobe creative cloud crash shows that no cloud is too big to fail, InfoWorld, May 16, 2014.
Retrieved on March 7, 2015 from http://www.infoworld.com/article/2608200/cloud-computing/adobe -
creative-cloud-crash-shows-that-no-cloud-is-too-big-to-fail.html

6. C. Talbot, Dropbox outage represents first major cloud outage of 2013, Talkin’Cloud, Jan 15, 2013.
Retrieved on May 18, 2014 from http://talkincloud.com/cloud-storage/dropbox-outage-represents-first-
major-cloud-outage-2013

7. Z. Whittaker, Amazon web services suffers outage, takes down Vine, Instagram, others with it, ZDNet,
August 26, 2013. Retrieved on September 22, 2014 from http://www.zdnet.com/article/amazon-web-
services-suffers-outage-takes-down-vine-instagram-others-with-it

Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes 21

8. M. Alia, S. U. Khana and A. V. Vasilakosb, Security in cloud computing: opportunities and challenges,

Information Sciences 305(1) (2015) 357-383.
9. D. Chen and H. Zhao, Data security and privacy protection issues in cloud computing, in Proc. of the

International Conference on Computer Science and Electronics Engineering (ICCSEE), Hangzhou, China,
March 23-35, 2012, pp. 647-651.

10. M.-A. Russon, LinkedIn sues hackers for using Amazon cloud platform to make fake profiles,
International Business Times, January 9, 2014. Retrieved on March 8, 2015 from http://www.ibtimes.co.
uk/linkedin-sues-hackers-using-amazon-cloud-platform-make-fake-profiles-1431669

11. J. S. Plank, Erasure codes for storage systems: a brief primer, Login: The USENIX Magzine
(www.usenix.org) 38 (6) (2013) 44-50.

12. H. Xu and D. Bhalerao, A reliable and secure cloud storage schema using multiple service providers, in
Proc. of the 27th International Conference on Software Engineering and Knowledge Engineering (SEKE
2015), Pittsburgh, USA, July 6-8, 2015, pp. 116-121.

13. S. B. Wicker and V. K. Bhargava (Eds.), Reed-Solomon Codes and Their Applications, The Institute of
Electrical and Eltronics Engineers (IEEE), Inc., New York, June 1994.

14. C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li and S. Yekhanin, Erasure coding in
Windows Azure storage, in Proc. of the 2012 USENIX Annual Technical Conference, Boston, MA, USA,
June 13-15, 2012, pp. 15-26.

15. L. B. Gomez, B. Nicolae, N. Maruyama, F. Cappello and S. Matsuoka, Scalable Reed-Solomon-based
reliable local storage for HPC applications on IaaS clouds, in Proc. of the 18th International Euro-Par
Conference on Parallel Processing (Euro-Par ’12), Rhodes, Greece, August 2012, pp. 313-324.

16. O. Khan, R. Burns, J. Plank and W. Pierce, Rethinking erasure codes for cloud file systems: minimizing
I/O for recovery and degraded reads, in Proc. of the 10th USENIX Conference on File and Storage
Technologies (FAST-2012), San Jose, CA, USA, February 2012, pp. 20-33.

17. N. Santos, K. Gummadi and R. Rodrigues, Towards trusted cloud computing, in Proc. of the Workshop on
Hot Topics in Cloud Computing (HotCloud09), San Diego, CA, June 15, 2009, Article No. 3.

18. K. Hwang and D. Li, Trusted cloud computing with secure resources and data coloring, IEEE Internet
Computing 14 (5) (2010) 14-22.

19. C. Wang, Q. Wang, K. Ren and W. Lou, Ensuring data storage security in cloud computing, in Proc. of
the 17th International Workshop on Quality of Service (IWQoS), Charleston, SC, USA, July 13-15 2009,
pp. 1-9.

20. D. Shue, M. J. Freedman and A. Shaikh, Performance isolation and fairness for multi-tenant cloud storage,
in Proc. of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12),
Hollywood, CA, USA, October 8-10, 2012, pp. 349-362.

21. A. Zia and M. Khan, Identifying key challenges in performance issues in cloud computing, International
Journal of Modern Education and Computer Science (IJMECS) 4 (10) (2012) 59-68.

22. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland
Mathematical Library, Amsterdam, London, New York, Tokyo, 1977.

23. C. K. Clarke, Reed-Solomon error correction, R&D White Paper, British Broadcasting Corporation, July
2002.

24. J. S. Plank, A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems, Software -
Practice & Experience 27 (9) (1997) 995-1012.

25. J. Li and B. Li, Erasure coding for cloud storage systems: a survey, Tsinghua Science and Technology 18
(3) (2013) 259-272.

	1. Introduction
	2. Related Work
	3. A Framework for Reliable and Secure Distributed Cloud Data Storage
	4. Erasure Codes and Reed-Solomon Coding
	4.1. Erasure Codes
	4.2. Reed-Solomon Coding for Cloud Data Storage
	4.3. Computation over Galois Field Using Signed Bytes

	5. Optimal Number of Checksum Pieces
	5.1. Calculating the Optimal Number of Checksum Pieces
	5.2. Distribution of Data and Checksum Pieces over multiple CSPs

	6. Case Study
	7. Conclusions and Future Work
	Acknowledgments
	References

