

PAPER MANUSCRIPT SUBMITTED TO

INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING &
KNOWLEDGE ENGINEERING

Paper Title: A Security Based Model for Mobile Agent Software Systems

Authors: Dr. Haiping Xu, Assistant Professor
 Computer and Information Science Department
 University of Massachusetts Dartmouth

Email: HThxu@umassd.eduTH

 Zhiguo Zhang, PhD Candidate

Department of Computer Science
University of Illinois at Chicago
Email: HTzzhang@cs.uic.eduTH

Dr. Sol M. Shatz, Professor
Department of Computer Science
University of Illinois at Chicago
Email: HTshatz@cs.uic.eduTH

Date: September 13, 2004

 2

A Security Based Model for Mobile Agent Software Systems

Haiping Xu

University of Massachusetts Dartmouth

Email: hxu@umassd.edu

Zhiguo Zhang and Sol M. Shatz

University of Illinois at Chicago

Email: {zzhang, shatz}@cs.uic.edu

Abstract

Security modeling for agents has been one of the most challenging issues in developing practical

mobile agent software systems. In the past, researchers have developed mobile agent systems

with emphasis either on protecting mobile agents from malicious hosts or protecting hosts from

malicious agents. In this paper, we propose a security based mobile agent system architecture that

provides a general solution to protecting both mobile agents and agent hosts in terms of agent

communication and agent migration. We present a facilitator agent model that serves as a

middleware for secure agent communication and agent migration. The facilitator agent model, as

well as the mobile agent model, is based on agent-oriented G-nets - a high level Petri net

formalism. To illustrate our formal modeling technique for mobile agent systems, we provide an

example of agent migration to show how a design error can be detected.

Key words: Agent security, mobile agent, facilitator agent, CPV approach, Petri nets, agent-

oriented G-nets

1. Introduction

Software agents can be classified in terms of a space defined by the three dimensions of

intelligence, agency and mobility [1]. The first dimension, intelligence, is rooted in artificial

intelligence research dating to the 1950s, where intelligent agents can be classified according to

their capabilities to express preferences, beliefs and emotions, as well as their ability to fulfill a

task by reasoning, planning and learning techniques. The second dimension, agency, represents

the degree of an agent’s autonomy and authority, which is measured by the nature of its

interaction with the environment. The third dimension, mobility, emerged in the 1990s, is

 3

motivated by the rise and rapid growth of a networked computing environment, especially the

Internet, and the need for techniques to locally exploit distributed resources. Within this

dimension of software agent research, the goal is remote action and mobility of data and

computation.

Current research on agent-based systems generally does not exploit all the capabilities classified

by these three dimensions. For example, multi-agent systems (MAS) based on distributed

artificial intelligence try to execute a given task using a large number of possibly distributed but

static agents that collaborate and cooperate in an intelligent manner [2][3]. On the other hand,

research on mobile agents usually emphasizes agent mobility and agent coordination, and mobile

agents are typically assumed to only have very limited or even no intelligence [4][5][6]. The

development schema in the later case is sometimes called a weak agent approach, which contrasts

with the strong agent approach that involves artificial intelligence techniques [7].

In this paper, we consider an architecture that is based on two basic components: mobile agents

and facilitator agents. We define both by introducing mobility into our previously presented

framework for agent-oriented software. This framework has been designed to model intelligent

software agents for multi-agent systems, and it supports design reuse by providing an inheritance

mechanism [8]. The resulting mobile agent models explicitly support asynchronous message

passing. A key property of our approach is that fundamental agent models are based on the agent-

oriented G-net formalism, a formalism derived from an object-based Petri net model. This paves

the way for formal analysis, as seen in earlier work [9]. In the work presented here, we focus on

explicit consideration for some security issues encountered in mobile agent systems.

The rest of this paper is organized as follows. In Section 2, we describe related work and

highlight the relationships to our research. In Section 3, we summarize the agent-oriented G-net

model, which was first proposed in [8]. In Section 4, we propose the architecture for a mobile

agent system, and describe how to design the principle agent system components: the mobile

agents and the facilitator agents. We incorporate a CPV (Certificate, Passport, and Visa) approach

for secure agent communication and agent migration. In Section 5, we provide an example of

agent migration and shows how a design error is detected using formal analysis. Finally, in

Section 6, we summarize our contributions and discuss the future work.

 4

2. Related Work

Previous work on multi-agent systems has fostered the concept of agent-oriented software

[10][11][8], where agents are viewed as intelligent software that has the properties of autonomy,

reactivity, pro-activeness and sociability. Corresponding agent-oriented design methodologies are

also proposed to provide guidelines for agent specification and design. Examples of such work

are the AAII methodologies [12] and the Gaia methodologies [11], which are extensions of

object-oriented methodologies. In our own previous work [9][13], an inheritance mechanism, in

terms of agent functionalities, is introduced into the development of agent-oriented software.

For mobile agents, the concern is with software agents that can migrate over computer networks.

The concept of location has been one of the key features to characterize mobility in most

theoretical models of mobile agents, such as the distributed join-calculus [14], which is an

extension of the π-calculus that introduces the explicit notions of named localities and

distribution failure. Additional typical formalisms for agent mobility modeling are summarized as

follows. Mobile UNITY [4] provides a programming notation that captures the notion of mobility

and transient interactions among mobile nodes. Inspired by Mobile UNITY, the concept of

connectors [15] is explicitly identified to describe different kinds of transient interactions, and

facilitate the separation of coordination from computation in mobile computing. The connectors

are written in COMMUNITY, a UNITY-like program design language whose semantics is given

in a categorical framework. MobiS [5], as an extended version of PoliS, is a specification

language based on multiple tuple spaces. It can be used to specify agent coordination and

architectures containing mobile components.

Although the above results formally model mobile agents in terms of their mobility, they are not

built upon a framework that explicitly supports the intelligence feature of agents. Furthermore,

they are weak in agent communication modeling. Typically, such models are reactive rather than

pro-active. In other words, these models may simply act in response to their environment, but

they are not able to exhibit goal-directed behaviors. Additional efforts, such as the MARS

(Mobile Agent Reactive Spaces) project [6], attempt to introduce context-dependent coordination

into agent models; however, without explicitly suggesting the communication mechanism among

mobile agents. There are also some research efforts concerned with mobile agent communication

mechanisms; however, they are not formally defined [16][17].

 5

Another drawback of the above formal modeling approaches is that they restrict their scope of

applicability due to a lack of security measures. There is some previous work on solving security

problems in mobile agent systems. Such problems include how to protect mobile agents from

malicious hosts and how to protect hosts from malicious agents, as presented by Sander and

Tschudin [18]. The security threats that an agent platform faces from a malicious agent have been

discussed in a number of papers [19][20][21]. Farmer and his colleagues proposed a system

architecture to model the trust relations between the principals of mobile agents systems. A

unique aspect of the architecture is a state appraisal mechanism that protects hosts from attacks

via state modification [19]. Gray and his colleagues addressed how to protect an individual

machine and how to protect a group of machines in the context of D’Agents, a mobile agent

system whose agents can be written in TCL, Java and Scheme [20]. Vuong and Fu proposed a

security based architecture and implemented a security system based on a novel mobile intelligent

system, called Actigen [21]. They first proposed a passport-visa approach to simulate the

activities of traveling abroad in the real life. On the other hand, a malicious host might steal

private information from a mobile agent, or modify the agent to compute the wrong result or to

misbehave when it jumps to another site. Sander and Tschudin addressed this problem by

identifying a special class of functions – polynomials and rational functions – together with

encryption schemes that lead to a non-trivial example of cryptographically hiding a function such

that it must be executed with an interactive protocol [18]. Based on Sander and Tschudin’s work,

Lee and his colleagues proposed an extension of mobile cryptography that provides a practical

idea for implementing mobile cryptography [22].

From the above review, we can see that current work on mobile agents mostly emphasizes some

particular features of the mobile agents, e.g., agent mobility or agent security. With the

continuing improvement of agent technology, and the rapid growth of software system

complexity, especially for Internet applications, there is a pressing need for a more general model

of mobile agents, in which agents are not only mobile, cooperative and intelligent, but also

supports secure agent communication and agent migration. There is some previous work that

discusses intelligent mobile agents [23]; however, it does not consider a formal framework for

intelligent mobile agent design. One notable effort that emphasizes a formal framework for

mobile agents is the work of Xu, et al [24]. While this work considers the cooperation between

mobile agents for the purposes of migration, it did not explicitly address security issues. We seek

to incorporate the security issues into our modeling framework and address the following types of

properties: When a remote host refuses a migration request from a remote mobile agent, the

 6

mobile agent should not be allowed to migrate. Our proposed security based model for mobile

agent systems not only addresses the problem of protecting the host from malicious agents, but

also protecting the agent from malicious hosts. A mobile agent’s migration request is granted

only if it passes the security checking by a remote facilitator agent; meanwhile, a mobile agent

only migrates to a trusted host with a certified facilitator agent.

3. A Base Framework for Agent-Oriented Software

One of the most important software engineering principles is that a system should be composed

of a set of independent modules, where each module hides the internal details of its processing

activities and modules communicate through well-defined interfaces. The G-net model provides

strong support for this principle [25][26]. G-nets, first proposed by Deng and his colleagues [25],

are an object-based extension of Petri nets [27]. Petri nets are a graphically defined model for

concurrent systems, having the advantage of being visually appealing, while also being

theoretically mature and supported by robust tools. Details about G-net models can be found in

references [25][26].

Although the G-net model works well in object-based design, it is not sufficient in agent-based

design for the following reasons. First, agents that form a multi-agent system may be developed

independently by different vendors, and those agents may be widely distributed across large-scale

networks such as the Internet. To make it possible for those agents to communicate with each

other, it is desirable for them to have a common communication language and to follow common

protocols. However, the G-net model does not directly support protocol-based language

communication between agents. Second, the underlying agent communication model is usually

asynchronous, and an agent may decide whether to perform actions requested by some other

agents. The G-net model does not directly support asynchronous message passing and decision-

making; it only supports synchronous method invocations in the form of ISP (Instantiated Switch

Place) mechanisms [25]. Third, agents are usually designed to determine their behavior based on

individual goals, their knowledge and the environment. They may autonomously and

spontaneously initiate internal or external behavior at any time. The G-net model can only

directly support a predefined flow of control.

 7

To support agent-oriented design, we need to extend a G-net to support modeling an agent class TP

1
PT.

This extension is made in three steps. First, we introduce five special modules to a G-net to make

an agent autonomous and internally motivated. As shown in Figure 1, the five special modules

are the Goal module, the Plan module, the Knowledge module, the Environment module and the

Planner module. The Goal, Plan and Knowledge modules are based on the BDI agent model

proposed by Kinny and his colleagues [12]. The Goal module consists of a goal set that specifies

the goal domain and goal state. The Plan module consists of a set of plans that are associated with

a goal or a subgoal. Each goal or subgoal may associate with more than one plan, and the most

suitable one will be selected to achieve that goal or subgoal. A Knowledge module describes the

information about the agent’s internal state, its environment, and interaction protocols. The

Environment module is an abstract model of the environment, i.e., the model of the outside world

of an agent. The Planner module represents the heart of an agent that may decide to ignore an

incoming message, to start a new conversation, or to continue with the current conversation. In

the Planner module, committed plans are achieved, and the Goal, Plan and Knowledge modules

of an agent are updated after the execution of each communicative act that defines the type and

content of a message [28][29], or if the environment changes. Second, different from the semantic

of a G-net as an object or a module, we view the extended G-net, we call it an agent-oriented G-

net, as a class model, i.e., the abstract of a set of similar agents. Third, we define the instantiation

of the agent-oriented G-net as follows: when an agent-oriented G-net A is instantiated, we

generate an agent identifier A.Aid for the resulting agent object AO; meanwhile, the state of AO,

i.e., any state variables defined in A, is initialized.

The internal structure (IS) of an agent-oriented G-net consists of three sections: incoming

message, outgoing message and utility method. The incoming/outgoing message section defines a

set of message processing units (MPU), which correspond to a subset of communicative acts.

Each MPU, labeled as action_i in Figure 1 is used to process incoming/outgoing messages and

execute any necessary actions before or after the message processing. The utility method section

defines a set of methods that can only be called by the agent itself.

TP

1
PT We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class

an agent or an agent object.

 8

Figure 1. A generic agent-oriented G-net model (adapted from [9])

Although both objects (passive objects) and agents use message-passing to communicate,

message-passing for objects is a unique form of method invocation, while agents distinguish

different types of messages and model these messages frequently as speech-acts and use complex

protocols to negotiate [11]. In particular, these messages must satisfy the format of the

standardized communicative (speech) acts, e.g., the format of communicative acts that defined in

the FIPA agent communication language [30], or KQML [28]. Note that in Figure 1 each named

MPU action_i refers to a communicative act, thus our agent-oriented model supports an agent

communication interface. In addition, agents analyze these messages and can decide whether to

execute the requested action. As we stated before, agent communications are typically based on

asynchronous message passing. Since asynchronous message passing is more fundamental than

synchronous message passing, it is useful for us to introduce a new mechanism, called message-

passing switch place (MSP), to directly support asynchronous message passing. When a token

reaches an MSP (represented as an ellipsis in Figure 1), the token is removed and deposited into

the GSP of the called agent. But, unlike with the G-net ISP mechanism, which invokes a method

defined in the utility method section, and returns the result synchronously, the calling agent does

not wait for the token to return before it can continue to execute its next step. Since methods

defined in the utility method section can only be called by the agent itself, agent communications

must take place asynchronously through the MSP mechanisms.

GSP(G)

action_1

…

…

utility method
utility_p

incoming message

 return

utility_1

MSP(G’.Aid) return MSP(G’.Aid)

 action_m

MSP(G’.Aid)

action_n

MSP(G’.Aid)

 action_1

Planner

Goal Knowledge Plan

 outgoing message

Environment

… …

… …

message_
processing

message_
processing

message_
processing

message_
processing utility_1

 9

A generic template of the Planner module is shown in [9]. The function of the Planner module is

to receive messages from the GSP place, make decisions and dispatch those messages to different

MPUs according to the information contained in the Goal, Plan, Knowledge and Environment

modules. In Section 4, we present and discuss a revised version of this component, which does

not use inheritance but does provide support for secure mobility.

4. A Mobile Agent System Design

Today’s users demand ubiquitous network access independent of their physical location. This

style of computation, often referred to as mobile computing, is enabled by rapid advances in

wireless communication technology [31]. The networking scenarios enabled by mobile

computing range roughly between two extremes. At one end, the availability of a fixed network is

assumed, and its facilities are exploited by the mobile infrastructure. We call this form of

mobility logical mobility. At the other end, the fixed network is absent and all network facilities

(e.g., routing) must be implemented by relying only on the available mobile hosts, namely ad hoc

networks. This form of mobility is called physical mobility. Mobile agent technology is a new

networking technology that deals with both forms of mobility. It offers a new computing

paradigm in which a program, in the form of an intelligent software agent, can suspend its

execution on a host computer, transfer itself to another agent-enabled host on the network, and

resume execution on the new host. Here, as we will see in the next section, we define a host as

either a stationary host or a mobile host that is situated in an ad hoc network.

4.1 Mobile Agent System Architecture

We propose an agent world (AW) architecture that provides the platform for execution and

migration of mobile agents. A few key definitions for this architecture are now given as follows.

Definition 4.1 Stationary Agent (SA) and Mobile Agent (MA)

An agent A is a 3-tuple (HOMEIP, CURIP, AO), where HOMEIP is the IP address of the host, on

which agent A is created; CURIP is the current IP address of the host supporting agent A; and AO

is the agent object, with the general structure described in Section 3. If at all time, CURIP =

HOMEIP, we refer to agent A as a stationary agent (SA); otherwise, we refer to agent A as a

mobile agent (MA).

 10

Definition 4.2 Agent Virtual Machine (AVM)

An agent virtual machine (AVM) Θ is a 4-tuple (IFA, SMA, HOSTIP, ID), where IFA is a

stationary intelligent facilitator agent on Θ, which is responsible for recording information and

providing services for mobile agents running on Θ; SMA is a set of mobile agents running on Θ;

HOSTIP is the current IP address of the host that is supporting Θ; and ID is Θ’s unique identifier.

Definition 4.3 Stationary Host (SH) and Mobile Host (MH)

A host Π is a 4-tuple (SAVM, ACOM, HOMEIP, CURIP), where SAVM is a set of agent virtual

machines (AVM); ACOM is the communication protocol among AVMs in SAVM, and examples

of such protocols are IPC and TCP/IP; HOMEIP is the original IP address of the host; and CURIP

is the current IP address of the host. If at all time, CURIP = HOMEIP, we call the host Π a

stationary host (SH); otherwise, we call it a mobile host (MH).

Definition 4.4 Agent World (AW)

An agent world (AW) is a 3-tuple (WKFA, SHOST, HCOM), where WKFA is a well-known

stationary facilitator agent, which is responsible for recording the most recent addresses of all

hosts in the agent world. WKFA is also responsible for recording the public keys of all facilitator

agents and for issuing certificates to the facilitator agents in the agent world (we will introduce

the concepts of public key cryptograph and certificate in Section 4.3). SHOST is a set of hosts in

the agent world that can provide the services of an agent virtual machine and HCOM is the

communication protocol among hosts in SHOST; an example of such protocols is TCP/IP.

Figure 2 shows a generic mobile agent system, and an example of agent migration. In the figure,

Host-A and Host-B are two machines connected by a network. To make mobile agent platform

independent of machine hardware, a mobile agent runs on an agent virtual machine (AVM),

which provides a protected agent execution environment on a host. Each host may have a number

of AVMs; however, to simplify matters, we only illustrate one AVM on each host in Figure 2.

Each AVM is responsible for hosting and executing any agents created on that AVM or that

arrive over the network, and for providing APIs for agent programmers. We will discuss the

sequence of steps for agent migration (illustrated by the directed arcs in Figure 2) shortly.

 11

Figure 2. Agent world architecture and an example of agent migration

Since in this paper we view mobile agents and facilitator agents as intelligent software agents, for

the rest of our discussion a mobile agent or a facilitator agent always refers to an intelligent

mobile agent (IMA) or an intelligent facilitator agent (IFA), respectively. In Figure 2, when a

mobile agent α on AVM Θ BAB wants to migrate to another AVM Θ BBB, it needs to contact the remote

facilitator agent θBBB first, which resides on AVM Θ BBB (step 1). In fact, the mobile agent α needs to

know the address of the remote facilitator agent θBBB before the communication can begin. This

could be done by querying the needed information from its local facilitator agent θBAB, which

resides on AVM Θ BAB. If the local facilitator agent θBAB knows the address of the remote facilitator

agent θBBB, it will provide such information to the mobile agent α; otherwise, it will contact with

the well-known facilitator agent WKFA (we do not show it in Figure 2) for this information and

forward the results to the mobile agent α thereafter. For simplicity, this procedure is omitted in

Figure 2. Based on security and resource criteria, the remote facilitator agent θBBB decides if the

migration request is granted. If the migration request is granted (step 2), the mobile agent α

notifies its local facilitator agent θBAB about its departure (step 3), and finally α moves to the remote

AVM Θ BBB (step 4).

(4)

(1)

(2)

(3)

Host-A

computer network

AVM: ΘBAB AVM: ΘBBB

Host-B

(1) move-request (2) grant (3) notify (4) move

…

FA: θBAB MA: β MA: α FA: θBBB MA: α MA: γ

 12

The situation above is an example of logical mobility. For physical mobility, a host may, at some

time, change its IP address or lose its IP address temporarily (detached from the network). In this

case, the well-known facilitator agent WKFA is critical for recording this information. To

successfully send a message to an agent, whose hosting AVM has changed its HOSTIP address,

the knowledge of the sender agent’s local facilitator agent needs to be consistent with the latest

network information. Further discussion about this issue is beyond the scope of this paper, which

concentrates on logical mobility.

4.2 Security Considerations and Design of IMA and IFA

The scenario introduced in Section 4.1 seems practical for agent communication and agent

migration; however, if we allow a mobile agent to communicate directly with a remote facilitator

agent or with other mobile agents, mobile agents would then be responsible for checking

authentications of all other mobile agents and all facilitator agents in the agent world. Meanwhile,

a facilitator agent would be responsible for checking authentications of any other facilitator

agents and all mobile agents in the agent world. So, this approach would require agents to record

all other agents’ authentication information. This not only results in information redundancy, but

also makes agent communication inefficient and unreliable. In order to reduce the information

recorded by every agent, we consider each facilitator agent (FA) as a type of middleware for

agent communication and agent migration, and a mobile agent (MA) on an AVM can only

communicate directly with its local FA. When a mobile agent wants to communicate with a

remote FA, it first sends a message to its local FA, and the local FA forwards the message to the

remote FA. Similarly, when the remote FA replies to the mobile agent, the message is also

forwarded by the local FA. In addition, any communications between two mobile agents (local or

remote) also take place through local or remote FAs. Finally, when a mobile agent’s migration

request is granted by a remote FA, the mobile agent is serialized by its local FA and sent to the

remote FA, which is responsible for resuming the execution of the mobile agent. Under the above

scenarios, the authentications are limited to be used between local mobile agents and local

facilitator agents, as well as between local facilitator agents and remote facilitator agents. In other

words, all communications between mobile agents (local or remote), and all communications

between a local mobile agent and a remote facilitator agent, must bridge through local FAs. Thus,

a mobile agent is only responsible for checking authentication of its local FA; while a FA is only

responsible for checking the authentications of its local mobile agents and any other remote FAs

in the agent world.

 13

Based on the above approach, the agent interaction protocol between mobile agents and

local/remote agents can be described as in Figure 3.

Figure 3. Interaction protocol between a mobile agent (MA) and facilitator agents (FA)

As shown in Figure 3, when a mobile agent α wants to migrate from its local AVM Θ BAB to a

remote AVM Θ BBB, it first sends a move-request message to its local FA. The local FA checks

the mobile agent’s certificate as well as the certificate of its issuer to see if it is valid. If the

certificate is not valid, then the local FA denies the request by sending a cert-invalid

message back to the mobile agent. Notice that in Figure 3 the end of protocol operation “•”, put

in front of the message name cert-invalid, marks that this message ends the conversation.

If the certificate is valid, the move-request message will be forwarded to the remote FA on

Θ BBB. The remote FA checks both the local FA and the mobile agent’s certificates. If there is

anything suspicious, the move-request is denied, and a move-refuse message will be

forwarded to the mobile agent via the local FA. Otherwise, the move-request is granted. In

the same way, a move-grant message will be forwarded to the mobile agent via the local FA.

Upon receiving the move-grant message, the mobile agent sends a move message to its local

FA to confirm the desire to migrate. The local FA then serializes the mobile agent and sends it to

the remote FA for registration.

Local FA

x

MA remote FA

move-request

x

move-refuse

msg-forward

• msg-forward

move-grant
msg-forward

• cert-invalid

move
• register

 14

Figure 4. Agent-oriented G-net model of mobile agent

Figure 5. Agent-oriented G-net model of facilitator agent

We view each message in the interaction protocol as a communicative act with a format defined

in some agent language-notation such as FIPA, or KQML [30][28][32]. Based on the

GSP(FA)

MSP(G’.Aid)

…

…

 return

utility method

utility_1 utility_q

 outgoing message

MSP(G’.Aid) MSP(G’.Aid) MSP(G’.Aid) MSP(G’.Aid) return

move-grant move-refuse msg-forward register cert-invalid

Planner

Agent Goal Knowledge Plan

GSP(MA)

cert-invalid

…

…

utility method
utility_p

incoming message

 return

utility_1

MSP(G’.Aid) return MSP(G’.Aid)

move-refuse

MSP(G’.Aid)

move-grant

MSP(G’.Aid)

move

MSP(G’.Aid)

move-request

Planner

Goal Knowledge Plan

 outgoing message

Environment

 15

communicative acts, we design the agent-oriented G-net model of mobile agents and facilitator

agents as in Figure 4 and Figure 5, respectively. Notice that we define three MPUs in the

incoming message section of the agent-oriented G-net model of mobile agents, which

corresponds to the three communicative acts (cert-invalid, move-grant, and move-

refuse) in the interaction protocol. Similarly, we define two MPUs that correspond to the

communicative acts of move-request and move in the interaction protocol. Details on how to

design agent-oriented G-net models based on interaction protocols are provided in previous work

[9]. The planner module of the mobile agent may reuse the general planner module as we defined

previously [9], which support inheritance. The agent model for facilitator agents can be designed

in a similar way. However, the general planner module is not sufficient for facilitator agents to

support agent communication and agent migration, especially when security issues are taken into

consideration. Therefore, we need to redesign the planner module for facilitator agents. Notice

that the environment module in Figure 5 becomes a module called Agent place (denoted as a

rounded rectangle). The Agent place is an agent container for local mobile agents including

agents that migrate from a remote AVM. With this facility, local mobile agents are under the

control of a local facilitator agent. When a migration is granted, the mobile agent can be

serialized and sent out to the Agent place of a remote facilitator agent when a migration request is

granted. Also notice that, since there is only one facilitator agent defined on each agent virtual

machine, the inheritance feature is not significant for modeling facilitator agents.

Unlike Figure 4, Figure 5 shows no incoming message section in the internal structure of the

facilitator agent model. This is to simplify our facilitator agent model. As we will see in Section

4.4, all incoming messages to a facilitator agent are directly processed by the planner module of

the FA.

Before we define the planner module for facilitator agents, we first introduce the cryptographic

mechanism for secure agent communication, which is a key mechanism in designing the planner

module of the facilitator agent model.

4.3 The CPV Approach

Public key cryptograph is one of the most widely used encryption mechanisms, which involves a

pair of keys - a public key and a private key [33]. The public key of the message receiver is used

to encrypt a message, and the encrypted message can only be decrypted by the receiver using its

 16

private key. Although a message can be safely sent to a receiver using the receiver’s public key,

the receiver cannot guarantee if the message is actually sent by the claimed sender. To

authenticate the message sender, the message must be digitally signed. The basic idea of digital

signature is to use the sender’s private key to encrypt a message [34]. If the receiver can recover

the message using the sender’s public key, then the receiver can be certain that the message is

actually sent by the claimed sender because only the message sender can encrypt the message

with its private key. Now, one more question arises: how can a message receiver know that the

public key actually belongs to the claimed sender? This can be verified by using a certificate,

which is a signed document that consists of the sender’s public key and its identity. The

certificate is signed by a certificate authority (CA), which is a third party, other than the message

sender/receiver, that certifies the accuracy of the binding of a public key and an identity [34].

For our security modeling, we incorporate a CPV (Certificate, Password and Visa) approach,

which is based on the passport-visa mechanism first proposed by Vuong and Fu [21]. The basic

idea of the passport-visa mechanism is to simulate the activities of traveling abroad in real life

[21][35]. In this paper, we define a passport as a certificate with additional visa pages, similar to

an actual passport that contains visa pages with possible visa stamps. Each visa stamp on a visa

page is also defined as a certificate, which is issued by a foreign facilitator agent. Our proposed

method initially provides every mobile agent a certificate that is issued and signed by its

owner/user, who creates the mobile agent. As a mobile agent requests to move from one AVM to

another, the agent’s certificate is replaced by a more specialized certificate - a passport, which is

signed and issued by a local FA. When the migration request is approved by a remote FA, a visa

stamp is put on one of the visa pages in the mobile agent’s passport.

To ensure that a facilitator agent is a trusted agency, it must also have a certificate, which is

signed by a certificate authority (CA). In our agent world architecture, the CA is the well-known

facilitator agent, denoted as WKFA, that has a globally recognized public key. When a new AVM

with a facilitator agent (FA) wants to enter the agent world, the FA will send its public key, its

identity, valid time and other information to the WKFA. The WKFA will record the new FA’s

information, and assign a privilege to the new FA. This privilege will be used in the passport/visa

issuing procedure. On the other hand, local users/owners of the AVM will assign certificates to

local mobile agents that are created on the local AVM. Because a local user does not have a

public key recorded by any remote FA, the certificates issued by local users cannot be checked by

a remote FA while communicating with a remote FA. Therefore, whenever a mobile agent has an

 17

intention to migrate by sending a move-request message to its local FA, the mobile agent’s

original certificate must be replaced with a passport that is issued by its local FA. The structures

of the Certificate, Passport and VisaPage are defined as follows:

Struct Certificate {

 int serial_number; // the serial number of the certificate

 String issuer_name; // the issuer’s name

 String name; // the name of holder

 Privilege privilege; // the privilege assigned by the issuer

 String public key; // the public key of the holder

 Time valid_time; // the valid time for the certificate

 Signature signature; // the encrypted value of the above items

 // encoded by the issuer’s private key

}

Struct Passport {

 Certificate passport; // issued by a local facilitator agent

 Certificate CTofIssuer; // issued by WKHOST

 VisaPage visaPages; // defined as a linked list

}

Struct VisaPage {

 Certificate visaStamp; // issued by a remote facilitator agent

 Certificate CTofIssuer; // issued by WKHOST

 VisaPage nextVisaPage; // reference to the next visa page

}

For security considerations, any transferred message MSG is first encrypted by the sender’s

private key into MSG’ = E(kBPRIV-SB, MSG), where kBPRIV-S Bis the private key of the sender. This

encoded message is then combined with the sender’s certificate (denoted as CT) as MSG’’ =

(E(kBPRIV-SB, MSG), CT). Finally, the combination of the encoded message and the certificate is

further encrypted using the receiver’s public key into E-MSG = E(kBPUB-RB, (E(kBPRIV-SB, MSG), CT)),

where kBPUB-RB is the public key of the receiver. Upon receiving the encrypted message E-MSG, the

receiver first uses its private key kBPRIV-RB to decode the message into MSG’’ = D(kBPRIV-RB, B BE-MSG). It

then reads the certificate CT of the sender from MSG’’, and verifies its validity by checking the

signature signed by the issuer. If the CT passes the security checking, the receiver then uses the

 18

public key of the message sender kBPUB-SB read from the CT to decrypt the message MSG’ (extracted

from MSG’’) into MSG = D(kBPUB-SB, MSG’), which becomes the original message MSG. The

structure of each message MSG is defined as follows:

Struct Message {

 AgentID sa; // source agent identification

 AgentID da; // destination agent identification

 Head mh; // message head

 MessageBody mb; // message body

}

enum Head {RMI, GOTO, REGISTER, LOCAL, METHOD};

Struct MessageBody {

 String str; // string message

 File att; // binary attachment

}

The message format consists of four fields: sa, da, mh and mb. The fields sa and da are agent

identifications, representing the source agent and the destination agent, respectively; mh is a

message head, representing the message type; and mb is the message body, which contains a

string str and a binary attachment att. The string str in a message body describes text

information of the message; while the binary attachment att can be a piece of code or a

serialized encoding of an agent object. Both of the fields str and att can be null values. The

message head mh can be a constant value of RMI, GOTO, REGISTER, LOCAL or METHOD. An

RMI message is a message between a local mobile agent and a remote FA, which should be

forwarded by a local FA; a GOTO message is a message sent by a local mobile agent to a local FA

for migration request; a REGISTER message is used when a local FA sends a serialized mobile

agent object to a remote FA for registration; a LOCAL message is a message sent by a local

mobile agent to a local FA for any purpose other than migration. Finally, a message with the

message head of METHOD represents a local method invocation on a local FA. Since all methods

defined in a local FA’s method utility section can only be invoked by the agent itself, a message

with a message head of METHOD is sent by the facilitator agent using an ISP mechanism

(representing a method call). Notice that all messages, except a message with a message head of

 19

METHOD, are transferred asynchronously; while transferring a message with a message head of

METHOD is a synchronous message passing.

4.4 The Planner Module of Facilitator Agents

From the above description, we can see that the agent world architecture is divided into two

layers, the facilitator agent (FA) layer and the mobile agent (MA) layer, where FAs serve as a

middleware for agent communication and agent migration. We now design the FA’s planner

template, shown in Figure 6.

Figure 6. A Planner module of agent-oriented G-net model for facilitator agent

In Figure 6, the Agent place (denoted as a rounded rectangle) represents a container for a set of

local mobile agents, including agents migrating from remote hosts. Each token in this place

outgoing messages

Agent

 [mh=GOTO]

Knowledge/Plan/Goal

invalid

[mh=RMI]

valid_
passport/visa

issue_visa

issue_
passport

sa_in [local]

[mh=REGISTER]

 da_is_self da_not_self [mh=RMI]

no_passport

utility methods

sa_not_in [remote]

check_ct

GSP(FA)

 valid
 [mh≠METHOD]

forward_message

reply

syn

 [mh=METHOD]

 <(sa, da, mh, mb), ct>

dispatch_
local_message

dispatch_
remote_message

 <(sa, da, RMI, goto_request), passport>

dispatch_
outgoing_message

deny_visa

register

to local mobile agent

dispatch_
method

 [mh=LOCAL]

message_to_MA

 20

identifies a unique mobile agent. The knowledge/Plan/Goal place represents a simplified

combination of places for the Knowledge, Plan and Goal modules as introduced in Section 3. In

particular, the Knowledge module contains the following three tables:

User table This table contains information about registered users that can create/register agents

on the local AVM. Each record contains the following data: user name, user privilege, and a

public key. User name refers to the creator of a local mobile agent on a local AVM. User

privilege is a privilege assigned to a user by a local administrator, and the public key is the user’s

public key issued by a local administrator. Remote FAs are also recorded in this table, and we

view remote FAs as remote users.

Agent table This table contains information about mobile agents residing on a local AVM. Each

record contains the following data: agent ID, name, owner and description. Agent ID is the object

identification of a mobile agent. Owner, for local mobile agents, is the user who creates that

mobile agent; while for those mobile agents that exist due to a migration from another AVM, the

owner field is the issuer of the passport, as we have discussed previously.

Policy table This table contains security policy information about the AVM. Each record

contains the following data: privilege and a method set. The privilege refers to the privilege level

of a local FA; while the method set is the set of methods that can be invoked under that privilege

level. When a mobile agent sends a method request to the local FA in a form of a LOCAL

method, the local FA decides if the agent has the privilege to request that method based on the

information from the user table and the policy table.

We now use a migration example to show how a FA’s planner module works. As shown in Figure

6, when an agent on a local AVM Θ BAB, say agent α, wants to move to a remote AVM Θ BBB, the agent

α first sends an RMI message move-request to the GSP of the local FA θBAB with mh=RMI, da=θBA B

and mb=“goto request”. The actual message received by the local FA θBA B is E-MSG = E(kBPUB-R B,

(E(kBPRIV-SB, move-request), CT)), where kBPUB-RB is the public key of the local FA θBA B and kBPRIV-SB is the

private key of agent α. Notice that to simply matters, we show the message as <(sa, da, mh, mb),

ct> in Figure 6. We also do not show the steps for how to decrypt the message E-MSG by the

local FA θBAB, which have been described in Section 4.3. The transition check_ct models the action

of checking the authentication information of a message sender by the FA. The security checking

is based on the message sender’s certificate extracted from the message and its issuer’s

 21

information from the FA’s user table. If the authentication is invalid, the transition invalid fires,

and a message of cert-invalid will be sent to the mobile agent α. Otherwise, the attribute sa from

the message move-request will be checked to see if the message sender is recorded in the agent

table, i.e., to check if the message is from a local AVM or a remote AVM. In our example, since

the RMI message is from the local mobile agent α, the transition sa_in fires. Now, if it is agent

α’s first time to communicate with its local FA θBAB, its certificate issued by its local user shall be

replaced with a passport. This process is done by firing the transitions no_passport and

issue_passport. After a passport is issued to the mobile agent α, the local message is dispatched

for further processing according to its message head mh. Since mh=RMI in this example, the

message is forwarded to the remote FA θBB Baccording to the attribute da. When combining the

encrypted message E(kBPRIV-S B, move-request) with agent α’s certificate, its original certificate is

replaced with its newly issued passport, where kBPRIV-SB is still the private key of mobile agent α.

Notice that the local FA θBAB does not modify the encrypted message MSG’ = E(kBPRIV-SB, move-

request); however, it combines the message MSG’ with agent α’s passport instead of its initial

certificate, and encrypts the whole message with the public key of the message receiver, i.e., the

remote FA θBBB.

When the remote FA θBB Breceives the forwarded message move-request, it first checks the

certificate (passport) of the message sender - agent α, as well as the certificate of its issuer, i.e.,

FA θBAB. If the security check fails, a move-refuse message (with da=α) will be generated by firing

the transition invalid, and the message will be sent to the mobile agent α via FA θBAB. Otherwise,

the attribute sa from the forwarded message move-request will be checked. In this example,

since agent α is not recorded in the agent table of FA θBBB, the transition sa_not_in fires. The

message is then dispatched according to its message head (mh=RMI), and its attribute da is

checked to see if the destination agent is the receiver agent itself. In this case, since da=θBBB, the

transition da_is_self fires, and a decision will be made either to deny a visa or to issue a visa to

the mobile agent α. If the visa is denied, a move-refuse message (with mh=RMI, da=α) will be

generated by firing the transition deny_visa, and will be sent to the mobile agent α via FA θBAB.

Otherwise, a visa will be issued by firing the transition issue_visa and a new message move-grant

(with mh=RMI, da=α) is generated. Agent α’s passport is updated by putting a visa stamp on

one of its visa pages, and the updated passport is then attached to the message move-grant in its

message body and sent back to agent α via FA θBAB. Notice that in Figure 6, there is a place called

syn, where a token containing agent α’s identity information will be deposited right after a visa is

 22

issued. This mechanism ensures that the actual migration cannot happen before a migration

request is granted.

Now that mobile agent α receives the move-grant message from FA θBB Bvia FA θBAB, it sends a

GOTO message to its local FA θBAB. Upon receiving the GOTO message from agent α, FA θBA B

dispatches it to the appropriate transition for processing according to its message head

(mh=GOTO), and generates a REIGISTER message to the remote FA θBBB. To generate the

REGISTER message, the mobile agent α is first removed from FA θBAB’s Agent place and then

serialized and embeded in the REIGISTER message’s message body as an attachment. When FA

θBBB receives the REIGISTER message from FA θBAB, it dispatches the remote message according to

its message head (mh=REGISTER), resumes agent α’s execution, and adds the mobile agent α

into its Agent place. This ends the agent migration process.

When a local mobile agent sends a message to its local FA for any purpose other than migration,

the message head of the message is set to LOCAL. In this case, when the local FA receives the

message, the message is dispatched according to its message head mh=LOCAL. By firing the

transition reply, a reply message is generated and sent back to the local mobile agent.

Similarly, when a FA receives a message with a message head of METHOD, the message

represents a synchronous method invocation from the FA itself. Under this circumstance, the

method is dispatched to an appropriate utility method defined in the utility method section of the

FA. After the method invocation, the result will be returned to the ISP place where the

synchronous message is generated.

5. Case Study: Agent Migration

One of the advantages of building formal models for mobile agent system is to help ensure a

correct design. A correct design should meet certain key requirements, such as liveness, deadlock

freeness and concurrency. Also certain properties, such as the mobility, need to be verified to

ensure correct functionality. Petri nets offer a promising, tool-supported technique for checking

the logical correctness of a design [27]. In this section, we consider an example of a simple

mobile agent system that consists of only two AVMs with a local FA and a remote FA. The

purpose for this case study is to demonstrate that agent communication protocols can be

 23

effectively traced in our net model, and more importantly, to verify that a mobile agent can

successfully migrate to the Agent place of the remote FA if the migration is granted.

5.1 A Simplified Net Model

The interaction of a local FA and a remote FA can be modeled as a Petri net as shown in Figure 7.

In this model, there is only one mobile agent (represented as a black token) in the Agent place of

the local FA. To derive this net model, we have simplified the net of the facilitator agent as

follows:

1. Since the transition to dispatch a message with a message head of METHOD is only used for

local resource access, it does not affect the agent communication and agent migration in the

mobile agent system. Thus, to obtain our simplified net model, we omit this transition.

2. Since all asynchronous messages will be dispatched to an MPU, and sent asynchronously to

the GSP place of another agent, we use net reduction to simplify the Petri net corresponding

to MPUs into a single place. This is shown as the places of q B1B and q B2B in Figure 7.

3. We use an ordinary token (black token) to represent a local mobile agent in the Agent place.

The presence of such a token represents that a mobile agent, either created locally or

migrating from other AVM, is under the control of its local FA.

4. All other tokens in the net model, including message tokens and tokens belonging to the place

syn, are simplified as ordinary tokens. Since we have only one mobile agent in our example,

such treatment would be sufficient for our purpose.

5. We add a new transition initiate_message to enable a mobile agent to send an asynchronous

message to its local FA (shown as the transitions t1 and t25 in Figure 7). We also add a new

transition return_message_to_MA to enable a local FA to send an asynchronous message

back to a mobile agent (shown as the transitions t23 and t47 in Figure 7).

The resulting Petri net illustrated in Figure 7 is an ordinary Petri net. The initial marking of this

Petri net is as follows (with the ordering of place nodes as a B1 B, bB1B, cB1 B, . . ., qB1B, a B2B, bB2 B, cB2B, . . .):

M B0B = [0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

 T

Notice that in the initial state of the Petri net, only transition t1 is enabled, which can fire to

initiate a conversation between a mobile agent and a local FA.

 24

Figure 7. A transformed model of a local facilitator agent and a remote facilitator

(Knowledge/Plan/Goal)

(outgoing message)

Agent Place

(issue_
passport)

GSP(Local-FA)

(valid)

(reply)

(syn)

(outgoing message)

Agent Place

(no_passport)

GSP(Remote-FA)

(reply)

(syn)

Local
Facilitator

Agent
(on local AVM)

Remote
Facilitator

Agent
(on remote AVM)

(Knowledge/Plan/Goal)

(initiate_message)

(initiate_message)

e B1B

[RMI] [REGISTER]

gB1B

i B1B j B1B

a B1B bB1B c B1B

t1

t2

(invalid)

dB1B

t3 t4

t5
(sa_in)

(sa_not_in)

f B1B

t6

(valid
passport/visa) (no_passport)

t7 t8
t9

t10

t14 t15 t16

kB1B l B1B mB1B

t17 (forward_message)

hB1B

t11 t12
t13 [RMI] [LOCAL]

nB1B oB1B

pB1B

[GOTO]

t20

t21

t24

t23 qB1B

t18 t19

t22

(register)

a B2B bB2B c B2B

t25

t26

(invalid)

dB2B

t27 t28

t29
(sa_in)

(sa_not_in)

f B2B

t30

t33 (valid
passport/visa) t31 t32 t34

[RMI] [REGISTER]

gB2B

i B2B j B2B

(forward_message)

hB2B

t35 t36
t37 [RMI] [LOCAL]

kB2B l B2B mB2B

t41
t38 t39 t40

nB2B oB2B

pB2B

[GOTO]

t44

t45

qB2B

t42 t43

t46

(register)

t48

t47

(issue_
passport)

e B2B

(issue_visa)
(deny_visa)

(da_not_self)
(da_is_self)

(issue_visa)
(deny_visa)

(da_not_self)
(da_is_self)

(return_message_to_MA)

(message_to_MA)

(return_message_to_MA)

(message_to_MA)

 25

5.2 Verifying Secure Agent Communication and Agent Migration

To verify the correctness of our agent models for secure agent communication and agent

migration, we utilize some key definitions and theorems as adapted from [27].

Definition 5.1 Incidence Matrix

For a Petri net N with n transitions and m places, the incidence matrix A = [aij] is an n x m matrix

of integers and its typical entry is given by

aij = aij+ - aij-

where aij+ = w(i,j) is the weight of the arc from transition i to output place j and aij- = w(j,i) is

the weight of the arc from input place j to transition i.

Definition 5.2 Firing Count Vector

For some sequence of transition firings in a Petri net N, a firing count vector x is defined as an n-

vector of nonnegative integers, where the ith entry of x denotes the number of times that

transition i must fire in that firing sequence.

Definition 5.3 T-invariant

For a Petri net N, an n-vector x of integers (x ≠ 0) is called a T-invariant if x is an integer solution

of homogeneous equation AP

T
Px = 0, where A is the incidence matrix of Petri net N.

Theorem 5.1 An n-vector x is a T-invariant of a Petri net N iff there exists a marking MB0 B and a

firing sequence σ that reproduces the marking MB0 B, and x defines the firing count vector for σ.

Definition 5.4 Valid Firing Sequence

Let σ = <i B1 B, iB2B, …, iBpB> be some sequence of transition firings in a Petri net N with initial marking

M B0B, where i Bk B, for k =1..p, is a transition of Petri net N. The firing sequence σ is valid if transition

i B1B is enabled initially and each transition i Bk Bis enabled after firing transition iBk-1B, where k=2..p.

Theorem 5.2 (Necessary Condition) For a Petri net N with initial marking MB0B, let MBd B = MB0 B + AP

T
Px,

where A is the incidence matrix of Petri net N and x is a firing count vector for firing sequence σ.

The firing sequence σ is valid only if MBdB is a nonnegative vector.

 26

The incidence matrix A of the Petri net in Figure 7 is listed in Table 1. Now we begin to analyze

and verify the following five cases for secure agent communication and agent migration, which

show the key behaviors and properties of our models. Although the approach using state equation

of Petri nets [27] is not new, we believe that it is useful here to demonstrate the correctness of our

security based agent models.

 aB1 B b B1B cB1 B d B1B eB1 B fB1 B g B1B h B1B i B1 B j B1 B k B1B l B1 B mB1 B n B1B o B1B p B1B q B1B aB2 B b B2B cB2 B d B2B eB2 B fB2 B g B2B h B2B i B2 B j B2 B k B2B l B2 B mB2 B n B2B o B2B p B2B q B2B

t1 1 0
t2 -1 0 0 1 0
t3 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t4 0 0 0 -1 1 0
t5 0 0 0 0 -1 1 0
t6 0 0 0 0 -1 0 1 0
t7 0 0 0 0 0 -1 0 1 0
t8 0 1 0 0 0 -1 0
t9 0 0 0 0 0 0 -1 0 1 0
t10 0 0 0 0 0 0 -1 0 0 1 0
t11 0 0 0 0 0 0 0 -1 0 0 1 0
t12 0 0 0 0 0 0 0 -1 0 0 0 1 0
t13 0 0 0 0 0 0 0 0 -1 1 0
t14 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t15 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0
t16 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t17 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t18 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t19 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t20 0 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
t27 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0
t28 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0
t29 0 -1 1 0 0 0 0 0 0 0 0 0 0 0
t30 -1 0 1 0 0 0 0 0 0 0 0 0 0
t31 0 -1 0 1 0 0 0 0 0 0 0 0 0
t32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
t33 0 -1 0 1 0 0 0 0 0 0 0 0
t34 0 -1 0 0 1 0 0 0 0 0 0 0
t35 0 -1 0 0 1 0 0 0 0 0 0
t36 0 -1 0 0 0 1 0 0 0 0 0
t37 0 -1 1 0 0 0 0 0 0 0
t38 0 -1 0 0 0 0 0 1 0
t39 0 -1 0 0 0 1 0 0 0
t40 -1 0 0 0 0 1 0 0
t41 0 -1 0 0 0 1 0
t42 0 -1 0 0 0 0 1 0
t43 0 -1 0 1 0 0 1 0
t44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 0
t45 0 -1 1 0
t46 0 -1 1
t47 0 -1
t48 1 0 -1

Table 1. Incidence Matrix A of the Petri Net in Figure 7

Case 1: A cert-invalid message is sent by the local FA

In this case, when the mobile agent sends a move-request message to its local FA, the

authentication is detected as invalid due to a fake certificate of the mobile agent or its issuer. The

transition t3 fires and a cert-invalid message is sent back to the mobile agent. The firing sequence

σB1 Bcorresponding to this case can be traced in Figure 7 as follows:

 27

σB1 B = <t1, t2, t3, t22, t23>

From Definition 5.2, the firing count vector xB1 B for the above firing sequence σB1 B can be calculated

as follows:

x B1B = [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0]P

T

Since we have A P

T
Px B1 B = 0, from Definition 5.3, xB1 Bis a T-invariant of the Petri net in Figure 7.

From Theorem 5.1, for any T-invariant x of a Petri net, there exists a marking M B0B and a firing

sequence σ, which reproduces the marking MB0B, and x defines the firing count vector for σ.

Obviously, the firing sequence σB1 B reproduce the initial marking M B0B. This is desirable because the

cert-invalid message ends the conversation (as shown in Figure 3), and the Petri net should return

to its initial state.

Case 2: A move-request message is forwarded to the remote FA by the local FA

If the mobile agent passes the authentication test, the move-request message shall be forwarded to

the remote FA by its local FA. In this case, the transition t17 fires, and the message token shall

finally reach the GSP place of the remote FA, i.e., place a B2 B. The firing sequence σB2 Bcorresponding

to this case can be traced in Figure 7 as follows:

σB2 B = <t1, t2, t4, t6, t9, t13, t14, t22, t24>

The firing count vector xB2B for the above firing sequence σB2 B can be calculated as follows:

x B2 B= [1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0]P

T

Based on the state equation for the Petri net in Figure 7, if we assume that the firing sequence σB2B

is valid, we can calculate the destination marking MB1B as follows:

M B1B = AP

T
Px B2 B + M B0 B = [0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

 T
PB

We find that the place marking MB1B(a B2B) = 1. This is desirable because it implies that the message

token can be successfully forwarded to the GSP place of the remote FA. Notice that Theorem 5. 2

 28

only states a necessary condition for the validity of a firing sequence, so we cannot use this

theorem to prove that σB2B is valid; however, the validity of σB2B can be verified by simulating the

firing sequence using an existing Petri net tool, e.g., INA (Integrated Net Analyzer) tool [36].

Case 3: A move-refuse message is forwarded to the mobile agent by the local FA

In this case, upon receiving a move-request message from a mobile agent, the transition t42 of the

remote FA fires and a move-refuse message is sent to the local FA for forwarding. The

corresponding firing sequence σB3 B and the firing count vector xB3 B for σB3 B are listed as follows:

σB3 B = σB2 B • <t26, t27, t46, t48, t2, t4, t5, t7, t12, t17, t22, t23>

x B3 B= [1 2 0 2 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 2 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1]P

T
P

Notice that σB3B is defined as the concatenation of sequence σB2 Band the sequence <t26, t27, t46, t48,

t2, t4, t5, t7, t12, t17, t22, t23>, where the operator “•” is the concatenation operator of two firing

sequences.

Similar to Case 1, we have A P

T
Px B3 B = 0. This implies that if σB3B is a valid firing sequence, it may

reproduce the initial marking MB0 B. Obviously, this is true in Figure 7, which is desirable because

when the move-refuse message is forwarded to the mobile agent, the conversation ends, and thus

the Petri net should return to its initial state.

Case 4: An attempt to migrate without a visa

In this case, a mobile agent attempts to migrate to a remote AVM without a visa issued by a

remote FA. The mobile agent sends a move message to its local FA, and the local FA removes the

mobile agent from its Agent place, serializes it and sends it with a register message to a remote

FA for registration. Upon receiving the register message from the local FA, the remote FA

resumes the execution of the serialized mobile agent and deposits the mobile agent into its Agent

place. In this case, the corresponding firing sequence σB4 B and the firing count vector xB4B for σB4 Bare

listed as follows:

σB4 B = <t1, t2, t4, t6, t10, t15, t20, t22, t24, t26, t28, t29, t32>

x B4B = [1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

T

 29

Similar to Case 2, if we assume the firing sequence σB4 B is valid, we can calculate the destination

marking MB2B as follows:

M B2B = AP

T
Px B4 B + M B0B = [0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

 T
P

We find that the place marking M B2B(mB1 B) = -1. From Theorem 5.2, we know that if M B2 B is not a

nonnegative integer vector, the firing sequence σB4B is not valid. This contradicts with our

assumption that the firing sequence σB4 B is valid. Therefore, the firing sequence σB4B is not valid. The

marking MB2B also shows that some transition in the firing sequence σB4 B cannot fire due to a lack of

token in place mB1 B. This is reasonable because the place mB1 B is a synchronization place used to

ensure that the actual migration cannot happen before a migration request is granted, i.e., a visa is

issued by a remote FA.

Case 5: An attempt to migrate after a visa is issued by the remote FA

In this case, the process involves two steps. In step 1, upon receiving the move-request message

from a mobile agent, the remote FA issues a visa, and sends a move-grant message with the visa

as an attachment to the mobile agent, which is forwarded by the local FA. The corresponding

firing sequence σB5 B is listed as follows:

σB5 B = σB2 B • <t26, t28, t29, t31, t35, t43, t46, t48, t2, t4, t5, t7, t12, t17, t22, t23>

Now, in step 2, when the mobile agent receives the issued visa, it sends a move message to its

local FA. The local FA then sends the serialized mobile agent in a register message to the remote

FA for registration. This step is exactly the same as the process in Case 4, so we have σB6 B = σB4 B.

The firing sequence σB7 Bfor the whole process (step1 and step 2) and its firing count vector xB7B can

be listed as follows:

σB7 B = σB5 B • σB6 B

x B7 B= [2 3 0 3 1 2 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 3 1 2 0 2 0 2 2 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1]P

T
P

It is expected that σB7 B is a valid firing sequence, and the token in place b B1 B (the Agent place of the

local FA) will be moved to place b B2 B(the Agent place of the remote FA) after the firings. We now

calculate the destination marking as follows:

 30

M B3B = AP

T
Px B7 B + M B0B = [0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0]P

 T

We find that the place marking MB3 B(mB1 B) = -1. From Theorem 5.2, we conclude that σB7 B is not a

valid firing sequence. This result indicates that there are some design errors in our agent model.

The place marking MB3B(mB1 B) = -1 shows that the synchronization token has not been successfully

deposited into place mB1 Bafter step 1. Looking into the destination marking MB3B again, we find that

M B3B(mB2 B) = 1. This is not desirable because in our example the remote FA does not need any

synchronization for agent migration. This shows that after step 1, the synchronization token has

been deposited into a wrong place, i.e., place mB2 B instead of place mB1 B. To correct this design error,

we need to revise the planner module of the facilitator agents in Figure 6 as follows: 1) modify

the label of transition forward_message from “forward_message” to “direct_forwarding”; 2)

delete the arc from the transition issue_visa to the place syn; 3) add a new transition new_visa to

check if a new visa issued by a remote FA has been attached in a forwarding message; 4) add a

new arc from the place message_to_MA to the transition new_visa; 5) add a new arc from the

transition new_visa to the place dispatching_outgoing_message; and 6) add a new arc from the

transition new_visa to the place syn. After the revision, when a local FA receives a message from

a remote FA, which is to be forwarded to a local mobile agent, the message is first checked to see

if a new visa issued by the remote FA is enclosed. If the new visa is enclosed, a synchronization

token is deposited into the syn place of the local FA before the message is forwarded to the

mobile agent; otherwise, the message is forwarded to the mobile agent directly.

Accordingly, we revise Figure 7 by deleting two arcs: t19 to mB1B, and t43 to mB2B; adding two new

transitions: t49 and t50; and adding six new arcs: l B1 B to t49, t49 to mB1 B, t49 to pB1B, l B2B to t50, t50 to mB2 B,

and t50 to p2. The incidence matrix A of the Petri net model (shown in Table 1) is revised into A’

by updating the rows for transitions t19 and t43, and adding two new rows for transitions t49 and

t50. The revisions to incidence matrix A are summarized in Table 2.

 aB1 B b B1B cB1 B d B1B eB1 B fB1 B g B1B h B1B i B1 B j B1 B k B1B l B1 B mB1 B n B1B o B1B p B1B q B1B aB2 B b B2B cB2 B d B2B eB2 B fB2 B g B2B h B2B i B2 B j B2 B k B2B l B2 B mB2 B n B2B o B2B p B2B q B2B

t19 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t43 0 -1 0 0 0 0 1 0
t49 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t50 -1 1 0 0 1 0

Table 2. Revisions to incidence matrix A for the revised Petri net model in Figure 7

 31

After the revisions, we may verify Cases 1-5 again. Cases 1-4 can be verified in the same way

and we get the same expected results. For Case 5, the firing sequence in step 1 is revised into σB5B’

as follows:

σB5 B’ = σB2 B • <t26, t28, t29, t31, t35, t43, t46, t48, t2, t4, t5, t7, t12, t49, t22, t23>

The firing sequence in step 2 remains the same, i.e., σB6B’ = σB6 B. Therefore, the firing sequence σB7 B’

for the whole process (step1 and step 2) and its firing count vector x B7B’ can be listed as follows:

σB7 B’ = σB5B’ B B • σB6B’

x B7B’ B B= [2 3 0 3 1 2 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 3 1 2 0 2 0 2 2 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0]P

T
P

Now, we calculate the destination marking for Case 5 again:

M B3B’ = A’ P

T
Px B7B’ + M B0B = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

 T

In this case, we find that both place markings MB3B’(mB1 B) and M B3B’(mB2 B) are equal to zero, and the

token in place b B1B (the Agent place of the local FA) is moved to place b B2 B(the Agent place of the

remote FA). By simulating the net with the firing sequence σB7 B’, we find that the firing sequence

σB7 B’ is valid. This shows that the mobile agent in the Agent place of the local FA can be

successfully moved to the Agent place of the remote FA.

6. Conclusion and Future Work

Agent-oriented software provides a new software engineering paradigm and the opportunities for

development of new domain-specific software models. With the continuing improvement of agent

technology, and the rapid growth of software system complexity, especially for Internet

applications, there is a pressing need for general models of mobile agent systems. Such models

can allow a structured approach for design of agent software systems and facilitate the application

of formal methods techniques for design analysis and implementation synthesis.

We presented the design models of intelligent mobile agents and intelligent facilitator agents in a

framework for agent-oriented software. Unlike previous work, which only models a particular

feature of mobile agents, our agent models can serve as a general security based agent model that

 32

has the capabilities of mobility, corporative behavior, and intelligence. Furthermore, our agent

models are based on the agent-oriented G-net formalism, which can be translated into a standard

form of Petri net (Predicate-Transition net, Pr/T net) [25]. Because the Petri net formalism is

theoretically mature and supported by robust tools, our approach supports formal analysis and

verification.

For future research work, we plan to implement a prototype following our formal design, by

which we can show our approach supports rapid development of mobile agent systems. Finally,

we need to explore various security issues in mobile agent design, and verify security mechanism

in our models.

Acknowledgments: This material is based upon work supported by the U.S. Army Research

Office under grant number DAAD19-01-1-0672, and the U.S. National Science Foundation under

grant number CCR-9988168. We thank all anonymous referees for the careful review of this

paper and the many suggestions for improvements they provided.

References

[1] K. Rothermel and M. Schwehm, “Mobile Agents,” In: A. Kent and J. G. Williams (Eds.):

Encyclopedia for Computer Science and Technology, Volume 40 - Supplement 25, New

York: M. Dekker Inc., 1999, pp. 155-176.

[2] D. Kinny, M. P. Georgeff, “Modeling and Design of Multi-Agent Systems,” Proceedings of

the 4th Int’l Workshop on Agent Theories, Architectures, and Language (ATAL-97), 1997,

pp. 1-20.

[3] N. R. Jennings, K. Sycara and M. Wooldridge, “A Roadmap of Agent Research and

Development,” International Journal of Autonomous Agents and Multi-Agent Systems, 1(1),

1998, pp. 7-38.

[4] G.-C. Roman, P. J. McCann, and J. Y. Plun, “Mobile UNITY: Reasoning and Specification

in Mobile Computing,” ACM Transactions on Software Engineering and Methodology, Vol.

6, No. 3, July 1997, pp. 250-282.

[5] C. Mascolo, “MobiS: A Specification Language for Mobile Systems,” In Third Int.

Conference on Coordination Models and Languages, Amsterdam, Netherlands, P.

 33

Ciancarini and A. Wolf (eds.). Lecture Notes in Computer Science, Springer-Verlag,

No.1594, April 1999, pp. 37-52.

[6] G. Cabri, L. Leonardi, F. Zambonelli , “Engineering Mobile Agent Applications via

Context-Dependent Coordination,” IEEE Transactions on Software Engineering, Vol. 28,

No. 11, November 2002, pp. 1040-1056.

[7] A. R. Silva, A. Romao, D. Deugo, and M. M. da Silva, “Towards a Reference Model for

Surveying Mobile Agent Systems,” Autonomous Agents and Multi-Agent Systems, Vol. 4,

No. 3, Sept. 2001, pp.187-231.

[8] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” In

Proceedings of the 21st International Conference on Distributed Computing Systems

(ICDCS-21), April 2001, Phoenix, Arizona, USA, pp.57-64.

[9] H. Xu and S. M. Shatz, “A Framework for Model-Based Design of Agent-Oriented

Software,” IEEE Transactions on Software Engineering (IEEE TSE), January 2003, Vol. 29,

No. 1, pp. 15-30.

[10] C. Argel Iglesias, M. Garrijo, José Centeno-González, “A Survey of Agent-Oriented

Methodologies,” In Proceedings of the Fifth International Workshop on Agent Theories,

Architectures, and Language (ATAL-98), 1998, pp. 317-330.

[11] F. Zambonelli, N. R. Jennings, and M. Wooldridge, “Developing Multiagent Systems: The

Gaia Methodology,” ACM Transactions on Software Engineering and Methodology, Vol.

12, No. 3, July 2003, pp. 317-370.

[12] D. Kinny, M. Georgeff, and A. Rao, “A Methodology and Modeling Technique for Systems

of BDI Agents,” In W. Van de Velde and J. W. Perram (eds.), Agents Breaking Away:

Proceedings of the Seventh European Workshop on Modeling Autonomous Agents in a

Multi-Agent World, LNAI 1038, Springer-Verlag, Germany, 1996, pp. 56-71.

[13] H. Xu and S. M. Shatz, “ADK: An Agent Development Kit Based on a Formal Model for

Multi-Agent Systems,” Journal of Automated Software Engineering (AUSE), October 2003,

Vol. 10, No. 4, pp. 337-365.

[14] C. Fournet, G. Gonthier, J. Lévy, L. Maranget, and D. Rémy, “A Calculus of Mobile

Agents,” In Proceedings of the 7th International Conference on Concurrency Theory

(CONCUR’96), Springer-Verlag, LNCS 1119, August 1996, pp. 406-421.

 34

[15] M. Wermelinger and J. L. Fiadeiro, “Connectors for Mobile Programs,” IEEE Transactions

on Software Engineering, Vol. 24, No. 5, May 1998, pp. 331-341.

[16] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel and M. Strasser, “Communication

Concepts for Mobile Agent Systems,” In Proceedings of the 1P

st
P International Workshop on

Mobile Agents (MA’97), Springer Verlag, 1997, pp.123-135.

[17] T. Finin, Y. Labrou, and Y. Peng, “Mobile Agents can Benefit from Standards Efforts in

Inter-agent Communication,” IEEE Communications Magazine, Vol. 36, No. 7, July 1998,

pp. 50-56.

[18] T. Sander and C. Tschudin, “Protecting Mobile Agents against Malicious Hosts,” In G.

Vigna, editor, Mobile Agent Security, Springer-Verlag, 1998, pp. 44-60.

[19] W. M. Farmer, J. D. Guttman, and V. Swarup, “Security for Mobile Agents: Authentication

and State Appraisal,” In: E. Bertino et al., eds., TComputer Security - ESORICS 96, LNCST

1146, 1996, pp.118-130.

[20] R. S. Gray, D. Kotz, G. Cybenko and D. Rus, “D’Agents: Security in a Multiple-Language,

Mobile-Agent System,” In G. Vigna, editor, Mobile Agent Security, Lecture Notes in

Computer Science, Springer-Verlag, 1998, pp.154-187.

[21] S. T. Vuong and P. Fu, “A Security Architecture and Design for Mobile Intelligent Agent

Systems,” ACM SIGAPP Applied Computing Review, Vol. 9, No. 3, 2001, pp. 21-30.

[22] H. Lee, J. Alves-Foss, and S. Harrison, “The Use of Encrypted Functions for Mobile Agent

Security,” In HTProceedings of the 37th Annual Hawaii International Conference on System

Sciences (HICSS’04)TH, Big Island, Hawaii, 2004.

[23] H. Ku, G. W. Luderer and B. Subbiah, “An Intelligent Mobile Agent Framework for

Distributed Network Management,” In Proceedings of the IEEE Global

Telecommunications Conference (GLOBECOM’97), Phoenix, USA, November 1997.

[24] D. Xu, J. Yin, Y. Deng, and J. Ding, “A Formal Architectural Model for Logical Agent

Mobility,” IEEE Transaction on Software Engineering, Vol. 29, No.1, January, 2003, pp.

31-45.

[25] Y. Deng, S. K. Chang, A. Perkusich, and J. de Figueredo, “Integrating Software

Engineering Methods and Petri Nets for the Specification and Analysis of Complex

Information Systems,” In Proceedings of The 14th Int’l Conf. on Application and Theory of

Petri Nets, Chicago, June 21-25, 1993, pp. 206-223.

 35

[26] A. Perkusich and J. de Figueiredo, “G-nets: A Petri Net Based Approach for Logical and

Timing Analysis of Complex Software Systems,” Journal of Systems and Software, 39(1):

39–59, 1997.

[27] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE,

77(4), April 1989, pp. 541-580.

[28] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an agent communication language,”

Software Agents, Jeff Bradshaw, ed., MIT Press, Cambridge, 1997.

[29] M. J. Huber, S. Kumar, P. R. Cohen, D. R. McGee, “A Formal Semantics for Proxy

Communicative Acts,” Proceedings of the TEighth International Workshop on Agent

Theories, Architectures, and Languages (ATAL-2001)T, Seattle, Washington, USA, August

1-3, 2001.

[30] FIPA, “The Foundation for Intelligent Physical Agents,” FIPA 2000 Specification, 2000,

HThttp://www.fipa.orgTH.

[31] A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A Middleware for Physical

and Logical Mobility,” In Proceedings of the 21st International Conference on

Distributed Computing Systems (ICDCS-21), April 2001, Phoenix, Arizona, USA,

pp. 524-533.

[32] J. Odell, H. Van Dyke Parunak, and B. Bauer, “Representing Agent Interaction Protocols in

UML,” Agent-Oriented Software Engineering, P. Ciancarini and M. Wooldridge (eds.),

Springer-Verlag, Berlin, 2001, pp. 121–140.

[33] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions on

Information Theory, IT-22, 1976, pp. 644-654.

[34] THTC. P. Pfleeger TTTH, HTS. L. Pfleeger TTTH, Security in Computing, T3rd edition, Prentice Hall PTR,

December 2, 2002.

[35] S. Guan, T. Wang and S. Ong, “HTMigration Control for Mobile Agents Based on Passport

and VisaTH,” Future Generation Computer Systems, Vol. 19, No. 2, 2003, pp. 173-186.

[36] S. Roch and P. H. Starke, INA:Integrated Net Analyzer, Version 2.2, Humboldt-Universität

zu Berlin, Institut für Informatik, April 1999.

	Figure 2. Agent world architecture and an example of agent m
	6. Conclusion and Future Work
	References

