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Abstract 

 

Security modeling for agents has been one of the most challenging issues in developing practical 

mobile agent software systems. In the past, researchers have developed mobile agent systems 

with emphasis either on protecting mobile agents from malicious hosts or protecting hosts from 

malicious agents. In this paper, we propose a security based mobile agent system architecture that 

provides a general solution to protecting both mobile agents and agent hosts in terms of agent 

communication and agent migration. We present a facilitator agent model that serves as a 

middleware for secure agent communication and agent migration. The facilitator agent model, as 

well as the mobile agent model, is based on agent-oriented G-nets - a high level Petri net 

formalism. To illustrate our formal modeling technique for mobile agent systems, we provide an 

example of agent migration to show how a design error can be detected. 

 

Key words: Agent security, mobile agent, facilitator agent, CPV approach, Petri nets, agent-

oriented G-nets 

 

1. Introduction 
 

Software agents can be classified in terms of a space defined by the three dimensions of 

intelligence, agency and mobility [1]. The first dimension, intelligence, is rooted in artificial 

intelligence research dating to the 1950s, where intelligent agents can be classified according to 

their capabilities to express preferences, beliefs and emotions, as well as their ability to fulfill a 

task by reasoning, planning and learning techniques. The second dimension, agency, represents 

the degree of an agent’s autonomy and authority, which is measured by the nature of its 

interaction with the environment. The third dimension, mobility, emerged in the 1990s, is 
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motivated by the rise and rapid growth of a networked computing environment, especially the 

Internet, and the need for techniques to locally exploit distributed resources. Within this 

dimension of software agent research, the goal is remote action and mobility of data and 

computation.  

 

Current research on agent-based systems generally does not exploit all the capabilities classified 

by these three dimensions. For example, multi-agent systems (MAS) based on distributed 

artificial intelligence try to execute a given task using a large number of possibly distributed but 

static agents that collaborate and cooperate in an intelligent manner [2][3]. On the other hand, 

research on mobile agents usually emphasizes agent mobility and agent coordination, and mobile 

agents are typically assumed to only have very limited or even no intelligence [4][5][6]. The 

development schema in the later case is sometimes called a weak agent approach, which contrasts 

with the strong agent approach that involves artificial intelligence techniques [7].  

 

In this paper, we consider an architecture that is based on two basic components: mobile agents 

and facilitator agents. We define both by introducing mobility into our previously presented 

framework for agent-oriented software. This framework has been designed to model intelligent 

software agents for multi-agent systems, and it supports design reuse by providing an inheritance 

mechanism [8]. The resulting mobile agent models explicitly support asynchronous message 

passing. A key property of our approach is that fundamental agent models are based on the agent-

oriented G-net formalism, a formalism derived from an object-based Petri net model. This paves 

the way for formal analysis, as seen in earlier work [9]. In the work presented here, we focus on 

explicit consideration for some security issues encountered in mobile agent systems. 

 

The rest of this paper is organized as follows. In Section 2, we describe related work and 

highlight the relationships to our research. In Section 3, we summarize the agent-oriented G-net 

model, which was first proposed in [8]. In Section 4, we propose the architecture for a mobile 

agent system, and describe how to design the principle agent system components: the mobile 

agents and the facilitator agents. We incorporate a CPV (Certificate, Passport, and Visa) approach 

for secure agent communication and agent migration. In Section 5, we provide an example of 

agent migration and shows how a design error is detected using formal analysis. Finally, in 

Section 6, we summarize our contributions and discuss the future work. 
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2. Related Work 
 

Previous work on multi-agent systems has fostered the concept of agent-oriented software 

[10][11][8], where agents are viewed as intelligent software that has the properties of autonomy, 

reactivity, pro-activeness and sociability. Corresponding agent-oriented design methodologies are 

also proposed to provide guidelines for agent specification and design. Examples of such work 

are the AAII methodologies [12] and the Gaia methodologies [11], which are extensions of 

object-oriented methodologies. In our own previous work [9][13], an inheritance mechanism, in 

terms of agent functionalities, is introduced into the development of agent-oriented software. 

 

For mobile agents, the concern is with software agents that can migrate over computer networks. 

The concept of location has been one of the key features to characterize mobility in most 

theoretical models of mobile agents, such as the distributed join-calculus [14], which is an 

extension of the π-calculus that introduces the explicit notions of named localities and 

distribution failure. Additional typical formalisms for agent mobility modeling are summarized as 

follows. Mobile UNITY [4] provides a programming notation that captures the notion of mobility 

and transient interactions among mobile nodes. Inspired by Mobile UNITY, the concept of 

connectors [15] is explicitly identified to describe different kinds of transient interactions, and 

facilitate the separation of coordination from computation in mobile computing. The connectors 

are written in COMMUNITY, a UNITY-like program design language whose semantics is given 

in a categorical framework. MobiS [5], as an extended version of PoliS, is a specification 

language based on multiple tuple spaces. It can be used to specify agent coordination and 

architectures containing mobile components.  

 

Although the above results formally model mobile agents in terms of their mobility, they are not 

built upon a framework that explicitly supports the intelligence feature of agents. Furthermore, 

they are weak in agent communication modeling. Typically, such models are reactive rather than 

pro-active. In other words, these models may simply act in response to their environment, but 

they are not able to exhibit goal-directed behaviors. Additional efforts, such as the MARS 

(Mobile Agent Reactive Spaces) project [6], attempt to introduce context-dependent coordination 

into agent models; however, without explicitly suggesting the communication mechanism among 

mobile agents. There are also some research efforts concerned with mobile agent communication 

mechanisms; however, they are not formally defined [16][17]. 
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Another drawback of the above formal modeling approaches is that they restrict their scope of 

applicability due to a lack of security measures. There is some previous work on solving security 

problems in mobile agent systems. Such problems include how to protect mobile agents from 

malicious hosts and how to protect hosts from malicious agents, as presented by Sander and 

Tschudin [18]. The security threats that an agent platform faces from a malicious agent have been 

discussed in a number of papers [19][20][21].  Farmer and his colleagues proposed a system 

architecture to model the trust relations between the principals of mobile agents systems. A 

unique aspect of the architecture is a state appraisal mechanism that protects hosts from attacks 

via state modification [19].  Gray and his colleagues addressed how to protect an individual 

machine and how to protect a group of machines in the context of D’Agents, a mobile agent 

system whose agents can be written in TCL, Java and Scheme [20].  Vuong and Fu proposed a 

security based architecture and implemented a security system based on a novel mobile intelligent 

system, called Actigen [21]. They first proposed a passport-visa approach to simulate the 

activities of traveling abroad in the real life. On the other hand, a malicious host might steal 

private information from a mobile agent, or modify the agent to compute the wrong result or to 

misbehave when it jumps to another site. Sander and Tschudin addressed this problem by 

identifying a special class of functions – polynomials and rational functions – together with 

encryption schemes that lead to a non-trivial example of cryptographically hiding a function such 

that it must be executed with an interactive protocol [18]. Based on Sander and Tschudin’s work, 

Lee and his colleagues proposed an extension of mobile cryptography that provides a practical 

idea for implementing mobile cryptography [22].   

 

From the above review, we can see that current work on mobile agents mostly emphasizes some 

particular features of the mobile agents, e.g., agent mobility or agent security. With the 

continuing improvement of agent technology, and the rapid growth of software system 

complexity, especially for Internet applications, there is a pressing need for a more general model 

of mobile agents, in which agents are not only mobile, cooperative and intelligent, but also 

supports secure agent communication and agent migration. There is some previous work that 

discusses intelligent mobile agents [23]; however, it does not consider a formal framework for 

intelligent mobile agent design. One notable effort that emphasizes a formal framework for 

mobile agents is the work of Xu, et al [24]. While this work considers the cooperation between 

mobile agents for the purposes of migration, it did not explicitly address security issues. We seek 

to incorporate the security issues into our modeling framework and address the following types of 

properties: When a remote host refuses a migration request from a remote mobile agent, the 
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mobile agent should not be allowed to migrate. Our proposed security based model for mobile 

agent systems not only addresses the problem of protecting the host from malicious agents, but 

also protecting the agent from malicious hosts. A mobile agent’s migration request is granted 

only if it passes the security checking by a remote facilitator agent; meanwhile, a mobile agent 

only migrates to a trusted host with a certified facilitator agent. 

 

3. A Base Framework for Agent-Oriented Software 
 

One of the most important software engineering principles is that a system should be composed 

of a set of independent modules, where each module hides the internal details of its processing 

activities and modules communicate through well-defined interfaces. The G-net model provides 

strong support for this principle [25][26]. G-nets, first proposed by Deng and his colleagues [25], 

are an object-based extension of Petri nets [27]. Petri nets are a graphically defined model for 

concurrent systems, having the advantage of being visually appealing, while also being 

theoretically mature and supported by robust tools. Details about G-net models can be found in 

references [25][26]. 

 

Although the G-net model works well in object-based design, it is not sufficient in agent-based 

design for the following reasons. First, agents that form a multi-agent system may be developed 

independently by different vendors, and those agents may be widely distributed across large-scale 

networks such as the Internet. To make it possible for those agents to communicate with each 

other, it is desirable for them to have a common communication language and to follow common 

protocols. However, the G-net model does not directly support protocol-based language 

communication between agents. Second, the underlying agent communication model is usually 

asynchronous, and an agent may decide whether to perform actions requested by some other 

agents. The G-net model does not directly support asynchronous message passing and decision-

making; it only supports synchronous method invocations in the form of ISP (Instantiated Switch 

Place) mechanisms [25]. Third, agents are usually designed to determine their behavior based on 

individual goals, their knowledge and the environment. They may autonomously and 

spontaneously initiate internal or external behavior at any time. The G-net model can only 

directly support a predefined flow of control. 
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To support agent-oriented design, we need to extend a G-net to support modeling an agent class TP

1
PT. 

This extension is made in three steps. First, we introduce five special modules to a G-net to make 

an agent autonomous and internally motivated. As shown in Figure 1, the five special modules 

are the Goal module, the Plan module, the Knowledge module, the Environment module and the 

Planner module. The Goal, Plan and Knowledge modules are based on the BDI agent model 

proposed by Kinny and his colleagues [12]. The Goal module consists of a goal set that specifies 

the goal domain and goal state. The Plan module consists of a set of plans that are associated with 

a goal or a subgoal. Each goal or subgoal may associate with more than one plan, and the most 

suitable one will be selected to achieve that goal or subgoal. A Knowledge module describes the 

information about the agent’s internal state, its environment, and interaction protocols. The 

Environment module is an abstract model of the environment, i.e., the model of the outside world 

of an agent. The Planner module represents the heart of an agent that may decide to ignore an 

incoming message, to start a new conversation, or to continue with the current conversation. In 

the Planner module, committed plans are achieved, and the Goal, Plan and Knowledge modules 

of an agent are updated after the execution of each communicative act that defines the type and 

content of a message [28][29], or if the environment changes. Second, different from the semantic 

of a G-net as an object or a module, we view the extended G-net, we call it an agent-oriented G-

net, as a class model, i.e., the abstract of a set of similar agents. Third, we define the instantiation 

of the agent-oriented G-net as follows: when an agent-oriented G-net A is instantiated, we 

generate an agent identifier A.Aid for the resulting agent object AO; meanwhile, the state of AO, 

i.e., any state variables defined in A, is initialized.  

 

The internal structure (IS) of an agent-oriented G-net consists of three sections: incoming 

message, outgoing message and utility method. The incoming/outgoing message section defines a 

set of message processing units (MPU), which correspond to a subset of communicative acts. 

Each MPU, labeled as action_i in Figure 1 is used to process incoming/outgoing messages and 

execute any necessary actions before or after the message processing. The utility method section 

defines a set of methods that can only be called by the agent itself. 

                                                 
TP

1
PT We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class 

an agent or an agent object. 
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Figure 1. A generic agent-oriented G-net model (adapted from [9]) 

 

Although both objects (passive objects) and agents use message-passing to communicate, 

message-passing for objects is a unique form of method invocation, while agents distinguish 

different types of messages and model these messages frequently as speech-acts and use complex 

protocols to negotiate [11]. In particular, these messages must satisfy the format of the 

standardized communicative (speech) acts, e.g., the format of communicative acts that defined in 

the FIPA agent communication language [30], or KQML [28]. Note that in Figure 1 each named 

MPU action_i refers to a communicative act, thus our agent-oriented model supports an agent 

communication interface. In addition, agents analyze these messages and can decide whether to 

execute the requested action. As we stated before, agent communications are typically based on 

asynchronous message passing. Since asynchronous message passing is more fundamental than 

synchronous message passing, it is useful for us to introduce a new mechanism, called message-

passing switch place (MSP), to directly support asynchronous message passing. When a token 

reaches an MSP (represented as an ellipsis in Figure 1), the token is removed and deposited into 

the GSP of the called agent. But, unlike with the G-net ISP mechanism, which invokes a method 

defined in the utility method section, and returns the result synchronously, the calling agent does 

not wait for the token to return before it can continue to execute its next step. Since methods 

defined in the utility method section can only be called by the agent itself, agent communications 

must take place asynchronously through the MSP mechanisms. 
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A generic template of the Planner module is shown in [9]. The function of the Planner module is 

to receive messages from the GSP place, make decisions and dispatch those messages to different 

MPUs according to the information contained in the Goal, Plan, Knowledge and Environment 

modules. In Section 4, we present and discuss a revised version of this component, which does 

not use inheritance but does provide support for secure mobility. 

 

4.   A Mobile Agent System Design 
 

Today’s users demand ubiquitous network access independent of their physical location. This 

style of computation, often referred to as mobile computing, is enabled by rapid advances in 

wireless communication technology [31]. The networking scenarios enabled by mobile 

computing range roughly between two extremes. At one end, the availability of a fixed network is 

assumed, and its facilities are exploited by the mobile infrastructure. We call this form of 

mobility logical mobility. At the other end, the fixed network is absent and all network facilities 

(e.g., routing) must be implemented by relying only on the available mobile hosts, namely ad hoc 

networks. This form of mobility is called physical mobility. Mobile agent technology is a new 

networking technology that deals with both forms of mobility. It offers a new computing 

paradigm in which a program, in the form of an intelligent software agent, can suspend its 

execution on a host computer, transfer itself to another agent-enabled host on the network, and 

resume execution on the new host. Here, as we will see in the next section, we define a host as 

either a stationary host or a mobile host that is situated in an ad hoc network.  

 

4.1   Mobile Agent System Architecture 

 

We propose an agent world (AW) architecture that provides the platform for execution and 

migration of mobile agents. A few key definitions for this architecture are now given as follows. 

 

Definition 4.1 Stationary Agent (SA) and Mobile Agent (MA) 

An agent A is a 3-tuple (HOMEIP, CURIP, AO), where HOMEIP is the IP address of the host, on 

which agent A is created; CURIP is the current IP address of the host supporting agent A; and AO 

is the agent object, with the general structure described in Section 3. If at all time, CURIP = 

HOMEIP, we refer to agent A as a stationary agent (SA); otherwise, we refer to agent A as a 

mobile agent (MA). 
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Definition 4.2 Agent Virtual Machine (AVM) 

An agent virtual machine (AVM) Θ is a 4-tuple (IFA, SMA, HOSTIP, ID), where IFA is a 

stationary intelligent facilitator agent on Θ, which is responsible for recording information and 

providing services for mobile agents running on Θ; SMA is a set of mobile agents running on Θ; 

HOSTIP is the current IP address of the host that is supporting Θ; and ID is Θ’s unique identifier. 

 

Definition 4.3 Stationary Host (SH) and Mobile Host (MH) 

A host Π is a 4-tuple (SAVM, ACOM, HOMEIP, CURIP), where SAVM is a set of agent virtual 

machines (AVM); ACOM is the communication protocol among AVMs in SAVM, and examples 

of such protocols are IPC and TCP/IP; HOMEIP is the original IP address of the host; and CURIP 

is the current IP address of the host. If at all time, CURIP = HOMEIP, we call the host Π a 

stationary host (SH); otherwise, we call it a mobile host (MH). 

 

Definition 4.4 Agent World (AW) 

An agent world (AW) is a 3-tuple (WKFA, SHOST, HCOM), where WKFA is a well-known 

stationary facilitator agent, which is responsible for recording the most recent addresses of all 

hosts in the agent world. WKFA is also responsible for recording the public keys of all facilitator 

agents and for issuing certificates to the facilitator agents in the agent world (we will introduce 

the concepts of public key cryptograph and certificate in Section 4.3). SHOST is a set of hosts in 

the agent world that can provide the services of an agent virtual machine and HCOM is the 

communication protocol among hosts in SHOST; an example of such protocols is TCP/IP. 

 

Figure 2 shows a generic mobile agent system, and an example of agent migration. In the figure, 

Host-A and Host-B are two machines connected by a network. To make mobile agent platform 

independent of machine hardware, a mobile agent runs on an agent virtual machine (AVM), 

which provides a protected agent execution environment on a host. Each host may have a number 

of AVMs; however, to simplify matters, we only illustrate one AVM on each host in Figure 2. 

Each AVM is responsible for hosting and executing any agents created on that AVM or that 

arrive over the network, and for providing APIs for agent programmers.  We will discuss the 

sequence of steps for agent migration (illustrated by the directed arcs in Figure 2) shortly. 
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Figure 2. Agent world architecture and an example of agent migration 

 

Since in this paper we view mobile agents and facilitator agents as intelligent software agents, for 

the rest of our discussion a mobile agent or a facilitator agent always refers to an intelligent 

mobile agent (IMA) or an intelligent facilitator agent (IFA), respectively. In Figure 2, when a 

mobile agent α on AVM Θ BAB wants to migrate to another AVM Θ BBB, it needs to contact the remote 

facilitator agent θBBB first, which resides on AVM Θ BBB (step 1). In fact, the mobile agent α needs to 

know the address of the remote facilitator agent θBBB before the communication can begin. This 

could be done by querying the needed information from its local facilitator agent θBAB, which 

resides on AVM Θ BAB. If the local facilitator agent θBAB knows the address of the remote facilitator 

agent θBBB, it will provide such information to the mobile agent α; otherwise, it will contact with 

the well-known facilitator agent WKFA (we do not show it in Figure 2) for this information and 

forward the results to the mobile agent α thereafter. For simplicity, this procedure is omitted in 

Figure 2. Based on security and resource criteria, the remote facilitator agent θBBB decides if the 

migration request is granted. If the migration request is granted (step 2), the mobile agent α 

notifies its local facilitator agent θBAB about its departure (step 3), and finally α moves to the remote 

AVM Θ BBB (step 4).  

 

(4)

(1)

(2)

(3) 

Host-A 

computer network 

AVM: ΘBAB AVM: ΘBBB 

Host-B

(1) move-request (2) grant (3) notify (4) move 

… 

FA: θBAB MA: β MA: α FA: θBBB MA: α MA: γ 
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The situation above is an example of logical mobility. For physical mobility, a host may, at some 

time, change its IP address or lose its IP address temporarily (detached from the network). In this 

case, the well-known facilitator agent WKFA is critical for recording this information. To 

successfully send a message to an agent, whose hosting AVM has changed its HOSTIP address, 

the knowledge of the sender agent’s local facilitator agent needs to be consistent with the latest 

network information. Further discussion about this issue is beyond the scope of this paper, which 

concentrates on logical mobility. 

 

4.2 Security Considerations and Design of IMA and IFA 

 

The scenario introduced in Section 4.1 seems practical for agent communication and agent 

migration; however, if we allow a mobile agent to communicate directly with a remote facilitator 

agent or with other mobile agents, mobile agents would then be responsible for checking 

authentications of all other mobile agents and all facilitator agents in the agent world. Meanwhile, 

a facilitator agent would be responsible for checking authentications of any other facilitator 

agents and all mobile agents in the agent world. So, this approach would require agents to record 

all other agents’ authentication information. This not only results in information redundancy, but 

also makes agent communication inefficient and unreliable. In order to reduce the information 

recorded by every agent, we consider each facilitator agent (FA) as a type of middleware for 

agent communication and agent migration, and a mobile agent (MA) on an AVM can only 

communicate directly with its local FA. When a mobile agent wants to communicate with a 

remote FA, it first sends a message to its local FA, and the local FA forwards the message to the 

remote FA. Similarly, when the remote FA replies to the mobile agent, the message is also 

forwarded by the local FA. In addition, any communications between two mobile agents (local or 

remote) also take place through local or remote FAs. Finally, when a mobile agent’s migration 

request is granted by a remote FA, the mobile agent is serialized by its local FA and sent to the 

remote FA, which is responsible for resuming the execution of the mobile agent. Under the above 

scenarios, the authentications are limited to be used between local mobile agents and local 

facilitator agents, as well as between local facilitator agents and remote facilitator agents. In other 

words, all communications between mobile agents (local or remote), and all communications 

between a local mobile agent and a remote facilitator agent, must bridge through local FAs. Thus, 

a mobile agent is only responsible for checking authentication of its local FA; while a FA is only 

responsible for checking the authentications of its local mobile agents and any other remote FAs 

in the agent world. 
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Based on the above approach, the agent interaction protocol between mobile agents and 

local/remote agents can be described as in Figure 3. 

 

               
 

Figure 3. Interaction protocol between a mobile agent (MA) and facilitator agents (FA) 

 

As shown in Figure 3, when a mobile agent α wants to migrate from its local AVM Θ BAB to a 

remote AVM Θ BBB, it first sends a move-request message to its local FA. The local FA checks 

the mobile agent’s certificate as well as the certificate of its issuer to see if it is valid. If the 

certificate is not valid, then the local FA denies the request by sending a cert-invalid 

message back to the mobile agent. Notice that in Figure 3 the end of protocol operation “•”, put 

in front of the message name cert-invalid, marks that this message ends the conversation. 

If the certificate is valid, the move-request message will be forwarded to the remote FA on 

Θ BBB. The remote FA checks both the local FA and the mobile agent’s certificates. If there is 

anything suspicious, the move-request is denied, and a move-refuse message will be 

forwarded to the mobile agent via the local FA. Otherwise, the move-request is granted. In 

the same way, a move-grant message will be forwarded to the mobile agent via the local FA. 

Upon receiving the move-grant message, the mobile agent sends a move message to its local 

FA to confirm the desire to migrate. The local FA then serializes the mobile agent and sends it to 

the remote FA for registration. 
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Figure 4. Agent-oriented G-net model of mobile agent 
 

 

               
       

Figure 5. Agent-oriented G-net model of facilitator agent 

 

We view each message in the interaction protocol as a communicative act with a format defined 

in some agent language-notation such as FIPA, or KQML [30][28][32]. Based on the 
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communicative acts, we design the agent-oriented G-net model of mobile agents and facilitator 

agents as in Figure 4 and Figure 5, respectively.  Notice that we define three MPUs in the 

incoming message section of the agent-oriented G-net model of mobile agents, which 

corresponds to the three communicative acts (cert-invalid, move-grant, and move-

refuse) in the interaction protocol. Similarly, we define two MPUs that correspond to the 

communicative acts of move-request and move in the interaction protocol. Details on how to 

design agent-oriented G-net models based on interaction protocols are provided in previous work 

[9]. The planner module of the mobile agent may reuse the general planner module as we defined 

previously [9], which support inheritance. The agent model for facilitator agents can be designed 

in a similar way. However, the general planner module is not sufficient for facilitator agents to 

support agent communication and agent migration, especially when security issues are taken into 

consideration. Therefore, we need to redesign the planner module for facilitator agents. Notice 

that the environment module in Figure 5 becomes a module called Agent place (denoted as a 

rounded rectangle). The Agent place is an agent container for local mobile agents including 

agents that migrate from a remote AVM. With this facility, local mobile agents are under the 

control of a local facilitator agent. When a migration is granted, the mobile agent can be 

serialized and sent out to the Agent place of a remote facilitator agent when a migration request is 

granted. Also notice that, since there is only one facilitator agent defined on each agent virtual 

machine, the inheritance feature is not significant for modeling facilitator agents. 

 

Unlike Figure 4, Figure 5 shows no incoming message section in the internal structure of the 

facilitator agent model. This is to simplify our facilitator agent model. As we will see in Section 

4.4, all incoming messages to a facilitator agent are directly processed by the planner module of 

the FA. 

 

Before we define the planner module for facilitator agents, we first introduce the cryptographic 

mechanism for secure agent communication, which is a key mechanism in designing the planner 

module of the facilitator agent model.  

 

4.3 The CPV Approach 

 

Public key cryptograph is one of the most widely used encryption mechanisms, which involves a 

pair of keys - a public key and a private key [33]. The public key of the message receiver is used 

to encrypt a message, and the encrypted message can only be decrypted by the receiver using its 
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private key. Although a message can be safely sent to a receiver using the receiver’s public key, 

the receiver cannot guarantee if the message is actually sent by the claimed sender. To 

authenticate the message sender, the message must be digitally signed. The basic idea of digital 

signature is to use the sender’s private key to encrypt a message [34]. If the receiver can recover 

the message using the sender’s public key, then the receiver can be certain that the message is 

actually sent by the claimed sender because only the message sender can encrypt the message 

with its private key. Now, one more question arises: how can a message receiver know that the 

public key actually belongs to the claimed sender? This can be verified by using a certificate, 

which is a signed document that consists of the sender’s public key and its identity. The 

certificate is signed by a certificate authority (CA), which is a third party, other than the message 

sender/receiver, that certifies the accuracy of the binding of a public key and an identity [34]. 

 

For our security modeling, we incorporate a CPV (Certificate, Password and Visa) approach, 

which is based on the passport-visa mechanism first proposed by Vuong and Fu [21]. The basic 

idea of the passport-visa mechanism is to simulate the activities of traveling abroad in real life 

[21][35]. In this paper, we define a passport as a certificate with additional visa pages, similar to 

an actual passport that contains visa pages with possible visa stamps. Each visa stamp on a visa 

page is also defined as a certificate, which is issued by a foreign facilitator agent. Our proposed 

method initially provides every mobile agent a certificate that is issued and signed by its 

owner/user, who creates the mobile agent. As a mobile agent requests to move from one AVM to 

another, the agent’s certificate is replaced by a more specialized certificate - a passport, which is 

signed and issued by a local FA. When the migration request is approved by a remote FA, a visa 

stamp is put on one of the visa pages in the mobile agent’s passport.  

 

To ensure that a facilitator agent is a trusted agency, it must also have a certificate, which is 

signed by a certificate authority (CA). In our agent world architecture, the CA is the well-known 

facilitator agent, denoted as WKFA, that has a globally recognized public key. When a new AVM 

with a facilitator agent (FA) wants to enter the agent world, the FA will send its public key, its 

identity, valid time and other information to the WKFA. The WKFA will record the new FA’s 

information, and assign a privilege to the new FA. This privilege will be used in the passport/visa 

issuing procedure. On the other hand, local users/owners of the AVM will assign certificates to 

local mobile agents that are created on the local AVM. Because a local user does not have a 

public key recorded by any remote FA, the certificates issued by local users cannot be checked by 

a remote FA while communicating with a remote FA. Therefore, whenever a mobile agent has an 
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intention to migrate by sending a move-request message to its local FA, the mobile agent’s 

original certificate must be replaced with a passport that is issued by its local FA. The structures 

of the Certificate, Passport and VisaPage are defined as follows: 

 
Struct Certificate { 

 int serial_number;  // the serial number of the certificate  

      String issuer_name;  // the issuer’s name 

 String name;  // the name of holder 

 Privilege privilege; // the privilege assigned by the issuer 

 String public key; // the public key of the holder 

 Time valid_time;    // the valid time for the certificate 

 Signature signature; // the encrypted value of the above items  

      // encoded by the issuer’s private key 

} 

 

Struct Passport { 

 Certificate passport; // issued by a local facilitator agent 

 Certificate CTofIssuer; // issued by WKHOST 

 VisaPage visaPages; // defined as a linked list 

} 

 

Struct VisaPage { 

 Certificate visaStamp; // issued by a remote facilitator agent 

 Certificate CTofIssuer; // issued by WKHOST 

 VisaPage nextVisaPage; // reference to the next visa page 

} 

 

For security considerations, any transferred message MSG is first encrypted by the sender’s 

private key into MSG’ = E(kBPRIV-SB, MSG), where kBPRIV-S Bis the private key of the sender. This 

encoded message is then combined with the sender’s certificate (denoted as CT) as MSG’’ = 

(E(kBPRIV-SB, MSG), CT). Finally, the combination of the encoded message and the certificate is 

further encrypted using the receiver’s public key into E-MSG = E(kBPUB-RB, (E(kBPRIV-SB, MSG), CT)), 

where kBPUB-RB is the public key of the receiver. Upon receiving the encrypted message E-MSG, the 

receiver first uses its private key kBPRIV-RB to decode the message into MSG’’ = D(kBPRIV-RB, B BE-MSG). It 

then reads the certificate CT of the sender from MSG’’, and verifies its validity by checking the 

signature signed by the issuer. If the CT passes the security checking, the receiver then uses the 
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public key of the message sender kBPUB-SB read from the CT to decrypt the message MSG’ (extracted 

from MSG’’) into MSG = D(kBPUB-SB, MSG’), which becomes the original message MSG. The 

structure of each message MSG is defined as follows: 

 
Struct Message { 

 AgentID sa;   // source agent identification 

 AgentID da;  // destination agent identification 

 Head mh;  // message head 

 MessageBody mb; // message body 

} 

 

enum Head {RMI, GOTO, REGISTER, LOCAL, METHOD}; 

 

Struct MessageBody {     

 String str;  // string message 

 File att;   // binary attachment 

}  

 

The message format consists of four fields: sa, da, mh and mb. The fields sa and da are agent 

identifications, representing the source agent and the destination agent, respectively; mh is a 

message head, representing the message type; and mb is the message body, which contains a 

string str and a binary attachment att. The string str in a message body describes text 

information of the message; while the binary attachment att can be a piece of code or a 

serialized encoding of an agent object. Both of the fields str and att can be null values. The 

message head mh can be a constant value of RMI, GOTO, REGISTER, LOCAL or METHOD. An 

RMI message is a message between a local mobile agent and a remote FA, which should be 

forwarded by a local FA; a GOTO message is a message sent by a local mobile agent to a local FA 

for migration request; a REGISTER message is used when a local FA sends a serialized mobile 

agent object to a remote FA for registration; a LOCAL message is a message sent by a local 

mobile agent to a local FA for any purpose other than migration. Finally, a message with the 

message head of METHOD represents a local method invocation on a local FA. Since all methods 

defined in a local FA’s method utility section can only be invoked by the agent itself, a message 

with a message head of METHOD is sent by the facilitator agent using an ISP mechanism 

(representing a method call). Notice that all messages, except a message with a message head of 
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METHOD, are transferred asynchronously; while transferring a message with a message head of 

METHOD is a synchronous message passing. 

 

4.4    The Planner Module of Facilitator Agents 

 

From the above description, we can see that the agent world architecture is divided into two 

layers, the facilitator agent (FA) layer and the mobile agent (MA) layer, where FAs serve as a 

middleware for agent communication and agent migration. We now design the FA’s planner 

template, shown in Figure 6. 

 

 
Figure 6. A Planner module of agent-oriented G-net model for facilitator agent 
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identifies a unique mobile agent. The knowledge/Plan/Goal place represents a simplified 

combination of places for the Knowledge, Plan and Goal modules as introduced in Section 3. In 

particular, the Knowledge module contains the following three tables: 

 

User table This table contains information about registered users that can create/register agents 

on the local AVM. Each record contains the following data: user name, user privilege, and a 

public key. User name refers to the creator of a local mobile agent on a local AVM. User 

privilege is a privilege assigned to a user by a local administrator, and the public key is the user’s 

public key issued by a local administrator. Remote FAs are also recorded in this table, and we 

view remote FAs as remote users.  

 

Agent table This table contains information about mobile agents residing on a local AVM. Each 

record contains the following data: agent ID, name, owner and description. Agent ID is the object 

identification of a mobile agent. Owner, for local mobile agents, is the user who creates that 

mobile agent; while for those mobile agents that exist due to a migration from another AVM, the 

owner field is the issuer of the passport, as we have discussed previously. 

 

Policy table This table contains security policy information about the AVM. Each record 

contains the following data: privilege and a method set. The privilege refers to the privilege level 

of a local FA; while the method set is the set of methods that can be invoked under that privilege 

level. When a mobile agent sends a method request to the local FA in a form of a LOCAL 

method, the local FA decides if the agent has the privilege to request that method based on the 

information from the user table and the policy table.   

 

We now use a migration example to show how a FA’s planner module works. As shown in Figure 

6, when an agent on a local AVM Θ BAB, say agent α, wants to move to a remote AVM Θ BBB, the agent 

α first sends an RMI message move-request to the GSP of the local FA θBAB with mh=RMI, da=θBA B 

and mb=“goto request”. The actual message received by the local FA θBA B is E-MSG = E(kBPUB-R B, 

(E(kBPRIV-SB, move-request), CT)), where kBPUB-RB is the public key of the local FA θBA B and kBPRIV-SB is the 

private key of agent α. Notice that to simply matters, we show the message as <(sa, da, mh, mb), 

ct> in Figure 6. We also do not show the steps for how to decrypt the message E-MSG by the 

local FA θBAB, which have been described in Section 4.3. The transition check_ct models the action 

of checking the authentication information of a message sender by the FA. The security checking 

is based on the message sender’s certificate extracted from the message and its issuer’s 
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information from the FA’s user table. If the authentication is invalid, the transition invalid fires, 

and a message of cert-invalid will be sent to the mobile agent α. Otherwise, the attribute sa from 

the message move-request will be checked to see if the message sender is recorded in the agent 

table, i.e., to check if the message is from a local AVM or a remote AVM. In our example, since 

the RMI message is from the local mobile agent α, the transition sa_in fires. Now, if it is agent 

α’s first time to communicate with its local FA θBAB, its certificate issued by its local user shall be 

replaced with a passport. This process is done by firing the transitions no_passport and 

issue_passport. After a passport is issued to the mobile agent α, the local message is dispatched 

for further processing according to its message head mh. Since mh=RMI in this example, the 

message is forwarded to the remote FA θBB Baccording to the attribute da. When combining the 

encrypted message E(kBPRIV-S B, move-request) with agent α’s certificate, its original certificate is 

replaced with its newly issued passport, where kBPRIV-SB is still the private key of mobile agent α. 

Notice that the local FA θBAB does not modify the encrypted message MSG’ = E(kBPRIV-SB, move-

request); however, it combines the message MSG’ with agent α’s passport instead of its initial 

certificate, and encrypts the whole message with the public key of the message receiver,  i.e., the 

remote FA θBBB. 

 

When the remote FA θBB Breceives the forwarded message move-request, it first checks the 

certificate (passport) of the message sender - agent α, as well as the certificate of its issuer, i.e., 

FA θBAB. If the security check fails, a move-refuse message (with da=α) will be generated by firing 

the transition invalid, and the message will be sent to the mobile agent α via FA θBAB. Otherwise, 

the attribute sa from the forwarded message move-request will be checked. In this example, 

since agent α is not recorded in the agent table of FA θBBB, the transition sa_not_in fires. The 

message is then dispatched according to its message head (mh=RMI), and its attribute da is 

checked to see if the destination agent is the receiver agent itself. In this case, since da=θBBB, the 

transition da_is_self fires, and a decision will be made either to deny a visa or to issue a visa to 

the mobile agent α. If the visa is denied, a move-refuse message (with mh=RMI, da=α) will be 

generated by firing the transition deny_visa, and will be sent to the mobile agent α via FA θBAB. 

Otherwise, a visa will be issued by firing the transition issue_visa and a new message move-grant 

(with mh=RMI, da=α) is generated. Agent α’s passport is updated by putting a visa stamp on 

one of its visa pages, and the updated passport is then attached to the message move-grant in its 

message body and sent back to agent α via FA θBAB. Notice that in Figure 6, there is a place called 

syn, where a token containing agent α’s identity information will be deposited right after a visa is 



 22

issued. This mechanism ensures that the actual migration cannot happen before a migration 

request is granted. 

 

Now that mobile agent α receives the move-grant message from FA θBB Bvia FA θBAB, it sends a 

GOTO message to its local FA θBAB. Upon receiving the GOTO message from agent α, FA θBA B 

dispatches it to the appropriate transition for processing according to its message head 

(mh=GOTO), and generates a REIGISTER message to the remote FA θBBB. To generate the 

REGISTER message, the mobile agent α is first removed from FA θBAB’s Agent place and then 

serialized and embeded in the REIGISTER message’s message body as an attachment. When FA 

θBBB receives the REIGISTER message from FA θBAB, it dispatches the remote message according to 

its message head (mh=REGISTER), resumes agent α’s execution, and adds the mobile agent α 

into its Agent place. This ends the agent migration process. 

 

When a local mobile agent sends a message to its local FA for any purpose other than migration, 

the message head of the message is set to LOCAL. In this case, when the local FA receives the 

message, the message is dispatched according to its message head mh=LOCAL. By firing the 

transition reply, a reply message is generated and sent back to the local mobile agent.  

 

Similarly, when a FA receives a message with a message head of METHOD, the message 

represents a synchronous method invocation from the FA itself. Under this circumstance, the 

method is dispatched to an appropriate utility method defined in the utility method section of the 

FA. After the method invocation, the result will be returned to the ISP place where the 

synchronous message is generated. 

 

5.   Case Study: Agent Migration 
 

One of the advantages of building formal models for mobile agent system is to help ensure a 

correct design. A correct design should meet certain key requirements, such as liveness, deadlock 

freeness and concurrency. Also certain properties, such as the mobility, need to be verified to 

ensure correct functionality.  Petri nets offer a promising, tool-supported technique for checking 

the logical correctness of a design [27]. In this section, we consider an example of a simple 

mobile agent system that consists of only two AVMs with a local FA and a remote FA. The 

purpose for this case study is to demonstrate that agent communication protocols can be 
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effectively traced in our net model, and more importantly, to verify that a mobile agent can 

successfully migrate to the Agent place of the remote FA if the migration is granted. 

 

5.1   A Simplified Net Model 

 

The interaction of a local FA and a remote FA can be modeled as a Petri net as shown in Figure 7. 

In this model, there is only one mobile agent (represented as a black token) in the Agent place of 

the local FA. To derive this net model, we have simplified the net of the facilitator agent as 

follows: 

 

1. Since the transition to dispatch a message with a message head of METHOD is only used for 

local resource access, it does not affect the agent communication and agent migration in the 

mobile agent system. Thus, to obtain our simplified net model, we omit this transition. 

2. Since all asynchronous messages will be dispatched to an MPU, and sent asynchronously to 

the GSP place of another agent, we use net reduction to simplify the Petri net corresponding 

to MPUs into a single place. This is shown as the places of q B1B and q B2B in Figure 7.  

3. We use an ordinary token (black token) to represent a local mobile agent in the Agent place. 

The presence of such a token represents that a mobile agent, either created locally or 

migrating from other AVM, is under the control of its local FA.  

4. All other tokens in the net model, including message tokens and tokens belonging to the place 

syn, are simplified as ordinary tokens. Since we have only one mobile agent in our example, 

such treatment would be sufficient for our purpose. 

5. We add a new transition initiate_message to enable a mobile agent to send an asynchronous 

message to its local FA (shown as the transitions t1 and t25 in Figure 7). We also add a new 

transition return_message_to_MA to enable a local FA to send an asynchronous message 

back to a mobile agent (shown as the transitions t23 and t47 in Figure 7). 

 

The resulting Petri net illustrated in Figure 7 is an ordinary Petri net. The initial marking of this 

Petri net is as follows (with the ordering of place nodes as a B1 B, bB1B, cB1 B, . . ., qB1B, a B2B, bB2 B, cB2B, . . .): 

 

M B0B = [0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

 T 

 

Notice that in the initial state of the Petri net, only transition t1 is enabled, which can fire to 

initiate a conversation between a mobile agent and a local FA. 
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Figure 7. A transformed model of a local facilitator agent and a remote facilitator 
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5.2 Verifying Secure Agent Communication and Agent Migration 

 

To verify the correctness of our agent models for secure agent communication and agent 

migration, we utilize some key definitions and theorems as adapted from [27]. 

 

Definition 5.1 Incidence Matrix 

For a Petri net N with n transitions and m places, the incidence matrix A = [aij] is an n x m matrix 

of integers and its typical entry is given by 

aij = aij+ - aij- 

where aij+ = w(i,j) is the weight of the arc from transition i to output place j and aij- = w(j,i) is 

the weight of the arc from input place j to transition i. 

 

Definition 5.2 Firing Count Vector 

For some sequence of transition firings in a Petri net N, a firing count vector x is defined as an n-

vector of nonnegative integers, where the ith entry of x denotes the number of times that 

transition i must fire in that firing sequence. 

 

Definition 5.3 T-invariant 

For a Petri net N, an n-vector x of integers (x ≠ 0) is called a T-invariant if x is an integer solution 

of homogeneous equation AP

T
Px = 0, where A is the incidence matrix of Petri net N. 

 

Theorem 5.1 An n-vector x is a T-invariant of a Petri net N iff there exists a marking MB0 B and a 

firing sequence σ that reproduces the marking MB0 B, and x defines the firing count vector for σ. 

 

Definition 5.4 Valid Firing Sequence 

Let σ = <i B1 B, iB2B, …, iBpB> be some sequence of transition firings in a Petri net N with initial marking 

M B0B, where i Bk B, for k =1..p, is a transition of Petri net N. The firing sequence σ is valid if transition 

i B1B is enabled initially and each transition i Bk Bis enabled after firing transition iBk-1B, where k=2..p.  

 

Theorem 5.2 (Necessary Condition) For a Petri net N with initial marking MB0B, let MBd B = MB0 B + AP

T
Px, 

where A is the incidence matrix of Petri net N and x is a firing count vector for firing sequence σ. 

The firing sequence σ is valid only if MBdB is a nonnegative vector. 
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The incidence matrix A of the Petri net in Figure 7 is listed in Table 1. Now we begin to analyze 

and verify the following five cases for secure agent communication and agent migration, which 

show the key behaviors and properties of our models. Although the approach using state equation 

of Petri nets [27] is not new, we believe that it is useful here to demonstrate the correctness of our 

security based agent models. 

 
 aB1 B b B1B cB1 B d B1B eB1 B fB1 B g B1B h B1B i B1 B j B1 B k B1B l B1 B mB1 B n B1B o B1B p B1B q B1B aB2 B b B2B cB2 B d B2B eB2 B fB2 B g B2B h B2B i B2 B j B2 B k B2B l B2 B mB2 B n B2B o B2B p B2B q B2B 

t1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t2 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t3 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t4 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t5 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t6 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t7 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t8 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t9 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t10 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t11 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t12 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t13 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t14 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t15 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t16 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t17 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t18 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t19 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t20 0 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
t27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 
t28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 
t29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 
t30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 
t31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 
t32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 
t33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 
t34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 
t35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 
t36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 
t37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 
t38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 
t39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 
t40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 
t41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 
t42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 
t43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 1 0 
t44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 0 1 0 
t45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 
t46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 
t47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 
t48 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 

 

Table 1. Incidence Matrix A of the Petri Net in Figure 7 

 

Case 1: A cert-invalid message is sent by the local FA 

In this case, when the mobile agent sends a move-request message to its local FA, the 

authentication is detected as invalid due to a fake certificate of the mobile agent or its issuer. The 

transition t3 fires and a cert-invalid message is sent back to the mobile agent. The firing sequence 

σB1 Bcorresponding to this case can be traced in Figure 7 as follows: 
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σB1 B = <t1, t2, t3, t22, t23> 

 

From Definition 5.2, the firing count vector xB1 B for the above firing sequence σB1 B can be calculated 

as follows: 

 

x B1B = [1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

T 

 

Since we have A P

T 
Px B1 B = 0, from Definition 5.3, xB1 Bis a T-invariant of the Petri net in Figure 7.  

From Theorem 5.1, for any T-invariant x of a Petri net, there exists a marking M B0B and a firing 

sequence σ, which reproduces the marking MB0B, and x defines the firing count vector for σ. 

Obviously, the firing sequence σB1 B reproduce the initial marking M B0B. This is desirable because the 

cert-invalid message ends the conversation (as shown in Figure 3), and the Petri net should return 

to its initial state. 

 

Case 2: A move-request message is forwarded to the remote FA by the local FA  

If the mobile agent passes the authentication test, the move-request message shall be forwarded to 

the remote FA by its local FA. In this case, the transition t17 fires, and the message token shall 

finally reach the GSP place of the remote FA, i.e., place a B2 B. The firing sequence σB2 Bcorresponding 

to this case can be traced in Figure 7 as follows: 

 

σB2 B = <t1, t2, t4, t6, t9, t13, t14, t22, t24> 

 

The firing count vector xB2B for the above firing sequence σB2 B can be calculated as follows: 

 

x B2 B= [1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

T 

 

Based on the state equation for the Petri net in Figure 7, if we assume that the firing sequence σB2B 

is valid, we can calculate the destination marking MB1B as follows: 

 

M B1B = AP

T 
Px B2 B + M B0 B = [0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

 T
PB
 

 

We find that the place marking MB1B(a B2B) = 1. This is desirable because it implies that the message 

token can be successfully forwarded to the GSP place of the remote FA. Notice that Theorem 5. 2 
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only states a necessary condition for the validity of a firing sequence, so we cannot use this 

theorem to prove that σB2B is valid; however, the validity of σB2B can be verified by simulating the 

firing sequence using an existing Petri net tool, e.g., INA (Integrated Net Analyzer) tool [36]. 

 

Case 3: A move-refuse message is forwarded to the mobile agent by the local FA 

In this case, upon receiving a move-request message from a mobile agent, the transition t42 of the 

remote FA fires and a move-refuse message is sent to the local FA for forwarding. The 

corresponding firing sequence σB3 B and the firing count vector xB3 B for σB3 B are listed as follows: 

 

σB3 B = σB2 B • <t26, t27, t46, t48, t2, t4, t5, t7, t12, t17, t22, t23> 

x B3 B= [1 2 0 2 1 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 2 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1]P

T
P
 

 

Notice that σB3B is defined as the concatenation of sequence σB2 Band the sequence <t26, t27, t46, t48, 

t2, t4, t5, t7, t12, t17, t22, t23>, where the operator “•” is the concatenation operator of two firing 

sequences. 

 

Similar to Case 1, we have A P

T
Px B3 B = 0. This implies that if σB3B is a valid firing sequence, it may 

reproduce the initial marking MB0 B. Obviously, this is true in Figure 7, which is desirable because 

when the move-refuse message is forwarded to the mobile agent, the conversation ends, and thus 

the Petri net should return to its initial state. 

 

Case 4: An attempt to migrate without a visa 

In this case, a mobile agent attempts to migrate to a remote AVM without a visa issued by a 

remote FA. The mobile agent sends a move message to its local FA, and the local FA removes the 

mobile agent from its Agent place, serializes it and sends it with a register message to a remote 

FA for registration. Upon receiving the register message from the local FA, the remote FA 

resumes the execution of the serialized mobile agent and deposits the mobile agent into its Agent 

place. In this case, the corresponding firing sequence σB4 B and the firing count vector xB4B for σB4 Bare 

listed as follows: 

 

σB4 B = <t1, t2, t4, t6, t10, t15, t20, t22, t24, t26, t28, t29, t32> 

x B4B = [1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

T 
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Similar to Case 2, if we assume the firing sequence σB4 B is valid, we can calculate the destination 

marking MB2B as follows: 

 

M B2B = AP

T 
Px B4 B + M B0B = [0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

 T
P
 

 

We find that the place marking M B2B(mB1 B) = -1. From Theorem 5.2, we know that if M B2 B is not a 

nonnegative integer vector, the firing sequence σB4B is not valid. This contradicts with our 

assumption that the firing sequence σB4 B is valid. Therefore, the firing sequence σB4B is not valid. The 

marking MB2B also shows that some transition in the firing sequence σB4 B cannot fire due to a lack of 

token in place mB1 B. This is reasonable because the place mB1 B is a synchronization place used to 

ensure that the actual migration cannot happen before a migration request is granted, i.e., a visa is 

issued by a remote FA. 

 

Case 5: An attempt to migrate after a visa is issued by the remote FA 

In this case, the process involves two steps. In step 1, upon receiving the move-request message 

from a mobile agent, the remote FA issues a visa, and sends a move-grant message with the visa 

as an attachment to the mobile agent, which is forwarded by the local FA. The corresponding 

firing sequence σB5 B is listed as follows: 

 

σB5 B = σB2 B • <t26, t28, t29, t31, t35, t43, t46, t48, t2, t4, t5, t7, t12, t17, t22, t23> 

 

Now, in step 2, when the mobile agent receives the issued visa, it sends a move message to its 

local FA. The local FA then sends the serialized mobile agent in a register message to the remote 

FA for registration. This step is exactly the same as the process in Case 4, so we have σB6 B = σB4 B.  

 

The firing sequence σB7 Bfor the whole process (step1 and step 2) and its firing count vector xB7B can 

be listed as follows: 
 

σB7 B = σB5 B • σB6 B 

x B7 B= [2 3 0 3 1 2 1 0 1 1 0 1 1 1 1 0 1 0 0 1 0 3 1 2 0 2 0 2 2 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1]P

T
P
 

 

It is expected that σB7 B is a valid firing sequence, and the token in place b B1 B (the Agent place of the 

local FA) will be moved to place b B2 B(the Agent place of the remote FA) after the firings. We now 

calculate the destination marking as follows: 
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M B3B = AP

T 
Px B7 B + M B0B = [0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0]P

 T 

 

We find that the place marking MB3 B(mB1 B) = -1. From Theorem 5.2, we conclude that σB7 B is not a 

valid firing sequence. This result indicates that there are some design errors in our agent model. 

The place marking MB3B(mB1 B) = -1 shows that the synchronization token has not been successfully 

deposited into place mB1 Bafter step 1. Looking into the destination marking MB3B again, we find that 

M B3B(mB2 B) = 1. This is not desirable because in our example the remote FA does not need any 

synchronization for agent migration. This shows that after step 1, the synchronization token has 

been deposited into a wrong place, i.e., place mB2 B instead of place mB1 B. To correct this design error, 

we need to revise the planner module of the facilitator agents in Figure 6 as follows: 1) modify 

the label of transition forward_message from “forward_message” to “direct_forwarding”; 2) 

delete the arc from the transition issue_visa to the place syn; 3) add a new transition new_visa to 

check if a new visa issued by a remote FA has been attached in a forwarding message; 4) add a 

new arc from the place message_to_MA to the transition new_visa; 5) add a new arc from the 

transition new_visa to the place dispatching_outgoing_message; and 6) add a new arc from the 

transition new_visa to the place syn. After the revision, when a local FA receives a message from 

a remote FA, which is to be forwarded to a local mobile agent, the message is first checked to see 

if a new visa issued by the remote FA is enclosed. If the new visa is enclosed, a synchronization 

token is deposited into the syn place of the local FA before the message is forwarded to the 

mobile agent; otherwise, the message is forwarded to the mobile agent directly.  

 

Accordingly, we revise Figure 7 by deleting two arcs: t19 to mB1B, and t43 to mB2B; adding two new 

transitions: t49 and t50; and adding six new arcs: l B1 B to t49, t49 to mB1 B, t49 to pB1B, l B2B to t50, t50 to mB2 B, 

and t50 to p2. The incidence matrix A of the Petri net model (shown in Table 1) is revised into A’ 

by updating the rows for transitions t19 and t43, and adding two new rows for transitions t49 and 

t50. The revisions to incidence matrix A are summarized in Table 2. 

 
 aB1 B b B1B cB1 B d B1B eB1 B fB1 B g B1B h B1B i B1 B j B1 B k B1B l B1 B mB1 B n B1B o B1B p B1B q B1B aB2 B b B2B cB2 B d B2B eB2 B fB2 B g B2B h B2B i B2 B j B2 B k B2B l B2 B mB2 B n B2B o B2B p B2B q B2B 

t19 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 
t49 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 1 0 

 

Table 2. Revisions to incidence matrix A for the revised Petri net model in Figure 7 
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After the revisions, we may verify Cases 1-5 again. Cases 1-4 can be verified in the same way 

and we get the same expected results. For Case 5, the firing sequence in step 1 is revised into σB5B’ 

as follows: 
 

σB5 B’ = σB2 B • <t26, t28, t29, t31, t35, t43, t46, t48, t2, t4, t5, t7, t12, t49, t22, t23> 

 

The firing sequence in step 2 remains the same, i.e., σB6B’ = σB6 B. Therefore, the firing sequence σB7 B’ 

for the whole process (step1 and step 2) and its firing count vector x B7B’ can be listed as follows: 
 

σB7 B’ = σB5B’ B B • σB6B’ 

x B7B’ B B= [2 3 0 3 1 2 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 3 1 2 0 2 0 2 2 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0]P

T
P
 

 

Now, we calculate the destination marking for Case 5 again: 
 

M B3B’ = A’ P

T 
Px B7B’ + M B0B = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]P

 T 

 

In this case, we find that both place markings MB3B’(mB1 B) and M B3B’(mB2 B) are equal to zero, and the 

token in place b B1B (the Agent place of the local FA) is moved to place b B2  B(the Agent place of the 

remote FA). By simulating the net with the firing sequence σB7 B’, we find that the firing sequence 

σB7 B’ is valid. This shows that the mobile agent in the Agent place of the local FA can be 

successfully moved to the Agent place of the remote FA. 

 

6.    Conclusion and Future Work 
 

Agent-oriented software provides a new software engineering paradigm and the opportunities for 

development of new domain-specific software models. With the continuing improvement of agent 

technology, and the rapid growth of software system complexity, especially for Internet 

applications, there is a pressing need for general models of mobile agent systems. Such models 

can allow a structured approach for design of agent software systems and facilitate the application 

of formal methods techniques for design analysis and implementation synthesis. 

 

We presented the design models of intelligent mobile agents and intelligent facilitator agents in a 

framework for agent-oriented software. Unlike previous work, which only models a particular 

feature of mobile agents, our agent models can serve as a general security based agent model that 
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has the capabilities of mobility, corporative behavior, and intelligence. Furthermore, our agent 

models are based on the agent-oriented G-net formalism, which can be translated into a standard 

form of Petri net (Predicate-Transition net, Pr/T net) [25]. Because the Petri net formalism is 

theoretically mature and supported by robust tools, our approach supports formal analysis and 

verification.  

 

For future research work, we plan to implement a prototype following our formal design, by 

which we can show our approach supports rapid development of mobile agent systems. Finally, 

we need to explore various security issues in mobile agent design, and verify security mechanism 

in our models. 
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