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Abstract—Computer system reliability is conventionally 
modeled and analyzed using techniques such as fault tree 
analysis (FTA) and reliability block diagrams (RBD), which 
provide static representations of system reliability properties. A 
recent extension to RBD, called dynamic reliability block 
diagrams (DRBD), defines a framework for modeling dynamic 
reliability behavior of computer-based systems. However, 
analyzing a DRBD model in order to locate and identify design 
errors, such as a deadlock error or faulty state, is not trivial 
when done manually. A feasible approach to verifying it is to 
develop its formal model, and then analyze it using 
programmatic methods. In this paper, we first define a 
reliability markup language (RML) that can be used to formally 
describe DRBD models. Then we present an algorithm that 
automatically converts a DRBD model into a colored Petri net 
(CPN). We use a case study to illustrate the effectiveness of our 
approach and demonstrate how system properties of a DRBD 
model can be verified using an existing Petri net tool. Our 
formal modeling approach is compositional, thus it provides a 
potential solution to automated verification of DRBD models. 
 

Index Terms—System reliability, reliability block diagram 
(RBD), extensible markup language (XML), colored Petri net 
(CPN), time Petri net, formal modeling and analysis, automated 
verification, deadlock detection. 
 

NOMENCLATURE 

API Application programming interface. 
BNF Backus-Naur form. 
CPN  Colored Petri net. 
DFTA Dynamic fault tree analysis. 
DOM Document object model. 
DRBD Dynamic reliability block diagram. 
FTA Fault tree analysis. 
PDP Piecewise deterministic Markov processes. 
RBD  Reliability block diagram. 
RML  Reliability markup language. 
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SAX Simple API for XML. 
SDEP State-based dependency controller. 
SPARE Spare part controller. 
SRBD State-based reliability block diagram. 
XML  Extensible markup language. 

I. INTRODUCTION 
N OUR modern society, there is an increasing reliance on 
computer-based systems that control critical infrastructures 

such as telecommunication networks, banking systems, and 
nuclear power plants. Such infrastructures are critical because 
the failure of the supporting computer-based systems (e.g., 
interrupted phone service, financial loss, and nuclear 
meltdown) can be catastrophic [1]. Therefore, ensuring the 
reliability of such systems has become a growing need in the 
computing world. There are many existing methods that can 
be used to evaluate a system’s reliability, such as measuring a 
system’s mean time to failure. In order to efficiently evaluate 
or predicate a system’s reliability performance, an effective 
system reliability model is required. Most reliability 
modeling approaches are based on statistical methods. Their 
typical examples are reliability block diagram (RBD), fault 
tree analysis (FTA), and Markov chains [2]. The above 
methods, however, can only provide system reliability 
models where a system component must be either active or 
failed; thus, they are very limited in their ability to accurately 
model a system’s dependency relationships and dynamic 
reliability properties. Dynamic FTA (DFTA) is another 
modeling tool that can support modeling a functional 
dependency in a system, where the failure of a component 
causes some other dependent components to become 
inaccessible or unusable [3]. However, DFTA cannot be used 
to model a general state-based dependency relationship 
between components, e.g., a state-based dependency where 
the activation of a component causes the deactivation of a 
dependent one.  

Recently, an extension to RBD, called dynamic reliability 
block diagram (DRBD) [4-5], was introduced with new 
controller constructs that support modeling dynamic, 
dependent and redundant relationships between components 
in a computer-based system. Although it has been shown that 
the DRBD approach is very effective in modeling a system’s 
dynamic reliability properties, subtle flaws in it can be easily 
introduced due to its modeling complexity. Therefore, formal 
verification of a DRBD model is an essential step in 
developing a correct system reliability model for the 
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evaluation of a system’s reliability. In our recent work, we 
demonstrated some preliminary results on how to formally 
verify a DRBD model using colored Petri nets (CPN) [4-5], 
which provide the formal semantics for DRBD models. The 
approach follows the basic philosophy of recent efforts on 
converting a UML (Unified Modeling Language) diagram to 
Petri nets for formal verification [6]. However, the proposed 
approach is not compositional for formal modeling, and does 
not provide a generalized solution to automatically convert a 
DRBD model into CPN. In this paper, we present an 
algorithm that supports automatic conversion of a DRBD 
model into CPN. Hence, DRBD’s automatic verification can 
be accomplished by analyzing the state space of the CPN 
using existing CPN tools. Note that since our proposed formal 
modeling approach is compositional, our approach scales 
with the sizes of DRBD models. 

The rest of the paper is organized as follows. Section II 
summarizes the related efforts in reliability modeling. Section 
III provides a formal definition of DRBD with its embedded 
state-based RBD (SRBD). In order to efficiently process 
DRBD models, an XML-based language, called the reliability 
markup language (RML), is introduced to represent a DRBD 
model in XML format. Section IV outlines the procedures to 
convert DRBD into CPN. Section V provides a case study 
that illustrates how to create a DRBD model and convert it 
into a CPN model for formal analysis. Finally, Section VI 
presents the conclusions and future work.  

II. RELATED WORK 
Reliability modeling is an integral step in creating reliable 

and fault-resistant computer-based systems.  Currently, many 
industries require that some form of qualitative system 
reliability analysis be integrated into the design phase of a 
computer-based system [3]. One of the major analysis 
approaches for system reliability is FTA, which provides a 
detailed analysis of a system’s failure probabilities. Fault 
trees are logic diagrams that depict potential, critical events 
within a system. A fault tree model represents the relationship 
between a critical event and the reasons for the event’s 
occurrence, such as specific component failures [7]. Since 
FTA does not account for dynamic system properties, it is 
extended into dynamic FTA (DFTA) in order to model 
dynamic relationships between components [3, 8]. DFTA 
introduces additional gates for modeling sequential and 
sparing behavior, but it has limited ability to model complex 
systems that involve dynamic component dependency such as 
a general state-based dependency [4]. On the other hand, an 
RBD represents a network of system components and their 
connections [2]. The network consists of an input point and 
output point, a number of blocks representing system 
components, and multiple paths from the input point to output 
point. The multiple paths represent successful system 
operations, where an interruption of these paths may lead to 
the failure of the whole system [9]. Therefore, an RBD model 
represents the static topology of a computer-based system’s 
reliability, where the topology can be a serial, parallel or 

hybrid structure. Contrary to FTA, RBD models are 
success-oriented networks that describe the function of a 
system by probabilistic means [2]. Component blocks in an 
RBD are arranged to illustrate the proper combinations of 
working components that keep the entire system operational. 
Failure of a component can be represented by removing the 
component as well as its connections with other components 
from the network. When a sufficient number of components 
in a system fail, the whole system may also fail if there is no 
connection between the input and output point.  

Additional related work on system reliability modeling can 
be summarized as follows. The SHARPE (symbolic 
hierarchical automated reliability and performance evaluator) 
tool expands the use of Markov models in reliability 
verification of computer systems [10]. Sahner and Trivedi 
recognize that Markov models can capture important 
dynamic system behavior, but may also grow exponentially 
with the number of system components. Their research 
produces a hierarchical modeling technique for analyzing 
complex reliability models, which allows for the flexibility of 
Markov models where necessary, and retains the efficiency of 
combinatorial solutions where possible. Leangsuksun, et al. 
adopt UML technology to model the reliability of two-tier 
computer systems [11]. They use UML deployment diagrams 
to model system components and their relationships, and 
manually create failure and repair rate for components in 
order to construct statistical fault trees and Markov Chain 
models. The system reliability is then calculated using the 
SHARPE tool. Similarly, Dammag and Nissanke also propose 
a visual model, called Safecharts, which can be used to 
specify and design safety critical systems [12]. The novel 
feature of Safecharts is its safety annotation that provides an 
explicit ordering of states according to risk levels. In order to 
support standards compliance testing and verification for 
safety-critical systems, Hsiung, et al. attempt to integrate 
Safecharts into VERTAF (Verifiable Embedded Real-Time 
Application Framework), which is an application framework 
for design and verification of embedded real-time software 
[13]. Blake, et al. use an extension of Markov models to 
specify the reliability of multiprocessor systems using 
parametric sensitivity analysis [14]. Their approach creates an 
upper and lower bound for each system parameter of interest 
in order to compute the optimistic and conservative bounds 
for the reliability of a multiprocessor system. Similar to the 
FTA and RBD approaches, most of the above methods only 
consider a system component as a bi-state component, which 
must be either active or failed. Therefore, they suffer from the 
same weakness as FTA and RBD models for modeling 
dynamic system reliability properties. In our previous work, 
we propose dynamic RBD (DRBD) as an extension to RBD 
models [4-5]. New modeling constructs have been introduced 
and formally specified in Object-Z formalism [15], and can 
be used to model dynamic reliability properties of system 
components, e.g., state-based dependency and spare part 
relationships. Unlike DFTA, DRBD models are defined upon 
state-based components where a component can be active, 
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standby or failed. Thus, DRBD controlling constructs support 
modeling general state-based dependencies. Reference [5] 
gives an introduction to DRBD models as well as additional 
related work on system reliability modeling. 

Petri nets [16-18] have been widely used in industry for 
modeling and analyzing computer-based systems such as 
intelligent mobile robots and semiconductor manufacturing 
systems [19-20]. There is some related work to our approach 
that uses Petri nets for deadlock detection and avoidance. 
Fanti and Zhou give a survey on state-of-the-art modeling and 
deadlock control methods for discrete manufacturing systems 
based on digraphs, automata, and Petri net approaches [21]. 
They present the updated results in the areas of deadlock 
prevention, detection and recovery, and avoidance. Li, et al. 
develop a methodology to synthesize supervisors for a special 
class of Petri nets that can be used to model flexible 
manufacturing systems [22]. In their research, a mixed 
integer programming based deadlock detection technique is 
used to find minimal siphons efficiently in a plant model. 
Hsieh formulates a fault-tolerant deadlock avoidance 
controller synthesis problem for assembly processes based on 
a class of Petri nets [23]. He proposes a fault-tolerant 
deadlock avoidance approach that consists of two algorithms, 
namely a nominal algorithm to avoid deadlocks for nominal 
system state and an exception handling algorithm to deal with 
resource failures. Wu and Zhou propose a novel control 
policy for deadlock avoidance for automated guided vehicle 
system using colored resource-oriented Petri nets, and the 
complexity of deadlock avoidance for the whole system is 
bounded by the complexity in controlling the system [24]. 
More recently, Li, et al. summarize a variety of Petri net 
based deadlock prevention policies for flexible 
manufacturing systems [25]. Their work facilitates engineers 
in choosing a suitable method for their industrial applications. 
They further suggest developing polynomial algorithms in 
order to improve the computational efficiency of deadlock 
prevention methods that are based on the theory of regions. 

Although the above Petri net based approaches can be used 
for deadlock detection and avoidance, they are not aimed at 
modeling system reliability. A few efforts on reliability 
modeling using Petri nets can be summarized as follows. 
Bobbio, et al. use the generalized stochastic Petri net (GSPN) 
to support system dependability analysis [26]. Their approach 
involves converting fault trees into a GSPN model for the 
purpose of obtaining both qualitative and quantitative 
analysis results for the modeled system. Everdij and Blom 
develop piecewise deterministic Markov processes (PDP) 
models using dynamically colored Petri nets (DCPN) [27]. 
They show that DCPN has similar modeling power to PDP, 
and is more powerful than deterministic and stochastic Petri 
nets. Petri nets are also applied in safety analysis of a system 
as shown by Leveson and Stolzy, where Petri nets are used to 
design and analyze the safety and fault tolerance of a system 
[28]. Using timed Petri nets, they prove that paths to high risk 
states can be removed based on reachability analysis. Buy and 
Sloan propose a method to automatically analyze the timing 

properties of concurrent systems [29]. Their method uses 
simple time Petri nets to analyze concurrent software systems 
developed in Ada. Ghezzi, et al. introduce a high-level Petri 
net formalism, called ER nets (environment/relationship nets) 
to model time critical software systems [30]. They prove that 
ER nets can provide a satisfactory solution to analyzing the 
timing and functionality of such systems. While the above 
approaches are similar to our research efforts using Petri nets, 
they are not concerned with formalizing dynamic reliability 
properties of a computer system, such as a state-based 
dependency. Furthermore, instead of providing quantitative 
analysis of system reliability directly using Petri nets, our 
approach currently focuses on using colored Petri nets (CPN) 
[31] to verify the correctness of a DRBD model, namely the 
safety properties and liveness properties [32] of the 
corresponding system. Although there are many previous 
efforts for formal modeling and analysis of various systems 
using Petri nets [33-37], automated system modeling using 
colored Petri nets is rare. As we demonstrate in the case study 
in Section V, it is vital to provide an automated mechanism to 
ensure the correctness of a DRBD model because a DRBD 
model can become complicated when dynamic reliability 
properties are involved. 

III. DYNAMIC RELIABILITY BLOCK DIAGRAM 
The novelty of DRBD is its ability to model dynamic 

system reliability behaviors such as state-based dependency 
and redundancy [4]. The DRBD approach introduces new 
controller blocks, such as SDEP (state-based dependency 
controller) and SPARE (spare part controller) for modeling 
state-based dependency and spare part relationships, 
respectively. A DRBD model consists of a state-based RBD 
(SRBD) and a number of controller blocks. SRBD is an 
extension to RBD where each component is associated with a 
state representing the activeness of the component in the 
system. An SRBD model defines the static structure of a 
DRBD model, while the controller blocks model the dynamic 
reliability properties of the system. The DRBD designs 
described in this paper follow the notations and constructs 
introduced in [4-5].  

A. State-Based Reliability Block Diagram 
An SRBD is a network of dynamic system components 

called structural components. As defined in Fig. 1 in a 
Backus-Naur form (BNF), a structural component can be one 
of the three component types, namely simple component, 
parallel component and serial component. Simple 
components are a special case of structural components, 
which represent atomic and physical system components with 
a state. A component with a state can be formally defined as a 
finite state machine consisting of three states, “Active”, 
“Standby” and “Failed”, which may change at runtime. An 
“Active” component is an online component that is actively 
performing tasks. A component in a “Standby” state is ready 
to perform tasks, but it is still waiting to be set online. A 
“Failed” component is no longer online and cannot work 
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properly. The two other structural component types are used 
to define the topology of a DRBD. In Fig. 1, parallel 
components and serial components are defined as sets of 
structural components sandwiched between the tags 
<parallel>…</parallel> and <serial>…</serial>, 
respectively. The state of a structural component can be 
logically determined by aggregating the states of its contained 
components. Contained structural components within a 
parallel component (i.e., simple or serial components) can 
operate in parallel; therefore, only one of them must be in an 
“Active” state for the parallel component to be considered as 
active. A failed parallel component indicates that all of its 
contained structural components are in “Failed” states. 
Conversely, a serial component is not considered as active 
unless all of its contained structural components (simple or 
parallel component) are in “Active” states because the failure 
of any of its contained components leads to the failure of the 
whole serial component. Note that according to the definition 
of SRBD in Fig. 1, a serial component may contain only one 
component; thus, an SRBD with a single simple or parallel 
component can also be viewed as a serial component. 

Fig. 1. Definition of SRBD in Backus–Naur form (BNF). 

Fig. 2 shows an example of an SRBD model. In this 
example, two simple components (C1 and C2) are contained 
within a serial component, which itself is contained in a 
parallel component along with a third simple component 
(C3). Note that if not specified explicitly, we assume that all 
simple components are initially in “Active” states. 

      

Fig. 2. An example of a state-based reliability block diagram. 

B. DRBD Controller Blocks 
Controller blocks defined in a DRBD model can be used to 

model dynamic relationships between components. Fig. 3 
shows the formal definition of a DRBD model with two types 
of controllers, spare and state controllers, in a BNF format. 
Note that additional types of controllers, e.g., a load sharing 
block [5], can also be formally specified in a similar way.  

Fig. 3. Definition of DRBD in BNF. 

A spare controller can be used to model redundant system 
behavior, where n spare components (n > 0) are used to back 
up a primary component. The deactivation or failure of the 
primary component (i.e., the primary event) triggers the first 
spare component to enter an “Active” state. Similarly, the 
deactivation or failure of the first spare component triggers 
the second spare one to enter an “Active” state, and so on. The 
activation of a spare component is called a spare event, while 
the event of deactivation or failure of a spare component is 
implicitly defined. A spare component is a simple component 
with an ordering number and a sparing configuration. The 
ordering number of a spare component is defined as a natural 
number, and the standby spare component with the lowest 
ordering number should always be activated first when a 
primary component or a spare component is deactivated or 
failed. The sparing configuration signifies the “activeness” of 
a spare part. There are three types of sparing configurations, 
namely hot, cold and warm. A hot spare component operates 
in synchrony with a primary (i.e., online) component, and is 
prepared to take over at any time; while a cold spare 
component is unpowered until needed to replace a faulty 
component [38]. A warm spare component is a tradeoff 
between hot and cold configuration in terms of 
reconfiguration time and power consumption. Without loss of 
generality, in this paper, we assume that all spare components 
used in our examples are cold spares. 

Fig. 4 (a) illustrates a SPARE controller block with a 
primary component, P1, and two cold spares, S1 and S2 with 

<drbd> ::= <srbd><controller>{<controller>} 
<controller>::= <spare controller> 
       |<state controller>|... 
<spare controller> ::= <spareCon><primary event> 
       <spare event>{<spare event>}</spareCon> 
<primary event> ::= <primary component> 
       (<Deactivation>|<Failure>) 
<primary component> ::= <simple component> 
<spare event> ::= <spare component><Activation> 
<spare component> ::= <simple component>  
       <ordering number><sparing configuration> 
<ordering number> ::= <natural number> 
<sparing configuration > ::= <cold>|<warm>|<hot> 
<state controller> ::= <stateCon><trigger event> 

 <target event>{<target event>}</stateCon> 
<trigger event> ::= <trigger component><event> 
<trigger component> ::= <simple component> 
       |<spare component> 
<target event> ::= <target component><event> 
<target component> ::= <simple component> 
       |<spare component> 
<event> ::= <Activation>|<Deactivation>|<Failure> 
... 

<srbd> ::= <structural component> 
<structural component> ::= <simple component> 
     |<serial component>|<parallel component> 
<simple component> ::= <simple>  
     <component id><component state></simple> 
<component id> ::= <string> 
<component state> ::= <Active>|<Standby>|<Failed> 
<serial component> ::= <serial> 
     <simple or parallel component> 
     {<simple or parallel component>}</serial> 
<simple or parallel component> ::=  
     <simple component>|<parallel component> 
<parallel component> ::= <parallel> 
     <simple or serial component> 
     <simple or serial component>{<simple or  
      serial component>}</parallel> 
<simple or serial component> ::=  
     <simple component>|<serial component>) 

C1 C2 

C3 

serial component 

parallel component
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ordering numbers 1 and 2, respectively. In this example, the 
first spare part S1 is activated if P1 fails, and S1’s failure 
leads to the activation of the second spare component S2. 
Note that the capitalized letter “C” at the upper right corner of 
blocks S1 and S2 denotes that both are cold spares.  

    (a)  

    (b)  

Fig. 4. (a) SPARE controller block. (b) SDEP controller block. 

On the other hand, an SDEP controller block models the 
state-based dependency relationships between components in 
a system. With an SDEP controller block, a trigger event due 
to change of state on a trigger component leads to target 
events, which are state changes on target components. Both a 
trigger and target component can be a simple or spare 
component, and the number of target components must be 
greater than zero. An event can be one of the three types, 
namely “Activation,” “Deactivation,” and “Failure.” An 
“Activation” event happening on a simple or spare 
component causes it to enter an “Active” state. Similarly, a 
“Deactivation” or “Failure” event happening on a simple or 
spare component causes the component to enter a “Standby” 
or “Failed” state, respectively. Fig. 4 (b) shows an example in 
which the activation of C1 leads to the deactivation and 
failure of C2 and C3, respectively. Note that both C2 and C3 
are initially assumed in “Active” states, and otherwise, the 
states of C2 and C3 may remain unchanged when C1 is 
activated. 

C. DRBD Model in Reliability Markup Language 
The reliability markup language (RML) is an XML-based 

schema defined to formally describe the components, 
structure and dynamic behavior of a DRBD. RML is designed 
based on the BNF definition of DRBD models. All 
components and controllers in a DRBD model have nested 
RML elements that describe their properties according to 
their respected BNF definitions. Fig. 5 shows a DRBD model 
with three parallel simple components C1-C3, which are 
dependent on each other. The SDEP controller block specifies 
that the deactivation of C1 leads to C2’s failure as well as 
C3’s activation. The figure also shows the XML-based 
representation of the DRBD model in RML. An RML file 
uses the opening <rml> tag to signify the beginning of a 
DRBD definition. Following it, an SRBD model is defined as 

the top structural component, called MAIN component. 
Component MAIN is defined as a serial component within the 
tags <serialComponent> and </serialComponent>, 
which may contain any number of structural components 
(simple or parallel ones). In this example, the only structural 
component contained in MAIN is a parallel component that is 
defined within the tags <parallelComponent> and 
</parallelComponent>. The parallel component has an 
identification of PCom, which consists of three simple 
components C1-C3. Each of them is defined within the tags 
<simpleComponent> and </simpleComponent>, and has 
an initial state defined inside the <initialState>… 
</initialState> tags. In this example, the parallel 
component consists of simple ones only, but in a more general 
case, it may contain serial components. Similarly, a serial 
component may also consist of any number of simple or 
parallel components. 

     

 
Fig. 5. XML-based representation of a DRBD model in RML. 

After an SRBD has been defined, controllers are to be 
added into the RML file using specific XML tags. For 
example, state controller C1_SDEP can be defined within the 

C1 

C2 

C3 

SDEP 

D 

F 

A 

XML-based 
representation

P1 

S1 

S2 

SPARE 

A 

A 

C 

C 

F 

C1 

C2 

C3 

SDEP 
A 

D 

F 

<?xml version="1.0"?> 
<rml> 
  <serialComponent id = "MAIN"> 
    <parallelComponent id = "PCom"> 
      <simpleComponent id = "C1">        
        <initialState>Active</initialState> 
      </simpleComponent>    
      <simpleComponent id = "C2">  
        <initialState>Active</initialState> 
      </simpleComponent> 
      <simpleComponent id = "C3"> 
        <initialState>Standby</initialState> 
      </simpleComponent> 
    </parallelComponent>  
  </serialComponent>       
  <stateController id = "C1_SDEP"> 
    <triggerEvent> 
      <id>C1</id> 
      <event>Deactivation</trigger> 
    </triggerEvent> 
    <targetEvent> 
      <id>C2</id> 
      <event>Failure</event> 
    </targetEvent> 
    <targetEvent> 
      <id>C3</id> 
       <event>Activation</event> 
    </targetEvent> 
  </stateController> 
</rml> 
</xml> 
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<stateController> and </stateController> tags as 
shown in Fig. 5. Inside the C1_SDEP definition, the trigger 
and target events can be defined using <triggerEvent> … 
</triggerEvent> and <targetEvent> … 
</targetEvent> tags, respectively. Corresponding to (D, 
F) and (D, A) state-based dependency between component C1 
and C2, and C1 and C3, respectively, we define the trigger 
event that occurs on C1 with a Deactivation event, and 
two target events, which occur on C2 and C3 with the events 
of Failure and Activation, respectively. When both 
SRBD model and controllers have been defined, the RML file 
is ended by the closing tag </rml>. 

The motivation and major advantage of using RML to 
describe a DRBD model is to allow access and mutation of a 
DRBD model as an XML document. XML documents not 
only support a standard information encoding and storage 
format, but also allow programmers to use that information in 
a standard way [39]. Currently, two dominant APIs for 
processing XML-based documents are Simple API for XML 
(SAX) and Document Object Model (DOM). The SAX 
specification defines a low level API, which is an event-based 
approach that can parse through XML data and call handler 
functions when certain parts of the document are found. On 
the other hand, the DOM specification defines a tree-based 
approach to processing XML data. Based on the hierarchical 
structure of the XML data, the DOM approach creates an 
internal tree, which can be navigated at runtime. For 
efficiency reasons, in this project, we have adopted the DOM 
specification to process RML files. 

IV. CONVERSION OF DRBD MODELS INTO CPN 
In order to verify the correctness of a DRBD model, we 

need to convert it into CPN using a two-step procedure. First, 
the embedded SRBD of a DRBD model is converted into a 
CPN model. Then, the controller blocks are converted into 
Petri nets and added into the converted CPN model. The 
following sections give the detailed descriptions for the 
conversion procedures. Note that the CPN models described 
in the following sections employ CPN-ML, which is a 
powerful programming language of CPN as implemented in 
CPN Tools [40]. We assume readers have the basic 
knowledge of CPN-ML [41]. 

A. Conversion of SRBD into CPN 
Before we present the algorithm to convert the embedded 

SRBD of a DRBD model into a CPN model, we first describe 
how to convert each type of structural components in an 
SRBD into CPN. In order to model the component state, a 
colored token called a state token is introduced, which has 
three possible values, i.e., “Active”, “Standby” and “Failed”. 
The movement of these tokens in a CPN model signifies the 
state changes of the components in the DRBD model. Fig. 6 
shows the conversion of a simple component into a CPN, 
called simple-component CPN. 

A simple-component CPN contains two places, i.e., 
C1_start and C1_up. C1_start contains an initial token with 

color “Active” (denoted as 1`Active in Fig. 6), indicating 
that its initial state is active. When C1 remains active and the 
other input place to transition in_C1 also contains an “Active” 
token (we do not show the other input place of transition 
in_C1 in Fig. 6, but it is connected to in_C1 through the Input 
Connection of the simple-component CPN), in_C1 may fire. 
Its firing deposits an “Active” token into C1_up, indicating 
that C1 is active. The “Active” token in C1_up can be further 
passed along to other modules through Output Connection 
(Active). On the other hand, if transition C1_destruct fires 
while C1 is active, the “Active” token in C1_start is removed, 
and a “Failed” token is deposited into C1_start. In this case, 
transition C1_fail is enabled and can fire. When C1_fail fires, 
it generates a “true” token indicating that C1 fails. The 
generated “true” token can be further passed to other modules 
through Output Connection (Failed).  

                          

        

xb

x x

x

C1_fail[x=Failed]

in_C1

[x=Active]

C1_destruct

[x=Active]

output(y) action(Failed)

C1_up

STATE

C1_start

1`Active

STATE

Output Connection
        (Active)
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Fig. 6. Simple-component CPN for a simple component. 

A serial-component CPN is a set of serially connected 
structural component CPN. Fig. 7 shows a serial component 
in DRBD containing two simple components, C1 and C2, and 
its CPN representation.  
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Fig. 7. Serial-component CPN for a serial component. 
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Similar to a simple-component CPN, a serial-component 
CPN has an interface that consists of an Input Connection 
(through its in_Serial transition) and two Output Connections 
(through its Serial_up place and Serial_fail transition). When 
transition in_Serial receives an “Active” token through Input 
Connection, it can fire, and its firing deposits an “Active” 
token into place Serial_start. This token enables transition 
in_C1 if place C1_start also contains an “Active” token. 

The behavior of C1 in Fig. 7 is the same as that of the 
simple component C1 in Fig. 6. Note that both C1 and C2 in 
Fig. 7 are modeled in exactly the same way as C1 in Fig. 6. 
When both places C1_up and C2_start contain an “Active” 
token, transition in_C2 is enabled, and its firing deposits an 
“Active” token into C2_up. The “Active” token in C2_up 
further enables transition in_Serial_up, and may place an 
“Active” token in place Serial_up. Similar to a 
simple-component CPN, an “Active” token in Serial_up 
indicates that the serial component is functioning properly. 
The firing procedure also implies that the serial component is 
active only when both of its contained simple components, 
C1 and C2, are active. 

On the other hand, when either C1 or C2 fails, transition 
C1_fail or C2_fail can fire. When either fires, a “true” token 
is deposited into place Serial_down, which enables transition 
Serial_fail. Firing Serial_fail generates a “true” token 
indicating that the serial component cannot function properly 
due to the failure of its contained components. The firing 
procedure also implies that the serial component becomes 
failed when either C1 or C2 fails. Note that when both C1 and 
C2 fail, only one of the transitions, either C1_fail or C2_fail, 
can fire because place Serial_inhibit limits the capacity of 
place Serial_down to one; thus, Serial_fail will not 
accidentally fire twice.  

A parallel component contains a set of structural 
components (simple or serial components) that are connected 
in parallel. Fig. 8 shows the DRBD model of a parallel 
component with two simple components C1 and C2, and its 
CPN representation. Similar to a simple-component and a 
serial-component CPN, a parallel-component CPN has an 
Input Connection (through its in_Para transition) and two 
Output Connections (through its Para_up place and Para_fail 
transition). 

Components C1 and C2 in Fig. 8 are modeled in the same 
way as shown in Fig. 6. When Input Connection passes an 
“Active” token to transition in_Para, its firing deposits an 
“Active” token into place Para_start, which enables both 
in_C1 and in_C2. When C1 or C2 is active, transition in_C1 
or in_C2 may fire, and can deposit an “Active” token in place 
C1_up or C2_up, respectively. The “Active” token in either 
C1_up or C2_up enables Para_C1 or Para_C2, and 
eventually leads to an “Active” token in place Para_up. 
Similar to a serial-component CPN, an “Active” token in 
Para_up indicates that the parallel component can function 
properly. Note that at any time, only one of the transitions 
(either in_C1 or in_C2) may fire. Thus the capacity of place 
Para_up must be one. 
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Fig. 8. Parallel-component CPN for a parallel component. 

On the other hand, if both C1 and C2 fail, there will be a 
“true” token in both places C1_down and C2_down, which 
enables transition in_Para_down. Its firing deposits a “true” 
token into place Para_down, which enables transition 
Para_fail. Firing Para_fail generates and passes a “true” 
token to other modules through Output Connection. The 
firing procedure implies that the parallel component is not 
functioning due to the failure of both C1 and C2.   

It is worth noting that although in the above examples, both 
serial and parallel components contain simple components 
only, they may contain serial or parallel components in a 
more general case. In such a case, CPN models can be 
composed in exactly the same way as described. This is 
because both a serial-component CPN and a 
parallel-component CPN have the same interface as a 
simple-component CPN. Thus, our conversion approach is 
compositional.  

We now provide a recursive algorithm for automatically 
converting an SRBD model into a CPN model. The proposed 
recursive algorithm treats the previous techniques as a 
function that recursively expands structural components in 
order to derive a CPN that formally defines an entire SRBD. 
The algorithm is illustrated as pseudocode in Fig. 9, which is 
defined as a recursive function convert_Serial_ 
Component with a parameter of type SerialComponent. 

The algorithm starts with viewing a SRBD model as a 
serial component, and creating the needed input and output 
connections. As defined in Fig. 1, a serial component can 
contain one or more than one simple or parallel components. 
Thus we use a for-loop to convert each of the contained 
structural components. If a contained component is a simple 
or spare component, we convert it directly into a 
simple-component CPN as shown in Fig. 6; otherwise, if it is 
a parallel component, we first create the needed input and 
output connections for the parallel-component CPN, and then 
use a for-loop again to convert each of contained structural 

C1

C2

 7



components into a CPN. For each contained structural 
component in the parallel component, we check whether it is 
a simple or spare component. If it is a simple or spare 
component, we convert it directly into a simple-component 
CPN; otherwise, if it is a serial one, the function 
convert_Serial_Component is called recursively. When 
all contained components in a parallel component have been 
converted into CPNs, all simple-component CPN and 
serial-component CPN are connected together (as shown in 
Fig. 8) to create a parallel-component CPN. Similarly, when 
all contained components in a serial component have been 
converted into CPNs, all simple-component and 
parallel-component CPNs are connected together (as shown 
in Fig. 7) to create a serial-component CPN. 

The resulting CPN for an SRBD contains open input and 
output connections. In order to develop a complete CPN 
model for the SRBD, we introduce additional places and 
transitions into the SRBD CPN. As shown in Fig. 10, an 
SRBD is treated as serial component MAIN with three major 
places MAIN_start, MAIN_up, and MAIN_down.  

   

Output Connection
        (Active)

Output Connection
         (Failed)

Input Connection

b

b x

x

b x

x

x
SYS_up

[x=Active]

SYS_down

[b=true]

in_MAIN_up

[x=Active]

SRBD CPN

MAIN_down

BOOL

MAIN_up

STATE

MAIN_start

1`Active

 
Fig. 10. The complete CPN model for an embedded SRBD. 

Place Main_start initially contains an “Active” token, and 
connects to the SRBD CPN through Input Connection. 
Similarly, Main_up and Main_down connect to the SRBD 
CPN through Output Connection (Active) and Output 
Connection (Failed), respectively. Note that since Output 
Connection (Active) can only pass a token to a transition, 
place Main_up connects to the SRBD CPN through an 
intermediate transition in_Main_up. In addition, two 
transitions, SYS_up and SYS_down, are connected to 

MAIN_up and MAIN_down, respectively. When there is a 
“true” token in either MAIN_up or MAIN_down, SYS_up or 
SYS_down can fire, which denotes that the system is 
functioning or failing. Note that when we execute the CPN 
model, it should eventually end up with firing of either 
SYS_up or SYS_down; otherwise, there must be a deadlock 
state existing in the CPN model. 

B. Conversion of DRBD Controllers into CPN 

The next step in converting a DRBD model into a CPN is to 
convert DRBD controllers into controller CPN, and add them 
into the CPN model developed for the embedded SRBD 
model in step one. A controller CPN consists of a set of 
transitions and arcs that connect to the start places of the 
corresponding simple-component CPN. Fig. 11 and Fig. 12 
illustrate the algorithms for converting a spare controller into 
a spare-controller CPN and converting a state controller into a 
state-controller CPN, respectively. Note that in the algorithm 
presented in Fig. 12, when the trigger event is deactivation, 
no synchronization place needs to be introduced. We now use 
the spare controller and state controller examples in Fig. 4 to 
illustrate how these algorithms work. Fig. 13 shows a 
spare-controller CPN for the SPARE controller block in Fig. 
4 (a). The SPARE controller block models the spare part 
relationship between primary component P1 and two cold 
spare parts S1 and S2. When P1 fails, S1 is activated, and 
similarly, when S1 fails, S2 is activated. In order to model 
such a cascading relationship in CPN, we introduce two 
transitions SPC_P1 and SPC_S1, which connect the start 
places of P1 and S1, to the start places of S1 and S2, 
respectively. When P1 fails, and S1 is in its standby state, 
transition SPC_P1 may fire, which removes the “Standby” 
token in place S1_start, and deposits an “Active” token into 
S1_start. This indicates that S1 changes its state from 
“Standby” to “Active” due to the failure of P1. Similarly, 
when S1 fails, transition SPC_S1 may fire, which changes the 
state of S2 from “Standby” to “Active”. Note that in the 
spare-controller CPN model in Fig. 13, there are two 

function convert_Serial_Component(SerialComponent se_com) 
   create input/output connections for se_com; 
   foreach StructuralComponent s_com in se_com 
      if (s_com is simpleComponent | spareComponent) 
          convert s_com directly into a simple component CPN; 
      else if (s_com is ParallelComponent) 
          create input and output connections for s_com; 
          foreach StructuralComponent p_com in s_com 
             if (p_com is SimpleComponent | SpareComponent ) 
                convert p_com directly into a simple component CPN; 
             else if (p_com is SerialComponent) 
                convert_Serial_Component(p_com); 
          end 
          create all parallel connections in s_com; 
   end 
   create all serial connections in se_com; 
end function 

Fig. 9. Recursive algorithm for converting a SRBD into a CPN. 

 8



function convert_Spare_Controller(SpareController sp_con) 
   create place P1_start and transition P1_fail for primary component P1; 
   foreach SpareComponent Si (i = 1 to n) in sp_con  

synchronization places: SPC_sync1 and SPC_sync2. When 
transition SPC_P1 (SPC_S1) fires, a unit token is deposited 
into place SPC_sync1 (SPC_sync2), which enables transition 
P1_fail (S1_fail). Thus, SPC_sync1 (SPC_sync2) can be used 
to ensure that the firing of transition SPC_P1 (SPC_S1) 
precedes that of transition P1_fail (S1_fail), and the “Failed” 
token in place P1_start (S1_start) will not be accidentally 
removed before transition SPC_P1 (SPC_P2) fires. 
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Fig. 13. Spare-controller CPN for the SPARE block in Fig. 4 (a). 

In a DRBD model, a state controller (i.e., an SDEP 
controller block) models a state-based dependency 
relationship between simple components. Fig. 14 shows a 
state-controller CPN for the SDEP controller block with a 

trigger component C1 and two target components C2 and C3 
defined in Fig. 4 (b). The SDEP block is modeled by an SDEP 
transition in the state-controller CPN, which connects the 
start places of the three components. When C1 becomes 
active, and both C2 and C3 are also active, transition SDEP 
becomes enabled. Its firing deposits a “Standby” and “Failed” 
token into places C2_start and C3_start, respectively. It also 
deposits a unit token into synchronization place SDEP_sync, 
which may enable transition in_C1 when C1_start contains 
an “Active” token. Thus, SDEP_sync ensures that the firing 
of SDEP precedes that of in_C1, and the “Active” token in 
place C1_start will not be accidentally removed before SDEP 
fires.  
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Fig. 14. State-controller CPN for the SDEP block in Fig. 4 (b). 

      create place Si_start and transition Si_fail; 
   end 
   create transition SPC_P1 that connects P1_start and S1_start such that  

Fig. 11. Algorithm for converting a spare controller into a spare-controller CPN. 

   when P1 fails and S1 is standby, S1 is activated; 
   foreach SpareComponent Si (i = 1 to n-1) in sp_con 
      create transition SPC_Si that connects Si_start and S(i+1)_start  
      such that when Si fails and S(i+1) is standby, S(i+1) is activated; 
   end 
   create place SPC_sync1 that connects transitions SPC_P1 and P1_fail; 
   foreach SpareComponent Si (i = 1 to n-1) in sp_con 
      create place SPC_sync(i+1) that connects transitions SPC_Si and  
   Si_fail;    
   end 
end function 

Fig. 12. Algorithm for converting a state controller into a state-controller CPN. 

function convert_State_Controller(StateController st_con) 
   create place C1_start for trigger component C1; 
   foreach TargetComponent Ci (i = 2 to n) in st_con 
      create place Si_start for Ci; 
   end 
   create transition SDEP that connects all places Ci_start (i = 1 to n)  
   according to the trigger and target events defined in st_con;  
   if (trigger event is activation) 
      create transition in_C1 for trigger component C1; 
      create place SDEP_sync that connects transitions SDEP and in_C1; 
   else if (trigger event is failure) 
      create transition C1_fail for trigger component C1; 
      create 
end function 

place SDEP_sync that connects transitions SDEP and C1_fail; 
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Note that if the trigger event from simple component C1 is 
failure instead of activation, synchronization place 
SDEP_sync should be connected to transition C1_fail instead 
of in_C1. This case is illustrated in Fig. 15. On the other hand, 
if the trigger event from C1 is deactivation, no 
synchronization place is needed. This is because when C1 
becomes standby, neither of C1_fail and in_C1 is enabled, 
and SDEP is the only one enabled due to a “Standby” token in 
place C1_start. 
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[x=Failed]

SDEP
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Fig. 15. State-controller CPN with failure trigger event. 

Finally, the converted controller CPN models can be added 
into the CPN model developed for the embedded SRBD 
model in step one. This procedure can be done by merging the 
start places (e.g., P1_start in Fig. 13) and status transitions 
(e.g., P1_fail in Fig. 13 and in_C1 in Fig. 14) from the 
controller CPN models with the corresponding places and 
transitions defined in the CPN model for the embedded 
SRBD model. We illustrate this process in a case study 
presented in the following section. 

V. CASE STUDY: CONVERSION OF DRBD INTO CPN FOR 
FORMAL VERIFICATION 

A. DRBD Model of a Redundant Generator 
Consider a coast guard vessel whose electrical system is 

powered by three generators: primary, backup, and secondary 
backup one used only for emergency. The primary and 
backup generators can provide the vessel with enough 
kilowatts (KW) output to power all electrical components and 
equipment; while the emergency generator has less wattage 
output and can supply only power to the vessel’s essential 
equipment such as navigational lights, emergency lights and 
other equipment that keeps the engine running. Initially, only 
the primary generator is running, and the other two generators 
are in standby states. At runtime, if the primary one fails, it 
automatically triggers the backup one to switch from standby 
to online. Similarly, if the backup one fails, the emergency 
generator is activated. Connected in series to the generators is 
a power bus that is a series of circuit breakers that feed 
electricity from a generator to the electrical components on 
the ship. The power bus in this system contains two parallel 
buses, namely main and emergency buses. The main bus 
contains the breakers for all of the ship’s components, while 
the emergency bus powers only the vessel’s essential 
equipment.  

Fig. 16 shows the DRBD model for the system described 

above. It consists of two parallel components that are 
connected in serial. The first parallel component contains the 
generator components and is composed of the primary 
generator (PG1), backup generator (BG1) and emergency 
generator (BG2). PG1 is a simple component, initially in an 
“Active” state; while BG1 and BG2 are cold spare 
components, which are initially in “Standby” states. A spare 
controller (SPARE) is introduced to model the cascading 
failure of PG1 and BG1. If PG1 fails, BG1 is activated, and 
upon failure of BG1, BG2 enters its “Active” state. The 
second parallel component models the power buses. The two 
power buses, main bus (MB) and emergency bus (EB), are 
represented in the DRBD model as simple components within 
the power bus parallel component. Since the emergency 
generator BG2 does not output enough wattage to power MB 
when it enters its “Active” state, MB must be deactivated and 
EB must enter its “Active” state. This state-based dependency 
between BG2 and the power buses is modeled by an SDEP 
state controller. 

F 

 
Fig. 16. DRBD model of a redundant generator system. 

B. Automatic Generation of a CPN Model 
According to the algorithm presented in Section IV, the 

DRBD model of the redundant generator system can be 
converted into a CPN model as shown in Fig. 17. The first 
structural component within MAIN serial component is a 
parallel component representing the set of generators, 
denoted as GEN. During the conversion of GEN into CPN, 
CPN models corresponding to each generator (PG1, BG1, or 
BG2) are first created and then connected in parallel 
according to the algorithm. These parallel connections are 
illustrated in Fig. 17, where each generator CPN initially 
contains an “Active”, “Standby”, and “Standby” token in 
their start places PG1_start, BG1_start, and BG2_start, 
respectively. When any of these components is active, there is 
an “Active” token in one of places PG1_up, BG1_up, and 
BG2_up, which enables transitions GEN_PG1, GEN_BG1, 
and GEN_BG2, respectively. When one of these transitions 
fires, an “Active” token is deposited into place GEN_up, 
indicating that the GEN parallel component is active. On the 
other hand, if all of the places PG1_down, BG1_down, and 
BG2_down contain a “true” token, transition in_GEN_down 
may fire, which deposits a “true” token into place 
GEN_down. This enables transition GEN_fail, and its firing 
generates a “true” token indicating that the GEN structural 
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Fig. 17. CPN model converted from the DRBD model in Fig. 16. 

component is not functioning. 
The second structural component contained in MAIN is 

parallel component BUS representing the parallel power bus 
circuit in the DRBD model shown in Fig. 16. The conversion 
of BUS into CPN follows the same procedure as for parallel 
component GEN. When either of the buses is active, an 
“Active” token is deposited into place BUS_up, indicating 
that BUS is active. On the other hand, when both buses fail 
(indicated by a “true” token in both places MB_down and 
EB_down), transition in_BUS_down may fire, and its firing 
leads to a “true” token in place BUS_down. When the bus is 
down, transition BUS_fail may fire, and its firing generates a 
“true” token that can be passed to place MAIN_down. 

Once GEN and BUS are converted into their corresponding 
CPN models, they can be connected serially within 

component MAIN. The serial connection between the two 
structural components is simply made by connecting place 
GEN_up from parallel-component CPN of GEN to transition 
in_BUS from parallel-component CPN of BUS. In addition, 
since GEN is the first serially connected structural 
component, its transition in_GEN is connected to place 
MAIN_start. Similarly, since BUS is the last serial 
component, its place BUS_up is connected to transition 
in_MAIN_up. On the other hand, both transitions GEN_fail 
and BUS_fail are connected to place MAIN_down. However, 
due to inhibitor place MAIN_inhibit, only one of the 
transitions may fire, which ensures that the capacity of 
MAIN_down is one. 

In step two of the conversion, the DRBD controllers are 
converted into CPN and added into the CPN model developed 
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in step one. In this example, we have two controllers, i.e., 
SPARE and SDEP controller block. The SPARE controller 
block models the redundant behaviors of the three generators 
(PG1, BG1, and BG2) and is converted into two transitions 
SPC_PG1 and SPC_BG1 in the spare-controller CPN. The 
transition SPC_PG1 connects PG1_start and BG1_start, 
which is responsible for activating the backup generator BG1 
when primary generator PG1 fails. Similarly, transition 
SPC_BG1 connects BG1_start and BG2_start, which is 
responsible for activating emergency generator BG2 when 
backup generator BG1 fails. Note that synchronization place 
SPC_sync1 is used to ensure that a “Failed” token in place 
PG1_start (BG1_start) is not removed before transition 
SPC_PG1 (SPC_BG1) fires. The state controller block SDEP 
in Fig. 16, which deactivates main power bus MB and 
activates emergency power bus EB when BG2 is activated, is 
converted into transition SDEP in the state-controller CPN. 
The SDEP transition connects the three start places of 
components BG2, MB and EB, and its firing deposits a 
“Standby” token and an “Active” token into places MB_start 
and EB_start, respectively. SDEP_sync is used to ensure that 
the “Active” token is not accidentally removed before 
transition SDEP fires. 

In order to illustrate automatic generation of a CPN model 
from a DRBD model, we have implemented a prototype 
application that transforms an input file of DRBD model in 
RML into an output file of CPN model in XML that can be 
recognized by CPN Tools [40]. The prototype was 
implemented in Java 5, which provides a simple interface that 
can load an RML file and output a converted CPN model in 
XML. We use Document Object Model (DOM) technology 
[42] to parse an input RML file into a tree representing the 
corresponding DRBD structure for efficient processing and 
conversion. For details about the implementation of the 
prototype, refer to [43]. 

C. Analysis of DRBD Model Using CPN Tools 

Design errors in a DRBD model can be discovered by 
analyzing the state space of the CPN model converted from 
the DRBD model. Using an existing Petri net tool, called 
CPN Tools [40], we can generate a report detailing the 
properties of the CPN model in Fig. 17. The report, shown as 
the analysis results in Table I, indicates that the full state 
space (or called the occurrence graph) can be generated from 
the CPN model in zero second (almost instantaneously), 
which consists of 288 nodes and 763 arcs. Similarly, the CPN 
Tools can be used to further generate a strongly connected 
components (Scc) graph from the occurrence graph. The 
generated Scc graph consists of 288 nodes and 744 arcs, and 
plays an important role for analysis. The report also indicates 
that there are three deadlock states in the CPN model, namely 
S78, S171, and S282. They imply that transition SYS_up or 
SYS_down of the CPN model cannot eventually fire; 
therefore, there must be some design errors in the DRBD 
model. By tracing these deadlocks using CPN Tools, we find 
the following firing sequences that lead to them. 

σ1 = <S1, in_GEN, S4, in_PG1, S10, GEN_PG1, S19, MB_destruct, 
S30, in_BUS, S49, MB_fail, S78> 

σ2 = <S1, PG1_destruct, S2, in_GEN, S6, SPC_PG1, S14, in_BG1, S26, 
GEN_BG1, S43, MB_destruct, S55, PG1_fail, S87, MB_fail, S128, 
in_BUS, S171> 

σ3 = <S1, PG1_destruct, S2, SPC_PG1, S7, BG1_destruct, S15, 
SPC_BG1, S28, SDEP, S46, EB_destruct, S74, EB_fail, S114, 
in_GEN, S143, in_BG2, S184, PG1_fail, S222, BG1_fail, S251, 
GEN_BG2, S271, in_BUS, S282> 

TABLE I 
ANALYSIS RESULTS OF THE CPN MODEL IN FIG. 14 

Statistics Liveness Properties 

 

From firing sequence σ1, it is easy to see that S78 is due to 
the failure of main bus MB when the primary generator PG1 
is functioning. Although emergency bus EB is in the 
“Standby” state, and can provide services if activated, no such 
spare part relationship between MB and EB exists in either the 
DRBD model or corresponding CPN model. The firing 
sequence σ2 shows the similar situation when PG1 fails, and 
backup generator BG1 is active, but MB fails and EB is still in 
a “Standby” state. The firing sequence σ3 illustrates a 
different scenario. When both PG1 and BG1 fail, and 
emergency generator BG2 is activated, MB and EB will be 
deactivated and activated, respectively, due to the SDEP 
relationship between BG2 and bus components MB and EB. 
However, at this point of time, when EB fails, the BUS 
parallel component cannot be considered as “failed” because 
MB is still in a “Standby” state. Therefore, in the 
parallel-component CPN of BUS, neither place BUS_up will 
receive an “Active” token nor transition BUS_fail can fire. 
This leads to another deadlock situation in the CPN because 
no token will be deposited into either of places MAIN_down 
and MAIN_up. As a consequence, none of transitions 
SYS_down and SYS_up can fire eventually.  

In order to correct the design errors in the DRBD model, 
we need to define EB as a spare part of MB by introducing a 
SPARE block that links MB and EB, and labeling the links 
from MB to SPARE, and SPARE to EB by D | F and A, 
respectively. This implies that when MB is deactivated or 
failed, EB is automatically activated. As a result, in Fig. 16, 
the link from SDEP to EB labeled by A is no longer needed, 
and can be deleted. Now based on the revised version of the 
DRBD model, we fix the CPN model in Fig. 17 as follows. 

1. Add transition SPC_MB with places MB_start and 
EB_start as both of its input and output places. 

2. Add synchronization place SPC_sync3 with SPC_MB as 

State Space 
  Nodes:  288 
  Arcs:   763 
  Secs:   0 
  Status: Full 
Scc Graph 
  Nodes:  288 
  Arcs:   744 
  Secs:   0 

Dead Markings 
  [78,171,282] 
Dead Transition Instances 
  Generator'BUS_fail 1 
  Generator'in_BUS_down 1 
Live Transition Instances 
  None 
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its input transition and MB_fail as its output transition. 
3. Set the guard of transition SPC_MB such that MB_start 

contains a “Failed” or “Standby” token and EB_start 
contains a “Standby” token, i.e., [x=Failed orelse 
x=Standby, y=Standby];  

4. Set the output of transition SPC_MB to deposit an 
“Active” token into place EB_start when SPC_MB fires, 
i.e., output(z); action(Active). 

5. Modify the guard of transition MB_fail from 
[x=Failed] to [x=Failed orelse x=Standby]. This 
is because MB is deactivated only when both PG1 and 
BG1 are failed. In this case, MB should not be activated, 
and thus, should be considered as failed. 

6. Delete the arcs between transition SDEP and place 
EB_start. 

We now use the CPN Tools again to analyze the revised 
CPN model, and get the analysis results as shown in Table II. 
The results show that the revised CPN model has no 
deadlocks, which guarantees the correctness of the revised 
DRBD model in terms of deadlock-freeness. Further 
properties of the DRBD model can be analyzed using model 
checking techniques as demonstrated in previous work [5]. 
Refer to [44] for more examples of system properties that can 
be formally verified using existing Petri net tools. 

 

 
It is worth noting that the correct CPN model we developed 

for the redundant generator system can be further used for 
analysis and evaluation of system reliability properties. Such 
analysis and evaluation techniques are demonstrated in 
[26-27]. The detailed description of reliability evaluation on 
the CPN model is beyond the scope of this paper, but will be 
presented in our future work. 

VI. CONCLUSIONS AND FUTURE WORK 
There is a growing demand to build reliable and stable 

computer systems. Building these types of systems involves 
creating an accurate and correct system reliability model. A 
reliability model ensures that the constructed system has the 
desired measures of reliability determined by the system 
designers. This paper presents a procedure for formal 
modeling and verifying dynamic reliability block diagram 
(DRBD) for computer-based systems. In the procedure, a 
DRBD model is first converted into CPN. Then, existing CPN 

tools are used to verify the behavioral properties of the DRBD 
model, where design flaws and faulty states of the DRBD 
model can be identified by tracing the deadlock states of the 
CPN model. Our case study shows that the proposed 
approach supports effective detection and tracing of subtle 
design errors in a DRBD model, and can provide a potential 
solution to automated verification of DRBD models. For 
future work, we plan to investigate automated verification 
approaches for safety critical system analysis. We will 
consider to use compositional time Petri nets [45] to model 
time sensitive dependency between components in a system. 
We will also study how to analyze a DRBD model for system 
reliability evaluation, and develop a comprehensive 
development environment that supports editing, verification, 
analysis and evaluation of DRBD models for complex and 
large computer-based systems.  
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