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Abstract—Online applications, such as e-commerce, have made a 
huge impact in our daily life. With the rapid shift of online 
applications to cloud-based platforms in recent years, it becomes 
very important to maintain the high Quality of Service (QoS) for 
cloud-based software systems in order to support successful 
businesses. Since hardware reliability has been well understood 
and is typically guaranteed by the cloud providers, software 
failures have now become the major factor of system failures in 
cloud-based software systems. Correctly measuring the reliability 
and availability of a cloud-based software system is critical for 
making preventive maintenance schedules. In this paper, we 
address software-aging related bugs or faults that may lead to 
performance degradation or increased failure rates of system 
components. Based on our previous work, we study how to derive 
preventive maintenance schedules for cloud-based software 
systems subject to non-constant failure rates. We adopt the 
Weibull distribution to model an increasing failure rate for 
software components with software-aging issues. Finally, we use a 
case study to show that our analytical approach can effectively 
support development of software rejuvenation schedules for 
preventive maintenance of cloud-based software systems.  

Keywords-Software reliability engineering; software aging; 
reliability analysis; preventive maintenance; software rejuvenation 
schedule; non-constant failure rate 

I. INTRODUCTION 

Over the past decades, online applications have made a 
huge impact in our daily life. Cloud computing, the idea of 
using computing resources as a utility, has become an 
attractive paradigm for developers to deploy their services and 
get their services started, without the need to spend large 
capital in hardware resources. As the shift to cloud computing 
is rapidly increasing, there is a pressing need to maintain a 
high Quality of Service (QoS) for cloud-based systems to 
support successful online businesses. As hardware reliability is 
well understood and is typically guaranteed by the cloud 
providers [1], software faults in cloud services have become a 
major factor leading to system failures in cloud-based systems. 
Various strategies in Software Reliability Engineering (SRE) 
can be used to combat against software faults to achieve 
highly reliable software. Before the concept of software aging 
was introduced, SRE supported analysis of software defects 
and related to Heisenbugs or BohrBugs [2]. Bohrbugs are 
easier to deal with since they are deterministic, and can be 

eliminated at the design level by debugging or adopting design 
diversity. On the other hand, Heisenbugs are non-deterministic 
errors, which appear at the operational level, and can be dealt 
with by retrying the operation or restarting the associated 
application. However, neither of these two types of bugs 
would lead to an increasing failure rate; therefore, we typically 
assume constant failure rates for software components that are 
subject to these types of bugs [2, 3]. Software-aging related 
bugs are non-deterministic like Heisenbugs, thus, both of them 
are classified under Mandlebugs [3]. However, software-aging 
related bugs may result in an increased failure rate since the 
error conditions, such as unreleased memory due to memory 
leaks, can accumulate in a running application or within its 
environment (e.g., the operating system). 

To deal with software aging and assure software fault 
tolerance, software rejuvenation process has been introduced 
as a proactive approach to counteracting software aging and 
maintaining a reliable software system [4]. In this work, we 
take advantage of cloud-based software design to perform 
rejuvenation in its simple form, namely to restart the 
application or its software components subject to software 
aging with increasing failure rates that would lead to the 
degradation of system performance. Fault tolerance and fault 
or failure forecasting are two major techniques that can be 
adopted side by side to improve the system reliability for an 
operational software system [5]. Fault tolerance in this work is 
achieved by employing standby Hot Software Spares (HSS); 
while failure forecasting is to estimate the failure-time 
probability density function (pdf) based on empirical data 
collected for the designed fault-tolerant system. In the context 
of cloud computing, HSS is a Virtual Machine (VM) instance 
that is available instantly when a primary component fails. The 
reliability of a cloud-based system can be computed by 
plugging the pdfs of its system components into a previously 
proposed analytical approach [6, 9], and then derive a software 
rejuvenation schedule for preventive maintenance. In this 
paper, we assume the time-to-failure pdf follows the Weibull 
distribution. By selecting appropriate parameters, we can 
model an increasing failure rate function due to software-aging 
related bugs. We show in a case study the ability of our 
analytical technique to evaluate the reliability of cloud-based 
systems with non-constant failure rates as well as fault-tolerant 
designs supported by either one HSS or two HSSs.  
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II. RELIABILITY MODELING AND ANALYSIS  

Dynamic Fault Tree (DFT) has modeling capabilities for 
dynamic features of a computer-based system, such as spare 
components, functional dependency, and failure sequence 
dependency. In this paper, we adopt an extended DFT for 
modeling software spare components in cloud-based software 
systems [6]. The approach supports a two-phased software 
rejuvenation process, where Phase 1 is a pre-rejuvenation 
stage, and in Phase 2, system components in low performance 
are replaced by newly deployed ones. In particular, a Software 
SPare (SSP) gate is used to model the fault-tolerant aspect of a 
system design that employs one or multiple HSSs. It is 
important to mention that a DFT can be decomposed into 
independent sub-modules (sub-trees), so their reliabilities can 
be calculated independently, and then joined to derive the 
reliability of the whole system [7].  In the following two 
subsections, we show the modeling and analysis approach for 
spare components with either 1-HSS or 2-HSSs that follow the 
Weibull distribution to simulate their non-constant failure 
rates. A 2-parameter Weibull distribution has the following 
two parameters: the shape parameter “p” and the scale 
parameter “λ” [8], as given in Eq. (1) for its pdf: 
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The reliability function R(t) based on f(t) can be derived as 
in Eq. (2). Consequently, we can derive the failure rate 
function h(t) as in Eq. (3). 
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Note that in a special case, when p = 1, h(t) = λ. This 
means the probability density function f(t) becomes an 
exponential distribution, where λ is a constant failure rate.  

A. An SSP Gate for Cloud-Based Systems with 1-HSS 

Following the same model construct defined in previous 
work [9], a SSP gate with one primary component P and one 
HSS component H is illustrated in Fig. 1. A SSP gate fails 
when P and all other alternate spares (the only spare part in 
Fig. 1 is H) fail. When P fails, H takes over P’s workload, and 
then behaves as H* with λH* ≥ λH. This is due to the software-
aging phenomenon when an HSS takes a full workload after it 
replaces the primary one. Based on Fig. 1, we now consider 
two disjoint paths that lead to the failure of the SSP gate, 
which are P fails before H (called path event p1) and H fails 
before P (called path event p2). 

 
Fig. 1. An SSP gate with a primary component and a HSS 

Path 1: P fails before H fails, denoted as PH. Let τ1 and 
τ2 be the failure times of P and H, respectively. In this case, it 
is impossible for H to fail during (0, τ1]. Hence, the probability 
of P failing before H fails, i.e., Pr(p1), can be calculated using 
double integrations as in Eq. (4). 
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where τH1* = [(hH(τ2))/(hH*(τ2))]τ1 = (λH/λH*)p τ1. 

Path 2: H fails before P fails, denoted as H P. In this 
case, it is impossible for P to fail during (0, τ2], where τ2 is the 
failure time of H. Hence the probability of H failing before P 
fails, i.e., Pr(p2), can be calculated as in Eq. (5). 
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The reliability function R(t) for a SSP gate with 1-HSS is 
given in a general form as R(t) = 1- U(t), where U(t) is given 
as in Eq. (6). Refer to the detailed derivation of Eq. (6) in 
previous work [9]. 
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B. An SSP Gate for Cloud-Based Systems with 2-HSSs 

Figure 2 shows a SSP gate with one primary component P 
and two HSS components H1 and H2. Similar to the previous 
case with a single HSS, P is initially powered on. When P 
fails, it is replaced by one of the HSSs depending on their 
enumeration order. An SSP gate fails when the primary 
component and all the alternate inputs fail. When H1 takes the 
lead to replace P, it becomes H1*, with λH1* ≥ λH1, due to the 
software aging phenomenon when it takes the full workload. 
In this case, H1* serves as a primary one, and H2 serves as its 
hot software spare. Similarly, when H1* fails, H2 replaces H1*, 
and behave as H2*, with λH2* ≥ λH2.  

 
Fig. 2. An SSP gate with a primary component and two HSSs 

Let τ1, τ2 and τ3 be the failure times of component P, H1 and 
H2, respectively. We now identify all the possible paths that 
lead to the failure of a SSP gate according to the component 
failure sequence. To calculate the reliability function of an 
SSP gate, we investigate six disjoint paths (denoted as p1 to p6, 
respectively) as follows.  

Path 1: The components fail in the sequence of P, H1, and 
H2, denoted as PH1H2. In this case, it is impossible for H1 
to fail during (0, τ1] and for H2 to fail during (0, τ2]. The HSS 
H1 takes over the workload and becomes H1* right after P 
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fails; similarly, H2 takes over the workload and becomes H2* 
right after H1* fails. Hence, the probability of the path event 
PH1H2 = Pr(p1) can be calculated as in Eq. (7) with τH2* 

=[(hH(τ2))/(hH*(τ2))](τ2+(τ2–τH1*)), which is a generalized form 
of the equation ))(()( *12λ

λ
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derived in previous work [6, 9]. 
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Path 2: The components fail in the sequence of P, H2, and 
H1, denoted as PH2H1. Similar to previous work [9], the 
integration of H1* requires to shift the integration limit from 
τH1* to τH1*+(τ3–τ1), which leads to Eq. (8). 
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Path 3: The components fail in the sequence of H2, P, and 
H1, denoted as H2 PH1. Note that this case is a simple one 
similar to Eq. (4). The probability that the SSP gate fails can 
be calculated as in Eq. (9). 
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Path 4: The components fail in the sequence of H1, H2, and 
P, denoted as H1H2 P. In this case, it is impossible for P 
to fail during (0, τ3]. The probability that the SSP gate fails 
during (0, t] can be calculated as in Eq. (10). 
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Path 5: The components fail in the sequence of H1, P, and 
H2, denoted as H1 PH2 . Similar to Path p3, this is where 
H1 fails first as a spare, then P fails before H2 fails. In this 
case, the probability that the SSP gate fails can be calculated 
as in Eq. (11), where τH2* can be calculated in a similar way to 
the calculation of τH1* as in Eq. (4). 
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Path 6: The components fail in the sequence of H2, H1, and 
P, denoted as H2H1 P. In this case, the probability that the 
SSP gate fails during (0, t] can be calculated as in Eq. (12). 
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The reliability function for a SSP gate with 2-HSSs is 
given in a general form as R(t) = 1–U(t), where U(t) is given 
as in Eq. (13). 
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It is worth noting that there are major differences between 
Eqs. (7-12) and the equations derived in previous work [9]. In 
Eqs. (7-12), the probabilities are calculated based on non-
constant failure rates for the software components; while in 
previous work [9], the derived equations only work for 
constant failure rates. Though Eqs. (7-12) cannot be directly 
verified using Continuous Time Markov Chain (CTMC) due 
to the non-constant failure rates, they have been proved correct 
in reference [9] for the special case when the shape parameter 
p = 1, i.e., when the failure rates are constant values.  

III. CASE STUDY 

In this section, we show how to model and analyze the 
reliability of a cloud-based software system with 1-HSS and 2-
HSSs, where all software components have the Weibull time-
to-failure distribution with increasing failure rates due to 
software aging. The software system is modeled using an 
extended DFT for software sparing [6, 9], and the reliability 
analysis is conducted as described in Sections II.A and II.B. 
Our goal is to derive feasible software rejuvenation schedules 
based on reliability quantitative analysis.  

Figure 3 shows the extended DFT model of two cloud-
based systems during the pre-rejuvenation stage, i.e., Phase 1. 
The model on the top contains a single HSS that is ready to 
replace the primary one when it fails; while the model at the 
bottom contains 2-HSSs to make the system more reliable and 
fault-tolerant. The cloud-based system being modeled consists 
of an application server PA and a database server PB. In the 1-
HSS case, HA is set up for PA, and HB is set up for PB to 
assure high reliability. Similarly, in the 2-HSS case, two HSSs 
are deployed for each primary server. We assume the 
reliability threshold to be 0.99 as a minimum constraint for 
system reliability. In the case study, we define the following 
scale parameters: λPA = 0.004/day, λHA1= λHA2 = 0.0025/day, λPB 

= 0.005/day, λHB1 = λHB2 = 0.003/day. For comparison purposes, 
we set them the same values as the constant failure rates of 
exponential distribution used in our previous work [9]  

The failure rate of an HSS increases after switching to the 
primary-component mode when the primary one fails. Hence, 
hPA(τ1) = hHA1*(τ2) = hHA2*(τ3) and hPB(τ1) = hHB1*(τ2) = 

hHB2*(τ3). In summary, the following Weibull parameter values 
are used for reliability analysis in the case study: application 
server (shape p = 1.2; scale λPA = λHA1*  = λHA2* = 0.004, and λHA1  

= λHA2= 0.0025); and database servers (shape p = 1.1; scale λPB 

= λHB1* = λHB2* = 0.005, and λHA1  = λHA2= 0.003). 
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Fig. 3.  DFT model with 1-HSS vs. 2-HSSs (Phase1) (adapted from [9]) 

Note that the rejuevantion process also involves Cold 
Software Spare (CSS) components, which are images of VM 
instances that can be easily deployed. Since a CSS is simply a 
cloud image that is not running, its failure rate equals 0. As 
such, a CSS does not appear in the DFT model because it does 
not affect the system reliability. We consider a CSS only when 
it is activated and deployed as a primary one or an HSS. 

From Fig. 3, we can see that the system fails when either 
the application server or the database server fails. We use the 
sum of disjoint product method to derive the reliability 
function for an OR-gate, which can be applied to both of the 
two DFT models, as in Eq. (14). 

))(*))(1()((1)(1)( 211 tUtUtUtUtR SSSOR −+−=−=       (14) 

In Eq. (14), the unreliability functions US1(t) and US2(t) can 
be derived using Eq. (6) and Eq. (13) for the 1-HSS and 2-
HSSs cases, respectively. Both system-specific (Scenario 1) 
and component-specific (Scenario 2) rejuvenation approaches 
are addressed in the case study. As defined in reference [6], a 
system-specific rejuvenation schedule restarts the whole 
system when the system reliability reaches a safety threshold. 
On the other hand, a component-specific rejuvenation 
schedule only refreshes the most critical component when the 
system reliability is below the safety threshold.  

 
Fig. 4.  DFT model with 2-HSSs - Phase 2 (Scenario1) (adapted from [9]) 

Figure 4 represents the DFT model of the cloud-based 
system with 2-HSSs in Phase 2 based on Scenario 1. Similar to 
the reliability analysis for Phase 1, we can analyze the DFT 
model for Phase 2 (Scenario1) by decomposing it into sub-
trees. Thus, the unreliability functions of the subtrees US1(t), 
US1’(t), US2(t) and US2’(t) can be computed using Eq. (6) for 1-
HSS and Eq. (13) for 2-HSSs. As for US3(t) and US4(t), since 
they are AND-gates, their unreliability can be calculated using 
the sum of disjoint product method as shown in Eqs. (15-16). 
Finally, the reliability of the whole system can be derived as in 
Eq. (14), similar to the case of Phase 1.  

)(*)()( '113 tUtUtU SSS =                                      (15) 
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Once we have derived the reliability function for Scenario 
1 in Phase 2, we can use the same approach to deal with 
Scenario 2 in Phase 2. The DFT model for Scenario 2 in Phase 
2 is illustrated in Fig. 5, in which the application server is 
rejuvenated. Note that when the database server is rejuvenated, 
the DFT model can be derived in a similar way. 

 
Fig. 5.  DFT model with 2-HSSs - Phase 2 (Scenario2) (adapted from [9]) 

In Fig. 5, the subtrees US1(t), US1’(t), US2(t) and US3(t) can 
be calculated as we did for Scenario 1 in Phase 2. In other 
words, we can calculate US1(t), US1’(t) and US2(t) according to 
Eq. (6) and Eq. (13) for the cases of 1-HSS and 2-HSSs, 
respectively. As node S3 represents the output of an AND-
gate, US3(t) is derived using the sum of disjoint product 
method for an AND-gate as in Eq. (15). Finally, the reliability 
function of the whole system is defined as in Eq. (14).  

Different from previous work [9], all software components 
defined in the DFT models are subject to non-constant failure 
rates as their time-to-failure follows the Weibull distribution. 
The next step is to show the analysis results and visualize the 
differences and the impacts of employing 2-HSSs vs. 1-HSS 
on rejuvenation schedules in a cloud-based system. In 
addition, we study the impact of using Scenario 1 vs. Scenario 
2 for rejuvenation scheduling in a cloud-based system with 
multiple HSSs subject to the software-aging phenomenon. 

Table 1 shows the reliability analysis results for the 
application server subsystem in both of the 1-HSS and 2-HSSs 
cases. It is easy to see that the 2-HSSs case is more reliable 
than the 1-HSS case since the system design employs two 
HSSs for each primary one, and thus it is more fault-tolerant. 
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Table 1. Application sever reliability with 1-HSS and 2-HSSs 

Time (days)  1-HSS App. Server R(t)  2-HSS App. Server R(t) 

0 1 1 
1 0.999998667 0.99999999879 
5 0.999771280 0.999999605 

10 0.998960870 0.999995272 
20 0.998303980 0.999944405 
30 0.995622592 0.999768668 
60 0.978742690 0.997495766 
90 0.948655000 0.990481970 

120 0.906980000 0.976492615 
180 0.798764000 0.923257827 
240 0.673967900 0.837729710 
300 0.548546400 0.729271367 
365 0.423781190 0.600339000 

 
Similarly, Table 2 shows the reliability analysis results for 

the database server subsystem in both of the 1-HSS and 2-
HSSs cases. Again, the 2-HSSs case is more reliable than the 
1-HSS case since the system design employs two HSSs for 
each primary one, and thus it is more fault-tolerant. 

Table 2. Database server reliability with 1-HSS and 2-HSSs 

Time (days) 1-HSS DB Server R(t) 2-HSSs DB Server R(t) 

0 1 1 
1 0.999993319 0.9999999862 
5 0.999937115 0.9999972565 

10 0.999671339 0.9999735858 
20 0.995347000 0.9997521730 
30 0.988965000 0.9991023013 
60 0.953890079 0.992467550 
90 0.898541000 0.975684900 

120 0.828575990 0.946938900 
180 0.665978740 0.856144800 
240 0.499787000 0.735050867 
300 0.349438900 0.603242334 
365 0.213935800 0.466220270 

 
Table 3 shows how the system reliability evolves in 

rejuvenation cycles and phases with duration of 125 days for 
the 1-HSS case in Scenario 2. The rows highlighted in blue in 
Table 3 indicate that system reliability has reached the 
reliability threshold, and threfore a software rejuvenation 
occurs as scheduled. Comparatively, we illustrate the system 
reliability with the 2-HSSs case in Scenario 2, as shown in 
Table 4, for the similar time span. 

Figure 6 illustrates in details the differences between the 
two cases, 1-HSS vs. 2-HSSs, based on Scenario 1 for system-
specific rejuvenation. From Tables 3 and 4, we can see that the 
system reliability reaches the threshold after 25 days and 59 
days for the 1-HSS and 2-HSSs cases, respectively. According 
to Scenario 1, the whole system is restarted when the threshold 
is reached, and the system returns to its initial state. As a 
result, the rejuvenization must be repeated regularly every 25 
and 59 days for the 1-HSS and 2-HSSs cases, respectively. 
Such rejuvenization strategies are reflected in Fig. 6 as recur-
rent rejuvenation schedules for the two cases in Scenario 1. 

On the other hand, both Tables 3 and 4 show irregular 
ocurrences of rejuvenation in Scenario 2. This is because in 
Scenario 2, we rejuvenate the component that has the lowest 
reliability when the system reliability reaches threshold 0.99.  

Table 3. System reliability with rejuvenation (1-HSS Scenario 2)  

Phase Time (days) 
System Reliability 
1-HSS (Scenario 2) 

1 

0 1 
1 0.999991986 
5 0.999708409 

10 0.998632551 
20 0.993658872 
25 0.99 

2 

25.003472 0.99742372 
25.006944 0.997421 

25.01389 0.997419 
25.020833 0.9974178 

1 

26 0.99685634 
30 0.995559949 
35 0.993418915 
40 0.99 

2 

40.003472 0.9974958 
40.006944 0.997495500 

40.01389 0.997495200 
40.020833 0.9974948 

1 
41 0.997120047 
45 0.994606441 
52 0.99 

2 

52.003472 0.99949305 
52.006944 0.999493030 

52.01389 0.999493000 
52.020833 0.999492970 

1 

55 0.999065 
60 0.997667 
70 0.9919284 
72 0.99 

2 

72.003472 0.995344 
72.006944 0.995343 

72.01389 0.995341 
72.020833 0.995339 

1 
75 0.999065 
80 0.99 

2 

80.003472 0.999806827 
80.006944 0.999806825 

80.01389 0.99980623 
80.020833 0.999806821 

1 

81 0.998490189 
85 0.997335279 
95 0.995147035 

101 0.99 

2 

101.003472 0.995954210 
101.006944 0.995954207 

101.01389 0.995954205 
101.020833 0.995954203 

1 

102 0.9956159 
105 0.99446611 
110 0.991807548 
112 0.99 

2 

112.003472 0.99872147 
112.006944 0.99872146 

112.01389 0.99872144 
112.020833 0.99872142 

1 
115 0.9956159 
120 0.99446611 
125 0.991894655 

 
Figure 7 shows the differences between the two cases, 1-

HSS vs. 2-HSSs, based on Scenario 2 for component-specific 
rejuvenation. According to the figure, when the reliability 
threshold is reached, the component with the lowest reliability, 
e.g., the database server, is rejuvenated first. 

It is worth mentioning that in Scenario 2 with 1-HSS, the 
database server gets rejuvenated for two consecutive times on 
day 80 and day 101, as shown in Table 3. We can see how this 
irregularity affects the reliability pattern in Fig. 7. 
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Table 4. System reliability with rejuvenation (2-HSSs Scenario 2)  

Phase Time (days) 
System Reliability 

2-HSSs (Scenario 2) 

1 

0 1 
1 0.999999985 
5 0.999996861 

10 0.999968858 
30 0.998871177 
59 0.990485251 

2 

59.003472 0.997632898 
59.006944 0.997632430925 

59.01389 0.997631493009 
59.020833 0.997630555246 

1 

64 0.99688844 
69 0.995980045 
80 0.9930624 
90 0.99 

2 

90.003472 0.99946301 
90.006944 0.9994629 

90.01389 0.9994628 
90.020833 0.9994626 

1 

95 0.998411679000 
100 0.997619850000 
120 0.991000000000 
123 0.990560000000 

2 

123.003472 0.999677418000 
123.006944 0.999677416000 

123.01389 0.999677415000 
123.020833 0.999677412000 

1 128 0.999470858000 

 

 
Fig. 6. Rejuvenation scheduling: 2-HSSs vs. 1-HSS (Scenario1) 

 
Fig. 7. Rejuvenation scheduling: 2-HSSs vs. 1-HSS (Scenario 2) 

Figure 7 also shows that 3 rejuvenations are needed for 
Scenario 2 with 2-HSSs vs. 7 rejuvenations needed for the 1-
HSS case during 125 days. Therefore, compared with Scenario 
2 with 1-HSS, using Scenario 2 with 2-HSSs results in (7–
3)/(7) = 57% reduction in cost and management for software 

rejuvenation while keeping the system reliability well above 
the 0.99 threshold. This result was as expected because using 
2-HSSs for each primary one surely makes the whole system 
more reliable and dependable. 

IV. CONCLUSIONS AND FUTURE WORK 

In this paper, we perform reliability analysis for cloud-
based systems with software spares subject to non-constant 
failure rates. The proposed work is based on an analytical 
approach for scheduling a preventive maintenance procedure, 
called software rejuveantion. We adopted an extension of  
DFT, called SSP gate, to model and evaluate the reliability of 
a cloud-based system with multiple hot software spares. We 
used the Weibull distribution to emulate an increasing failure 
rate due to the software-aging phenomenon. The case study 
showed that our approach was feasible and could produce 
useful preventive maintance schudules. 

For future work, in order to forecast increasing failure rates 
for software components, we will develop an e-commerce 
application, deploy it on reputable cloud-based platfroms, such 
as Amazon Web Service AWS, Window Azure, and Google 
App Engine, and collect empirical data related to resource 
degradation. Data fitting technique will be used to derive the 
most suitable probability density function for the system time-
to-failure. Stochastic partial differential equations may be 
considered and applied to this field of study to help predict 
how software aging affects the failure rate. As such, more 
accurate results for system reliability can be used to derive 
preventive maintencance schedules for cloud-based systems. 
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