
Automated Modeling of Dynamic Reliability Block Diagrams Using
Colored Petri Nets

Ryan Robidoux, Haiping Xu, Senior Member, IEEE, Liudong Xing, Senior Member, IEEE, and
MengChu Zhou, Fellow, IEEE

\

Abstract—Computer system reliability is conventionally
modeled and analyzed using techniques such as fault tree
analysis (FTA) and reliability block diagrams (RBD), which
provide static representations of system reliability properties. A
recent extension to RBD, called dynamic reliability block
diagrams (DRBD), defines a framework for modeling dynamic
reliability behavior of computer-based systems. However,
analyzing a DRBD model in order to locate and identify design
errors, such as a deadlock error or faulty state, is not trivial
when done manually. A feasible approach to verifying it is to
develop its formal model, and then analyze it using
programmatic methods. In this paper, we first define a
reliability markup language (RML) that can be used to formally
describe DRBD models. Then we present an algorithm that
automatically converts a DRBD model into a colored Petri net
(CPN). We use a case study to illustrate the effectiveness of our
approach and demonstrate how system properties of a DRBD
model can be verified using an existing Petri net tool. Our
formal modeling approach is compositional, thus it provides a
potential solution to automated verification of DRBD models.

Index Terms—System reliability, reliability block diagram
(RBD), extensible markup language (XML), colored Petri net
(CPN), time Petri net, formal modeling and analysis, automated
verification, deadlock detection.

NOMENCLATURE

API Application programming interface.
BNF Backus-Naur form.
CPN Colored Petri net.
DFTA Dynamic fault tree analysis.
DOM Document object model.
DRBD Dynamic reliability block diagram.
FTA Fault tree analysis.
PDP Piecewise deterministic Markov processes.
RBD Reliability block diagram.
RML Reliability markup language.

This work was supported in part by the College of Engineering,

University of Massachusetts Dartmouth.
R. Robidoux is with the Computer and Information Science Department,

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
(e-mail: u_rrobidoux@umassd.edu).

H. Xu is with the Computer and Information Science Department,
University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
(corresponding author, phone: 508-910-6427; fax: 508-999-9144; e-mail:
hxu@umassd.edu).

L. Xing is with the Electrical and Computer Engineering Department,
University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
(e-mail: lxing@umassd.edu).

M. C. Zhou is with the Department of Electrical and Computer
Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
(e-mail: zhou@njit.edu).

SAX Simple API for XML.
SDEP State-based dependency controller.
SPARE Spare part controller.
SRBD State-based reliability block diagram.
XML Extensible markup language.

I. INTRODUCTION
N OUR modern society, there is an increasing reliance on
computer-based systems that control critical infrastructures

such as telecommunication networks, banking systems, and
nuclear power plants. Such infrastructures are critical because
the failure of the supporting computer-based systems (e.g.,
interrupted phone service, financial loss, and nuclear
meltdown) can be catastrophic [1]. Therefore, ensuring the
reliability of such systems has become a growing need in the
computing world. There are many existing methods that can
be used to evaluate a system’s reliability, such as measuring a
system’s mean time to failure. In order to efficiently evaluate
or predicate a system’s reliability performance, an effective
system reliability model is required. Most reliability
modeling approaches are based on statistical methods. Their
typical examples are reliability block diagram (RBD), fault
tree analysis (FTA), and Markov chains [2]. The above
methods, however, can only provide system reliability
models where a system component must be either active or
failed; thus, they are very limited in their ability to accurately
model a system’s dependency relationships and dynamic
reliability properties. Dynamic FTA (DFTA) is another
modeling tool that can support modeling a functional
dependency in a system, where the failure of a component
causes some other dependent components to become
inaccessible or unusable [3]. However, DFTA cannot be used
to model a general state-based dependency relationship
between components, e.g., a state-based dependency where
the activation of a component causes the deactivation of a
dependent one.

Recently, an extension to RBD, called dynamic reliability
block diagram (DRBD) [4-5], was introduced with new
controller constructs that support modeling dynamic,
dependent and redundant relationships between components
in a computer-based system. Although it has been shown that
the DRBD approach is very effective in modeling a system’s
dynamic reliability properties, subtle flaws in it can be easily
introduced due to its modeling complexity. Therefore, formal
verification of a DRBD model is an essential step in
developing a correct system reliability model for the

I

 1

evaluation of a system’s reliability. In our recent work, we
demonstrated some preliminary results on how to formally
verify a DRBD model using colored Petri nets (CPN) [4-5],
which provide the formal semantics for DRBD models. The
approach follows the basic philosophy of recent efforts on
converting a UML (Unified Modeling Language) diagram to
Petri nets for formal verification [6]. However, the proposed
approach is not compositional for formal modeling, and does
not provide a generalized solution to automatically convert a
DRBD model into CPN. In this paper, we present an
algorithm that supports automatic conversion of a DRBD
model into CPN. Hence, DRBD’s automatic verification can
be accomplished by analyzing the state space of the CPN
using existing CPN tools. Note that since our proposed formal
modeling approach is compositional, our approach scales
with the sizes of DRBD models.

The rest of the paper is organized as follows. Section II
summarizes the related efforts in reliability modeling. Section
III provides a formal definition of DRBD with its embedded
state-based RBD (SRBD). In order to efficiently process
DRBD models, an XML-based language, called the reliability
markup language (RML), is introduced to represent a DRBD
model in XML format. Section IV outlines the procedures to
convert DRBD into CPN. Section V provides a case study
that illustrates how to create a DRBD model and convert it
into a CPN model for formal analysis. Finally, Section VI
presents the conclusions and future work.

II. RELATED WORK
Reliability modeling is an integral step in creating reliable

and fault-resistant computer-based systems. Currently, many
industries require that some form of qualitative system
reliability analysis be integrated into the design phase of a
computer-based system [3]. One of the major analysis
approaches for system reliability is FTA, which provides a
detailed analysis of a system’s failure probabilities. Fault
trees are logic diagrams that depict potential, critical events
within a system. A fault tree model represents the relationship
between a critical event and the reasons for the event’s
occurrence, such as specific component failures [7]. Since
FTA does not account for dynamic system properties, it is
extended into dynamic FTA (DFTA) in order to model
dynamic relationships between components [3, 8]. DFTA
introduces additional gates for modeling sequential and
sparing behavior, but it has limited ability to model complex
systems that involve dynamic component dependency such as
a general state-based dependency [4]. On the other hand, an
RBD represents a network of system components and their
connections [2]. The network consists of an input point and
output point, a number of blocks representing system
components, and multiple paths from the input point to output
point. The multiple paths represent successful system
operations, where an interruption of these paths may lead to
the failure of the whole system [9]. Therefore, an RBD model
represents the static topology of a computer-based system’s
reliability, where the topology can be a serial, parallel or

hybrid structure. Contrary to FTA, RBD models are
success-oriented networks that describe the function of a
system by probabilistic means [2]. Component blocks in an
RBD are arranged to illustrate the proper combinations of
working components that keep the entire system operational.
Failure of a component can be represented by removing the
component as well as its connections with other components
from the network. When a sufficient number of components
in a system fail, the whole system may also fail if there is no
connection between the input and output point.

Additional related work on system reliability modeling can
be summarized as follows. The SHARPE (symbolic
hierarchical automated reliability and performance evaluator)
tool expands the use of Markov models in reliability
verification of computer systems [10]. Sahner and Trivedi
recognize that Markov models can capture important
dynamic system behavior, but may also grow exponentially
with the number of system components. Their research
produces a hierarchical modeling technique for analyzing
complex reliability models, which allows for the flexibility of
Markov models where necessary, and retains the efficiency of
combinatorial solutions where possible. Leangsuksun, et al.
adopt UML technology to model the reliability of two-tier
computer systems [11]. They use UML deployment diagrams
to model system components and their relationships, and
manually create failure and repair rate for components in
order to construct statistical fault trees and Markov Chain
models. The system reliability is then calculated using the
SHARPE tool. Similarly, Dammag and Nissanke also propose
a visual model, called Safecharts, which can be used to
specify and design safety critical systems [12]. The novel
feature of Safecharts is its safety annotation that provides an
explicit ordering of states according to risk levels. In order to
support standards compliance testing and verification for
safety-critical systems, Hsiung, et al. attempt to integrate
Safecharts into VERTAF (Verifiable Embedded Real-Time
Application Framework), which is an application framework
for design and verification of embedded real-time software
[13]. Blake, et al. use an extension of Markov models to
specify the reliability of multiprocessor systems using
parametric sensitivity analysis [14]. Their approach creates an
upper and lower bound for each system parameter of interest
in order to compute the optimistic and conservative bounds
for the reliability of a multiprocessor system. Similar to the
FTA and RBD approaches, most of the above methods only
consider a system component as a bi-state component, which
must be either active or failed. Therefore, they suffer from the
same weakness as FTA and RBD models for modeling
dynamic system reliability properties. In our previous work,
we propose dynamic RBD (DRBD) as an extension to RBD
models [4-5]. New modeling constructs have been introduced
and formally specified in Object-Z formalism [15], and can
be used to model dynamic reliability properties of system
components, e.g., state-based dependency and spare part
relationships. Unlike DFTA, DRBD models are defined upon
state-based components where a component can be active,

 2

standby or failed. Thus, DRBD controlling constructs support
modeling general state-based dependencies. Reference [5]
gives an introduction to DRBD models as well as additional
related work on system reliability modeling.

Petri nets [16-18] have been widely used in industry for
modeling and analyzing computer-based systems such as
intelligent mobile robots and semiconductor manufacturing
systems [19-20]. There is some related work to our approach
that uses Petri nets for deadlock detection and avoidance.
Fanti and Zhou give a survey on state-of-the-art modeling and
deadlock control methods for discrete manufacturing systems
based on digraphs, automata, and Petri net approaches [21].
They present the updated results in the areas of deadlock
prevention, detection and recovery, and avoidance. Li, et al.
develop a methodology to synthesize supervisors for a special
class of Petri nets that can be used to model flexible
manufacturing systems [22]. In their research, a mixed
integer programming based deadlock detection technique is
used to find minimal siphons efficiently in a plant model.
Hsieh formulates a fault-tolerant deadlock avoidance
controller synthesis problem for assembly processes based on
a class of Petri nets [23]. He proposes a fault-tolerant
deadlock avoidance approach that consists of two algorithms,
namely a nominal algorithm to avoid deadlocks for nominal
system state and an exception handling algorithm to deal with
resource failures. Wu and Zhou propose a novel control
policy for deadlock avoidance for automated guided vehicle
system using colored resource-oriented Petri nets, and the
complexity of deadlock avoidance for the whole system is
bounded by the complexity in controlling the system [24].
More recently, Li, et al. summarize a variety of Petri net
based deadlock prevention policies for flexible
manufacturing systems [25]. Their work facilitates engineers
in choosing a suitable method for their industrial applications.
They further suggest developing polynomial algorithms in
order to improve the computational efficiency of deadlock
prevention methods that are based on the theory of regions.

Although the above Petri net based approaches can be used
for deadlock detection and avoidance, they are not aimed at
modeling system reliability. A few efforts on reliability
modeling using Petri nets can be summarized as follows.
Bobbio, et al. use the generalized stochastic Petri net (GSPN)
to support system dependability analysis [26]. Their approach
involves converting fault trees into a GSPN model for the
purpose of obtaining both qualitative and quantitative
analysis results for the modeled system. Everdij and Blom
develop piecewise deterministic Markov processes (PDP)
models using dynamically colored Petri nets (DCPN) [27].
They show that DCPN has similar modeling power to PDP,
and is more powerful than deterministic and stochastic Petri
nets. Petri nets are also applied in safety analysis of a system
as shown by Leveson and Stolzy, where Petri nets are used to
design and analyze the safety and fault tolerance of a system
[28]. Using timed Petri nets, they prove that paths to high risk
states can be removed based on reachability analysis. Buy and
Sloan propose a method to automatically analyze the timing

properties of concurrent systems [29]. Their method uses
simple time Petri nets to analyze concurrent software systems
developed in Ada. Ghezzi, et al. introduce a high-level Petri
net formalism, called ER nets (environment/relationship nets)
to model time critical software systems [30]. They prove that
ER nets can provide a satisfactory solution to analyzing the
timing and functionality of such systems. While the above
approaches are similar to our research efforts using Petri nets,
they are not concerned with formalizing dynamic reliability
properties of a computer system, such as a state-based
dependency. Furthermore, instead of providing quantitative
analysis of system reliability directly using Petri nets, our
approach currently focuses on using colored Petri nets (CPN)
[31] to verify the correctness of a DRBD model, namely the
safety properties and liveness properties [32] of the
corresponding system. Although there are many previous
efforts for formal modeling and analysis of various systems
using Petri nets [33-37], automated system modeling using
colored Petri nets is rare. As we demonstrate in the case study
in Section V, it is vital to provide an automated mechanism to
ensure the correctness of a DRBD model because a DRBD
model can become complicated when dynamic reliability
properties are involved.

III. DYNAMIC RELIABILITY BLOCK DIAGRAM
The novelty of DRBD is its ability to model dynamic

system reliability behaviors such as state-based dependency
and redundancy [4]. The DRBD approach introduces new
controller blocks, such as SDEP (state-based dependency
controller) and SPARE (spare part controller) for modeling
state-based dependency and spare part relationships,
respectively. A DRBD model consists of a state-based RBD
(SRBD) and a number of controller blocks. SRBD is an
extension to RBD where each component is associated with a
state representing the activeness of the component in the
system. An SRBD model defines the static structure of a
DRBD model, while the controller blocks model the dynamic
reliability properties of the system. The DRBD designs
described in this paper follow the notations and constructs
introduced in [4-5].

A. State-Based Reliability Block Diagram
An SRBD is a network of dynamic system components

called structural components. As defined in Fig. 1 in a
Backus-Naur form (BNF), a structural component can be one
of the three component types, namely simple component,
parallel component and serial component. Simple
components are a special case of structural components,
which represent atomic and physical system components with
a state. A component with a state can be formally defined as a
finite state machine consisting of three states, “Active”,
“Standby” and “Failed”, which may change at runtime. An
“Active” component is an online component that is actively
performing tasks. A component in a “Standby” state is ready
to perform tasks, but it is still waiting to be set online. A
“Failed” component is no longer online and cannot work

 3

properly. The two other structural component types are used
to define the topology of a DRBD. In Fig. 1, parallel
components and serial components are defined as sets of
structural components sandwiched between the tags
<parallel>…</parallel> and <serial>…</serial>,
respectively. The state of a structural component can be
logically determined by aggregating the states of its contained
components. Contained structural components within a
parallel component (i.e., simple or serial components) can
operate in parallel; therefore, only one of them must be in an
“Active” state for the parallel component to be considered as
active. A failed parallel component indicates that all of its
contained structural components are in “Failed” states.
Conversely, a serial component is not considered as active
unless all of its contained structural components (simple or
parallel component) are in “Active” states because the failure
of any of its contained components leads to the failure of the
whole serial component. Note that according to the definition
of SRBD in Fig. 1, a serial component may contain only one
component; thus, an SRBD with a single simple or parallel
component can also be viewed as a serial component.

Fig. 1. Definition of SRBD in Backus–Naur form (BNF).

Fig. 2 shows an example of an SRBD model. In this
example, two simple components (C1 and C2) are contained
within a serial component, which itself is contained in a
parallel component along with a third simple component
(C3). Note that if not specified explicitly, we assume that all
simple components are initially in “Active” states.

Fig. 2. An example of a state-based reliability block diagram.

B. DRBD Controller Blocks
Controller blocks defined in a DRBD model can be used to

model dynamic relationships between components. Fig. 3
shows the formal definition of a DRBD model with two types
of controllers, spare and state controllers, in a BNF format.
Note that additional types of controllers, e.g., a load sharing
block [5], can also be formally specified in a similar way.

Fig. 3. Definition of DRBD in BNF.

A spare controller can be used to model redundant system
behavior, where n spare components (n > 0) are used to back
up a primary component. The deactivation or failure of the
primary component (i.e., the primary event) triggers the first
spare component to enter an “Active” state. Similarly, the
deactivation or failure of the first spare component triggers
the second spare one to enter an “Active” state, and so on. The
activation of a spare component is called a spare event, while
the event of deactivation or failure of a spare component is
implicitly defined. A spare component is a simple component
with an ordering number and a sparing configuration. The
ordering number of a spare component is defined as a natural
number, and the standby spare component with the lowest
ordering number should always be activated first when a
primary component or a spare component is deactivated or
failed. The sparing configuration signifies the “activeness” of
a spare part. There are three types of sparing configurations,
namely hot, cold and warm. A hot spare component operates
in synchrony with a primary (i.e., online) component, and is
prepared to take over at any time; while a cold spare
component is unpowered until needed to replace a faulty
component [38]. A warm spare component is a tradeoff
between hot and cold configuration in terms of
reconfiguration time and power consumption. Without loss of
generality, in this paper, we assume that all spare components
used in our examples are cold spares.

Fig. 4 (a) illustrates a SPARE controller block with a
primary component, P1, and two cold spares, S1 and S2 with

<drbd> ::= <srbd><controller>{<controller>}
<controller>::= <spare controller>
 |<state controller>|...
<spare controller> ::= <spareCon><primary event>
 <spare event>{<spare event>}</spareCon>
<primary event> ::= <primary component>
 (<Deactivation>|<Failure>)
<primary component> ::= <simple component>
<spare event> ::= <spare component><Activation>
<spare component> ::= <simple component>
 <ordering number><sparing configuration>
<ordering number> ::= <natural number>
<sparing configuration > ::= <cold>|<warm>|<hot>
<state controller> ::= <stateCon><trigger event>

 <target event>{<target event>}</stateCon>
<trigger event> ::= <trigger component><event>
<trigger component> ::= <simple component>
 |<spare component>
<target event> ::= <target component><event>
<target component> ::= <simple component>
 |<spare component>
<event> ::= <Activation>|<Deactivation>|<Failure>
...

<srbd> ::= <structural component>
<structural component> ::= <simple component>
 |<serial component>|<parallel component>
<simple component> ::= <simple>
 <component id><component state></simple>
<component id> ::= <string>
<component state> ::= <Active>|<Standby>|<Failed>
<serial component> ::= <serial>
 <simple or parallel component>
 {<simple or parallel component>}</serial>
<simple or parallel component> ::=
 <simple component>|<parallel component>
<parallel component> ::= <parallel>
 <simple or serial component>
 <simple or serial component>{<simple or
 serial component>}</parallel>
<simple or serial component> ::=
 <simple component>|<serial component>)

C1 C2

C3

serial component

parallel component

 4

ordering numbers 1 and 2, respectively. In this example, the
first spare part S1 is activated if P1 fails, and S1’s failure
leads to the activation of the second spare component S2.
Note that the capitalized letter “C” at the upper right corner of
blocks S1 and S2 denotes that both are cold spares.

 (a)

 (b)

Fig. 4. (a) SPARE controller block. (b) SDEP controller block.

On the other hand, an SDEP controller block models the
state-based dependency relationships between components in
a system. With an SDEP controller block, a trigger event due
to change of state on a trigger component leads to target
events, which are state changes on target components. Both a
trigger and target component can be a simple or spare
component, and the number of target components must be
greater than zero. An event can be one of the three types,
namely “Activation,” “Deactivation,” and “Failure.” An
“Activation” event happening on a simple or spare
component causes it to enter an “Active” state. Similarly, a
“Deactivation” or “Failure” event happening on a simple or
spare component causes the component to enter a “Standby”
or “Failed” state, respectively. Fig. 4 (b) shows an example in
which the activation of C1 leads to the deactivation and
failure of C2 and C3, respectively. Note that both C2 and C3
are initially assumed in “Active” states, and otherwise, the
states of C2 and C3 may remain unchanged when C1 is
activated.

C. DRBD Model in Reliability Markup Language
The reliability markup language (RML) is an XML-based

schema defined to formally describe the components,
structure and dynamic behavior of a DRBD. RML is designed
based on the BNF definition of DRBD models. All
components and controllers in a DRBD model have nested
RML elements that describe their properties according to
their respected BNF definitions. Fig. 5 shows a DRBD model
with three parallel simple components C1-C3, which are
dependent on each other. The SDEP controller block specifies
that the deactivation of C1 leads to C2’s failure as well as
C3’s activation. The figure also shows the XML-based
representation of the DRBD model in RML. An RML file
uses the opening <rml> tag to signify the beginning of a
DRBD definition. Following it, an SRBD model is defined as

the top structural component, called MAIN component.
Component MAIN is defined as a serial component within the
tags <serialComponent> and </serialComponent>,
which may contain any number of structural components
(simple or parallel ones). In this example, the only structural
component contained in MAIN is a parallel component that is
defined within the tags <parallelComponent> and
</parallelComponent>. The parallel component has an
identification of PCom, which consists of three simple
components C1-C3. Each of them is defined within the tags
<simpleComponent> and </simpleComponent>, and has
an initial state defined inside the <initialState>…
</initialState> tags. In this example, the parallel
component consists of simple ones only, but in a more general
case, it may contain serial components. Similarly, a serial
component may also consist of any number of simple or
parallel components.

Fig. 5. XML-based representation of a DRBD model in RML.

After an SRBD has been defined, controllers are to be
added into the RML file using specific XML tags. For
example, state controller C1_SDEP can be defined within the

C1

C2

C3

SDEP

D

F

A

XML-based
representation

P1

S1

S2

SPARE

A

A

C

C

F

C1

C2

C3

SDEP
A

D

F

<?xml version="1.0"?>
<rml>
 <serialComponent id = "MAIN">
 <parallelComponent id = "PCom">
 <simpleComponent id = "C1">
 <initialState>Active</initialState>
 </simpleComponent>
 <simpleComponent id = "C2">
 <initialState>Active</initialState>
 </simpleComponent>
 <simpleComponent id = "C3">
 <initialState>Standby</initialState>
 </simpleComponent>
 </parallelComponent>
 </serialComponent>
 <stateController id = "C1_SDEP">
 <triggerEvent>
 <id>C1</id>
 <event>Deactivation</trigger>
 </triggerEvent>
 <targetEvent>
 <id>C2</id>
 <event>Failure</event>
 </targetEvent>
 <targetEvent>
 <id>C3</id>
 <event>Activation</event>
 </targetEvent>
 </stateController>
</rml>
</xml>

 5

<stateController> and </stateController> tags as
shown in Fig. 5. Inside the C1_SDEP definition, the trigger
and target events can be defined using <triggerEvent> …
</triggerEvent> and <targetEvent> …
</targetEvent> tags, respectively. Corresponding to (D,
F) and (D, A) state-based dependency between component C1
and C2, and C1 and C3, respectively, we define the trigger
event that occurs on C1 with a Deactivation event, and
two target events, which occur on C2 and C3 with the events
of Failure and Activation, respectively. When both
SRBD model and controllers have been defined, the RML file
is ended by the closing tag </rml>.

The motivation and major advantage of using RML to
describe a DRBD model is to allow access and mutation of a
DRBD model as an XML document. XML documents not
only support a standard information encoding and storage
format, but also allow programmers to use that information in
a standard way [39]. Currently, two dominant APIs for
processing XML-based documents are Simple API for XML
(SAX) and Document Object Model (DOM). The SAX
specification defines a low level API, which is an event-based
approach that can parse through XML data and call handler
functions when certain parts of the document are found. On
the other hand, the DOM specification defines a tree-based
approach to processing XML data. Based on the hierarchical
structure of the XML data, the DOM approach creates an
internal tree, which can be navigated at runtime. For
efficiency reasons, in this project, we have adopted the DOM
specification to process RML files.

IV. CONVERSION OF DRBD MODELS INTO CPN
In order to verify the correctness of a DRBD model, we

need to convert it into CPN using a two-step procedure. First,
the embedded SRBD of a DRBD model is converted into a
CPN model. Then, the controller blocks are converted into
Petri nets and added into the converted CPN model. The
following sections give the detailed descriptions for the
conversion procedures. Note that the CPN models described
in the following sections employ CPN-ML, which is a
powerful programming language of CPN as implemented in
CPN Tools [40]. We assume readers have the basic
knowledge of CPN-ML [41].

A. Conversion of SRBD into CPN
Before we present the algorithm to convert the embedded

SRBD of a DRBD model into a CPN model, we first describe
how to convert each type of structural components in an
SRBD into CPN. In order to model the component state, a
colored token called a state token is introduced, which has
three possible values, i.e., “Active”, “Standby” and “Failed”.
The movement of these tokens in a CPN model signifies the
state changes of the components in the DRBD model. Fig. 6
shows the conversion of a simple component into a CPN,
called simple-component CPN.

A simple-component CPN contains two places, i.e.,
C1_start and C1_up. C1_start contains an initial token with

color “Active” (denoted as 1`Active in Fig. 6), indicating
that its initial state is active. When C1 remains active and the
other input place to transition in_C1 also contains an “Active”
token (we do not show the other input place of transition
in_C1 in Fig. 6, but it is connected to in_C1 through the Input
Connection of the simple-component CPN), in_C1 may fire.
Its firing deposits an “Active” token into C1_up, indicating
that C1 is active. The “Active” token in C1_up can be further
passed along to other modules through Output Connection
(Active). On the other hand, if transition C1_destruct fires
while C1 is active, the “Active” token in C1_start is removed,
and a “Failed” token is deposited into C1_start. In this case,
transition C1_fail is enabled and can fire. When C1_fail fires,
it generates a “true” token indicating that C1 fails. The
generated “true” token can be further passed to other modules
through Output Connection (Failed).

xb

x x

x

C1_fail[x=Failed]

in_C1

[x=Active]

C1_destruct

[x=Active]

output(y) action(Failed)

C1_up

STATE

C1_start

1`Active

STATE

Output Connection
 (Active)

Output Connection
 (Failed)

Input Connection

x

y
x

output(b) action(true)

Fig. 6. Simple-component CPN for a simple component.

A serial-component CPN is a set of serially connected
structural component CPN. Fig. 7 shows a serial component
in DRBD containing two simple components, C1 and C2, and
its CPN representation.

Output Connection
 (Active)

x

x

b

b
x

x

u

u

b

x
x

x
x z

y
y

x

x z

y
y

x

in_Serial

[x=Active]

[b=true]

in_Serial_up

[x=Active]

C2_fail

[x=Failed]

output(b)
action(true)

in_C2

[x=Active,
 y=Active]

output(z) action(Active)

C2_destruct

[x=Active]

output(y) action(Failed)

C1_fail

[x=Failed]

output(b) action(true)

in_C1

[x=Active,
 y=Active]

output(z)
action(Active)

C1_destruct

[x=Active]

output(y)
action(Failed)

Serial_start

STATE

1`e

UNIT

BOOL

Serial_up

STATE

C2_up

STATE

C2_start

1`Active

STATE

C1_up

STATE

C1_start

1`Active

STATE

Serial_down Serial_inhibit

b

Serial_fail

Output Connection
 (Failed)

Input Connection

Fig. 7. Serial-component CPN for a serial component.

C1

C1 C2

 6

Similar to a simple-component CPN, a serial-component
CPN has an interface that consists of an Input Connection
(through its in_Serial transition) and two Output Connections
(through its Serial_up place and Serial_fail transition). When
transition in_Serial receives an “Active” token through Input
Connection, it can fire, and its firing deposits an “Active”
token into place Serial_start. This token enables transition
in_C1 if place C1_start also contains an “Active” token.

The behavior of C1 in Fig. 7 is the same as that of the
simple component C1 in Fig. 6. Note that both C1 and C2 in
Fig. 7 are modeled in exactly the same way as C1 in Fig. 6.
When both places C1_up and C2_start contain an “Active”
token, transition in_C2 is enabled, and its firing deposits an
“Active” token into C2_up. The “Active” token in C2_up
further enables transition in_Serial_up, and may place an
“Active” token in place Serial_up. Similar to a
simple-component CPN, an “Active” token in Serial_up
indicates that the serial component is functioning properly.
The firing procedure also implies that the serial component is
active only when both of its contained simple components,
C1 and C2, are active.

On the other hand, when either C1 or C2 fails, transition
C1_fail or C2_fail can fire. When either fires, a “true” token
is deposited into place Serial_down, which enables transition
Serial_fail. Firing Serial_fail generates a “true” token
indicating that the serial component cannot function properly
due to the failure of its contained components. The firing
procedure also implies that the serial component becomes
failed when either C1 or C2 fails. Note that when both C1 and
C2 fail, only one of the transitions, either C1_fail or C2_fail,
can fire because place Serial_inhibit limits the capacity of
place Serial_down to one; thus, Serial_fail will not
accidentally fire twice.

A parallel component contains a set of structural
components (simple or serial components) that are connected
in parallel. Fig. 8 shows the DRBD model of a parallel
component with two simple components C1 and C2, and its
CPN representation. Similar to a simple-component and a
serial-component CPN, a parallel-component CPN has an
Input Connection (through its in_Para transition) and two
Output Connections (through its Para_up place and Para_fail
transition).

Components C1 and C2 in Fig. 8 are modeled in the same
way as shown in Fig. 6. When Input Connection passes an
“Active” token to transition in_Para, its firing deposits an
“Active” token into place Para_start, which enables both
in_C1 and in_C2. When C1 or C2 is active, transition in_C1
or in_C2 may fire, and can deposit an “Active” token in place
C1_up or C2_up, respectively. The “Active” token in either
C1_up or C2_up enables Para_C1 or Para_C2, and
eventually leads to an “Active” token in place Para_up.
Similar to a serial-component CPN, an “Active” token in
Para_up indicates that the parallel component can function
properly. Note that at any time, only one of the transitions
(either in_C1 or in_C2) may fire. Thus the capacity of place
Para_up must be one.

x

x

b

b

x

x

b

b

x

x

b

bx

y z
x

x

x

x

x

z

y
y
x

b

in_Para

Para_fail

[b=true]

C1_fail

[x=Failed]

output(b)
action(true)

in_Para_down

[b=true]

Para_C2

[x=Active]

C2_fail

[x=Failed]

output(b) action(true)

in_C2

[x=Active, y=Active] output(z) action(Active)

C2_destruct

[x=Active]

output(y)
action(Failed)

Para_C1

[x=Active]

in_C1

[x=Active, y=Active]

output(z)
action(Active)C1_destruct

[x=Active]

output(y)
action(Failed)

C1_down BOOL

C2_down

BOOL

C2_up

STATE

C2_start

1`Active

STATE

C1_up

STATE

C1_start

1`Active

STATE

Para_down

BOOL

Para_up

STATE

Para_start

STATE

Input Connection

Output Connection
 (Active)

Output Connection
 (Failed)

y

Fig. 8. Parallel-component CPN for a parallel component.

On the other hand, if both C1 and C2 fail, there will be a
“true” token in both places C1_down and C2_down, which
enables transition in_Para_down. Its firing deposits a “true”
token into place Para_down, which enables transition
Para_fail. Firing Para_fail generates and passes a “true”
token to other modules through Output Connection. The
firing procedure implies that the parallel component is not
functioning due to the failure of both C1 and C2.

It is worth noting that although in the above examples, both
serial and parallel components contain simple components
only, they may contain serial or parallel components in a
more general case. In such a case, CPN models can be
composed in exactly the same way as described. This is
because both a serial-component CPN and a
parallel-component CPN have the same interface as a
simple-component CPN. Thus, our conversion approach is
compositional.

We now provide a recursive algorithm for automatically
converting an SRBD model into a CPN model. The proposed
recursive algorithm treats the previous techniques as a
function that recursively expands structural components in
order to derive a CPN that formally defines an entire SRBD.
The algorithm is illustrated as pseudocode in Fig. 9, which is
defined as a recursive function convert_Serial_
Component with a parameter of type SerialComponent.

The algorithm starts with viewing a SRBD model as a
serial component, and creating the needed input and output
connections. As defined in Fig. 1, a serial component can
contain one or more than one simple or parallel components.
Thus we use a for-loop to convert each of the contained
structural components. If a contained component is a simple
or spare component, we convert it directly into a
simple-component CPN as shown in Fig. 6; otherwise, if it is
a parallel component, we first create the needed input and
output connections for the parallel-component CPN, and then
use a for-loop again to convert each of contained structural

C1

C2

 7

components into a CPN. For each contained structural
component in the parallel component, we check whether it is
a simple or spare component. If it is a simple or spare
component, we convert it directly into a simple-component
CPN; otherwise, if it is a serial one, the function
convert_Serial_Component is called recursively. When
all contained components in a parallel component have been
converted into CPNs, all simple-component CPN and
serial-component CPN are connected together (as shown in
Fig. 8) to create a parallel-component CPN. Similarly, when
all contained components in a serial component have been
converted into CPNs, all simple-component and
parallel-component CPNs are connected together (as shown
in Fig. 7) to create a serial-component CPN.

The resulting CPN for an SRBD contains open input and
output connections. In order to develop a complete CPN
model for the SRBD, we introduce additional places and
transitions into the SRBD CPN. As shown in Fig. 10, an
SRBD is treated as serial component MAIN with three major
places MAIN_start, MAIN_up, and MAIN_down.

Output Connection
 (Active)

Output Connection
 (Failed)

Input Connection

b

b x

x

b x

x

x
SYS_up

[x=Active]

SYS_down

[b=true]

in_MAIN_up

[x=Active]

SRBD CPN

MAIN_down

BOOL

MAIN_up

STATE

MAIN_start

1`Active

Fig. 10. The complete CPN model for an embedded SRBD.

Place Main_start initially contains an “Active” token, and
connects to the SRBD CPN through Input Connection.
Similarly, Main_up and Main_down connect to the SRBD
CPN through Output Connection (Active) and Output
Connection (Failed), respectively. Note that since Output
Connection (Active) can only pass a token to a transition,
place Main_up connects to the SRBD CPN through an
intermediate transition in_Main_up. In addition, two
transitions, SYS_up and SYS_down, are connected to

MAIN_up and MAIN_down, respectively. When there is a
“true” token in either MAIN_up or MAIN_down, SYS_up or
SYS_down can fire, which denotes that the system is
functioning or failing. Note that when we execute the CPN
model, it should eventually end up with firing of either
SYS_up or SYS_down; otherwise, there must be a deadlock
state existing in the CPN model.

B. Conversion of DRBD Controllers into CPN

The next step in converting a DRBD model into a CPN is to
convert DRBD controllers into controller CPN, and add them
into the CPN model developed for the embedded SRBD
model in step one. A controller CPN consists of a set of
transitions and arcs that connect to the start places of the
corresponding simple-component CPN. Fig. 11 and Fig. 12
illustrate the algorithms for converting a spare controller into
a spare-controller CPN and converting a state controller into a
state-controller CPN, respectively. Note that in the algorithm
presented in Fig. 12, when the trigger event is deactivation,
no synchronization place needs to be introduced. We now use
the spare controller and state controller examples in Fig. 4 to
illustrate how these algorithms work. Fig. 13 shows a
spare-controller CPN for the SPARE controller block in Fig.
4 (a). The SPARE controller block models the spare part
relationship between primary component P1 and two cold
spare parts S1 and S2. When P1 fails, S1 is activated, and
similarly, when S1 fails, S2 is activated. In order to model
such a cascading relationship in CPN, we introduce two
transitions SPC_P1 and SPC_S1, which connect the start
places of P1 and S1, to the start places of S1 and S2,
respectively. When P1 fails, and S1 is in its standby state,
transition SPC_P1 may fire, which removes the “Standby”
token in place S1_start, and deposits an “Active” token into
S1_start. This indicates that S1 changes its state from
“Standby” to “Active” due to the failure of P1. Similarly,
when S1 fails, transition SPC_S1 may fire, which changes the
state of S2 from “Standby” to “Active”. Note that in the
spare-controller CPN model in Fig. 13, there are two

function convert_Serial_Component(SerialComponent se_com)
 create input/output connections for se_com;
 foreach StructuralComponent s_com in se_com
 if (s_com is simpleComponent | spareComponent)
 convert s_com directly into a simple component CPN;
 else if (s_com is ParallelComponent)
 create input and output connections for s_com;
 foreach StructuralComponent p_com in s_com
 if (p_com is SimpleComponent | SpareComponent)
 convert p_com directly into a simple component CPN;
 else if (p_com is SerialComponent)
 convert_Serial_Component(p_com);
 end
 create all parallel connections in s_com;
 end
 create all serial connections in se_com;
end function

Fig. 9. Recursive algorithm for converting a SRBD into a CPN.

 8

function convert_Spare_Controller(SpareController sp_con)
 create place P1_start and transition P1_fail for primary component P1;
 foreach SpareComponent Si (i = 1 to n) in sp_con

synchronization places: SPC_sync1 and SPC_sync2. When
transition SPC_P1 (SPC_S1) fires, a unit token is deposited
into place SPC_sync1 (SPC_sync2), which enables transition
P1_fail (S1_fail). Thus, SPC_sync1 (SPC_sync2) can be used
to ensure that the firing of transition SPC_P1 (SPC_S1)
precedes that of transition P1_fail (S1_fail), and the “Failed”
token in place P1_start (S1_start) will not be accidentally
removed before transition SPC_P1 (SPC_P2) fires.

x

x

y
u u

u u

z

x

x

S1_fail

[x=Failed]

P1_fail

[x=Failed]

SPC_S1

[x=Failed,
y=Standby]

output(z) action(Active)

SPC_P1

[x=Failed, y=Standby]

output(z) action(Active)

UNIT

SPC_sync1

UNIT

S2_start

STATE

S1_start

P1_start 1`Active

STATE

z
y

SPC_sync2

1`Standby

STATE

1`Standby

Fig. 13. Spare-controller CPN for the SPARE block in Fig. 4 (a).

In a DRBD model, a state controller (i.e., an SDEP
controller block) models a state-based dependency
relationship between simple components. Fig. 14 shows a
state-controller CPN for the SDEP controller block with a

trigger component C1 and two target components C2 and C3
defined in Fig. 4 (b). The SDEP block is modeled by an SDEP
transition in the state-controller CPN, which connects the
start places of the three components. When C1 becomes
active, and both C2 and C3 are also active, transition SDEP
becomes enabled. Its firing deposits a “Standby” and “Failed”
token into places C2_start and C3_start, respectively. It also
deposits a unit token into synchronization place SDEP_sync,
which may enable transition in_C1 when C1_start contains
an “Active” token. Thus, SDEP_sync ensures that the firing
of SDEP precedes that of in_C1, and the “Active” token in
place C1_start will not be accidentally removed before SDEP
fires.

y

u

x

z
wv

xx

in_C1

[x=Active]

SDEP

[x=Active,
y=Active,
z=Active]

output (v,w) action(Standby, Failed)

SDEP_sync

UNIT

C2_start

1`Active

STATE

C3_start

1`Active

STATE

C1_start

1`Standby

STATE

u

Fig. 14. State-controller CPN for the SDEP block in Fig. 4 (b).

 create place Si_start and transition Si_fail;
 end
 create transition SPC_P1 that connects P1_start and S1_start such that

Fig. 11. Algorithm for converting a spare controller into a spare-controller CPN.

 when P1 fails and S1 is standby, S1 is activated;
 foreach SpareComponent Si (i = 1 to n-1) in sp_con
 create transition SPC_Si that connects Si_start and S(i+1)_start
 such that when Si fails and S(i+1) is standby, S(i+1) is activated;
 end
 create place SPC_sync1 that connects transitions SPC_P1 and P1_fail;
 foreach SpareComponent Si (i = 1 to n-1) in sp_con
 create place SPC_sync(i+1) that connects transitions SPC_Si and
 Si_fail;
 end
end function

Fig. 12. Algorithm for converting a state controller into a state-controller CPN.

function convert_State_Controller(StateController st_con)
 create place C1_start for trigger component C1;
 foreach TargetComponent Ci (i = 2 to n) in st_con
 create place Si_start for Ci;
 end
 create transition SDEP that connects all places Ci_start (i = 1 to n)
 according to the trigger and target events defined in st_con;
 if (trigger event is activation)
 create transition in_C1 for trigger component C1;
 create place SDEP_sync that connects transitions SDEP and in_C1;
 else if (trigger event is failure)
 create transition C1_fail for trigger component C1;
 create
end function

place SDEP_sync that connects transitions SDEP and C1_fail;

 9

Note that if the trigger event from simple component C1 is
failure instead of activation, synchronization place
SDEP_sync should be connected to transition C1_fail instead
of in_C1. This case is illustrated in Fig. 15. On the other hand,
if the trigger event from C1 is deactivation, no
synchronization place is needed. This is because when C1
becomes standby, neither of C1_fail and in_C1 is enabled,
and SDEP is the only one enabled due to a “Standby” token in
place C1_start.

y

u

u

x

z
wv

xx

C1_fail

[x=Failed]

SDEP

[x=Failed,
y=Active,
z=Active]

output (v,w) action(Failed, Failed)

SDEP_sync

UNIT

C2_start

1`Active

STATE

C3_start

1`Active

STATE

C1_start

1`Active

STATE

Fig. 15. State-controller CPN with failure trigger event.

Finally, the converted controller CPN models can be added
into the CPN model developed for the embedded SRBD
model in step one. This procedure can be done by merging the
start places (e.g., P1_start in Fig. 13) and status transitions
(e.g., P1_fail in Fig. 13 and in_C1 in Fig. 14) from the
controller CPN models with the corresponding places and
transitions defined in the CPN model for the embedded
SRBD model. We illustrate this process in a case study
presented in the following section.

V. CASE STUDY: CONVERSION OF DRBD INTO CPN FOR
FORMAL VERIFICATION

A. DRBD Model of a Redundant Generator
Consider a coast guard vessel whose electrical system is

powered by three generators: primary, backup, and secondary
backup one used only for emergency. The primary and
backup generators can provide the vessel with enough
kilowatts (KW) output to power all electrical components and
equipment; while the emergency generator has less wattage
output and can supply only power to the vessel’s essential
equipment such as navigational lights, emergency lights and
other equipment that keeps the engine running. Initially, only
the primary generator is running, and the other two generators
are in standby states. At runtime, if the primary one fails, it
automatically triggers the backup one to switch from standby
to online. Similarly, if the backup one fails, the emergency
generator is activated. Connected in series to the generators is
a power bus that is a series of circuit breakers that feed
electricity from a generator to the electrical components on
the ship. The power bus in this system contains two parallel
buses, namely main and emergency buses. The main bus
contains the breakers for all of the ship’s components, while
the emergency bus powers only the vessel’s essential
equipment.

Fig. 16 shows the DRBD model for the system described

above. It consists of two parallel components that are
connected in serial. The first parallel component contains the
generator components and is composed of the primary
generator (PG1), backup generator (BG1) and emergency
generator (BG2). PG1 is a simple component, initially in an
“Active” state; while BG1 and BG2 are cold spare
components, which are initially in “Standby” states. A spare
controller (SPARE) is introduced to model the cascading
failure of PG1 and BG1. If PG1 fails, BG1 is activated, and
upon failure of BG1, BG2 enters its “Active” state. The
second parallel component models the power buses. The two
power buses, main bus (MB) and emergency bus (EB), are
represented in the DRBD model as simple components within
the power bus parallel component. Since the emergency
generator BG2 does not output enough wattage to power MB
when it enters its “Active” state, MB must be deactivated and
EB must enter its “Active” state. This state-based dependency
between BG2 and the power buses is modeled by an SDEP
state controller.

F

Fig. 16. DRBD model of a redundant generator system.

B. Automatic Generation of a CPN Model
According to the algorithm presented in Section IV, the

DRBD model of the redundant generator system can be
converted into a CPN model as shown in Fig. 17. The first
structural component within MAIN serial component is a
parallel component representing the set of generators,
denoted as GEN. During the conversion of GEN into CPN,
CPN models corresponding to each generator (PG1, BG1, or
BG2) are first created and then connected in parallel
according to the algorithm. These parallel connections are
illustrated in Fig. 17, where each generator CPN initially
contains an “Active”, “Standby”, and “Standby” token in
their start places PG1_start, BG1_start, and BG2_start,
respectively. When any of these components is active, there is
an “Active” token in one of places PG1_up, BG1_up, and
BG2_up, which enables transitions GEN_PG1, GEN_BG1,
and GEN_BG2, respectively. When one of these transitions
fires, an “Active” token is deposited into place GEN_up,
indicating that the GEN parallel component is active. On the
other hand, if all of the places PG1_down, BG1_down, and
BG2_down contain a “true” token, transition in_GEN_down
may fire, which deposits a “true” token into place
GEN_down. This enables transition GEN_fail, and its firing
generates a “true” token indicating that the GEN structural

PG1

BG1

BG2

 SDEP

SPARE
A D

MB

A

A

EB

C

C

A

 10

u u

u u

zy

v

w

b

x

b

b

x

b

b

x

y

y

x

b

b
x

u

x

x

z y

zx

y

y

x

z

b

b x

x

x

x

x

x

x

u b b

b

x

xx

x

zxy
x

b

b

u

b x

x

b

b x

y

x

x

y

zx
y
x

y

z

x
y
x

b

PG1_fail

[x=Failed]

output(b) action(true)

BG1_fail

[x=Failed]

output(b) action(true)

MB_fail [x=Failed]
output(b) action(true)

SDEP

SPC_BG1 [x=Failed, z=Standby]
output(y) action(Active)

in_BG2

[x=Active, y=Active]

SPC_PG1 [x=Failed, z=Standby]
output(y) action(Active)

SYS_down [b=true]

[x=Active]

in_GEN

[x=Active]

in_BUS

BUS_fail
[b=true]

BUS_EB

EB_fail [x=Failed]
output(b) action(true)

[x=Active, y=Active]

EB_destruct

[x=Active]

output(y) action(Failed)

BUS_MB

[x=Active]

in_MB

[x=Active,
 y=Active]

output(z) action(Active)

MB_destruct

[x=Active]

output(y) action(Failed)

GEN_fail [b=true]

in_GEN_down

[b=true]

BG2_fail

[x=Failed]

output(b) action(true)

BG2_destruct
[x=Active]

output(y) action(Failed)

in_BG1

output(z) action(Active)

BG1_destruct

[x=Active]
output(y)
action(Failed)

in_PG1

[x=Active, y=Active]

output(z) action(Active)

PG1_destruct

[x=Active]
output(y)
action(Failed)

SPC_sync2

UNIT

SPC_sync1

UNIT

PG1_down

BOOL

BG1_down

BOOL

MB_down

BOOL

STATE

EB_down

BOOL

EB_upEB_start

1`Standby

STATE

MB_upMB_start

1`Active

STATE

BUS_down

BOOL

BUS_start

STATE

BG2_down

BOOL

BG2_start

1`Standby

STATE

BG1_start

1`Standby

STATE

STATE

PG1_start

1`ActiveSTATE

GEN_down

BOOL

STATE

GEN_start

STATE

MAIN_inhibit
1`e

UNIT

MAIN_down

BOOL

MAIN_start

1`Active

STATE

u

GEN_BG2

BG2_up

output(z)
action(Active)

[x=Active]

[x=Active]

GEN_up

UNIT

[x=Active] x

BUS_up

[x=Active]
x

STATE

colset UNIT = unit with e;
colset BOOL = bool;
colset STATE = with Active | Standby | Failed;

var x, y, z, v, w : STATE;
var u : UNIT;
var b : BOOL;

PG1_up

GEN_PG1

BG1_up

GEN_BG1

[x=Active, y=Active]

STATE

x

in_EB

in_MAIN_up

MAIN_up

in_BUS_down

[b=true]

y

output(w,v) action(Standby, Active)

SDEP_sync
[x=Active,
y=Active,
z=Standby]

STATE

STATE
x

[x=Active]

STATE

x

x

[x=Active] SYS_up

Fig. 17. CPN model converted from the DRBD model in Fig. 16.

component is not functioning.
The second structural component contained in MAIN is

parallel component BUS representing the parallel power bus
circuit in the DRBD model shown in Fig. 16. The conversion
of BUS into CPN follows the same procedure as for parallel
component GEN. When either of the buses is active, an
“Active” token is deposited into place BUS_up, indicating
that BUS is active. On the other hand, when both buses fail
(indicated by a “true” token in both places MB_down and
EB_down), transition in_BUS_down may fire, and its firing
leads to a “true” token in place BUS_down. When the bus is
down, transition BUS_fail may fire, and its firing generates a
“true” token that can be passed to place MAIN_down.

Once GEN and BUS are converted into their corresponding
CPN models, they can be connected serially within

component MAIN. The serial connection between the two
structural components is simply made by connecting place
GEN_up from parallel-component CPN of GEN to transition
in_BUS from parallel-component CPN of BUS. In addition,
since GEN is the first serially connected structural
component, its transition in_GEN is connected to place
MAIN_start. Similarly, since BUS is the last serial
component, its place BUS_up is connected to transition
in_MAIN_up. On the other hand, both transitions GEN_fail
and BUS_fail are connected to place MAIN_down. However,
due to inhibitor place MAIN_inhibit, only one of the
transitions may fire, which ensures that the capacity of
MAIN_down is one.

In step two of the conversion, the DRBD controllers are
converted into CPN and added into the CPN model developed

 11

in step one. In this example, we have two controllers, i.e.,
SPARE and SDEP controller block. The SPARE controller
block models the redundant behaviors of the three generators
(PG1, BG1, and BG2) and is converted into two transitions
SPC_PG1 and SPC_BG1 in the spare-controller CPN. The
transition SPC_PG1 connects PG1_start and BG1_start,
which is responsible for activating the backup generator BG1
when primary generator PG1 fails. Similarly, transition
SPC_BG1 connects BG1_start and BG2_start, which is
responsible for activating emergency generator BG2 when
backup generator BG1 fails. Note that synchronization place
SPC_sync1 is used to ensure that a “Failed” token in place
PG1_start (BG1_start) is not removed before transition
SPC_PG1 (SPC_BG1) fires. The state controller block SDEP
in Fig. 16, which deactivates main power bus MB and
activates emergency power bus EB when BG2 is activated, is
converted into transition SDEP in the state-controller CPN.
The SDEP transition connects the three start places of
components BG2, MB and EB, and its firing deposits a
“Standby” token and an “Active” token into places MB_start
and EB_start, respectively. SDEP_sync is used to ensure that
the “Active” token is not accidentally removed before
transition SDEP fires.

In order to illustrate automatic generation of a CPN model
from a DRBD model, we have implemented a prototype
application that transforms an input file of DRBD model in
RML into an output file of CPN model in XML that can be
recognized by CPN Tools [40]. The prototype was
implemented in Java 5, which provides a simple interface that
can load an RML file and output a converted CPN model in
XML. We use Document Object Model (DOM) technology
[42] to parse an input RML file into a tree representing the
corresponding DRBD structure for efficient processing and
conversion. For details about the implementation of the
prototype, refer to [43].

C. Analysis of DRBD Model Using CPN Tools

Design errors in a DRBD model can be discovered by
analyzing the state space of the CPN model converted from
the DRBD model. Using an existing Petri net tool, called
CPN Tools [40], we can generate a report detailing the
properties of the CPN model in Fig. 17. The report, shown as
the analysis results in Table I, indicates that the full state
space (or called the occurrence graph) can be generated from
the CPN model in zero second (almost instantaneously),
which consists of 288 nodes and 763 arcs. Similarly, the CPN
Tools can be used to further generate a strongly connected
components (Scc) graph from the occurrence graph. The
generated Scc graph consists of 288 nodes and 744 arcs, and
plays an important role for analysis. The report also indicates
that there are three deadlock states in the CPN model, namely
S78, S171, and S282. They imply that transition SYS_up or
SYS_down of the CPN model cannot eventually fire;
therefore, there must be some design errors in the DRBD
model. By tracing these deadlocks using CPN Tools, we find
the following firing sequences that lead to them.

σ1 = <S1, in_GEN, S4, in_PG1, S10, GEN_PG1, S19, MB_destruct,
S30, in_BUS, S49, MB_fail, S78>

σ2 = <S1, PG1_destruct, S2, in_GEN, S6, SPC_PG1, S14, in_BG1, S26,
GEN_BG1, S43, MB_destruct, S55, PG1_fail, S87, MB_fail, S128,
in_BUS, S171>

σ3 = <S1, PG1_destruct, S2, SPC_PG1, S7, BG1_destruct, S15,
SPC_BG1, S28, SDEP, S46, EB_destruct, S74, EB_fail, S114,
in_GEN, S143, in_BG2, S184, PG1_fail, S222, BG1_fail, S251,
GEN_BG2, S271, in_BUS, S282>

TABLE I
ANALYSIS RESULTS OF THE CPN MODEL IN FIG. 14

Statistics Liveness Properties

From firing sequence σ1, it is easy to see that S78 is due to
the failure of main bus MB when the primary generator PG1
is functioning. Although emergency bus EB is in the
“Standby” state, and can provide services if activated, no such
spare part relationship between MB and EB exists in either the
DRBD model or corresponding CPN model. The firing
sequence σ2 shows the similar situation when PG1 fails, and
backup generator BG1 is active, but MB fails and EB is still in
a “Standby” state. The firing sequence σ3 illustrates a
different scenario. When both PG1 and BG1 fail, and
emergency generator BG2 is activated, MB and EB will be
deactivated and activated, respectively, due to the SDEP
relationship between BG2 and bus components MB and EB.
However, at this point of time, when EB fails, the BUS
parallel component cannot be considered as “failed” because
MB is still in a “Standby” state. Therefore, in the
parallel-component CPN of BUS, neither place BUS_up will
receive an “Active” token nor transition BUS_fail can fire.
This leads to another deadlock situation in the CPN because
no token will be deposited into either of places MAIN_down
and MAIN_up. As a consequence, none of transitions
SYS_down and SYS_up can fire eventually.

In order to correct the design errors in the DRBD model,
we need to define EB as a spare part of MB by introducing a
SPARE block that links MB and EB, and labeling the links
from MB to SPARE, and SPARE to EB by D | F and A,
respectively. This implies that when MB is deactivated or
failed, EB is automatically activated. As a result, in Fig. 16,
the link from SDEP to EB labeled by A is no longer needed,
and can be deleted. Now based on the revised version of the
DRBD model, we fix the CPN model in Fig. 17 as follows.

1. Add transition SPC_MB with places MB_start and
EB_start as both of its input and output places.

2. Add synchronization place SPC_sync3 with SPC_MB as

State Space
 Nodes: 288
 Arcs: 763
 Secs: 0
 Status: Full
Scc Graph
 Nodes: 288
 Arcs: 744
 Secs: 0

Dead Markings
 [78,171,282]
Dead Transition Instances
 Generator'BUS_fail 1
 Generator'in_BUS_down 1
Live Transition Instances
 None

 12

its input transition and MB_fail as its output transition.
3. Set the guard of transition SPC_MB such that MB_start

contains a “Failed” or “Standby” token and EB_start
contains a “Standby” token, i.e., [x=Failed orelse
x=Standby, y=Standby];

4. Set the output of transition SPC_MB to deposit an
“Active” token into place EB_start when SPC_MB fires,
i.e., output(z); action(Active).

5. Modify the guard of transition MB_fail from
[x=Failed] to [x=Failed orelse x=Standby]. This
is because MB is deactivated only when both PG1 and
BG1 are failed. In this case, MB should not be activated,
and thus, should be considered as failed.

6. Delete the arcs between transition SDEP and place
EB_start.

We now use the CPN Tools again to analyze the revised
CPN model, and get the analysis results as shown in Table II.
The results show that the revised CPN model has no
deadlocks, which guarantees the correctness of the revised
DRBD model in terms of deadlock-freeness. Further
properties of the DRBD model can be analyzed using model
checking techniques as demonstrated in previous work [5].
Refer to [44] for more examples of system properties that can
be formally verified using existing Petri net tools.

It is worth noting that the correct CPN model we developed

for the redundant generator system can be further used for
analysis and evaluation of system reliability properties. Such
analysis and evaluation techniques are demonstrated in
[26-27]. The detailed description of reliability evaluation on
the CPN model is beyond the scope of this paper, but will be
presented in our future work.

VI. CONCLUSIONS AND FUTURE WORK
There is a growing demand to build reliable and stable

computer systems. Building these types of systems involves
creating an accurate and correct system reliability model. A
reliability model ensures that the constructed system has the
desired measures of reliability determined by the system
designers. This paper presents a procedure for formal
modeling and verifying dynamic reliability block diagram
(DRBD) for computer-based systems. In the procedure, a
DRBD model is first converted into CPN. Then, existing CPN

tools are used to verify the behavioral properties of the DRBD
model, where design flaws and faulty states of the DRBD
model can be identified by tracing the deadlock states of the
CPN model. Our case study shows that the proposed
approach supports effective detection and tracing of subtle
design errors in a DRBD model, and can provide a potential
solution to automated verification of DRBD models. For
future work, we plan to investigate automated verification
approaches for safety critical system analysis. We will
consider to use compositional time Petri nets [45] to model
time sensitive dependency between components in a system.
We will also study how to analyze a DRBD model for system
reliability evaluation, and develop a comprehensive
development environment that supports editing, verification,
analysis and evaluation of DRBD models for complex and
large computer-based systems.

ACKNOWLEDGMENT
The authors would like to thank the Associate Editor and

all anonymous referees whose comments and suggestions
greatly helped us to improve the presentation and the quality
of this paper.

REFERENCES
[1] S. M. Rinaldi, “Modeling and simulating critical infrastructures and

their interdependencies,” in Proc. 37th Annual Hawaii Int. Conf.
System Sciences (HICSS'04), Jan. 2004, Big Island, HI, USA, pp.
20054a (1-8).

TABLE II
ANALYSIS RESULTS OF THE CPN MODEL IN FIG. 14 (AFTER REVISION)

[2] M. Rausand and A. Hoyland, System Reliability Theory: Models,
Statistical Methods, and Applications, 2nd Edition, New York, USA,
Wiley-Interscience, 2003.

[3] R. Manian, J. Dugan, D. Coppit, and K. Sullivan, “Combining various
solution techniques for dynamic fault tree analysis of computer
systems,” in Proc. 3rd Int. Symp. High-Assurance Systems Engineering
(HASE’98), Washington, D.C., USA, 1998, pp. 21–28.

[4] H. Xu and L. Xing, “Formal semantics and verification of dynamic
reliability block diagrams for system reliability modeling,” in Proc.
11th Int. Conf. Software Engineering and Applications, Nov. 2007,
Cambridge, Massachusetts, USA, pp. 155–162.

[5] H. Xu, L. Xing, and R. Robidoux, “DRBD: dynamic reliability block
diagrams for system reliability modeling,” International Journal of
Computers and Applications (IJCA), vol. 31, no. 2, pp. 132-141, 2009.

[6] Z. Hu and S. M. Shatz, “Explicit modeling of semantics associated with
composite states in UML statecharts,” Journal of Automated Software
Engineering, vol. 13, no. 4, Oct. 2006, pp. 423-467.

[7] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault
Tree Handbook, NUREG-0492, U.S. Government Printing Office,
Washington, DC, USA, 1981.

[8] H. Boudali, P. Crouzen, and M. Stoelinga, “Dynamic fault tree analysis
using input/output interactive Markov chains,” in Proc. 37th Annual
IEEE/IFIP Int. Conf. Dependable Systems and Networks (DSN’07),
June 2007, Edinburgh, UK, pp. 708-717.

[9] A. Abd-Allah, “Extending reliability block diagrams to software
architecture,” Technical Report USC-CSE-97-501, University of
Southern California, Mar. 1997.

[10] R. A. Sahner and K. S. Trivedi, “Reliability modeling using SHARPE,”
IEEE Trans. Reliab., vol. R-36, no. 2, pp. 186-193, Jun. 1987.

[11] C. Leangsuksun, H. Song, and L. Shen, “Reliability modeling using
UML,” In Proc. 2003 Int. Conf. Software Engineering Research and
Practice, Jun. 2003, Las Vegas, Nevada, USA, pp. 259-262.

[12] H. Dammag and N. Nissanke, “Safecharts for specifying and designing
safety critical systems,” in Proc. 18th IEEE Symp. Reliable Distributed
Systems, 1999, Lausanne, Switzerland, pp. 78-87.

[13] P.-A. Hsiung; S.-W. Lin; C.-H. Tseng; T.-Y. Lee; J.-M. Fu; W.-B. See,
“VERTAF: an application framework for the design and verification of

Statistics Liveness Properties

State Space
 Nodes: 897
 Arcs: 2836
 Secs: 1
 Status: Full
Scc Graph
 Nodes: 897
 Arcs: 2700
 Secs: 0

Dead Markings
 None
Dead Transition Instances
 None
Live Transition Instances
 None

 13

embedded real-time software,” IEEE Trans. Softw. Eng., vol. 30, no.
10, pp. 656-674, Oct. 2004.

[14] J. T. Blake, A. L. Reibman, and K. S. Trivedi, “Sensitivity analysis of
reliability and performability measures for multiprocessor systems,” in
Proc. 1988 ACM SIGMETRICS Conf. Measurement and Modeling of
Computer Systems, 1988, pp. 177-186.

[15] R. Duke, G. Rose, and G. Smith, “Object-Z: a specification language
advocated for the description of standards,” Computer Standards and
Interfaces, vol. 17, North-Holland, 1995, pp. 511-533.

[16] T. Murata, “Petri nets: properties, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541-580, Apr. 1989.

[17] J. Wang, Timed Petri Nets: Theory and Application, Norwell, MA,
Kluwer Academic Publishers, 1998.

[18] M. C. Zhou and K. Venkatesh, Modeling, Simulation and Control of
Flexible Manufacturing Systems: A Petri Net Approach, Singapore,
World Scientific, 1999.

[19] F.-Y. Wang, K. J. Kyriakopoulos, A. Tsolkas, and G. N. Saridis, “A
Petri-net coordination model for an intelligent mobile robot,” IEEE
Trans. Syst., Man and Cybern., vol. 21, no. 4, pp. 777-789, Jul.-Aug.
1991.

[20] M. Jeng, X. Xie, and S.-L. Chung, “ERCN* merged nets for modeling
degraded behavior and parallel processes in semiconductor
manufacturing systems,” IEEE Trans. Syst., Man and Cybern. A, Syst.,
Humans, vol. 34, no. 1, pp. 102-112, Jan. 2004.

[21] M. P. Fanti and M. C. Zhou, “Deadlock control methods in automated
manufacturing systems,” IEEE Trans. Syst., Man, and Cybern. A, Syst.,
Humans, vol. 34, no. 1, pp. 5-22. Jan. 2004.

[22] Z. W. Li, H. S. Hu, and A. R. Wang, “Design of liveness-enforcing
supervisors for flexible manufacturing systems using Petri nets,” IEEE
Trans. Syst., Man, and Cybern. C, Appl. Rev., vol. 37, no. 4, pp.
517-526, Jul. 2007.

[23] F.-S. Hsieh, “Fault-tolerant deadlock avoidance algorithm for assembly
processes,” IEEE Trans. Syst., Man and Cybern. A, Syst., Humans, vol.
34, no. 1, pp. 65-79, Jan. 2004.

[24] N. Wu and M. C. Zhou, “Modeling and deadlock avoidance of
automated manufacturing systems with multiple automated guided
vehicles,” IEEE Trans. Syst., Man, and Cybern. B, Cybern., vol. 35, no.
6, pp. 1193-1202, Dec. 2005.

[25] Z. W. Li, M. C. Zhou, and N. Q. Wu, “A survey and comparison of
Petri net-based deadlock prevention policy for flexible manufacturing
systems,” IEEE Trans. Syst., Man, and Cybern. C, Appl. Rev., vol.38,
no.2, pp. 172-188, 2008.

[26] A. Bobbio, G. Franceschinis, L. Portinale, and R. Gaeta, “Exploiting
Petri nets to support fault-tree based dependability analysis,” in Proc.
8th Int. Workshop on Petri Nets and Performance Models, Zaragoza,
Spain, Sept. 1999, pp. 146-155.

[27] M. Everdij and H. Blom, “Petri-nets and hybrid-state Markov processes
in a power-hierarchy of dependability models,” in Proc. IFAC Conf.
Analysis and Design of Hybrid Systems, June 2003, Saint-Malo,
Brittany, France.

[28] N. G. Leveson and J. L. Stolzy, “Safety analysis using Petri nets,” IEEE
Trans. Softw. Eng., vol. 13, no. 3, pp. 386-397, Mar. 1987.

[29] U. Buy and R. Sloan. “A Petri net-based approach to real-time program
analysis,” in Proc. 7th Int. Workshop on Software Specification and
Design, Dec. 1993, Redondo Beach, California, pp. 56-60.

[30] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzc, “A unified
high-level Petri net formalism for time-critical systems,” IEEE Trans.
Softw. Eng., vol. 17, no. 2, pp. 160-172, Feb. 1991.

[31] K. Jensen, “Coloured Petri nets: basic concepts, analysis methods, and
practical use,” Basic Concepts EATCS Monographs on Theoretical
Computer Science, vol. 2, Springer-Verlag, 1997.

[32] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Trans. Softw. Eng., vol. 3, no. 2, pp. 125-143, Mar. 1977.

[33] Y. Y. Du, C. J. Jiang, and M. C. Zhou, “Modeling and analysis of
real-time cooperative systems using Petri nets,” IEEE Trans. Syst., Man
and Cybern. A, Syst., Humans, vol. 37, no. 5, pp. 643-654, Sept. 2007.

[34] V. R. L. Shen and T. T.-Y. Juang, “Verification of knowledge-based
systems using predicate/transition nets,” IEEE Trans. Syst., Man and
Cybern. A, Syst., Humans, vol. 38, no. 1, pp. 78-87, Jan. 2008.

[35] L. Ma and J. J. P. Tsai, “Formal modeling and analysis of a secure
mobile-agent system,” IEEE Trans. Syst., Man and Cybern. A, Syst.,
Humans, vol. 38, no. 1, pp. 180-196, Jan. 2008.

[36] J.-S. Lee, M. C. Zhou, and P.-L. Hsu, “Multiparadigm modeling for
hybrid dynamic systems using a Petri net framework,” IEEE Trans.

Syst., Man and Cybern. A, Syst., Humans, vol. 38, no. 2, pp. 493-498,
Mar. 2008.

[37] H. Wang and Q. Zeng, “Modeling and analysis for workflow
constrained by resources and nondetermined time: an approach based
on Petri nets,” IEEE Trans. Syst., Man and Cybern. A, Syst., Humans,
vol. 38, no. 4, pp. 802-817, Jul. 2008.

[38] B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems,
Boston, MA, Addison-Wesley Longman Publishing Co. Inc., 1989.

[39] C. Goldfarb and P. Prescod, The XML Handbook, Upper Saddle River,
NJ, Prentice Hall, 2000.

[40] A. V. Ratzer, L. Wells, H. M. Lasen, M. Laursen, J. F. Qvortrup, et al.,
“CPN Tools for editing, simulating and analyzing colored Petri nets,”
in Proc. 24th Int. Conf. Application and Theory of Petri Nets,
Eindhoven, Netherlands, Jun. 2003, pp. 450-462.

[41] CPN Group, “CPN ML: language for declarations and net
inscriptions,” CPN Tools Help, Department of Computer Science,
University of Aarhus, Jul. 2008, Retrieved on Aug. 26, 2008, from
http://wiki.daimi.au.dk/cpntools-help/cpn_ml.wiki

[42] E. R. Harold, Processing XML with Java: A Guide to SAX, DOM,
JDOM, JAXP, and TrAX, Boston, MA, Addison-Wesley Professional,
2002.

[43] R. Robidoux, “Automated verification of a computer system reliability
model,” M.S. Thesis, Computer and Information Science Department,
University of Massachusetts Dartmouth, Jul. 2007.

[44] H. Xu and S. M. Shatz, “A framework for model-based design of
agent-oriented software,” IEEE Trans. Softw. Eng., vol. 29, no. 1, pp.
15-30, Jan. 2003.

[45] J. Wang, Y. Deng, and M. Zhou, “Compositional time Petri nets and
reduction rules,” IEEE Trans. Syst., Man and Cybern. B, Cybern., vol.
30, no. 4, pp. 562-572, Aug. 2000.

Ryan Robidoux the B.S. degree and the
M Science from University
of Massach , in 2004 and
2007,

 receive
.S. degree in Computer

usetts Dartm
 respectively.

He is currently a R
e Developer at

ch and I
cation, and an adjunc

mputer and Informati
of Massachus

d

outh, MA

e

nnovation in

o ar
e

03–S
r Engineer
g
te

on,
p

C
 worked with

search Associate and a
Softwar the Kaput Center for
Resear Mathematics
Edu t faculty member in the
Co n Science Dep tment at
University tts Dartmouth. His major
research interests include neural network, software

engineering, formal methods, and web services.
Ryan is a recipient of the Faculty Award for top students in the Computer

and Information Science Department, University of Massachusetts
Dartmouth, 2004.

Haiping X M’07) received the
B.S. degree ical ing from
Zhejian zhou, China, in 1989, the
M r Science from Wright
State Univer OH, in 1998, and the
Ph.D. degree in uter Science from the
University hicago, IL, in 2003.

u (S’97–M’
 in Elect

g University, Han
.S. degree in Compu

sity, Dayt
 Com

 of Illinois at
Prior to 1996, he successively
en-Yan Systems T

Packard Co., as
Sh echnology, Inc. and
Hewlett- a Software Engineer, in
Beijing, China. Since 2003, he has been with the

University of Massachusetts Dartmouth, where he is currently an Associate
Professor at the Computer and Information Science Department, and a
Co-Director of the Concurrent Software Engineering Laboratory (CSEL). He
has published over 40 research papers including 20 peer-reviewed journal
publications. He has supervised about 30 M.S. theses and M.S. projects at
University of Massachusetts Dartmouth, and co-supervised 2 Ph.D.
dissertations. His research has been supported by the U.S. National Science
Foundation (NSF) and the U.S. Marine Corps. His research interests include
distributed software engineering, formal methods, cyber security,
multi-agent systems, electronic commerce, trustworthy computing,
reliability engineering and service-oriented systems.

Dr. Xu is a senior member of the Association of Computing Machinery
(ACM). He is currently an Associate Editor for several journals including the

 14

Journal of Computers (JCP) and International Journal of Computers and
Applications (IJCA). He has served as a program committee Co-Chair for the
International Conference on Software Engineering Theory and Practice
(SETP), and a program committee member for over 30 international
conferences. He is a recipient of the Outstanding Ph.D. Thesis Award in
2004, and has been included in the 11th Edition of Who's Who Among
America's Teachers, 2006.

 15

ely.

orks.

edded control.

Liudong Xing (S’00–M’02–SM’07) received the
B.E. degree in Computer Science from Zhengzhou
University, Zhengzhou, China, in 1996 and the
M.S. and Ph.D. degrees in Electrical Engineering
from the University of Virginia, Charlottesville, in
2000 and 2002, respectiv

She was a Research Assistant with the Chinese
Academy of Sciences, Shenyang, from 1996 to
1998. She joined University of Massachusetts
Dartmouth, North Dartmouth, in 2002, where she is
currently an Associate Professor with the Electrical

and Computer Engineering Department. Her major field of study is on
reliability engineering and fault-tolerant computing. Her current research
interests include dependable computing and networking, hardware and
software reliability engineering, fault-tolerant computing, and wireless
sensor netw

MengChu Zhou (S’88–M’90–SM’93–F’03)
received the B.S. degree in Electrical Engineering
from Nanjing University of Science and
Technology, Nanjing, China, in 1983, the M.S.
degree in Automatic Control from the Beijing
Institute of Technology, Beijing, China, in 1986,
and the Ph.D. degree in Computer and Systems
Engineering from Rensselaer Polytechnic Institute,
Troy, NY, in 1990.

He joined New Jersey Institute of Technology
(NJIT), Newark, in 1990, where he is currently a

Professor of electrical and computer engineering in the Department of
Electrical and Computer Engineering and the Director of Discrete-Event
Systems Laboratory. He also serves as the Director of the M.S. in Computer
Engineering Program and Area Coordinate of Intelligent Systems, NJIT. He
is also with the School of Electro-Mechanical Engineering, Xidian
University, Xi’an, China. He organized and chaired over 80 technical
sessions and served on program committees for many conferences. He has
led or participated in 36 research and education projects with a total budget of
over ten million dollars, funded by the National Science Foundation,
Department of Defense, Engineering Foundation, New Jersey Science and
Technology Commission, and industry. He was invited to lecture in
Australia, Canada, China, France, Germany, Hong Kong, Italy, Japan, Korea,
Mexico, Singapore, Taiwan, and U.S. and served as a plenary speaker for
several conferences. He has over 300 publications including seven books,

more than 130 journal papers, and 17 book chapters. He is the coauthor (with
F. DiCesare) of Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems (Kluwer Academic, 1993), the Editor of Petri Nets in
Flexible and Agile Automation (Kluwer Academic, 1995), the coauthor (with
K. Venkatesh) of Modeling, Simulation, and Control of Flexible
Manufacturing Systems: A Petri Net Approach (World Scientific, 1998), the
coeditor (with M. P. Fanti) of Deadlock Resolution in Computer-Integrated
Systems (Marcel Dekker, 2005), the coauthor (with H. Zhu) of
Object-Oriented Programming in C++: A Project-based Approach (Tsinghua
University Press, 2005), and the coauthor (with B. Hruz) of Modeling and
Control of Discrete Event Dynamic Systems (Springer, 2007). His research
interests are automated manufacturing systems, life cycle engineering and
sustainability evaluation, Petri nets, wireless ad hoc and sensor networks,
system security, semiconductor manufacturing, and emb

Dr. Zhou is a Life Member of the Chinese Association for Science and
Technology, USA, and he served as its President in 1999. He served as an
Associate Editor of the IEEE TRANSACTIONS ON ROBOTICS AND
AUTOMATION from 1997 to 2000 and the IEEE TRANSACTIONS ON
AUTOMATION SCIENCE and ENGINEERING from 2004–2007. He is
currently the Managing Editor of the IEEE TRANSACTIONS ON SYSTEMS,
MAN AND CYBERNETICS (SMC)—PART C: APPLICATIONS AND
REVIEWS, the Editor of the IEEE TRANSACTIONS ON AUTOMATION
SCIENCE AND ENGINEERING, and an Associate Editor of the IEEE
TRANSACTIONS ON SMC—PART A: SYSTEMS AND HUMANS and the
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. He served as a
Guest Editor for many journals including the IEEE TRANSACTIONS ON
INDUSTRIAL ELECTRONICS and the IEEE TRANSACTIONS ON
SEMICONDUCTOR MANUFACTURING. He was the General Chair of the
IEEE Conference on Automation Science and Engineering, Washington,
D.C., August 23–26, 2008; the General Cochair of the 2003 IEEE
International Conference on SMC, Washington, D.C., October 5–8, 2003; the
Founding General Cochair of the 2004 IEEE International Conference on
Networking, Sensing and Control, Taipei, March 21–23, 2004; and the
General Chair of the 2006 IEEE International Conference on Networking,
Sensing and Control, Ft. Lauderdale, FL, April 23–25, 2006. He was the
Program Chair of 1998 and 2001 IEEE International Conference on SMC and
the 1997 IEEE International Conference on Emerging Technologies and
Factory Automation. He was the Founding Chair of the Discrete Event
Systems Technical Committee, the Founding Cochair of the Enterprise
Information Systems Technical Committee of IEEE SMC Society, and the
Chair (founding) of the Semiconductor Manufacturing Automation
Technical Committee of the IEEE Robotics and Automation Society. He was
the recipient of the National Science Foundation Research Initiation Award;
the Computer-Integrated Manufacturing University-LEAD Award by the
Society of Manufacturing Engineers; the Perlis Research Award by NJIT; the
Humboldt Research Award for U.S. Senior Scientists; the Leadership Award
and the Academic Achievement Award by the Chinese Association for
Science and Technology, USA; the Asian American Achievement Award by
the Asian American Heritage Council of New Jersey; and the Distinguished
Lecturership of IEEE SMC Society.

	I. INTRODUCTION
	II. Related Work
	III. Dynamic Reliability Block Diagram
	A. State-Based Reliability Block Diagram
	B. DRBD Controller Blocks
	C. DRBD Model in Reliability Markup Language

	IV. Conversion of DRBD Models into CPN
	A. Conversion of SRBD into CPN
	B. Conversion of DRBD Controllers into CPN

	V. Case Study: Conversion of DRBD into CPN for Formal Verification
	A. DRBD Model of a Redundant Generator
	B. Automatic Generation of a CPN Model
	C. Analysis of DRBD Model Using CPN Tools

	VI. Conclusions and Future Work

