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Abstract—In a smart city, effective and accurate real estate 
assessments governed by a local government is crucial for 
determining the property taxes. Such assessments have never 
been trivial, and inappropriate assessments may result in 
disputes between property owners and the local government. In 
this paper, we introduce a deep learning approach to smartly and 
effectively assessing real estate values. We propose a systematic 
method to derive a layered knowledge graph and design a 
structured Deep Neural Network (DNN) based on it. Neurons in 
a structured DNN are structurally connected, which makes the 
network time and space efficient; and thus, it requires fewer data 
points for training. The structured DNN model has been designed 
to learn from the most recently captured data points; therefore, 
it allows the model to adapt to the latest market trends. To 
demonstrate the effectiveness of the proposed approach, we use a 
case study of assessing real properties in small towns. A 
structured DNN was designed to match with a layered knowledge 
graph for property assessments in the real estate domain, which 
results in a significant reduction of neurons and connections 
between them. The experimental results show that a structured 
DNN outperforms conventional multivariate linear regression 
models, fully-connected neural networks, and prediction methods 
used by the leading real estate companies. 

Keywords—Smart city, deep learning, real estate assessments, 
layered knowledge graph, structured deep neural networks 

I. 0B0BINTRODUCTION 

As large amount of data being continuously generated by 
digital devices and online activities in a smart city, intelligently 
using the data through predictive analytics for product value 
assessments would help the city to make better decisions, 
identify trends, and improve city management performance. In 
the real estate domain, effectively assessing real properties by a 
local government is crucial for accurate assessments of 
property taxes; however, such assessments are intrinsically 
nontrivial, and inappropriate assessments may result in 
disputes between property owners and the local government. 
Proper and accurate assessments of real estate is not only 
important for a local government to effectively determine the 
tax values of real properties, but also valuable for prospective 
homeowners, developers, investors, appraisers, and other real 
estate market participants, such as mortgage lenders and 
insurers [1, 2], who often rely on real estate agents or certified 
appraisers to get the estimation of desired properties. However, 
traditional services are usually expensive, and it has been an 

insistent demand by the current real estate industry to develop 
a logical scientific assessment model that is not only easy-to-
use, but also reliable and accurate. 

Since the collected data for real property assessments are 
typically multidimensional and nonlinear, it has been very 
difficult and ineffective to use conventional regression 
approaches to model the assessment functions. Assessing real 
properties has long been considered a challenging problem, as 
the values of real properties depend on many different 
parametric and non-parametric features. Real estate values are 
a chronological and time-sensitive sequence with unknown 
statistical relationships influenced by many factors, which 
makes it nontrivial to predict property values using predefined 
functions [3]. In addition, the domain knowledge for real estate 
may be structured and complex, which makes it hard to use 
traditional classifiers to learn the functions and to accurately 
assess real estate values. As a result, the use of most advanced 
algorithms for predictive analytics is necessary. Data mining 
and machine learning techniques are becoming more and more 
important for assessing the values of time-sensitive products 
based on historical data. Deep learning, as a new branch of 
machine learning, has gained significant attention from the 
machine learning and artificial intelligence communities due to 
its ability to automatically learn multiple level representations 
from structured data using either supervised or unsupervised 
learning. There have been many previous efforts on using data 
mining approaches, such as neural networks, for house prices 
prediction [3, 4]; however, to the best our knowledge, most of 
the existing approaches use fully-connected neural networks, 
where the number of hidden layers and the number of neurons 
are determined in an ad-hoc way; therefore, they do not 
necessarily match the knowledge structure of the real estate 
domain. In this paper, we introduce a structured deep learning 
approach for real estate assessments. We present a systematic 
approach to extracting structured knowledge from the real 
estate domain and designing a structurally connected Deep 
Neural Network (DNN) to assess real properties. In addition, 
the structured DNN is designed to learn in real time, which 
allows it to adapt to new market trends efficiently. To 
demonstrate the effectiveness of our proposed approach, we 
collected data from real estate web sites such as Zillow.com, 
and performed experiments to construct structured DNNs and 
assess real property values. The experimental results show that 
our approach is promising, which not only provides a 
systematic way to construct DNNs, but also improves the 
accuracy of real property assessments. 
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II. 1B1BRELATED WORK 

Previous work on predicting house prices has been based 
on regression analysis and machine learning techniques. Frew 
and Jud used hedonic modeling techniques to estimate the 
house prices in the Greater Portland region [1]. They observed 
that house values would rise less than proportionally with the 
size and number of units, and decline with age, but the 
marginal effect of aging was small. Lowrance used a local 
linear model and random forest model to predict house sale 
prices in Los Angeles County [2]. He showed that random 
forest model may perform better than the local linear model. 
Hu and Zhong used backpropagation neural networks and 
Elman neural network to forecast real estate prices [3]. They 
found that Elman neural network could forecast more accurate 
and constringe faster than other approaches. Nguyen and 
Cripps compared the predictive performance of artificial neural 
networks (ANNs) and multiple regression analysis for single-
family housing sales [4]. They found that when enough data 
points were available for training, ANNs could perform better 
than multiple linear regressions. Hamzaoui and Perez applied a 
feed-forward backpropagation neural network with a single 
hidden layer to predict the selling prices of residential 
properties in Casablanca, Morocco Kingdom [5]. The 
experimental results suggested that ANNs could be used as a 
tool for reliable prediction of house selling prices. Zhang 
predicted real estate prices using fuzzy neural network to 
support fuzzy reasoning and learning [6]. His research showed 
that fuzzy neural network may work better than traditional 
neural network approaches. Chopra et al. used a latent 
manifold model with two trainable components to evaluate 
house prices [7]. The first one is a parametric component that 
predicts the “intrinsic” price of a house using its features, and 
the second one is a non-parametric component that calculates 
the desirability of the neighborhood. The study found that the 
latent manifold model performs better than pure parametric or 
non-parametric models. Although the above approaches could 
be used to predict house selling prices, none of them used most 
advanced deep learning approach to evaluating real properties. 
Different from the existing approaches, we propose to use a 
deep learning approach with structured DNNs, which may 
outperform the conventional ones for real estate assessments. 

There is also quite a lot of previous work on using machine 
learning and deep learning techniques for predictive analytics. 
Mitchell and Sheppard used simple, non-connectionist 
dimensionality reduction techniques including conventional 
Principal Component Analysis (PCA) and deep architecture 
PCA to generate features for image classification [8]. They 
concluded that a deep architecture could help to improve the 
performance of the models. Liao et al. presented a structured 
deep learning architecture for phoneme recognition [9]. When 
a structured input is given, the approach can learn and find the 
best-structured object based on the mapping relationships 
between the structures. Their test results showed that the model 
outperformed other conventional approaches for phoneme 
recognition. Ford et al. used a neural network model to detect 
suspicious bidders in online auctions [10]. Their approach 
focused on training the neural network with newly added 
structured data, so it can quickly adapt to changing trends in 
bidding. Although the above approaches used structured input 
and learning processes, the DNNs are fully connected, whereas 

in our approach, we use a structurally connected DNN that is 
significantly different from their approaches. 

Additional work on using structured neural networks for 
predictive analytics is summarized as follows. Dries and 
Wiering presented a specialized structured neural network 
approach along with a neural-fitted Temporal Difference (TD) 
algorithm to improve the learning process on the game of 
Othello [11]. The neural network focuses on regions on the 
board, and the experimental results indicate that the structured 
neural network approach outperforms linear models as well as 
fully-connected neural network models. Steeg et al. extended 
the above structured neural approach for the game of Tic-Tac-
Toe 3D [12]. They added one more hidden layer that is fully 
connected. They observed that the added hidden layer enables 
the neural network to integrate patterns learned in the 
structured hidden layer. The authors compared the performance 
of three fully-connected neural networks with different hyper-
parameters with two structured neural networks. The experi-
mental results show that structured neural network approach 
works better than fully-connected neural networks. Zhang et al. 
presented a shrinking DNN structure with hidden layers 
decreasing in size from a lower layer to higher layers for the 
purpose of reducing the model size and making the model time 
efficient [13]. They concluded that shrinking structured DNN 
reduced the model size and the computation time without 
affecting performance. However, they failed to justify why 
shrinking DNN would not affect performance, and also there 
was a lack of systematic approach for the network reduction. 
Different from the above methods, our approach demonstrates 
how to derive a structured DNN from a layered knowledge 
graph for a specific domain; therefore, our approach is not ad-
hoc but a systematic one, which may support constructing 
structured DNN in a more efficient and effective way. 

III. 
2B2BLAYERED KNOWLEDGE GRAPH 

Deep learning was shown to be an effective approach in 
2006 [14]. In recent years, it has gained significant attention in 
both the academia and the industry due to its effectiveness. 
Deep learning supports learning multiple levels of composition 
[15], and its ability to automatically learn hidden features from 
data in layered fashion through both supervised and 
unsupervised training makes it a useful and practical approach. 
Some popular deep learning approaches such as Convolutional 
Neural Networks (CNN) and Recurrent Neural Network 
(RNN) have been successfully applied to the image processing 
and speech recognition domains, respectively. 

A neural network with more than one hidden layer is called 
a DNN; while a neural network with a single hidden layer is 
considered a shallow one. With the universal approximation 
property [16], if enough hidden neurons are given, a shallow 
neural network can approximate any function with remarkable 
accuracy. However, a DNN could be much cheaper than a 
shallow one because a particular function can be simulated 
using a much less number of hidden neurons comparing to a 
shallow one. Experimental results show that there is a range of 
families of functions, for which we may have an exponential 
advantage in terms of the number of hidden neurons [15]. Note 
that a DNN may use a less number of hidden units to represent 
a function because in the network, lower-level features can be 
reused to produce higher-level or more abstract features. 
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Although a DNN works more efficient than a shallow one, 
a typical DNN for solving a practical problem may still require 
a large number of hidden neurons. Traditionally, a DNN is 
considered a black-box approach, where the semantics of the 
hidden neurons are unknown, and there is no clear way to 
determine a suitable size of the network. As shown in previous 
work, a structured DNN with a reduced number of links and 
neurons requires much less computational resources, but would 
still lead to satisfactory or even better results [13]. This implies 
that there exists a close relationship between the internal 
structure of a DNN and its performance. It can be envisioned 
that useful insights about the internal structure of a DNN could 
be helpful to reveal more details about the DNN approach 
under the hood. On the other hand, due to the traditional black-
box view of DNNs, designing a structured DNN with a 
reasonable number of layers and neurons, as well as the needed 
connections between neurons, has become one of the most 
challenging tasks. To deal with this issue, in this research, we 
investigate the semantics of the internal structure of a DNN as 
well as its relationship with the knowledge structure of a 
certain domain. In particular, we use real estate assessments as 
an example of deep learning using structured DNN, and 
demonstrate how it would be possible to derive a layered 
knowledge graph for a certain domain, and how a structured 
DNN can be designed to match with the graph.  

We now provide a formal definition of a layered 
knowledge graph Φ as follows. 

Definition A layered knowledge graph Φ is a k-partite graph 
(V, E), where V = (L1, L2, …, Lk) is an ordered k-partition of its 
vertex set V, and E ⊂ (L1×L2) ∪ … ∪ (Lk-1×Lk). Each vertex v 
∈ V is a tagged node with semantic annotation vsem. 

To derive a layer knowledge graph for a certain domain, we 
first collect labeled training and test data points within the 
domain. Then we design a fully-connected DNN with k layers 
and nl neurons in each layer, where 1 ≤ l ≤ k, and n1 and nk are 
the number of predefined input features and the number of 
outputs, respectively. After training the model, we identify the 
links with weak weights that are below a predefined threshold. 
We call such links weak links, which contribute less to the next 
layer than a normal link. As such, weak links can be safely 
deleted from the DNN. Similarly, we identify the neurons with 
very few links, called weak neurons. Such neurons can be 
either deleted or combined into a stronger one. Finally, we 
examine the hidden layers with too few neurons, called weak 
layers. In a similar way, a weak layer may be deleted, or two 
adjacent weak hidden layers can be combined into a single one. 
The resultant DNN is a structured one with no weak links, no 
weak neurons, and no weak layers. Such a graph defines the 
structure of a layered knowledge graph of a given domain. 
Once the knowledge structure has been built, we identify the 
semantics of each node based on its inputs, and adjust the 
graph as needed to make it more meaningful. The complete 
procedure for deriving a layered knowledge graph using a 
fully-connected DNN is illustrated as in Algorithm 1. 

According to the algorithm, the network is repetitively 
reduced for its links, neurons, and layers until there is a 
significant decrease in its accuracy. During each iteration, 
based on the range and distribution of the weights of the links 
in the DNN, we define a threshold for each hidden node (i.e., a 

node belonging to layer l, where 1 < l < k). A threshold α of a 
node d is chosen such that only major contributors of node d 
(i.e., nodes from a previous layer with strong links to node d) 
could be added into a set of contributing nodes Γ for node d. 
Let s and d be the source node and destination node of a link ς, 
respectively, and w(ς) be the connection weight of the link. If 
the absolute value of w(ς) is greater than or equal to α, then the 
contributing node s is added into Γ for node d. Consequently, if 
a source node of a link does not belong to the set of 
contributing nodes for node d, that link must be a weak link; 
thus, it shall be deleted from the graph. The weak neurons and 
weak layers can be processed in a similar way. 

  
Algorithm 1: Construct Structured Knowledge 

Input: Training dataset and test dataset in domain D. 
Output: Layered knowledge graph Φ for domain D. 
1.  Initialize DNN Σ with k layers and ni neurons in each layer. 
2.  Train Σ using the training dataset. 
3.  Test Σ using the test dataset and record its accuracy. 
4.  Repeat the following until there is a significant decrease in accuracy
5.      Identify the weak links in Σ, and delete such links. 
6.      Identify the weak neurons in Σ, and delete or combine them. 
7.      Identify the weak layers in Σ, and delete or combine them.  
8.      Train the reduced Σ using the training dataset. 
9.      Test the reduced Σ using the test dataset and record its accuracy 
10. Restore Σ from its previous iteration. 
11. Name the hidden nodes and adjust Σ accordingly. 
12. Create Φ according to Σ by ignoring all weights. 
13. return layered knowledge graph Φ. 

 
After the DNN has been successfully reduced by removing 

or combining weak links, weak nodes, and weak layers, we can 
look into the nodes and identify their semantics. The purpose 
of this step is to adjust the layered knowledge graph and make 
it more meaningful. We process one layer at a time from the 
lowest hidden layer to the highest one. The semantic of a 
destination node d in layer l is determined based on d’s list of 
contributing nodes, which contains source nodes from layer l-
1. For example, in the real estate domain, if the following input 
features “Number of Beds”, “Number of Baths”, “Square 
Footage”, and “Lot Size” are the impacting contributors to 
hidden node d in the second layer, then we may name node d 
as “Property Size” because all input features are closely related 
to the size of a property. On the other hand, if some nodes exist 
due to possible noise, we may remove it to make the layered 
knowledge graph more meaningful. For example, if nodes 
named “Location”, “Amenities”, and “Rooms” contribute to 
hidden node d, we could name d as “Neighborhood Features,” 
and remove its connection with the node named “Rooms.” This 
is because the feature ‘Rooms” is clearly not related to the 
other two features; thus it shall not be grouped with them in the 
list of contributing nodes. Similarly, if any clearly related 
nodes linking to node d are identified, they could be added into 
the list of contributing nodes of node d as needed. Once we 
have named each hidden node in the first hidden layer, the first 
hidden layer is considered the input layer of the second hidden 
layer, and thus, the above procedure can be repeated until all 
hidden nodes in the remaining hidden layers are properly 
named. After the naming process completes, the layered 
knowledge graph Φ is returned for further processing. 
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IV. 3B3BA FRAMEWORK FOR REAL-TIME TRAINING OF A DNN 

Once a layered knowledge graph Φ is captured for a given 
domain, it can be used to derive a structured DNN Ψ for 
training and prediction. In this section, we describe the 
procedure of creating a structured DNN from a layered know-
ledge graph, and provide a framework that supports training a 
structured DNN model in real time. 

A. Contructing Structued DNN 

Choosing the number of hidden layers and the number of 
hidden neurons in each layer is one of the most difficult and 
time-consuming tasks while constructing a DNN model. In our 
approach, we have made this task easy by designing a 
structured DNN to match with a layered knowledge graph 
derived from a given domain. The structured DNN contains the 
same number of layers and the same number nodes in each 
layer as in the layered knowledge graph. Once the number of 
layers and the number of nodes in each layer are defined, the 
next task is to structurally connect the neurons in the DNN. 
The procedure for making the connections between neurons is 
summarized as in Algorithm 2. 

 
Algorithm 2: Construct a Structured DNN 

Input: Layered knowledge graph Φ for domain D. 
Output: Structured DNN Ψ for domain D. 

1.  Create Ψ with k layers and ni neurons in each layer as in Φ. 
2.  Let π(n) be the mapping of node n in Φ to a neuron in Ψ 
2.  for layer l from 1 to k-1 in Φ 
3.     for each node n in layer l 
4.         if node n has an edge to node x in layer l+1 of Φ 
               Connect π(n) and π(x) in Ψ 
5.  for layer l from 2 to k in Ψ 
6.      for each neuron n in layer l 
7.          add a bias node and connect it to neuron n 
8. return structured DNN Ψ  

 
According to Algorithm 2, the returned structured DNN 

reflects the structured knowledge of the given domain due to 
its one-to-one mapping of the nodes and links from the layered 
knowledge graph. Note that naming process in Algorithm 1 is 
used for the sole purpose of adjusting the layered knowledge 
graph, and make it semantically sound. As the semantic 
annotations of the nodes in the layered knowledge graph are no 
longer needed in the training process of the structured DNN, 
they are simply ignored while constructing the structured DNN 
from the knowledge graph. 

B. A Framework for Training a DNN in Real Time 

With a structured DNN in the real estate domain, we can 
use it to assess real property values using predictive analytics. 
The framework for real-time training of a structured DNN is 
illustrated in Fig. 1. The first step is to collect the training and 
test data points. As the collected data are raw data that usually 
contain a lot of unnecessary information, we need to pre-
process them and retrieve the needed fields in a desired format. 
In addition, data points with missing information or wrong 
information could negatively affect the training results of a 
neural network, such data points are considered outliers, and 
thus they are removed from the training and test datasets. 

 

Fig. 1. A framework for training a DNN in real time 

Before starting the training process, the structured DNN is 
initialized with random weights. As an important goal of our 
approach, we allow a structured DNN to be trained with newly 
acquired labeled data points, so it can automatically adapt to 
recent market trends and support real-time training and 
prediction. Inspired by a real-time classifier for shill detection 
introduced in previous work [10], we define a window size for 
the data pool as shown in Fig. 2. When new data points 
become available, they are added into the data pool once they 
are properly labeled; meanwhile, the old data points, which are 
now shifted out of the window, must be removed from the data 
pool. Each time when new labeled data points are added into 
the data pool, the structured DNN is incrementally trained and 
learns from the new data points in real time. Since the 
structured DNN is always trained using the most recent data 
points within the window, it is able to follow new market 
trends, and would produce more accurate and reliable assess-
ments for time-sensitive products, such as real properties. 

 

 
Fig. 2. Storage of recent data points using a predefined window size  

 
It is worth noting that as a major advantage of using a 

structured DNN, it helps to mitigate the overfitting problem. 
When a neural network has a large number of hidden neurons, 
it can simulate a complex function that fits perfectly (overfit) 
with the majority of the training data points. On the other hand, 
a structured DNN contains only the needed connections among 
neurons. With a much less number of connections compared to 
a fully-connected neural network, a structured DNN will not 
become unnecessarily over-powerful, and thus, it will have less 
chance of overfitting. In addition, since over-training a model 
may also lead to the overfitting problem, early stopping is 
critical during the training process, where training must be 
stopped before the error rate starts to increase significantly. 
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V. 4B4BCASE STUDY 

In this section, we use real property assessments as a case 
study to demonstrate the usefulness of a structured DNN for 
predictive analytics. To demonstrate the effectiveness of our 
approach, we conduct various experiments and compare the 
performance of our approach with that of the existing ones. 

A. 6B6BData Collection and Preprocessing 

To establish the data pool, we collected real estate data 
from a leading real estate listings website Zillow.com. This 
website maintains all recent and past house listings data 
including house features, market features, public records of 
houses, neighborhood features, and so on. A total number of 15 
features are predefined and their associated values are 
collected. The predefined features include number of beds, 
number of baths, square footage, lot size, built year, yearly tax, 
similar houses average sold price, nearby schools average 
ratings, fireplace, waterfront, number of stories, heating, 
cooling, patio, and park. In our approach, we first remove the 
following outliers:  1) data points with insufficient information, 
e.g., missing square footage; 2) data points with unreasonable 
values, e.g., a sold price of $1 (as a gift). We further calculate 
the average selling price-per-square-feet of houses sold in last 
6 months. Houses with too high or too low price-per-square-
feet are considered outliers, and thus they are excluded from 
the training and test datasets. 

B. 7B7BDesign of Layered Knowledge Graph 

We performed experiments on fully-connected DNNs with 
different numbers of hidden layers and different numbers of 
neurons in each hidden layer. We assume that a DNN, which 
can produce satisfactory outputs with less weak connections 
between the neurons, would be closer to a representation of a 
layered knowledge graph in a given domain. Based on the 
experimental results, we select a fully-connected DNN with 2 
hidden layers and 12 neurons in each hidden layer for our case 
study. In this selected neural network, the input layer contains 
15 neurons, representing the predefined input features for 
house value assessments, and a single output neuron 
representing the assessed house value or predicted selling 
price. Using Algorithm 1 given in Section III, we derived a 
layered knowledge graph for the real estate domain as 
illustrated in Fig. 3. From the figure, we can see that the first 
layer contains 15 input nodes indicating that all selected 
features have significant impacts on house value assessments. 
The number of hidden neurons in the second and third layer 
has been reduced from 12 to 10 and 7, respectively. This is 
due to the weak links and weak neurons being removed from 
the network. Finally, a single neuron in the last layer 
represents the assessed house value or predicted selling price. 

Figure 3 also shows our attempts in understanding the 
semantics of the hidden nodes. For example, the number of 
bedrooms, the number of bathrooms, the number of stories, 
and the patio all contribute to the second node in the second 
layer. As these input features are related to the structure of a 
house, we label this node as “House Structure”. Similarly, the 
nodes named as “External Features”, “House Structure”, 
“Interior Features”, “House Condition”, and “Property Size” 
all contribute to the second node in the third layer; 
consequently, we name that node as “House Features”.  

 

Fig. 3. An example of layered knowledge graph for the real estate domain 

As we can see from the figure, in the layered knowledge 
graph for the real estate domain, multiple features in a given 
layer may contribute to a “hidden” feature in the next layer. 
On the other hand, each feature in a given layer may also 
contribute to more than one “hidden” feature in the next layer. 
Due to the complexity of such connections in the graph, the 
semantics of some nodes might not be very clear (e.g., the 
feature “Patio” from the first layer contributes to the node 
“Rooms” in the second layer). However, as we can see it, the 
layout the knowledge graph is generally meaningful and 
satisfactory, and thus, it would be sufficient to be used to 
create structured DNN for house value assessments. 

C. 8B8BDesign of Structured DNN 

The structured DNN is designed to match with the layered 
knowledge graph derived in the previous section. According to 
Algorithm 2 presented in Section IV.A, the structured DNN 
has four layers: an input layer, two hidden layers, and an output 
layer. We set up suitable hyper-parameters for the structured 
DNN, and trained it using standard feedforward back-
propagation algorithm with problem-specific real-time training 
and fitting techniques. Note that the first layer of the network 
contains 15 input neurons, which always produce outputs, as 
there are no biases (thresholds) connected to the input layer 
neurons. Although smaller initialized weights make a neural 
network learn slower, experimental results show that, with 
enough available data points, initializing a neural network with 
smaller weights helps to get better generalization, and hence to 
achieve better performance. Therefore, in this case study, we 
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initialize all connection weights with relatively small random 
values within the range of [-0.5, 0.5].  

Learning rate impacts the learning speed of connections 
during the training process. Learning rate for the first hidden 
layer is set higher than the other layers in the model because 
after a certain amount of training time, the first hidden layer 
will learn comparatively slower than the second hidden layer 
[17]. Therefore, we set the learning rate to 0.9 for the first 
hidden layer; whereas for all other layers, the learning rate is 
set to 0.1. Choosing a small learning rate makes small changes 
in weights, and thus it takes longer time to train the model; 
however, it makes the learning curve much smoother. On the 
other hand, although choosing a large learning rate value may 
speed up the learning process, it may lead to an unstable 
model. To balance the training speed and the stability of the 
network, a momentum is used to diminish the fluctuations in 
weight changes. Experimental results show that choosing a 
large value of momentum for lower level layers helps to get a 
stable model and hence to achieve better generalization [18]. 

D. 9B9BExperimental Results and Analysis 

Based on our experiments, we noticed that the most recent 
6-month data would well represent the real estate market; 
therefore, we selected real estate data of a small town (zip 
code: 02127) in the past two years (2014-2016) and used a 
window size of 6 months for training and testing. We 
compared the accuracy of our approach with existing 
approaches including the naive price-per-square-foot approach, 
the conventional multivariate linear approach, and advanced 
fully-connected DNN approaches. The same training dataset 
and test datasets are used for all experiments.  

In addition, we also compared our approach with house 
price prediction methods adopted by leading real estate 
companies, namely Zillow and Redfin. Fig. 4 shows the 
median and mean percent errors for house price predictions 
using different methods (mean percent error is not available for 
predictions from Zillow and Redfin). Results show that 
structured DNN gives the best house value assessments as it 
has the lowest median percent error and the lowest mean 
percent error among all methods. 

 

 
Fig. 4. Comparison of median and mean percent errors of different methods 

Figure 5 shows the comparison of accuracy for different 
error ranges using different methods. Three error ranges are 
used, which are “within 5%”, “within 10%”, and “within 
20%”. For example, if a model predicts the selling price of a 
house as 108K and if the house is sold for 100K, then the 
percent error for the prediction using that model is 8%. In this 
case, the prediction percent error is within 10% error range. 
Results from Fig. 5 show that the structured DNN performs 
better than other methods, including those used by the leading 
real estate companies. 

 
Fig. 5. Comparison of accuracy for different error ranges 

To further verify the usefulness of our approach, we 
collected additional real estate data within previous 5 years 
(2011-2016) for different zip codes (02125, 02127 and 02128). 
We compare our previous results with experimental results 
using the new data. Fig. 6 shows the median percent errors and 
the mean percent errors for different zip codes. Note that the 
previous results are identified by “Zip 02127*” in Fig. 6. 

 

 

Fig. 6. Median percent error and mean percent error for various zip codes 
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From the figure, we can see that with more data points from 
zip code 02127 used for training and testing, the performance 
of the structured DNN has slightly gone down. This is because 
the real estate market in recent years has been quite unstable 
and emerged dramatic fluctuations. Although unstable market 
values are hard to predict, the prediction accuracy has only 
slightly decreased for the 5-year data thanks to the real-time 
training. In addition, we can see that results for zip code 02128 
are not as accurate as compared to the others. This is due to the 
insufficient data points available from that area to train the 
model, which results in a decrease of the model performance. 
Finally, we compare the results using structured DNNs and 
fully-connected DNNs. As shown in Fig. 6, in all cases, 
structured DNNs perform better than fully-connected DNNs.  

VI. 5B5BCONCLUSUIONS AND FUTURE WORK 

Predictive analytics has become more and more important 
in the era of big data and machine learning. Many big data 
analytical techniques and deep learning algorithms have been 
proposed to assess product values. However, due to the large 
size of a deep learning architecture, deep learning typically 
requires a large amount of data to train the model, which 
makes the training process very time and space inefficient. In 
addition, a large deep architecture may also prone to have the 
overfitting issue. In this paper, we proposed a structured deep 
learning approach for predictive analytics. We presented a 
systematic approach to deriving a layered knowledge graph 
and designing structured DNN based on it. The structured 
DNN contains only the needed connections between neurons; 
therefore, it is time and space efficient, and can be trained 
using fewer data points compared to a fully-connected DNN. 
Furthermore, as the model contains fewer connections, the use 
of the model may significantly reduce the chances of 
overfitting. To demonstrate the feasibility of our approach, we 
used the case study of smart real estate assessments for house 
values. Our experimental results show that the proposed 
approach outperforms other conventional methods and leading 
real estate companies such as Zillow and Redfin, with 
significantly improved accuracy for house-price prediction.  

For future research, we will study how to automate the 
process of extracting layered knowledge graphs from the real 
estate domain based on historical data, and design structured 
DNNs using the graphs. We will allow a DNN model to 
automatically change its network structure along the time, so it 
can be more scalable and better adapt to new market changes. 
Furthermore, we plan to implement our approach using mobile 
cloud computing [19] that supports assessments of real estate 
via mobile devices with computation functions deployed in the 
clouds. Finally, we will try to apply our approach to predictive 
analytics problems from other domains [20, 21], such as stock 
market, healthcare, transportation, marketing, e-commerce, 
security, business, and many more. 
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