
Preventive Maintenance for Cloud-Based Software
Systems Subject to Non-Constant Failure Rates

Jean Rahme and Haiping Xu

Computer and Information Science Department
University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA

E-mail: {jrahme, hxu}@umassd.edu

Abstract—Online applications, such as e-commerce, have made a
huge impact in our daily life. With the rapid shift of online
applications to cloud-based platforms in recent years, it becomes
very important to maintain the high Quality of Service (QoS) for
cloud-based software systems in order to support successful
businesses. Since hardware reliability has been well understood
and is typically guaranteed by the cloud providers, software
failures have now become the major factor of system failures in
cloud-based software systems. Correctly measuring the reliability
and availability of a cloud-based software system is critical for
making preventive maintenance schedules. In this paper, we
address software-aging related bugs or faults that may lead to
performance degradation or increased failure rates of system
components. Based on our previous work, we study how to derive
preventive maintenance schedules for cloud-based software
systems subject to non-constant failure rates. We adopt the
Weibull distribution to model an increasing failure rate for
software components with software-aging issues. Finally, we use a
case study to show that our analytical approach can effectively
support development of software rejuvenation schedules for
preventive maintenance of cloud-based software systems.

Keywords-Software reliability engineering; software aging;
reliability analysis; preventive maintenance; software rejuvenation
schedule; non-constant failure rate

I. INTRODUCTION

Over the past decades, online applications have made a
huge impact in our daily life. Cloud computing, the idea of
using computing resources as a utility, has become an
attractive paradigm for developers to deploy their services and
get their services started, without the need to spend large
capital in hardware resources. As the shift to cloud computing
is rapidly increasing, there is a pressing need to maintain a
high Quality of Service (QoS) for cloud-based systems to
support successful online businesses. As hardware reliability is
well understood and is typically guaranteed by the cloud
providers [1], software faults in cloud services have become a
major factor leading to system failures in cloud-based systems.
Various strategies in Software Reliability Engineering (SRE)
can be used to combat against software faults to achieve
highly reliable software. Before the concept of software aging
was introduced, SRE supported analysis of software defects
and related to Heisenbugs or BohrBugs [2]. Bohrbugs are
easier to deal with since they are deterministic, and can be

eliminated at the design level by debugging or adopting design
diversity. On the other hand, Heisenbugs are non-deterministic
errors, which appear at the operational level, and can be dealt
with by retrying the operation or restarting the associated
application. However, neither of these two types of bugs
would lead to an increasing failure rate; therefore, we typically
assume constant failure rates for software components that are
subject to these types of bugs [2, 3]. Software-aging related
bugs are non-deterministic like Heisenbugs, thus, both of them
are classified under Mandlebugs [3]. However, software-aging
related bugs may result in an increased failure rate since the
error conditions, such as unreleased memory due to memory
leaks, can accumulate in a running application or within its
environment (e.g., the operating system).

To deal with software aging and assure software fault
tolerance, software rejuvenation process has been introduced
as a proactive approach to counteracting software aging and
maintaining a reliable software system [4]. In this work, we
take advantage of cloud-based software design to perform
rejuvenation in its simple form, namely to restart the
application or its software components subject to software
aging with increasing failure rates that would lead to the
degradation of system performance. Fault tolerance and fault
or failure forecasting are two major techniques that can be
adopted side by side to improve the system reliability for an
operational software system [5]. Fault tolerance in this work is
achieved by employing standby Hot Software Spares (HSS);
while failure forecasting is to estimate the failure-time
probability density function (pdf) based on empirical data
collected for the designed fault-tolerant system. In the context
of cloud computing, HSS is a Virtual Machine (VM) instance
that is available instantly when a primary component fails. The
reliability of a cloud-based system can be computed by
plugging the pdfs of its system components into a previously
proposed analytical approach [6, 9], and then derive a software
rejuvenation schedule for preventive maintenance. In this
paper, we assume the time-to-failure pdf follows the Weibull
distribution. By selecting appropriate parameters, we can
model an increasing failure rate function due to software-aging
related bugs. We show in a case study the ability of our
analytical technique to evaluate the reliability of cloud-based
systems with non-constant failure rates as well as fault-tolerant
designs supported by either one HSS or two HSSs.

978-1-5386-0435-9/17/$31.00 ©2017 IEEE 1576

II. RELIABILITY MODELING AND ANALYSIS

Dynamic Fault Tree (DFT) has modeling capabilities for
dynamic features of a computer-based system, such as spare
components, functional dependency, and failure sequence
dependency. In this paper, we adopt an extended DFT for
modeling software spare components in cloud-based software
systems [6]. The approach supports a two-phased software
rejuvenation process, where Phase 1 is a pre-rejuvenation
stage, and in Phase 2, system components in low performance
are replaced by newly deployed ones. In particular, a Software
SPare (SSP) gate is used to model the fault-tolerant aspect of a
system design that employs one or multiple HSSs. It is
important to mention that a DFT can be decomposed into
independent sub-modules (sub-trees), so their reliabilities can
be calculated independently, and then joined to derive the
reliability of the whole system [7]. In the following two
subsections, we show the modeling and analysis approach for
spare components with either 1-HSS or 2-HSSs that follow the
Weibull distribution to simulate their non-constant failure
rates. A 2-parameter Weibull distribution has the following
two parameters: the shape parameter “p” and the scale
parameter “λ” [8], as given in Eq. (1) for its pdf:

ptpp etptf)()1()(λλ −−= (1)

The reliability function R(t) based on f(t) can be derived as
in Eq. (2). Consequently, we can derive the failure rate
function h(t) as in Eq. (3).

 
∞

−==
t

t p

edttftR)()()(λ (2)

)1(

)(

)(
)(−== pptp

tR

tf
th λ (3)

Note that in a special case, when p = 1, h(t) = λ. This
means the probability density function f(t) becomes an
exponential distribution, where λ is a constant failure rate.

A. An SSP Gate for Cloud-Based Systems with 1-HSS

Following the same model construct defined in previous
work [9], a SSP gate with one primary component P and one
HSS component H is illustrated in Fig. 1. A SSP gate fails
when P and all other alternate spares (the only spare part in
Fig. 1 is H) fail. When P fails, H takes over P’s workload, and
then behaves as H* with λH* ≥ λH. This is due to the software-
aging phenomenon when an HSS takes a full workload after it
replaces the primary one. Based on Fig. 1, we now consider
two disjoint paths that lead to the failure of the SSP gate,
which are P fails before H (called path event p1) and H fails
before P (called path event p2).

Fig. 1. An SSP gate with a primary component and a HSS

Path 1: P fails before H fails, denoted as PH. Let τ1 and
τ2 be the failure times of P and H, respectively. In this case, it
is impossible for H to fail during (0, τ1]. Hence, the probability
of P failing before H fails, i.e., Pr(p1), can be calculated using
double integrations as in Eq. (4).

12
)(

*H

0

)(
)(

P
)1(

2
)1(

1*H
2

12

0

)(

2*11

)())((

)().()Pr(

2*H

*11

*1

1p

*11

*1

ττλλττλλ

ττττ

τλ
ττ

τ

τλ

ττ

τ

ddeep

ddffp

p
H

H

p

H

H

t t

pppp
P

t t

HP

−
+−

−−−

+−

 

 

=

= (4)

where τH1* = [(hH(τ2))/(hH*(τ2))]τ1 = (λH/λH*)p τ1.

Path 2: H fails before P fails, denoted as H P. In this
case, it is impossible for P to fail during (0, τ2], where τ2 is the
failure time of H. Hence the probability of H failing before P
fails, i.e., Pr(p2), can be calculated as in Eq. (5).

21
)(

P
)(

H

0

)1(
2

)1(
1H

2
2))(()()Pr(1p2H

2

ττλλττλλ τλτλ

τ

ddeepp
pp

t t
pppp

P
−−−− = (5)

The reliability function R(t) for a SSP gate with 1-HSS is
given in a general form as R(t) = 1- U(t), where U(t) is given
as in Eq. (6). Refer to the detailed derivation of Eq. (6) in
previous work [9].

)Pr()Pr(=)(21 pptU + (6)

B. An SSP Gate for Cloud-Based Systems with 2-HSSs

Figure 2 shows a SSP gate with one primary component P
and two HSS components H1 and H2. Similar to the previous
case with a single HSS, P is initially powered on. When P
fails, it is replaced by one of the HSSs depending on their
enumeration order. An SSP gate fails when the primary
component and all the alternate inputs fail. When H1 takes the
lead to replace P, it becomes H1*, with λH1* ≥ λH1, due to the
software aging phenomenon when it takes the full workload.
In this case, H1* serves as a primary one, and H2 serves as its
hot software spare. Similarly, when H1* fails, H2 replaces H1*,
and behave as H2*, with λH2* ≥ λH2.

Fig. 2. An SSP gate with a primary component and two HSSs

Let τ1, τ2 and τ3 be the failure times of component P, H1 and
H2, respectively. We now identify all the possible paths that
lead to the failure of a SSP gate according to the component
failure sequence. To calculate the reliability function of an
SSP gate, we investigate six disjoint paths (denoted as p1 to p6,
respectively) as follows.

Path 1: The components fail in the sequence of P, H1, and
H2, denoted as PH1H2. In this case, it is impossible for H1
to fail during (0, τ1] and for H2 to fail during (0, τ2]. The HSS
H1 takes over the workload and becomes H1* right after P

P

SSP

 H

P

SSP

H1 H2

1577

fails; similarly, H2 takes over the workload and becomes H2*
right after H1* fails. Hence, the probability of the path event
PH1H2 = Pr(p1) can be calculated as in Eq. (7) with τH2*

=[(hH(τ2))/(hH*(τ2))](τ2+(τ2–τH1*)), which is a generalized form
of the equation))(()(*12λ

λ

* 1*2

2

2 H
p

Η ττττ
H

H −+= for time shifting

derived in previous work [6, 9].

123

)(

*

)(

*
)(

)1(
3

)1(
2

)1(
1

0

)()][(

**
3

123

0

3*

)()][(

2*11

))()((

)(

)()()()Pr(

3*2

2

2*1

1

1

*11

*1

*2*112

*2

21

2

*11

*1

*2*112

*2

1

τττλλλ

τττλλλ

ττττττ

τλτλτλ

ττ

τ

ττττ

τ

ττ

τ

ττττ

τ

dddeee

p

dddfffp

p
H

p
H

p
P

H

H

HH

H

H

H

HH

H

HHP

ppp
t t t

p
H

p
H

p
P

t

H

t t

HP

−−−

−−−
+− +−+−

+− +−+−

  

  

=

=

(7)

Path 2: The components fail in the sequence of P, H2, and
H1, denoted as PH2H1. Similar to previous work [9], the
integration of H1* requires to shift the integration limit from
τH1* to τH1*+(τ3–τ1), which leads to Eq. (8).

132

)()(

*
)(

0

)(

)(

)1(
3

)1(
2

)1(
1*

3
2

))()((

)()Pr(

32

2

2*1

1

1

1

*11

13*1

21

τττλλλ

τττλλλ

τλτλτλ

τ

ττ

τττ

dddeee

pp

p
H

p
H

p
P

H

H

HHP

t t t

pppp
H

p
H

p
P

−−−

−−

−+

−−−  = (8)

Path 3: The components fail in the sequence of H2, P, and
H1, denoted as H2 PH1. Note that this case is a simple one
similar to Eq. (4). The probability that the SSP gate fails can
be calculated as in Eq. (9).

213*

0

)(

)(

)1(
3

)1(
2

)1(
1*

3
3

))()((

)()Pr(

32

2

21

1

1

3

*11

1
*1

1

21

τττλλλ

τττλλλ

τλτλτλ

τ

ττ

τ
λ
λ

dddeee

pp

H*HP

H

p

H

H

HHP

t t t

pppp
H

p
H

p
P

−−−

−−

−−−  = (9)

Path 4: The components fail in the sequence of H1, H2, and
P, denoted as H1H2 P. In this case, it is impossible for P
to fail during (0, τ3]. The probability that the SSP gate fails
during (0, t] can be calculated as in Eq. (10).

132

0

)1(
3

)1(
2

)1(
1

3
4

))()((

)()Pr(

32

2

21

1

1

2 3

21

τττλλλ

τττλλλ

τλτλτλ

τ τ

dddeee

pp

HHP
HHP

t t t
pppp

H
p
H

p
P

−−−

−−−  = (10)

Path 5: The components fail in the sequence of H1, P, and
H2, denoted as H1 PH2 . Similar to Path p3, this is where
H1 fails first as a spare, then P fails before H2 fails. In this
case, the probability that the SSP gate fails can be calculated
as in Eq. (11), where τH2* can be calculated in a similar way to
the calculation of τH1* as in Eq. (4).

213*

0

)(

)(

)1(
3

)1(
2

)1(
1*

3
5

))()((

)()Pr(

3*2

2

21

1

1

2

2*2

2
*2

2

21

τττλλλ

τττλλλ

τλτλτλ

τ

ττ

τ
λ
λ

dddeee

pp

HHP

H

p

H

H

HHP

t t t

pppp
H

p
H

p
P

−−−

−−

−−−  =

(11)

Path 6: The components fail in the sequence of H2, H1, and
P, denoted as H2H1 P. In this case, the probability that the
SSP gate fails during (0, t] can be calculated as in Eq. (12).

321

0

)1(
3

)1(
2

)1(
1

3
6

))()((

)()Pr(

32

2

21

1

1

3 2

21

τττλλλ

τττλλλ

τλτλτλ

τ τ

dddeee

pp

HHP
HHP

t t t
pppp

H
p
H

p
P

−−−

−−−  = (12)

The reliability function for a SSP gate with 2-HSSs is
given in a general form as R(t) = 1–U(t), where U(t) is given
as in Eq. (13).

)Pr()Pr()Pr()Pr()Pr()Pr(=)(654321 pppppptU +++++ (13)

It is worth noting that there are major differences between
Eqs. (7-12) and the equations derived in previous work [9]. In
Eqs. (7-12), the probabilities are calculated based on non-
constant failure rates for the software components; while in
previous work [9], the derived equations only work for
constant failure rates. Though Eqs. (7-12) cannot be directly
verified using Continuous Time Markov Chain (CTMC) due
to the non-constant failure rates, they have been proved correct
in reference [9] for the special case when the shape parameter
p = 1, i.e., when the failure rates are constant values.

III. CASE STUDY

In this section, we show how to model and analyze the
reliability of a cloud-based software system with 1-HSS and 2-
HSSs, where all software components have the Weibull time-
to-failure distribution with increasing failure rates due to
software aging. The software system is modeled using an
extended DFT for software sparing [6, 9], and the reliability
analysis is conducted as described in Sections II.A and II.B.
Our goal is to derive feasible software rejuvenation schedules
based on reliability quantitative analysis.

Figure 3 shows the extended DFT model of two cloud-
based systems during the pre-rejuvenation stage, i.e., Phase 1.
The model on the top contains a single HSS that is ready to
replace the primary one when it fails; while the model at the
bottom contains 2-HSSs to make the system more reliable and
fault-tolerant. The cloud-based system being modeled consists
of an application server PA and a database server PB. In the 1-
HSS case, HA is set up for PA, and HB is set up for PB to
assure high reliability. Similarly, in the 2-HSS case, two HSSs
are deployed for each primary server. We assume the
reliability threshold to be 0.99 as a minimum constraint for
system reliability. In the case study, we define the following
scale parameters: λPA = 0.004/day, λHA1= λHA2 = 0.0025/day, λPB

= 0.005/day, λHB1 = λHB2 = 0.003/day. For comparison purposes,
we set them the same values as the constant failure rates of
exponential distribution used in our previous work [9]

The failure rate of an HSS increases after switching to the
primary-component mode when the primary one fails. Hence,
hPA(τ1) = hHA1*(τ2) = hHA2*(τ3) and hPB(τ1) = hHB1*(τ2) =

hHB2*(τ3). In summary, the following Weibull parameter values
are used for reliability analysis in the case study: application
server (shape p = 1.2; scale λPA = λHA1* = λHA2* = 0.004, and λHA1

= λHA2= 0.0025); and database servers (shape p = 1.1; scale λPB

= λHB1* = λHB2* = 0.005, and λHA1 = λHA2= 0.003).

1578

Fig. 3. DFT model with 1-HSS vs. 2-HSSs (Phase1) (adapted from [9])

Note that the rejuevantion process also involves Cold
Software Spare (CSS) components, which are images of VM
instances that can be easily deployed. Since a CSS is simply a
cloud image that is not running, its failure rate equals 0. As
such, a CSS does not appear in the DFT model because it does
not affect the system reliability. We consider a CSS only when
it is activated and deployed as a primary one or an HSS.

From Fig. 3, we can see that the system fails when either
the application server or the database server fails. We use the
sum of disjoint product method to derive the reliability
function for an OR-gate, which can be applied to both of the
two DFT models, as in Eq. (14).

))(*))(1()((1)(1)(211 tUtUtUtUtR SSSOR −+−=−= (14)

In Eq. (14), the unreliability functions US1(t) and US2(t) can
be derived using Eq. (6) and Eq. (13) for the 1-HSS and 2-
HSSs cases, respectively. Both system-specific (Scenario 1)
and component-specific (Scenario 2) rejuvenation approaches
are addressed in the case study. As defined in reference [6], a
system-specific rejuvenation schedule restarts the whole
system when the system reliability reaches a safety threshold.
On the other hand, a component-specific rejuvenation
schedule only refreshes the most critical component when the
system reliability is below the safety threshold.

Fig. 4. DFT model with 2-HSSs - Phase 2 (Scenario1) (adapted from [9])

Figure 4 represents the DFT model of the cloud-based
system with 2-HSSs in Phase 2 based on Scenario 1. Similar to
the reliability analysis for Phase 1, we can analyze the DFT
model for Phase 2 (Scenario1) by decomposing it into sub-
trees. Thus, the unreliability functions of the subtrees US1(t),
US1’(t), US2(t) and US2’(t) can be computed using Eq. (6) for 1-
HSS and Eq. (13) for 2-HSSs. As for US3(t) and US4(t), since
they are AND-gates, their unreliability can be calculated using
the sum of disjoint product method as shown in Eqs. (15-16).
Finally, the reliability of the whole system can be derived as in
Eq. (14), similar to the case of Phase 1.

)(*)()('113 tUtUtU SSS = (15)

)(*)()('224 tUtUtU SSS = (16)

Once we have derived the reliability function for Scenario
1 in Phase 2, we can use the same approach to deal with
Scenario 2 in Phase 2. The DFT model for Scenario 2 in Phase
2 is illustrated in Fig. 5, in which the application server is
rejuvenated. Note that when the database server is rejuvenated,
the DFT model can be derived in a similar way.

Fig. 5. DFT model with 2-HSSs - Phase 2 (Scenario2) (adapted from [9])

In Fig. 5, the subtrees US1(t), US1’(t), US2(t) and US3(t) can
be calculated as we did for Scenario 1 in Phase 2. In other
words, we can calculate US1(t), US1’(t) and US2(t) according to
Eq. (6) and Eq. (13) for the cases of 1-HSS and 2-HSSs,
respectively. As node S3 represents the output of an AND-
gate, US3(t) is derived using the sum of disjoint product
method for an AND-gate as in Eq. (15). Finally, the reliability
function of the whole system is defined as in Eq. (14).

Different from previous work [9], all software components
defined in the DFT models are subject to non-constant failure
rates as their time-to-failure follows the Weibull distribution.
The next step is to show the analysis results and visualize the
differences and the impacts of employing 2-HSSs vs. 1-HSS
on rejuvenation schedules in a cloud-based system. In
addition, we study the impact of using Scenario 1 vs. Scenario
2 for rejuvenation scheduling in a cloud-based system with
multiple HSSs subject to the software-aging phenomenon.

Table 1 shows the reliability analysis results for the
application server subsystem in both of the 1-HSS and 2-HSSs
cases. It is easy to see that the 2-HSSs case is more reliable
than the 1-HSS case since the system design employs two
HSSs for each primary one, and thus it is more fault-tolerant.

PA

S1 S2

SSP

HA1 HA2 PB

SSP

HB1 HB2

PA

S3

S1 S1’

SSP

HA1 HA2 PA’

SSP

HA1’ HA2’

PB

S2

SSP

HB1 HB2

PA

S3 S4

S1

SSP

HA1 HA2 PA’

SSP

HA1’ HA2’ PB

S2 S2’

SSP

HB1 HB2 PB’

SSP

HB1’ HB2’

S1’

1579

Table 1. Application sever reliability with 1-HSS and 2-HSSs

Time (days) 1-HSS App. Server R(t) 2-HSS App. Server R(t)

0 1 1
1 0.999998667 0.99999999879
5 0.999771280 0.999999605

10 0.998960870 0.999995272
20 0.998303980 0.999944405
30 0.995622592 0.999768668
60 0.978742690 0.997495766
90 0.948655000 0.990481970

120 0.906980000 0.976492615
180 0.798764000 0.923257827
240 0.673967900 0.837729710
300 0.548546400 0.729271367
365 0.423781190 0.600339000

Similarly, Table 2 shows the reliability analysis results for

the database server subsystem in both of the 1-HSS and 2-
HSSs cases. Again, the 2-HSSs case is more reliable than the
1-HSS case since the system design employs two HSSs for
each primary one, and thus it is more fault-tolerant.

Table 2. Database server reliability with 1-HSS and 2-HSSs

Time (days) 1-HSS DB Server R(t) 2-HSSs DB Server R(t)

0 1 1
1 0.999993319 0.9999999862
5 0.999937115 0.9999972565

10 0.999671339 0.9999735858
20 0.995347000 0.9997521730
30 0.988965000 0.9991023013
60 0.953890079 0.992467550
90 0.898541000 0.975684900

120 0.828575990 0.946938900
180 0.665978740 0.856144800
240 0.499787000 0.735050867
300 0.349438900 0.603242334
365 0.213935800 0.466220270

Table 3 shows how the system reliability evolves in

rejuvenation cycles and phases with duration of 125 days for
the 1-HSS case in Scenario 2. The rows highlighted in blue in
Table 3 indicate that system reliability has reached the
reliability threshold, and threfore a software rejuvenation
occurs as scheduled. Comparatively, we illustrate the system
reliability with the 2-HSSs case in Scenario 2, as shown in
Table 4, for the similar time span.

Figure 6 illustrates in details the differences between the
two cases, 1-HSS vs. 2-HSSs, based on Scenario 1 for system-
specific rejuvenation. From Tables 3 and 4, we can see that the
system reliability reaches the threshold after 25 days and 59
days for the 1-HSS and 2-HSSs cases, respectively. According
to Scenario 1, the whole system is restarted when the threshold
is reached, and the system returns to its initial state. As a
result, the rejuvenization must be repeated regularly every 25
and 59 days for the 1-HSS and 2-HSSs cases, respectively.
Such rejuvenization strategies are reflected in Fig. 6 as recur-
rent rejuvenation schedules for the two cases in Scenario 1.

On the other hand, both Tables 3 and 4 show irregular
ocurrences of rejuvenation in Scenario 2. This is because in
Scenario 2, we rejuvenate the component that has the lowest
reliability when the system reliability reaches threshold 0.99.

Table 3. System reliability with rejuvenation (1-HSS Scenario 2)

Phase Time (days)
System Reliability
1-HSS (Scenario 2)

1

0 1
1 0.999991986
5 0.999708409

10 0.998632551
20 0.993658872
25 0.99

2

25.003472 0.99742372
25.006944 0.997421

25.01389 0.997419
25.020833 0.9974178

1

26 0.99685634
30 0.995559949
35 0.993418915
40 0.99

2

40.003472 0.9974958
40.006944 0.997495500

40.01389 0.997495200
40.020833 0.9974948

1
41 0.997120047
45 0.994606441
52 0.99

2

52.003472 0.99949305
52.006944 0.999493030

52.01389 0.999493000
52.020833 0.999492970

1

55 0.999065
60 0.997667
70 0.9919284
72 0.99

2

72.003472 0.995344
72.006944 0.995343

72.01389 0.995341
72.020833 0.995339

1
75 0.999065
80 0.99

2

80.003472 0.999806827
80.006944 0.999806825

80.01389 0.99980623
80.020833 0.999806821

1

81 0.998490189
85 0.997335279
95 0.995147035

101 0.99

2

101.003472 0.995954210
101.006944 0.995954207

101.01389 0.995954205
101.020833 0.995954203

1

102 0.9956159
105 0.99446611
110 0.991807548
112 0.99

2

112.003472 0.99872147
112.006944 0.99872146

112.01389 0.99872144
112.020833 0.99872142

1
115 0.9956159
120 0.99446611
125 0.991894655

Figure 7 shows the differences between the two cases, 1-

HSS vs. 2-HSSs, based on Scenario 2 for component-specific
rejuvenation. According to the figure, when the reliability
threshold is reached, the component with the lowest reliability,
e.g., the database server, is rejuvenated first.

It is worth mentioning that in Scenario 2 with 1-HSS, the
database server gets rejuvenated for two consecutive times on
day 80 and day 101, as shown in Table 3. We can see how this
irregularity affects the reliability pattern in Fig. 7.

1580

Table 4. System reliability with rejuvenation (2-HSSs Scenario 2)

Phase Time (days)
System Reliability

2-HSSs (Scenario 2)

1

0 1
1 0.999999985
5 0.999996861

10 0.999968858
30 0.998871177
59 0.990485251

2

59.003472 0.997632898
59.006944 0.997632430925

59.01389 0.997631493009
59.020833 0.997630555246

1

64 0.99688844
69 0.995980045
80 0.9930624
90 0.99

2

90.003472 0.99946301
90.006944 0.9994629

90.01389 0.9994628
90.020833 0.9994626

1

95 0.998411679000
100 0.997619850000
120 0.991000000000
123 0.990560000000

2

123.003472 0.999677418000
123.006944 0.999677416000

123.01389 0.999677415000
123.020833 0.999677412000

1 128 0.999470858000

Fig. 6. Rejuvenation scheduling: 2-HSSs vs. 1-HSS (Scenario1)

Fig. 7. Rejuvenation scheduling: 2-HSSs vs. 1-HSS (Scenario 2)

Figure 7 also shows that 3 rejuvenations are needed for
Scenario 2 with 2-HSSs vs. 7 rejuvenations needed for the 1-
HSS case during 125 days. Therefore, compared with Scenario
2 with 1-HSS, using Scenario 2 with 2-HSSs results in (7–
3)/(7) = 57% reduction in cost and management for software

rejuvenation while keeping the system reliability well above
the 0.99 threshold. This result was as expected because using
2-HSSs for each primary one surely makes the whole system
more reliable and dependable.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we perform reliability analysis for cloud-
based systems with software spares subject to non-constant
failure rates. The proposed work is based on an analytical
approach for scheduling a preventive maintenance procedure,
called software rejuveantion. We adopted an extension of
DFT, called SSP gate, to model and evaluate the reliability of
a cloud-based system with multiple hot software spares. We
used the Weibull distribution to emulate an increasing failure
rate due to the software-aging phenomenon. The case study
showed that our approach was feasible and could produce
useful preventive maintance schudules.

For future work, in order to forecast increasing failure rates
for software components, we will develop an e-commerce
application, deploy it on reputable cloud-based platfroms, such
as Amazon Web Service AWS, Window Azure, and Google
App Engine, and collect empirical data related to resource
degradation. Data fitting technique will be used to derive the
most suitable probability density function for the system time-
to-failure. Stochastic partial differential equations may be
considered and applied to this field of study to help predict
how software aging affects the failure rate. As such, more
accurate results for system reliability can be used to derive
preventive maintencance schedules for cloud-based systems.

REFERENCES

[1] M. Rausand and A. Høyland, System Reliability Theory: Models,
Statistical Methods, and Applications, Second Edition, Hoboken, New
Jersey, USA, John Wiley & Sons, Inc., 2004.

[2] M. Grotte, A. Nikoran, and K. S. Trivedi, “An empirical investigation of
fault types in space mission system software,” in Proc. of the
International Conference on Dependable Systems & Networks (DSN
2010), June 28-July 1, 2019, Chicago, IL, USA, pp. 447-456.

[3] M. Grotte, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in Proc. of the First International Workshop on Software Aging
and Rejuvenation (WoSAR), in conjounction with the 19th IEEE
International Symposium on Software Reliability Engineering (ISSRE),
Seattle, WA, USA, November 11-14, 2008, pp. 1-6.

[4] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton, “Software
rejuvenation: analysis, module and applications,” in Proc. of the Twenty-
Fifth International Symposium on Fault-Tolerant Computing (FTCS
’95), Pasadena, CA, USA, June 27-30, 1995, pp. 381-390.

[5] M. Lyu, ”Software reliability engineering: a roadmap,” in Proc. of the
29th International Conference on Software Engineering, Future of
Software Engineering, Minneapolis, USA, 2010, pp. 153-170.

[6] J. Rahme and H. Xu, “A software reliability model for cloud-based
software rejuvenation using dynamic fault trees,” International Journal
of Software Engineering and Knowledge Engineering (IJSEKE), Vol.
25, Nos. 9 & 10, 2015, pp. 1491-1513.

[7] H. Boudali, P. Crouzen and M. Stoelinga, “Dynamic fault tree analysis
using input/output interactive markov chains,” in Proc. of the 37th
International Conference on Dependable Systems and Networks (DSN),
Edeinburgh, UK , June 25-28, 2007, pp. 708-717.

[8] R. B. Abernethy, The New Weibull Handbook, 2nd Edition, Abernethy,
North Palm Beach, FL, USA, 1996.

[9] J. Rahme and H. Xu, “Dependable and Reliable Cloud-Based Systems
Using Multiple Software Spare Components,” To appear in Proc. of the
International Conference on Advanced and Trusted Computing (ATC-
17), San Francisco Bay Area, CA, USA, Aug. 4-8, 2017.

1581

