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Despite the popularity and many advantages of using cloud data storage, there are still major 
concerns about the data stored in the cloud, such as security, reliability and confidentiality. In this 
paper, we propose a reliable and secure distributed cloud data storage schema using Reed-Solomon 
codes. Different from existing approaches to achieving data reliability with redundancy at the server 
side, our proposed mechanism relies on multiple cloud service providers (CSP), and protects users’ 
cloud data from the client side. In our approach, we view multiple cloud-based storage services as 
virtual independent disks for storing redundant data encoded with erasure codes. Since each CSP has 
no access to a user’s complete data, the data stored in the cloud would not be easily compromised. 
Furthermore, the failure or disconnection of a CSP will not result in the loss of a user’s data as the 
missing data pieces can be readily recovered. To demonstrate the feasibility of our approach, we 
developed a prototype distributed cloud data storage application using three major CSPs. The 
experimental results show that, besides the reliability and security related benefits of our approach, 
the application outperforms each individual CSP for uploading and downloading files. 

Keywords: Distributed cloud data storage; software reliability; data security; erasure codes; cloud 
service provider (CSP); integer linear programming. 

1.   Introduction 

In the past decades, many businesses have provided their online services to users in a 
variety of convenient ways such as search engines, webmail, social networks, online 
shopping, online backup, and online information storage [1]. Online services with large 
groups of users inevitably generate tremendous amounts of personal and professional 
digital data, and thus, they require efficient and cost-effective mechanisms to store them. 
As an ever-growing data storage solution, cloud-based storage services have become a 
highly practical way for both people and businesses to store their data online [2]. The 
pay-as-per-use model of cloud computing eliminates the upfront commitment from cloud 
customers; thereby it allows the customers to start small businesses quickly, and increase 
resources only when they are needed. Although cloud computing and its underlying 
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virtualization technique bring customers many advantages such as elasticity, scalability, 
flexibility, zero maintenance overhead and reduced costs, there are still major concerns 
about the data stored in the cloud, e.g., reliability, security and confidentiality [3]. 
Reliability has been one of the most important concerns for cloud data storage since users 
typically expect services to be available whenever they need them. This requirement 
pushes cloud service providers (CSP) to deliver reliable cloud services, which can 
perform as expected, handle failures without downtime, and recover from failures 
without affecting the large set of customers. However, cloud downtime statistics studies 
show an average 7.5 hours of unavailability per year, which is 99.9% availability [4]. 
This is quite far away from the expected availability for critical businesses, which is 
99.99% availability (i.e., 1 hour of unavailability per year). Major CSPs have addressed 
the issue of availability using data redundancy distributed over multiple physical 
machines at their server sites; however, recent cloud outage examples show that the 
added redundancy is not sufficient in case of a complete cloud service failure. In May 
2014, Adobe’s ID service went down, leaving Creative Cloud users locked out of their 
software and account for over 24 hours [5]. In early 2013, Dropbox service had a major 
cloud outage that kept users offline and unable to synchronize using their desktop apps 
for more than 15 hours [6]. In the same year, Amazon EC2 suffered from an outage for 
about an hour causing many dependent businesses such as Vine and Instagram, to fall 
down [7]. Such incidents have made data-critical business owners apprehensive of 
completely relying on cloud data storage, and also made cloud users question the 
reliability of cloud storage services provided by even the world-leading CSPs. 

In addition to the reliability of cloud storage services, there are also many known 
security breaches of cloud data in recent years [8]. For example, Amazon’s simple 
storage service has been compromised twice in 2009, which brought many dependent 
network sites become unavailable [9]. In a recent security breach in Amazon cloud, 
hackers broke into LinkedIn user accounts and created fake profiles [10]. In spite of 
several security measures, hackers managed to copy information from thousands of 
LinkedIn users. From the above examples, we can see that even the largest and the most 
reputable CSPs have been affected by security and data breaches. As the cloud computing 
environment becomes more and more open and ubiquitous, it becomes very difficult for a 
CSP to apply traditional security measures, designed for closed systems, to the open and 
multi-shared computing environment. On the other hand, since data storage locations and 
security measures at the server sites are unknown, most of the users have not yet started 
to feel comfortable with exploiting the full potential of the cloud. 

Prolonged cloud data service outages and security concerns can be fatal for businesses 
with data critical domains such as healthcare, banking and finance. Today, almost all 
major CSPs have implemented fault-tolerance and security mechanisms at their server 
sides to recover original data from service failure or data corruption, and to prevent data 
from being compromised by hackers. Such mechanisms are suitable for a small number 
of hard disk failures as well as attacks from external hackers; however, they are of no use 
for the end users to ensure the reliability and security of their cloud data when major 
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cloud services fail or the cloud services have been compromised by internal hackers, such 
as employees of the CSP companies. Hence, to achieve high reliability and security of 
critical data, users should not depend upon a single CSP. 

In this paper, we propose an approach that can provide security and fault tolerance to 
the user’s data from the client side. In our approach, we decompose an original data file 
into multiple data pieces, and generate checksum pieces using erasure codes [11]. The 
pieces of data are spread over multiple cloud storage services, which can be retrieved and 
combined to recover the original file. We achieve data redundancy in our approach using 
erasure codes at the software level across multiple CSPs. Therefore, the original data can 
be recovered even when there is a cloud outage where some cloud service fails 
completely. Using this approach, users’ data would not be easily compromised by 
unauthorized access and security breach, as no single cloud service has the complete 
knowledge of the users’ data. Users could have the sole control of their cloud data, and 
do not need to completely rely on the security measures provided by the CSPs. In 
addition, due to the ever changing and growing set of users and data centers, the 
performance of cloud services is also a major concern. With more and more users share 
the same cloud storage infrastructure provided by a CSP, the cloud performance issue is 
getting more and more serious than ever before. To improve the network performance of 
our approach, we adopt the multithreading technology, and fully utilize the network 
bandwidth in order to minimize the time required to access data over the cloud. 

This work is based on our previously proposed reliable and secure cloud storage 
schema using multiple CSPs [12]. In this paper, we provide additional details about how 
to use Reed-Solomon codes [13] to achieve high reliability and security of cloud data. 
We also perform further experiments to demonstrate the consistently high performance of 
our approach.  

The rest of the paper is organized as follows. Section 2 discusses previous work 
related to our research. Section 3 presents a framework for reliable and secure distributed 
cloud data storage. Section 4 describes how to use erasure codes, in particular, the Reed-
Solomon codes to implement such a framework. Section 5 discusses how to calculate the 
optimal number of checksum pieces. Section 6 presents a case study to demonstrate the 
feasibility and high performance of our approach. Section 7 concludes the paper and 
mentions future work. 

2.   Related Work 

There have been many research efforts on using erasure codes at the server side to make 
cloud storage service reliable. Huang et al. proposed to use erasure codes in Windows 
Azure storage [14]. They introduced a new set of codes for erasure coding called Local 
Reconstruction Codes (LRC) that could reduce the number of erasure coding fragments 
required for data reconstruction. Their approach divides redundant data into both local 
and global sets of parities, and stores them in geographically separated servers. Since 
local parities minimize I/O and network overhead during data recovery, the overall 
reconstruction cost can be significantly reduced. Gomez et al. introduced a novel 
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persistency technique that leverages erasure codes to save data in a reliable fashion on 
IaaS clouds [15]. They presented a scalable erasure coding algorithm that could support a 
high degree of reliability for local storage with the cost of low computational overhead 
and a minimal amount of communication. Experimental results show that their approach 
may improve the overall performance of real-life High Performance Computing (HPC) 
applications. Khan et al. provided some guidance for applying erasure coding techniques 
in cloud file systems to support load balance and incremental scalability in data centers 
[16]. Their proposed approach can prevent correlated failures with data loss and mitigate 
the effect of any single failure on a data set or an application. Although the above 
approaches can significantly enhance the reliability of cloud data at data centers, they 
provide no support for end users to deal with cloud outage of the service providers. 
Different from the existing approaches, we apply erasure-coding techniques at the 
application level using multiple CSPs. By deploying a user’s encoded redundant data 
across multiple cloud storage services, our approach is fault tolerant for storing cloud 
data when any of the cloud services fails.  

There is also a considerable amount of work on securing cloud data, to which this 
work is closely related. Santos et al. proposed a secure and trusted cloud computing 
platform (TCCP) for Infrastructure as a Service (IaaS) providers such as Amazon EC2 
[17]. The platform provides a closed box execution environment that guarantees 
confidential execution of guest virtual machines on a cloud infrastructure. Hwang and Li 
proposed to use data coloring and software watermarking techniques to protect shared 
cloud data objects [18]. Their approach can effectively prevent data objects from being 
damaged, stolen, altered or deleted, and users may have their sole access to their desired 
cloud data. Wang et al. described an effective and flexible distributed schema that 
integrates storage correctness insurance and identification of misbehaving servers [19]. 
Using erasure coding techniques, the schema provides security to cloud data storage 
servers against Byzantine failures as well as malicious data modification attacks. The 
existing approaches to securing cloud data typically assume that the CSPs are trustable 
and they can prevent physical attacks to their servers. However, this might not be true in 
reality because service providers typically tend to collect users’ cloud data for their 
commercial purposes such as targeted adverting. Furthermore, there have been many 
incidents that cloud services were compromised by either internal or external hackers, 
and thousands of users’ critical data was compromised. Therefore, merely relying on 
service providers’ security mechanisms is not a feasible solution for both people and 
businesses to store their critical data in the cloud. It is required that users should be 
allowed to apply security mechanisms to their own data at the client side. Different from 
the aforementioned methods to securing users’ data in the cloud, our approach does not 
rely on any security measures at the server side. Instead, the cloud data storage 
application running at the client side can split users’ data into pieces, encode them using 
erasure codes, and distribute them to multiple CSPs. Assume there are no collusions 
among the CSPs, users can securely store their data in the cloud.       
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Additional work on cloud storage emphasizes on improving the cloud storage 
performance. Shue et al. presented a cloud-based system for balancing workloads in 
multi-tenant systems to achieve fairness in shared storage systems [20]. They distributed 
workload uniformly across virtual machines in order to achieve high utilization and 
improve the system performance at the server side. Zia and Khan identified a number of 
key challenges in performance issues in cloud computing [21]. They summarized 
potential performance improvement in different areas such as storage services, scaling, 
network services, scheduling, optimal location of data centers, and efficient SQL query 
processing. Different from the above methods, our approach focuses on network service 
performance and adopts the multithreading technique for uploading and downloading 
pieces of data with multiple CSPs. Experimental results show that with reasonable 
number of data pieces, the system performance can be significantly improved. 

In this paper, we extend the methodology and results of a preliminary study on secure 
and fault-tolerant model of cloud information storage [3].  In the previous work, we 
followed the RAID (Redundant Array of Independent Disks) approach to encode users’ 
data using XOR parity, and developed a hierarchical colored Petri nets (HCPN) model for 
secure and fault-tolerant cloud information storage systems. In this paper, we adopted 
more advanced erasure coding techniques to achieve security and fault tolerance for 
cloud data storage, and presented a detailed design for a reliable and secure distributed 
cloud data storage schema. To demonstrate the effectiveness of our proposed approach, 
we implemented a prototype using three major CSPs, which allows users to securely, 
reliably and efficiently store their critical data in the cloud.  

3.   A Framework for Reliable and Secure Distributed Cloud Data Storage 

To address the aforementioned major concerns in cloud storage services, we propose a 
reliable and secure distributed cloud data storage schema using multiple CSPs. Figure 1 
shows a framework for such a distributed storage system. The major component of the 
system is the cloud data storage application that uses erasure codes to encode and decode 
file pieces at the client side, and upload and download encoded file pieces concurrently at 
multiple CSPs. Note that each CSP typically stores more than one file piece; therefore, 
concurrent file transfers happen at two different levels, namely among multiple CSPs and 
within a single CSP. As shown in the figure, when a user wants to upload a file into the 
cloud, the application first splits the file into multiple data pieces, say n pieces, and then 
encode them into optimal number of m checksum pieces using the erasure coding 
technique. Once the data pieces and checksum pieces are ready, they are concurrently 
uploaded into multiple cloud storages maintained by different CSPs, noted as CSP_1, 
CSP_2, …, and CSP_N in Fig. 1. As none of the CSPs has the complete knowledge about 
the user’s data, this approach can effectively defend against data breaches from any 
single CSP. 

On the other hand, when a user wants to download a stored file, the application will 
first try to download the n data pieces from the multiple cloud services concurrently. If all 
data pieces are available, they can be efficiently combined into the original file without 
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any additional decoding related cost. However, in the case when one or more service 
providers fail, the application will automatically download all available data pieces (n’) 
and available checksum pieces (m’). As long as n’ + m’ ≥ n, due to the erasure coding 
technique, the application can always successfully decode the missing data pieces using 
the available pieces of data, and restore the original file. Note that the checksum pieces 
serve as the redundant information of the original file, which makes our approach reliable 
and fault tolerant. 

 

Fig. 1. A framework for reliable and secure distributed cloud data storage systems 
 

4.   Erasure Codes and Reed-Solomon Coding 

4.1.   Erasure Codes 

In early days, fault tolerance of cloud data is commonly achieved through simple data 
replication. Multiple copies of original data have to be maintained on different cloud 
servers in order to make data more reliable. However, data replication now becomes 
highly unfeasible due to its low space efficiency and the ever-increasing amount of cloud 
data. Erasure codes, also known as forward error correction (FEC) codes, manage to 
overcome the disadvantages of the data replication approach, and can achieve a high 
degree of fault tolerance with a much lower cost of physical storage [11]. Erasure codes 
use mathematical functions to convert original data words into encoded code words, and 
to decode the code words in order to recover the data words when some of them are lost. 
They can be very efficient in providing fault tolerance for large quantities of data, hence 
they are very appropriate for large-scale cloud data storage systems.  

Data redundancy through parity codes represents the simplest form of erasure codes, 
which overcomes the drawback of data replication. RAID-5 is the most commonly used 
technique that uses parity codes. It calculates parities from the original data to achieve 
fault tolerance. However, this technique is typically used by CSPs at the hardware level, 
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and very few research efforts attempted to apply the RAID concept at the software level 
to resolve issues related to the major data failures of a service provider, which happen 
quite often nowadays [3]. 

4.2.   Reed-Solomon Coding for Cloud Data Storage 

Use of error-correction codes for redundancy has become prevalent due to its various 
advantages. Reed-Solomon (RS) coding is a type of optimal erasure codes, which follows 
the basic error-correction techniques [22]. There are many different ways to implement 
error-correction using erasure codes, such as parity check, polynomial oversampling, 
Tornado codes and RS codes, but RS technique is a good compromise between efficiency 
and complexity [23]. Traditionally, RS technique has been used in various applications 
such as error-correction in CD-ROM and DVDs, satellite communications, digital 
television, and wireless or mobile communications [13]. The use of RS technique to 
provide fault tolerance over the cloud is a fairly new idea. Our approach to distributing 
data and checksum pieces with multiple cloud data services could build a RAID-like 
system with less storage overhead and more flexibility in the degree of fault tolerance for 
the stored data. Different from the RAID-5 based approach in previous work [3], the RS-
based approach allows multiple failures of cloud services. As a brief introduction to the 
RS algorithm, let there be n data pieces. We encode all data pieces using the RS 
algorithm into m checksum pieces such that out of (n+m) pieces, any n pieces are enough 
to recover the original n data pieces. If the (n+m) pieces of data are distributed over 
(n+m) cloud services, this algorithm can be used to handle m failures of the services. 

To simplify matters, we assume each data piece is an unsigned byte ranged from 0 to 
255. In order to calculate the checksum bytes, we first create an (m+n)×n Vandermonde 
matrix A as in Eq. (1), where the i, j-th element of A is defined to be  [22]. Based on 
this definition, when m rows are deleted from A, the newly formed matrix is invertible. 
Then we derive the information dispersal matrix B from A using a finite sequence of row 
elementary operations. The information dispersal matrix B is defined as in Eq. (2), where 
I is an n×n identity matrix, and F is an m×n matrix. Note that elementary matrix 
transformation does not change the rank of a matrix and each row in A is linear 
independent, thus the information dispersal matrix B maintains this property from matrix 
A such that when m rows are deleted from B, the newly formed matrix is invertible. 
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Let D be a vector of n-byte data [d0, d1, ..., dn-1], and C be a vector of m-byte 
checksum [c0, c1, ..., cm-1]. With the information dispersal matrix B, we can calculate the 
checksum vector C from the data vector D as in Eqs. (3.1) and (3.2), where fi, j, for 0 ≤ i ≤ 
m-1 and 0 ≤ j ≤ n-1, are elements of the m×n matrix F. 
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Now suppose k bytes, where k ≤ m, are missing from vector D. By deleting the 
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 Similarly, in Eq. (2), by deleting m rows from B that correspond to the deleted rows 
in E, we drive an n×n matrix as in Eq. (5), where is an (n-k)×n matrix, and is a k×n 
matrix. After the row deletion, Eq. (3.1) becomes Eq. (6). Since matrix is invertible, 
we can calculate the inverse matrix  using Gaussian elimination method, and 
recover the data vector D as in Eqs. (7.1) and (7.2), where gi, j, for 0 ≤ i ≤ n-1 and 0 ≤ j ≤ 
n-1, are elements of the n×n matrix G. 
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Once the n-byte vector D is restored, the m-byte vector C can be recalculated using 

vector D and the information dispersal matrix B as in Eq. (3.2).   

4.3.   Computation over Galois Field Using Signed Bytes 

Implementation of the RS algorithm for data files requires performing computations on 
binary words of a fixed length w. For example, when the binary word is a byte, w equals 
8. To ensure that the RS algorithm works correctly for fixed-size words, all arithmetic 
operations must be performed over a Galois Field with 2w elements, denoted as GF(2w) 
[22]. A Galois Field GF(2w) is also known as a finite field, which contains finitely many 
elements, namely 0, 1, ..., 2w-1. Arithmetic operations performed over Galois Fields result 
in finite values in GF(2w). Addition and subtraction of elements over GF(2w) are simply 
XOR operations, but multiplication and division must use two tables called gflog and 
gfilog for their computations, where the gflog and gfilog tables map an index to its 
logarithm and inverse logarithm in GF(2w), respectively. Table 1 shows a partial 
logarithm and inverse logarithm table for GF(2w), where w = 8.  
 

Table 1. Partial logarithm and inverse logarithm table for GF(2w), where w = 8 

i 0 1 2 3 4 5 6 7 ... 12 ... 155 ... 205 ... 217 ... 254 255 
gflog[i] 0 0 1 25 2 50 26 198 ... 27 ... 217 ... 12 ... 96 ... 88 175 
gfilog[i] 1 2 4 8 16 32 64 128 ... 205 ... 114 ... 167 ... 155 ... 142 0 

 
In this paper, we use a byte as a word; therefore, w equals 8, and the elements in 

GF(2w) are 0, 1, 2, ..., 255. This allows us to perform arithmetic on single bytes. When a 
program language supports unsigned byte directly, such as language C, the algorithms for 
multiplication and division over GF(28) could be straightforward [24]. However, for a 
programming language that does not support unsigned byte, such as Java, the range of 
bytes is -127 to 128 rather than 0 to 255. To avoid calculation with negative values, it is 
important to convert signed bytes into nonnegative integers in GF(28), which must be 
within the range of [0, 255]. The following two methods gf_multiply and gf_divide, 
which support multiplication and division operations over GF(28) using signed bytes, 
respectively, are adapted from reference [24]. 
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byte gf_multiply(byte a, byte b) {  
     int int_a, int_b, int_  sum;
     if (a == | b == 0) return 0; 0 |
     int_a = (int) (a & 0xFF); 
     int_b = (int) (b & 0xFF); 
  int_sum = (int)(gflog[int_a] & 0xFF) + 
            (int)(gflog[int_b] & 0xFF); 
     if t_sum >= 255) int_sum -= 255;  (in
     return gfilog[int_sum]; 
} 
 
byte gf_divide(byte a, byte b) {  
     int int_a, int_b, int_diff; 
     if (a == 0) return 0; 
     if (b == 0) return -1; 
     int_a = ( ) (a & 0xFF); int
     int_b = (int b & 0xFF); ) (
  int_diff = (int)(gflog[int_a] & 0xFF) -  
             (int)(gflog[int_b] & 0xFF); 
     if t_diff < 0) int_diff += 255;  (in
     return gfilog[int_diff]; 
} 

In the above two methods, the two byte arrays gflog[0..255] and 
gfilog[0..255] define the tables that map an index in [0, 255] to its logarithm and 
inverse logarithm for GF(28), respectively. By applying the bit operation “& 0xFF”, it 
masks a signed byte into a nonnegative integer in [0, 255]. Note that all arithmetic 
operations mentioned in Section 4.2, including the matrix inverse, encoding and recovery 
of data, must be calculated using Galois Field arithmetic operations. To demonstrate how 
multiplication and division can be done over GF(28) using signed bytes, we provide two 
examples as follows.  

Before conversion: a = (byte)0b10011011, b = (byte)0b00000101  

After conversion:  int_a = 155, int_b = 5 

gf_multiply(a, b) = gfilog[gflog[155] + gflog[5]] 

                  = gfilog[217 + 50 - 255]  // (217 + 50) > 255 

                  = gfilog[12] 

                  = 205 

Before conversion: a = (byte)0b11001101, b = (byte)0b00000101 

After conversion: int_a = 205, int_b = 5 

gf_divide(a, b) = gfilog[gflog[205] - gflog[5]] 

                  = gfilog[12 - 50 + 255]   // (12 - 50) < 0 

                  = gfilog[217] 

                  = 155 

Note that in the above examples, the results would not be correct if the signed bytes 
were not properly converted into nonnegative integers within [0, 255]. In addition, it is 
easy to see that the regular operations of multiplication and division are not suitable for 
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the calculations on single bytes, as in the above examples, the value of (155 * 5) goes out 
of the range of an unsigned byte. 

5.   Optimal Number of Checksum Pieces 

5.1.   Calculating the Optimal Number of Checksum Pieces 

In order to achieve the highest space efficiency in our approach, we propose a procedure 
to compute the minimal number of checksum pieces that allow the failures of multiple 
CSPs. Let N be the total number of CSPs, where N ≥ 2, Г = {1, 2, ..., N} be the set of 
CSPs, and M be the maximal number of services allowed to fail or become unavailable at 
the same time, where 1 ≤ M ≤ N-1. We define a failure set Φ as follows: 

Φ∈P(Г), where P(Г) is the power set of Г, and |Φ| ≤ M. 

The set of available CSPs Ω due to the failure set Φ can be defined as in Eq. (8). 

Ω = Г - Φ                                                                 (8) 

Suppose we divide a user’s file into n data pieces, where n ≥ 2. To distribute n data 
pieces evenly over N CSPs, where 2 ≤ N ≤ (n+1), we calculate the number of data pieces 
n1, n2, ..., and nN stored at CSP1, CSP2, ..., and CSP_N, respectively, as in Eq. (9). 
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where n = n1 + n2 + ... + nN. Eq. (9) allows even distribution of n data pieces over N CSPs 
such that |ni - nj| ≤ 1 for 1 ≤ i, j ≤ N. For example, when N = 3 and n = 7, the numbers of 
data pieces distributed over the three cloud service providers CSP1, CSP2 and CSP3 will 
be 3, 2, 2, respectively. 

As a major requirement for fault tolerance, when up to M CSPs become unavailable, 
the original data must be recovered from the remaining CSPs in the available set Ω. Let m 
be the number of checksum pieces required, and m1, m2, ..., mN are the numbers of 
checksum pieces distributed over CSP1, CSP2, ..., and CSP_N, respectively. Obviously, 
we have m = m1 + m2 + ... + mN. To calculate the minimal number of checksum pieces m, 
we can solve the integer linear programming (ILP) problem as in Eq. (10). 
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Note that a solution to the above optimal problem automatically satisfies the fault-

tolerance requirement when |Φ| < M. The space efficiency e of a solution can be 
calculated as in Eq. (11). 
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As an example, when N = 3 and M = 1, the ILP problem defined in Eq. (10) can be 

simplified as the one in Eq. (12). 
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Table 2 shows the optimal solutions and their space efficiency for the case when N = 

3, M = 1, and n from 2 to 15. For example, when n = 8 (n1 = 3, n2 = 3, n3 = 2), the optimal 
solution is (m1 = 1, m2 = 1, m3 = 2), and the space efficiency e = 1 - 4/(8+4) = 0.6667. For 
this example, if any service provider becomes unavailable, the missing 4 pieces of data 
can always be recovered from the remaining data pieces and the checksum pieces stored 
with the other two service providers. 
 

Table 2. Optimal number of checksum pieces and space efficiency 

Data Pieces 
(n) (n1, n2, n3) (m1, m2, m3)

Checksum 
Pieces(m)

Space 
Efficiency(e) 

2 (1, 1, 0) (0, 0, 1) 1 0.6667 

3 (1, 1, 1) (1, 1, 0) 2 0.6000 

4 (2, 1, 1) (0, 1, 1) 2 0.6667 

5 (2, 2, 1) (1, 1, 1) 3 0.6250 

6 (2, 2, 2) (1, 1, 1) 3 0.6667 

7 (3, 2, 2) (1, 2, 1) 4 0.6364 

8 (3, 3, 2) (1, 1, 2) 4 0.6667 

9 (3, 3, 3) (2, 2, 1) 5 0.6429 

10 (4, 3, 3) (1, 2, 2) 5 0.6667 

11 (4, 4, 3) (2, 2, 2) 6 0.6471 

12 (4, 4, 4) (2, 2, 2) 6 0.6667 

13 (5, 4, 4) (2, 3, 2) 7 0.6500 

14 (5, 5, 4) (2, 2, 3) 7 0.6667 

15 (5, 5, 5) (3, 3, 2) 8 0.6522 

 



Reliable and Secure Distributed Cloud Data Storage Using Reed-Solomon Codes   13 
 
5.2.   Distribution of Data and Checksum Pieces over multiple CSPs 

When dealing with a file with k bytes, if k is not a multiple of n, we need to append r 
bytes with random values to the end of the file such that ((k + r) mod n) = 0.  Then we 
split the (k+r) bytes into n data pieces so that each of them contains exactly (k+r)/n bytes. 
By applying Eq. (9) and solving the ILP problem in Eq. (10), we can calculate the 
distribution of the n data pieces over multiple CSPs and the optimal number of checksum 
pieces, respectively. Finally, using the equations defined in Eq. (3.2), we can calculate 
the checksum pieces. Fig. 2 shows an example of file distribution at service providers 
CSP1, CSP2 and CSP3 when N = 3, M =1, n = 8 and m = 4. 

 

Fig. 2. Distribution of data and checksum pieces at three CSPs 
 

As shown in Fig. 2, we distribute 3, 3 and 2 data pieces (denoted by the file names 
starting with the letter “D”) over CSP1, CSP2 and CSP3, respectively. Based on the 
optimal solution given in Table 2, we also distribute 1, 1 and 2 checksum pieces (denoted 
by the file names starting with the letter “C”) over CSP1, CSP2 and CSP3, respectively. 
When any of the service providers fails, the original data can be recovered from the 
remaining 8 pieces of data using the equations defined in Eq. (7.2). It is worth noting that 
by the definition of the RS coding algorithm, when the 4 missing or corrupted data pieces 
are from more than one CSPs, the original file can still be recovered using the same 
equations defined in Eq. (7.2). 

6.   Case Study      

To demonstrate the feasibility as well as the high performance of our RS-based approach, 
we developed a prototype secure and reliable distributed cloud data storage application in 
Java. We adopt three different cloud storage services supported by major CSPs to store 
our data pieces and checksum pieces in the cloud. The selected cloud storage services are 
Amazon S3, Google App Engine, and Core Dropbox APIs with free user accounts. The 
application was running on a Windows machine with a 3.40 GHz Intel Core i7 processor 
and 8.00 GB of RAM. All experiments have been conducted with excellent Internet 
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connections at University of Massachusetts Dartmouth, where the download speed was 
around 160 Mbps (~20MB/s) and the upload speed was around 400 Mbps (~50MB/s). 
Therefore, the network connection at the client side would not become a bottleneck for 
all of our experiments. For each experiment in our case study, we repeat it at least 3 times 
and choose the median in an attempt to estimate the typical upload or download time for 
each particular setting. Table 3 shows the upload time and download time for two files 
with different file sizes using a single CSP. From the table, we can see that among the 
three CSPs, Dropbox has the best performance for file uploading; while Google App 
Engine has the worst performance. On the other hand, Google App Engine and Dropbox 
have the almost equivalently best performance for file downloading; while Amazon S3 
has the worst performance. As our approach requires using the three CSPs concurrently, 
the overall performance of the application would be restricted by the ones with the worst 
performance. In other words, the upload speed and download speed of the application 
may be held back by Google App Engine and Amazon S3, respectively. 

Table 3. File uploading and downloading time using a single CSP 

File Size CSP Upload Time Download Time 

156 MB 

Amazon S3 2 min 52 sec 1 min 9 sec 

Google App Engine 5 min 39 sec 33 sec 

Dropbox 2 min 19 sec 39 sec 

317 MB 

Amazon S3 5 min 8 sec 2 min 17 sec 

Google App Engine 11 min 36 sec 1 min 3 sec 

Dropbox 4 min 13 sec 1 min 1 sec 

 
Figure 3 shows the user interface of the application that allows one to select a file and 

upload it into the cloud. After choosing the number of data pieces (n), the optimal 
number of checksum pieces (m) can be automatically calculated by solving the 
corresponding ILP problem. When clicking on the “Encode and Upload” button, the 
selected file is divided into n data pieces, which are then automatically encoded into m 
checksum pieces by the application. Once all pieces of data become ready, they are 
uploaded into the selected cloud storages using multithreading techniques. The message 
box in the user interface displays the encoding time, the uploading time and the total 
processing time. 

Figure 4 shows the user interface for downloading and decoding an uploaded file in 
the cloud. As shown in the figure, a user first selects a file from the list of uploaded files, 
and then chooses at least two CSPs because the maximal number of failed cloud services 
M equals 1. Note that in Fig. 4, the Dropbox service is not selected as we assume it is not 
available at this moment. When clicking on the “Download and Decode” button, the 
available file pieces are concurrently downloaded to the local computer, where the 
original file is recovered using the RS coding techniques. The message box in the user 
interface displays the downloading time, the decoding time and the total processing time, 
as well as the location of the downloaded file on the user’s local computer.   
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Fig. 3. Encode and upload a file to multiple cloud data storages 
 

 

Fig. 4. Download and decode a file from the cloud with a failed service 
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To analyze the performance of our approach, we selected a video file with a file size 
of 156 MB. Figure 5 shows the encoding and uploading time vs. the number of data 
pieces set by the user. From the figure, we can see that when we increase the number of 
data pieces from 2 to 8, the uploading time drops down significantly; while the encoding 
time has slightly increased. The significant performance improvement for uploading is 
due to the use of multithreading technique; while the increased number of data pieces 
along with more checksum pieces results in more overhead for encoding. However, when 
the number of data pieces n is further increased, the uploading time and the total 
processing time become relatively stable. This result is quite different from our previous 
findings, where the uploading time dramatically goes up when the number of data pieces 
n ≥ 10 [12]. Based on our further investigation, we notice that the former result is due to a 
sudden performance drop at Amazon S3 when the file size of a data piece becomes less 
than 16 MB. Note that when n = 10, the size of each data piece equals 156MB/10, i.e., 
15.6MB. With the default configuration, the TransferManager from the Amazon S3 
API uses a single low-speed thread for uploading files of less than 16 MB. In this case 
study, we modify the configuration to allow multi-part upload of small files. As a result, 
the sudden performance drop (when n ≥ 10) disappeared. As shown in Fig. 5, the total 
processing time becomes constantly less than one minute. Comparing to the best 
performance for uploading the 156 MB file using a single CSP (as listed in Table 3), 
where Dropbox used 2 minutes 19 seconds, our approach demonstrates a significant 
performance improvement for uploading the file.   

 

 

Fig. 5. Encoding & uploading time vs. number of data pieces (156 MB file) 
 
Figure 6 shows the downloading and decoding time vs. the number of data pieces set 

by the user. From the figure, we can see that when we increase the number of data pieces 
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from 2 to 8, the downloading time drops down significantly; while the decoding time has 
slightly increased. Similar to the case of uploading, the significant performance 
improvement for downloading is also due to the use of multithreading technique, and the 
increased number of data pieces along with more checksum pieces results in more 
overhead for decoding. When the number of data pieces n is further increased, the total 
processing time only slightly goes up due to the overhead of decoding files. However, 
when n ≥ 8, the total processing time is constantly below 15 seconds. Comparing to the 
best performance for downloading the 156 MB file using a single CSP (as listed in Table 
3), where Google App Engine used 33 seconds, our approach demonstrates a significant 
performance improvement for downloading the file.  

 

 

Fig. 6. Downloading and decoding time vs. number of data pieces (156 MB file) 
 
From the above experimental results, we can see that both the uploading and 

downloading time can be significantly reduced by selecting a reasonable number of data 
pieces. For example, when the file size is about 156 MB, based on our experiments, the 
number of data pieces should normally be set to 8 as long as the network condition is 
excellent, and the client machine has similar performance as the one used in the case 
study. Note that according to Table 2, when n = 8 and m = 4,  the space efficiency e 
reaches its highest value 0.6667. It is also worth noting that when no service provider 
fails, the application only requires downloading the data pieces, and no checksum pieces 
are needed for restoring the original file. In this case, the downloading time can be further 
reduced, and the decoding time becomes merely the time needed to combine the data 
pieces into the original file. Therefore, in a usual case with no failures of service 
providers, the overall performance for file retrieval could be better than the results 
demonstrated as in Fig. 6. 
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To further investigate the system performance for larger files, we use another video 
file with a file size of 317 MB for this case study. Figure 7 shows the encoding and 
uploading time vs. the number of data pieces set by the user. From the figure, we can see 
that when we increase the number of data pieces from 2 to 8, the uploading time drops 
down significantly; while the encoding time has slightly increased. When n > 8, the 
uploading time is further decreased along with the encoding time being slightly 
increased. As shown in the figure, for n ≥ 8, the total processing time is constantly below 
100 seconds, i.e., 1 minute and 40 seconds. Comparing to the best performance for 
uploading the 317 MB file using a single CSP (as listed in Table 3), where Dropbox used 
4 minutes and 13 seconds to upload the file, our approach again demonstrates a 
significant performance improvement for uploading the file. 

 

 

Fig. 7. Encoding & uploading time vs. number of data pieces (317 MB file) 
 
Figure 8 shows the downloading and decoding time vs. the number of data pieces set 

by the user for the 317 MB file. From the figure, we can see that when we increase the 
number of data pieces from 2 to 8, the downloading time drops down significantly; while 
the decoding time has slightly increased. When the number of data pieces n is further 
increased, the total processing time slightly goes up and then goes down. However, for n 
≥ 8, the total processing time is constantly below 45 seconds. Comparing to the best 
performance for downloading the 317 MB file using a single CSP (as listed in Table 3), 
where Dropbox used 1 minute and 1 second to download the file, our approach again 
demonstrates a significant performance improvement for downloading the file. 
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Fig. 8. Downloading and decoding time vs. number of data pieces (317 MB file) 
 

From the above experimental results, we notice that the number of data pieces should 
also be normally set to 8 for a file of about 317 MB, as long as the network condition is 
excellent, and the performance of the client machine is good enough. Note that when n > 
8, although the uploading and downloading time may be slightly reduced, the overhead of 
encoding and decoding files can be increased; thus the benefits of having too many data 
pieces and checksum pieces is not significant. To reduce the overhead of encoding and 
decoding a large number of file pieces, especially on a low-end PC or a tablet, selecting a 
reasonably small number of data pieces might be more desirable. 

To gain insights for more general cases, we further performed many experiments with 
different file types and file sizes. As our approach is applied at the byte-level of a file, the 
file type does not affect the system performance. This is consistent with our experimental 
results. In addition, with much smaller file sizes (e.g., less than 50 MB), the overhead for 
encoding and decoding also becomes very small, which can usually be ignored.    

7.   Conclusions and Future Work 

In this paper, we addressed three major issues with cloud storage, namely reliability, 
security and performance. Instead of achieving data reliability using redundancy at the 
server side, we presented a reliable and secure distributed cloud data storage schema for 
end users. In our approach, we view multiple cloud storage services as virtual disks, and 
upload redundant data files into multiple cloud storages. The redundant data files are 
calculated using erasure codes techniques, which allow multiple failures of the cloud data 
services. By forming an optimal problem for calculating the number of checksum pieces, 
we can achieve the best space efficiency in our approach. Furthermore, we divide the 
user’s data into pieces, and distribute them across multiple cloud services; therefore, no 
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single CSP can understand the uploaded user’s data. As a result, our approach can 
effectively protect user data from unauthorized access in the cloud, and provide security 
at the software level for the end users. Finally, our experimental results show that besides 
the advantages of being secure and fault tolerant, our approach provides very good 
performance in both file uploading and downloading using the multithreading techniques, 
with the cost of minor overhead for encoding and decoding data. 

For future work, we will investigate possible ways to automatically select a suitable 
number of data pieces based on the network condition, machine performance and the file 
size. We will consider other major aspects of cloud data, such as data integrity and 
confidentiality. For example, it would be feasible to adopt the digital signature technique 
to verify the integrity of the data stored in the cloud to ensure they were not altered by the 
service providers. Furthermore, when large cloud files are involved, the overhead for 
encoding and decoding may become a concern, especially for resource constrained 
devices such as a smartphone or a tablet. To improve the overall performance in this case, 
we need to look into more advanced techniques for erasure codes, such as regenerating 
codes and non-MDS codes [11, 25]. Finally, as a worthy future direction, we will attempt 
to integrate our approach with cloud-based big data analysis for reliable and secure 
massive datasets stored in the cloud. 
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