

Smart Real Estate Assessments Using Structured
Deep Neural Networks

Haiping Xu and Amol Gade
Computer and Information Science Department

University of Massachusetts Dartmouth
Dartmouth, MA, USA

{hxu, agadel}@umassd.edu

Abstract—In a smart city, effective and accurate real estate
assessments governed by a local government is crucial for
determining the property taxes. Such assessments have never
been trivial, and inappropriate assessments may result in
disputes between property owners and the local government. In
this paper, we introduce a deep learning approach to smartly and
effectively assessing real estate values. We propose a systematic
method to derive a layered knowledge graph and design a
structured Deep Neural Network (DNN) based on it. Neurons in
a structured DNN are structurally connected, which makes the
network time and space efficient; and thus, it requires fewer data
points for training. The structured DNN model has been designed
to learn from the most recently captured data points; therefore,
it allows the model to adapt to the latest market trends. To
demonstrate the effectiveness of the proposed approach, we use a
case study of assessing real properties in small towns. A
structured DNN was designed to match with a layered knowledge
graph for property assessments in the real estate domain, which
results in a significant reduction of neurons and connections
between them. The experimental results show that a structured
DNN outperforms conventional multivariate linear regression
models, fully-connected neural networks, and prediction methods
used by the leading real estate companies.

Keywords—Smart city, deep learning, real estate assessments,
layered knowledge graph, structured deep neural networks

I. 0B0BINTRODUCTION

As large amount of data being continuously generated by
digital devices and online activities in a smart city, intelligently
using the data through predictive analytics for product value
assessments would help the city to make better decisions,
identify trends, and improve city management performance. In
the real estate domain, effectively assessing real properties by a
local government is crucial for accurate assessments of
property taxes; however, such assessments are intrinsically
nontrivial, and inappropriate assessments may result in
disputes between property owners and the local government.
Proper and accurate assessments of real estate is not only
important for a local government to effectively determine the
tax values of real properties, but also valuable for prospective
homeowners, developers, investors, appraisers, and other real
estate market participants, such as mortgage lenders and
insurers [1, 2], who often rely on real estate agents or certified
appraisers to get the estimation of desired properties. However,
traditional services are usually expensive, and it has been an

insistent demand by the current real estate industry to develop
a logical scientific assessment model that is not only easy-to-
use, but also reliable and accurate.

Since the collected data for real property assessments are
typically multidimensional and nonlinear, it has been very
difficult and ineffective to use conventional regression
approaches to model the assessment functions. Assessing real
properties has long been considered a challenging problem, as
the values of real properties depend on many different
parametric and non-parametric features. Real estate values are
a chronological and time-sensitive sequence with unknown
statistical relationships influenced by many factors, which
makes it nontrivial to predict property values using predefined
functions [3]. In addition, the domain knowledge for real estate
may be structured and complex, which makes it hard to use
traditional classifiers to learn the functions and to accurately
assess real estate values. As a result, the use of most advanced
algorithms for predictive analytics is necessary. Data mining
and machine learning techniques are becoming more and more
important for assessing the values of time-sensitive products
based on historical data. Deep learning, as a new branch of
machine learning, has gained significant attention from the
machine learning and artificial intelligence communities due to
its ability to automatically learn multiple level representations
from structured data using either supervised or unsupervised
learning. There have been many previous efforts on using data
mining approaches, such as neural networks, for house prices
prediction [3, 4]; however, to the best our knowledge, most of
the existing approaches use fully-connected neural networks,
where the number of hidden layers and the number of neurons
are determined in an ad-hoc way; therefore, they do not
necessarily match the knowledge structure of the real estate
domain. In this paper, we introduce a structured deep learning
approach for real estate assessments. We present a systematic
approach to extracting structured knowledge from the real
estate domain and designing a structurally connected Deep
Neural Network (DNN) to assess real properties. In addition,
the structured DNN is designed to learn in real time, which
allows it to adapt to new market trends efficiently. To
demonstrate the effectiveness of our proposed approach, we
collected data from real estate web sites such as Zillow.com,
and performed experiments to construct structured DNNs and
assess real property values. The experimental results show that
our approach is promising, which not only provides a
systematic way to construct DNNs, but also improves the
accuracy of real property assessments.

978-1-5386-0435-9/17/$31.00 ©2017 IEEE 1126

II. 1B1BRELATED WORK

Previous work on predicting house prices has been based
on regression analysis and machine learning techniques. Frew
and Jud used hedonic modeling techniques to estimate the
house prices in the Greater Portland region [1]. They observed
that house values would rise less than proportionally with the
size and number of units, and decline with age, but the
marginal effect of aging was small. Lowrance used a local
linear model and random forest model to predict house sale
prices in Los Angeles County [2]. He showed that random
forest model may perform better than the local linear model.
Hu and Zhong used backpropagation neural networks and
Elman neural network to forecast real estate prices [3]. They
found that Elman neural network could forecast more accurate
and constringe faster than other approaches. Nguyen and
Cripps compared the predictive performance of artificial neural
networks (ANNs) and multiple regression analysis for single-
family housing sales [4]. They found that when enough data
points were available for training, ANNs could perform better
than multiple linear regressions. Hamzaoui and Perez applied a
feed-forward backpropagation neural network with a single
hidden layer to predict the selling prices of residential
properties in Casablanca, Morocco Kingdom [5]. The
experimental results suggested that ANNs could be used as a
tool for reliable prediction of house selling prices. Zhang
predicted real estate prices using fuzzy neural network to
support fuzzy reasoning and learning [6]. His research showed
that fuzzy neural network may work better than traditional
neural network approaches. Chopra et al. used a latent
manifold model with two trainable components to evaluate
house prices [7]. The first one is a parametric component that
predicts the “intrinsic” price of a house using its features, and
the second one is a non-parametric component that calculates
the desirability of the neighborhood. The study found that the
latent manifold model performs better than pure parametric or
non-parametric models. Although the above approaches could
be used to predict house selling prices, none of them used most
advanced deep learning approach to evaluating real properties.
Different from the existing approaches, we propose to use a
deep learning approach with structured DNNs, which may
outperform the conventional ones for real estate assessments.

There is also quite a lot of previous work on using machine
learning and deep learning techniques for predictive analytics.
Mitchell and Sheppard used simple, non-connectionist
dimensionality reduction techniques including conventional
Principal Component Analysis (PCA) and deep architecture
PCA to generate features for image classification [8]. They
concluded that a deep architecture could help to improve the
performance of the models. Liao et al. presented a structured
deep learning architecture for phoneme recognition [9]. When
a structured input is given, the approach can learn and find the
best-structured object based on the mapping relationships
between the structures. Their test results showed that the model
outperformed other conventional approaches for phoneme
recognition. Ford et al. used a neural network model to detect
suspicious bidders in online auctions [10]. Their approach
focused on training the neural network with newly added
structured data, so it can quickly adapt to changing trends in
bidding. Although the above approaches used structured input
and learning processes, the DNNs are fully connected, whereas

in our approach, we use a structurally connected DNN that is
significantly different from their approaches.

Additional work on using structured neural networks for
predictive analytics is summarized as follows. Dries and
Wiering presented a specialized structured neural network
approach along with a neural-fitted Temporal Difference (TD)
algorithm to improve the learning process on the game of
Othello [11]. The neural network focuses on regions on the
board, and the experimental results indicate that the structured
neural network approach outperforms linear models as well as
fully-connected neural network models. Steeg et al. extended
the above structured neural approach for the game of Tic-Tac-
Toe 3D [12]. They added one more hidden layer that is fully
connected. They observed that the added hidden layer enables
the neural network to integrate patterns learned in the
structured hidden layer. The authors compared the performance
of three fully-connected neural networks with different hyper-
parameters with two structured neural networks. The experi-
mental results show that structured neural network approach
works better than fully-connected neural networks. Zhang et al.
presented a shrinking DNN structure with hidden layers
decreasing in size from a lower layer to higher layers for the
purpose of reducing the model size and making the model time
efficient [13]. They concluded that shrinking structured DNN
reduced the model size and the computation time without
affecting performance. However, they failed to justify why
shrinking DNN would not affect performance, and also there
was a lack of systematic approach for the network reduction.
Different from the above methods, our approach demonstrates
how to derive a structured DNN from a layered knowledge
graph for a specific domain; therefore, our approach is not ad-
hoc but a systematic one, which may support constructing
structured DNN in a more efficient and effective way.

III.
2B2BLAYERED KNOWLEDGE GRAPH

Deep learning was shown to be an effective approach in
2006 [14]. In recent years, it has gained significant attention in
both the academia and the industry due to its effectiveness.
Deep learning supports learning multiple levels of composition
[15], and its ability to automatically learn hidden features from
data in layered fashion through both supervised and
unsupervised training makes it a useful and practical approach.
Some popular deep learning approaches such as Convolutional
Neural Networks (CNN) and Recurrent Neural Network
(RNN) have been successfully applied to the image processing
and speech recognition domains, respectively.

A neural network with more than one hidden layer is called
a DNN; while a neural network with a single hidden layer is
considered a shallow one. With the universal approximation
property [16], if enough hidden neurons are given, a shallow
neural network can approximate any function with remarkable
accuracy. However, a DNN could be much cheaper than a
shallow one because a particular function can be simulated
using a much less number of hidden neurons comparing to a
shallow one. Experimental results show that there is a range of
families of functions, for which we may have an exponential
advantage in terms of the number of hidden neurons [15]. Note
that a DNN may use a less number of hidden units to represent
a function because in the network, lower-level features can be
reused to produce higher-level or more abstract features.

1127

Although a DNN works more efficient than a shallow one,
a typical DNN for solving a practical problem may still require
a large number of hidden neurons. Traditionally, a DNN is
considered a black-box approach, where the semantics of the
hidden neurons are unknown, and there is no clear way to
determine a suitable size of the network. As shown in previous
work, a structured DNN with a reduced number of links and
neurons requires much less computational resources, but would
still lead to satisfactory or even better results [13]. This implies
that there exists a close relationship between the internal
structure of a DNN and its performance. It can be envisioned
that useful insights about the internal structure of a DNN could
be helpful to reveal more details about the DNN approach
under the hood. On the other hand, due to the traditional black-
box view of DNNs, designing a structured DNN with a
reasonable number of layers and neurons, as well as the needed
connections between neurons, has become one of the most
challenging tasks. To deal with this issue, in this research, we
investigate the semantics of the internal structure of a DNN as
well as its relationship with the knowledge structure of a
certain domain. In particular, we use real estate assessments as
an example of deep learning using structured DNN, and
demonstrate how it would be possible to derive a layered
knowledge graph for a certain domain, and how a structured
DNN can be designed to match with the graph.

We now provide a formal definition of a layered
knowledge graph Φ as follows.

Definition A layered knowledge graph Φ is a k-partite graph
(V, E), where V = (L1, L2, …, Lk) is an ordered k-partition of its
vertex set V, and E ⊂ (L1×L2) ∪ … ∪ (Lk-1×Lk). Each vertex v
∈ V is a tagged node with semantic annotation vsem.

To derive a layer knowledge graph for a certain domain, we
first collect labeled training and test data points within the
domain. Then we design a fully-connected DNN with k layers
and nl neurons in each layer, where 1 ≤ l ≤ k, and n1 and nk are
the number of predefined input features and the number of
outputs, respectively. After training the model, we identify the
links with weak weights that are below a predefined threshold.
We call such links weak links, which contribute less to the next
layer than a normal link. As such, weak links can be safely
deleted from the DNN. Similarly, we identify the neurons with
very few links, called weak neurons. Such neurons can be
either deleted or combined into a stronger one. Finally, we
examine the hidden layers with too few neurons, called weak
layers. In a similar way, a weak layer may be deleted, or two
adjacent weak hidden layers can be combined into a single one.
The resultant DNN is a structured one with no weak links, no
weak neurons, and no weak layers. Such a graph defines the
structure of a layered knowledge graph of a given domain.
Once the knowledge structure has been built, we identify the
semantics of each node based on its inputs, and adjust the
graph as needed to make it more meaningful. The complete
procedure for deriving a layered knowledge graph using a
fully-connected DNN is illustrated as in Algorithm 1.

According to the algorithm, the network is repetitively
reduced for its links, neurons, and layers until there is a
significant decrease in its accuracy. During each iteration,
based on the range and distribution of the weights of the links
in the DNN, we define a threshold for each hidden node (i.e., a

node belonging to layer l, where 1 < l < k). A threshold α of a
node d is chosen such that only major contributors of node d
(i.e., nodes from a previous layer with strong links to node d)
could be added into a set of contributing nodes Γ for node d.
Let s and d be the source node and destination node of a link ς,
respectively, and w(ς) be the connection weight of the link. If
the absolute value of w(ς) is greater than or equal to α, then the
contributing node s is added into Γ for node d. Consequently, if
a source node of a link does not belong to the set of
contributing nodes for node d, that link must be a weak link;
thus, it shall be deleted from the graph. The weak neurons and
weak layers can be processed in a similar way.

Algorithm 1: Construct Structured Knowledge

Input: Training dataset and test dataset in domain D.
Output: Layered knowledge graph Φ for domain D.
1. Initialize DNN Σ with k layers and ni neurons in each layer.
2. Train Σ using the training dataset.
3. Test Σ using the test dataset and record its accuracy.
4. Repeat the following until there is a significant decrease in accuracy
5. Identify the weak links in Σ, and delete such links.
6. Identify the weak neurons in Σ, and delete or combine them.
7. Identify the weak layers in Σ, and delete or combine them.
8. Train the reduced Σ using the training dataset.
9. Test the reduced Σ using the test dataset and record its accuracy
10. Restore Σ from its previous iteration.
11. Name the hidden nodes and adjust Σ accordingly.
12. Create Φ according to Σ by ignoring all weights.
13. return layered knowledge graph Φ.

After the DNN has been successfully reduced by removing

or combining weak links, weak nodes, and weak layers, we can
look into the nodes and identify their semantics. The purpose
of this step is to adjust the layered knowledge graph and make
it more meaningful. We process one layer at a time from the
lowest hidden layer to the highest one. The semantic of a
destination node d in layer l is determined based on d’s list of
contributing nodes, which contains source nodes from layer l-
1. For example, in the real estate domain, if the following input
features “Number of Beds”, “Number of Baths”, “Square
Footage”, and “Lot Size” are the impacting contributors to
hidden node d in the second layer, then we may name node d
as “Property Size” because all input features are closely related
to the size of a property. On the other hand, if some nodes exist
due to possible noise, we may remove it to make the layered
knowledge graph more meaningful. For example, if nodes
named “Location”, “Amenities”, and “Rooms” contribute to
hidden node d, we could name d as “Neighborhood Features,”
and remove its connection with the node named “Rooms.” This
is because the feature ‘Rooms” is clearly not related to the
other two features; thus it shall not be grouped with them in the
list of contributing nodes. Similarly, if any clearly related
nodes linking to node d are identified, they could be added into
the list of contributing nodes of node d as needed. Once we
have named each hidden node in the first hidden layer, the first
hidden layer is considered the input layer of the second hidden
layer, and thus, the above procedure can be repeated until all
hidden nodes in the remaining hidden layers are properly
named. After the naming process completes, the layered
knowledge graph Φ is returned for further processing.

1128

IV. 3B3BA FRAMEWORK FOR REAL-TIME TRAINING OF A DNN

Once a layered knowledge graph Φ is captured for a given
domain, it can be used to derive a structured DNN Ψ for
training and prediction. In this section, we describe the
procedure of creating a structured DNN from a layered know-
ledge graph, and provide a framework that supports training a
structured DNN model in real time.

A. Contructing Structued DNN

Choosing the number of hidden layers and the number of
hidden neurons in each layer is one of the most difficult and
time-consuming tasks while constructing a DNN model. In our
approach, we have made this task easy by designing a
structured DNN to match with a layered knowledge graph
derived from a given domain. The structured DNN contains the
same number of layers and the same number nodes in each
layer as in the layered knowledge graph. Once the number of
layers and the number of nodes in each layer are defined, the
next task is to structurally connect the neurons in the DNN.
The procedure for making the connections between neurons is
summarized as in Algorithm 2.

Algorithm 2: Construct a Structured DNN

Input: Layered knowledge graph Φ for domain D.
Output: Structured DNN Ψ for domain D.

1. Create Ψ with k layers and ni neurons in each layer as in Φ.
2. Let π(n) be the mapping of node n in Φ to a neuron in Ψ
2. for layer l from 1 to k-1 in Φ
3. for each node n in layer l
4. if node n has an edge to node x in layer l+1 of Φ
 Connect π(n) and π(x) in Ψ
5. for layer l from 2 to k in Ψ
6. for each neuron n in layer l
7. add a bias node and connect it to neuron n
8. return structured DNN Ψ

According to Algorithm 2, the returned structured DNN

reflects the structured knowledge of the given domain due to
its one-to-one mapping of the nodes and links from the layered
knowledge graph. Note that naming process in Algorithm 1 is
used for the sole purpose of adjusting the layered knowledge
graph, and make it semantically sound. As the semantic
annotations of the nodes in the layered knowledge graph are no
longer needed in the training process of the structured DNN,
they are simply ignored while constructing the structured DNN
from the knowledge graph.

B. A Framework for Training a DNN in Real Time

With a structured DNN in the real estate domain, we can
use it to assess real property values using predictive analytics.
The framework for real-time training of a structured DNN is
illustrated in Fig. 1. The first step is to collect the training and
test data points. As the collected data are raw data that usually
contain a lot of unnecessary information, we need to pre-
process them and retrieve the needed fields in a desired format.
In addition, data points with missing information or wrong
information could negatively affect the training results of a
neural network, such data points are considered outliers, and
thus they are removed from the training and test datasets.

Fig. 1. A framework for training a DNN in real time

Before starting the training process, the structured DNN is
initialized with random weights. As an important goal of our
approach, we allow a structured DNN to be trained with newly
acquired labeled data points, so it can automatically adapt to
recent market trends and support real-time training and
prediction. Inspired by a real-time classifier for shill detection
introduced in previous work [10], we define a window size for
the data pool as shown in Fig. 2. When new data points
become available, they are added into the data pool once they
are properly labeled; meanwhile, the old data points, which are
now shifted out of the window, must be removed from the data
pool. Each time when new labeled data points are added into
the data pool, the structured DNN is incrementally trained and
learns from the new data points in real time. Since the
structured DNN is always trained using the most recent data
points within the window, it is able to follow new market
trends, and would produce more accurate and reliable assess-
ments for time-sensitive products, such as real properties.

Fig. 2. Storage of recent data points using a predefined window size

It is worth noting that as a major advantage of using a

structured DNN, it helps to mitigate the overfitting problem.
When a neural network has a large number of hidden neurons,
it can simulate a complex function that fits perfectly (overfit)
with the majority of the training data points. On the other hand,
a structured DNN contains only the needed connections among
neurons. With a much less number of connections compared to
a fully-connected neural network, a structured DNN will not
become unnecessarily over-powerful, and thus, it will have less
chance of overfitting. In addition, since over-training a model
may also lead to the overfitting problem, early stopping is
critical during the training process, where training must be
stopped before the error rate starts to increase significantly.

1129

V. 4B4BCASE STUDY

In this section, we use real property assessments as a case
study to demonstrate the usefulness of a structured DNN for
predictive analytics. To demonstrate the effectiveness of our
approach, we conduct various experiments and compare the
performance of our approach with that of the existing ones.

A. 6B6BData Collection and Preprocessing

To establish the data pool, we collected real estate data
from a leading real estate listings website Zillow.com. This
website maintains all recent and past house listings data
including house features, market features, public records of
houses, neighborhood features, and so on. A total number of 15
features are predefined and their associated values are
collected. The predefined features include number of beds,
number of baths, square footage, lot size, built year, yearly tax,
similar houses average sold price, nearby schools average
ratings, fireplace, waterfront, number of stories, heating,
cooling, patio, and park. In our approach, we first remove the
following outliers: 1) data points with insufficient information,
e.g., missing square footage; 2) data points with unreasonable
values, e.g., a sold price of $1 (as a gift). We further calculate
the average selling price-per-square-feet of houses sold in last
6 months. Houses with too high or too low price-per-square-
feet are considered outliers, and thus they are excluded from
the training and test datasets.

B. 7B7BDesign of Layered Knowledge Graph

We performed experiments on fully-connected DNNs with
different numbers of hidden layers and different numbers of
neurons in each hidden layer. We assume that a DNN, which
can produce satisfactory outputs with less weak connections
between the neurons, would be closer to a representation of a
layered knowledge graph in a given domain. Based on the
experimental results, we select a fully-connected DNN with 2
hidden layers and 12 neurons in each hidden layer for our case
study. In this selected neural network, the input layer contains
15 neurons, representing the predefined input features for
house value assessments, and a single output neuron
representing the assessed house value or predicted selling
price. Using Algorithm 1 given in Section III, we derived a
layered knowledge graph for the real estate domain as
illustrated in Fig. 3. From the figure, we can see that the first
layer contains 15 input nodes indicating that all selected
features have significant impacts on house value assessments.
The number of hidden neurons in the second and third layer
has been reduced from 12 to 10 and 7, respectively. This is
due to the weak links and weak neurons being removed from
the network. Finally, a single neuron in the last layer
represents the assessed house value or predicted selling price.

Figure 3 also shows our attempts in understanding the
semantics of the hidden nodes. For example, the number of
bedrooms, the number of bathrooms, the number of stories,
and the patio all contribute to the second node in the second
layer. As these input features are related to the structure of a
house, we label this node as “House Structure”. Similarly, the
nodes named as “External Features”, “House Structure”,
“Interior Features”, “House Condition”, and “Property Size”
all contribute to the second node in the third layer;
consequently, we name that node as “House Features”.

Fig. 3. An example of layered knowledge graph for the real estate domain

As we can see from the figure, in the layered knowledge
graph for the real estate domain, multiple features in a given
layer may contribute to a “hidden” feature in the next layer.
On the other hand, each feature in a given layer may also
contribute to more than one “hidden” feature in the next layer.
Due to the complexity of such connections in the graph, the
semantics of some nodes might not be very clear (e.g., the
feature “Patio” from the first layer contributes to the node
“Rooms” in the second layer). However, as we can see it, the
layout the knowledge graph is generally meaningful and
satisfactory, and thus, it would be sufficient to be used to
create structured DNN for house value assessments.

C. 8B8BDesign of Structured DNN

The structured DNN is designed to match with the layered
knowledge graph derived in the previous section. According to
Algorithm 2 presented in Section IV.A, the structured DNN
has four layers: an input layer, two hidden layers, and an output
layer. We set up suitable hyper-parameters for the structured
DNN, and trained it using standard feedforward back-
propagation algorithm with problem-specific real-time training
and fitting techniques. Note that the first layer of the network
contains 15 input neurons, which always produce outputs, as
there are no biases (thresholds) connected to the input layer
neurons. Although smaller initialized weights make a neural
network learn slower, experimental results show that, with
enough available data points, initializing a neural network with
smaller weights helps to get better generalization, and hence to
achieve better performance. Therefore, in this case study, we

1130

initialize all connection weights with relatively small random
values within the range of [-0.5, 0.5].

Learning rate impacts the learning speed of connections
during the training process. Learning rate for the first hidden
layer is set higher than the other layers in the model because
after a certain amount of training time, the first hidden layer
will learn comparatively slower than the second hidden layer
[17]. Therefore, we set the learning rate to 0.9 for the first
hidden layer; whereas for all other layers, the learning rate is
set to 0.1. Choosing a small learning rate makes small changes
in weights, and thus it takes longer time to train the model;
however, it makes the learning curve much smoother. On the
other hand, although choosing a large learning rate value may
speed up the learning process, it may lead to an unstable
model. To balance the training speed and the stability of the
network, a momentum is used to diminish the fluctuations in
weight changes. Experimental results show that choosing a
large value of momentum for lower level layers helps to get a
stable model and hence to achieve better generalization [18].

D. 9B9BExperimental Results and Analysis

Based on our experiments, we noticed that the most recent
6-month data would well represent the real estate market;
therefore, we selected real estate data of a small town (zip
code: 02127) in the past two years (2014-2016) and used a
window size of 6 months for training and testing. We
compared the accuracy of our approach with existing
approaches including the naive price-per-square-foot approach,
the conventional multivariate linear approach, and advanced
fully-connected DNN approaches. The same training dataset
and test datasets are used for all experiments.

In addition, we also compared our approach with house
price prediction methods adopted by leading real estate
companies, namely Zillow and Redfin. Fig. 4 shows the
median and mean percent errors for house price predictions
using different methods (mean percent error is not available for
predictions from Zillow and Redfin). Results show that
structured DNN gives the best house value assessments as it
has the lowest median percent error and the lowest mean
percent error among all methods.

Fig. 4. Comparison of median and mean percent errors of different methods

Figure 5 shows the comparison of accuracy for different
error ranges using different methods. Three error ranges are
used, which are “within 5%”, “within 10%”, and “within
20%”. For example, if a model predicts the selling price of a
house as 108K and if the house is sold for 100K, then the
percent error for the prediction using that model is 8%. In this
case, the prediction percent error is within 10% error range.
Results from Fig. 5 show that the structured DNN performs
better than other methods, including those used by the leading
real estate companies.

Fig. 5. Comparison of accuracy for different error ranges

To further verify the usefulness of our approach, we
collected additional real estate data within previous 5 years
(2011-2016) for different zip codes (02125, 02127 and 02128).
We compare our previous results with experimental results
using the new data. Fig. 6 shows the median percent errors and
the mean percent errors for different zip codes. Note that the
previous results are identified by “Zip 02127*” in Fig. 6.

Fig. 6. Median percent error and mean percent error for various zip codes

1131

From the figure, we can see that with more data points from
zip code 02127 used for training and testing, the performance
of the structured DNN has slightly gone down. This is because
the real estate market in recent years has been quite unstable
and emerged dramatic fluctuations. Although unstable market
values are hard to predict, the prediction accuracy has only
slightly decreased for the 5-year data thanks to the real-time
training. In addition, we can see that results for zip code 02128
are not as accurate as compared to the others. This is due to the
insufficient data points available from that area to train the
model, which results in a decrease of the model performance.
Finally, we compare the results using structured DNNs and
fully-connected DNNs. As shown in Fig. 6, in all cases,
structured DNNs perform better than fully-connected DNNs.

VI. 5B5BCONCLUSUIONS AND FUTURE WORK

Predictive analytics has become more and more important
in the era of big data and machine learning. Many big data
analytical techniques and deep learning algorithms have been
proposed to assess product values. However, due to the large
size of a deep learning architecture, deep learning typically
requires a large amount of data to train the model, which
makes the training process very time and space inefficient. In
addition, a large deep architecture may also prone to have the
overfitting issue. In this paper, we proposed a structured deep
learning approach for predictive analytics. We presented a
systematic approach to deriving a layered knowledge graph
and designing structured DNN based on it. The structured
DNN contains only the needed connections between neurons;
therefore, it is time and space efficient, and can be trained
using fewer data points compared to a fully-connected DNN.
Furthermore, as the model contains fewer connections, the use
of the model may significantly reduce the chances of
overfitting. To demonstrate the feasibility of our approach, we
used the case study of smart real estate assessments for house
values. Our experimental results show that the proposed
approach outperforms other conventional methods and leading
real estate companies such as Zillow and Redfin, with
significantly improved accuracy for house-price prediction.

For future research, we will study how to automate the
process of extracting layered knowledge graphs from the real
estate domain based on historical data, and design structured
DNNs using the graphs. We will allow a DNN model to
automatically change its network structure along the time, so it
can be more scalable and better adapt to new market changes.
Furthermore, we plan to implement our approach using mobile
cloud computing [19] that supports assessments of real estate
via mobile devices with computation functions deployed in the
clouds. Finally, we will try to apply our approach to predictive
analytics problems from other domains [20, 21], such as stock
market, healthcare, transportation, marketing, e-commerce,
security, business, and many more.

10B10BREFERENCES

[1] J. Frew and G. Jud, “Estimating the Value of Apartment Buildings,”
Journal of Real Estate Research, Vol. 25, No. 1, 2003, pp. 77-86.

[2] R. E. Lowrance, “Predicting the Market Value of Single-Family
Residential Real Estate,” Technical Report, Department of Computer
Science, New York University, 2015.

[3] X. Hu and M. Zhong, “Applied Research on Real Estate Price Prediction

by the Neural Network,” In Proceedings of the 2nd International
Conference on Environmental Science and Information Application
Technology (ESIAT 2010), July 17-18, 2010, pp. 384-386.

[4] N. Nguyen and A. Cripps, “Predicting Housing Value: A Comparison of
Multiple Regression Analysis and Artificial Neural Networks,” Journal
of Real Estate Research, vol. 22, no. 3, pp. 313-336, 2001.

[5] Y. E. Hamzaoui and J. A. H. Perez, “Application of Artificial Neural
Networks to Predict the Selling Price in the Real Estate Valuation
Process,” In Proceedings of the 10th Mexican International Conference
on Artificial Intelligence (MICAI), Nov. 26 - Dec. 4, 2011, pp. 175-181.

[6] X. Zhang, “Using Fuzzy Neural Network in Real Estate Prices
Prediction,” In Proceedings of the 26th Chinese Control Conference, July
26-31, 2007, Zhangjiajie, Hunan, China, 2006, pp. 399-402.

[7] S. Chopra, T. Thampy, J. Leahy, A. Caplin, and Y. LeCun, “Discovering
the Hidden Structure of House Prices with a Non-Parametric Latent
Manifold Model,” In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD’07), August 12-15, 2007, San Jose, CA, USA, pp. 173-182.

[8] B. Mitchell and J. Sheppard, “Deep Structure Learning: Beyond
Connectionist Approaches,” In Procedings of the 11th International
Conference on Machine Learning and Applications (ICMLA), Dec. 12-
15, 2012, , pp. 162-167.

[9] Y.-H. Liao, H.-Y. Lee, and L.-S. Lee, “Towards Structured Deep Neural
Network for Automatic Speech Recognition,” In Proceedings of the
IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU), Scottsdale, AZ, USA, Dec. 13-17, 2015, pp. 137-144.

[10] B. J. Ford, H. Xu, and I. Valova, “A Real-Time Self-Adaptive Classifier
for Identifying Suspicious Bidders in Online Auctions,” The Computer
Journal (COMPJ), Vol. 56, No. 5, 2013, pp. 646-663.

[11] HS. Dries and M. Wiering, “Neural-Fitted TD-Leaf Learning for Playing
Othello with Structured Neural Networks,” HHIEEE Transactions on
Neural Networks and Learning SystHemsH, VolHH. 23, No. 11, Nov. 2012, pp.
1701-1713.

[12] M. Steeg, M. Drugan, and M. Wiering, “Temporal Difference Learning
for the Game Tic-Tac-Toe 3D: Applying Structure to Neural Networks,”
In Proceedings of the IEEE Symposium Series on Computational
Intelligence, Dec. 7-10, 2015, pp. 564-570.

[13] S. Zhang, Y. Bao, P. Zhou, H. Jiang, and L. Dai, “Improving Deep
Neural Networks for LVCSR Using Dropout and Shrinking Structure,”
In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Florence, Italy, May 4-9, 2014,
pp. 6849-6853.

[14] G. E. Hinton., “Learning Multiple Layers of Representation,” Trends in
Cognitive Sciences, Vol. 11, No. 10, 2007, pp. 428-434.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016, Accessed on Jan. 1, 2017 from http://www.deeplearningbook.org,
pp. 13.

[16] M. Stinchcombe and H. White, “Universal Approximation Using
Feedforward Networks with Non-Sigmoid Hidden Layer Activation
Functions,” In Proceedings of the International Joint Conference on
Neural Networks (IJCNN), 1989, pp. 613-617.

[17] M. Nielsen, Neural Networks and Deep Learning, Jan. 2017, Retrived
on Jan, 31, 2017 from http://neuralnetworksanddeeplearning.com/

[18] G. Batres-Estrada, “Deep Learning for Multivariate Financial Time
Series,” Technical Report, Stockholm, May 2015, Retrieved on March
15, 2017 from: https://www.math.kth.se/matstat/seminarier/reports/M-
exjobb15/150612a.pdf

[19] L. Zhou and H. Xu, “An Efficient Double Auction Mechanism for On-
Demand Transport Services in Cloud-Based Mobile Commerce,” In
Proceedings of the 5th IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (IEEE Mobile Cloud 2017), San
Francisco, CA, USA, April 6-8, 2017, pp. 25-30.

[20] S. Earley, “Big Data and Predictive Analytics: What's New?” IT
Professional, Vol. 16, No. 1, Jan.-Feb. 2014, pp. 13-15.

[21] M. Nural , M. Cotterell and J. Miller, “Using Semantics in Predictive
Big Data Analytics,” In Proceedings of the IEEE International Congress
on Big Data (BigData Congress), June 27 - July 2, 2015, New York,
NY, USA, pp. 254-261.

1132

