
PAPER MANUSCRIPT SUBMITTED TO  
INTERNATIONAL JOURNAL OF COMPUTERS AND APPLICATIONS  

 
(Final Version) 

 
 
Paper Title:  DRBD: Dynamic Reliability Block Diagrams for System Reliability 

Modelling1

 
Paper Number:  202-2552 
 
Authors: Dr. Haiping Xu, Assistant Professor 
 Computer and Information Science Department 
 University of Massachusetts Dartmouth 

Email: hxu@umassd.edu
 

Dr. Liudong Xing, Associate Professor 
Electrical and Computer Engineering Department 

 University of Massachusetts Dartmouth 
Email: lxing@umassd.edu
 
Ryan Robidoux, Lecturer 

 Computer and Information Science Department 
 University of Massachusetts Dartmouth 

Email: u_rrobidoux@umassd.edu
 

 
 
 
Corresponding Author: 
 

Dr. Haiping Xu, Assistant Professor 
Computer and Information Science Department 
University of Massachusetts Dartmouth  
285 Old Westport Rd. 
North Dartmouth, MA 02747 
 
Phone: (508) 910-6427 
Fax: (508) 999-9144 
Email: hxu@umassd.edu 

                                                 
1 Manuscript submitted on August 27, 2007; accepted on September 2, 2008. 

mailto:hxu@umassd.edu
mailto:lxing@umassd.edu
mailto:u_rrobidoux@umassd.edu
mailto:hxu@umassd.edu


 

 
DRBD: DYNAMIC RELIABILITY BLOCK DIAGRAMS 

FOR SYSTEM RELIABILITY MODELLING 
 
 

Haiping Xu*, Liudong Xing** and Ryan Robidoux*  
*Computer and Information Science Department 

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA 

E-mail: {hxu, u_rrobidoux}@umassd.edu 

**Electrical and Computer Engineering Department  

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA 

E-mail: lxing@umassd.edu 

 

ABSTRACT 

 
With the rapid advances of computer-based technology in mission-critical domains such as aerospace, 

military, and power industries, critical systems exhibit more complex, dependent, and dynamic behaviors. 

Such dynamic system behaviors cannot be fully captured by existing reliability modelling tools. In this 

paper, we introduce a new reliability modelling tool, called dynamic reliability block diagrams (DRBD), 

to model dynamic relationships between system components. Due to the complexity of DRBD models 

that involve dynamic conceptual modelling constructs, such as a state dependency (SDEP) block, design 

errors, which are subtle and difficult to detect, can be easily introduced during the modelling process. In 

order to formally verify and validate the correctness of a DRBD model, we propose a Petri net based 

approach by converting DRBD constructs into colored Petri nets (CPN).  We use a case study to illustrate 

how to convert a DRBD model into colored Petri nets, and how to use an existing Petri net tool to analyze 

and verify dynamic system behavioral properties. Our case study and experimental results show that 

DRBD models are a powerful tool for system reliability modelling, and our proposed verification 

approach can effectively ensure the correct design of DRBD models for complex and large-scale 

computer-based systems. 

 

Key Words: Reliability modelling, dynamic reliability block diagram (DRBD), colored Petri net (CPN), 

formal verification, model checking 
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1.  Introduction 

 

With the rapid advances in computer-based technology, system reliability becomes an issue of increasing 

practical concern and research attention. Mission-critical computer-based systems, such as those used in 

aerospace, military, and power industries, exhibit more and more complex, dependent, and dynamic 

behaviors. For example, due to a state dependency existing among components, where the failure of one 

component can cause other components to become inaccessible, system components do not necessarily 

fail independently. Failure to model state dependencies accurately usually results in overstated or 

understated system reliability, which renders reliability analysis less effective in system design and tuning 

activities. Existing research efforts on this challenging issue do not fully address complexities of state 

dependency relationships among components. As a special type of state dependency, a system with spares 

usually consists of one or more duplications of units for enhancing the system reliability. There are three 

types of sparing configurations, namely hot, cold, and warm. A hot spare operates in synchrony with a 

primary (i.e., online) component, and is prepared to take over at any time; a cold spare is unpowered until 

needed to replace a faulty component [1]. A warm spare is a trade-off between hot and cold spares in 

terms of reconfiguration time and power consumption. For all the three types of sparing approaches, a 

reconfiguration process happens when the primary component fails or is deactivated (i.e., put into a 

sleeping mode). Among the existing reliability modelling tools, only the dynamic fault tree (DFT) has the 

capability to model all the three types of redundant behaviors [2]. However, the DFT approach assumes 

that a reconfiguration can only be triggered by the failure of a primary component; it cannot model a 

situation where a reconfiguration is triggered by the deactivation of a primary component. Load sharing is 

another major dynamic behavior of mission-critical systems. A load sharing represents a condition where 

two or more components share the same workload. A load sharing condition usually involves components 

that perform the same task. Components in the load sharing redundancy exhibit different failure 

characteristics when one or more of them have failed or have been deactivated. The traditional fault trees 

and DFT model do not consider the load sharing behavior [2]. The BlockSim tool supports the load 

sharing configuration, but it only considers the increased load on the operating components due to the 

failure of some load sharing components; it cannot model the practical case in which a component in a 

load sharing configuration is put into the sleeping mode [3]. 

 

The reliability block diagram (RBD) model has been widely used as one of the most practical reliability 

modelling tools due to its simplicity [4, 5]. An RBD is a success-oriented network describing the 

functions of a system. Specifically, each RBD model consists of an input point, an output point, and a set 

of blocks. Each block represents a physical component that functions correctly. The blocks in the RBD 
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are arranged in a way that illustrates the proper combinations of working components that keep the entire 

system operational [4]. Typically, if there is at least one path connecting between the input and output 

points, the system is operational. On the other hand, the failure of a component is indicated by the 

removal of the corresponding block in an RBD model; if enough blocks are removed to interrupt the 

connection between the input and output points, the system fails. The main virtues of the RBD model are 

that it is easy to read and understand for engineers who design and test systems, and managers who make 

decisions on system configuration. With knowledge of the system, design engineers can readily construct 

and modify the corresponding RBD model, and communicate with people from different disciplines. 

However, similar to other existing tools, the traditional RBD model has a distinct disadvantage that it 

cannot fully capture the dependent and dynamic behaviors of large and complex systems.  

 

Motivated by the advantages of using RBD models and the inadequacies of existing modelling tools to 

model dependencies and dynamic relationships among components in a large and complex system, we 

introduce a new modelling approach called dynamic reliability block diagrams (DRBD). The DRBD 

model extends the traditional RBD model by fully considering various dependencies and system 

dynamics. Some key DRBD modelling constructs, such as SDEP (state dependency) block and SPARE 

(spare part) block, has been formally specified using the Object-Z formal specification language in our 

previous work [6], which provides precise definitions for DRBD model behaviors. To ensure a correct 

design of a DRBD model that accurately represents the actual system in terms of its reliability behaviors, 

we need to formally verify behavioral properties of DRBD models. This requires a conversion of the 

DRBD model to a formalism, e.g., the Petri net formalism [7, 8], which is supported by effective analysis 

and verification tools.  

 

The rest of the paper is organized as follows. Section 2 summarizes the related work. Section 3 introduces 

the key DRBD constructs. Section 4 describes how to convert DRBD constructs into colored Petri nets. 

Section 5 provides a case study to illustrate how to develop DRBD models and how to formally verify the 

correctness of a DRBD model using state space analysis and model checking techniques. Finally, Section 

6 gives the conclusions and future work. 

 

2.  Related Work 

 

Previous work related to our research includes work on modelling dynamic reliability behaviors, and 

work on formal specification and verification of reliability models. Dynamic fault tree (DFT) has been 

proposed as an extension to the traditional (static) fault trees by including additional gates for modelling 
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sequential and sparing behaviors [2]. The DFT approach offers limited capability to model dependency 

relationships among components, and it cannot accurately and fully model and analyze large systems 

subject to complex dynamics and dependencies. Furthermore, the DFT approach cannot manage problems 

caused by concurrency among dependencies. The ReliaSoft’s BlockSim tool incorporates a standby 

container into the traditional RBD model for modelling the standby redundancy [3], but only cold spares 

are considered in this tool.  Reference [9] recently introduced a set of DRBD constructs as an extension to 

the RBD models. The DRBD constructs are used to model dynamic dependency relationships among 

components; however, in comparison to the DFT approach, the DRBD constructs introduced in [9] are 

very complicated and difficult to use, thus they are not practically usable. In this paper, we introduce a 

brand new set of DRBD constructs, which are derived from our previous work [6]. Our proposed DRBD 

constructs are based on simple notations; yet they are very powerful in modelling dynamic system 

reliability behaviors. 

 
Very little work has been done on formal specification and verification of reliability models. Coppit and 

his colleagues used the Z formalism to specify various DFT gates, such as AND, OR, KOFM and Priority 

AND (PAND) [10, 11]. The Z formalism is very useful in providing formal and precise definitions for 

DFT gates; however, in their approach, only state schemas are defined, while the operation schemas for 

modelling the dynamic behaviors of gates are missing. Furthermore, no solutions are provided for 

verification of DFT models to ensure a correct design. Xu and Xing used the Object-Z formalism to 

specify both the state space and operations of a DRBD construct as a class schema, and discussed about 

formal verification techniques for DRBD models [6]. Additional related work to our proposed approach 

includes converting fault trees (FT) into generalized stochastic Petri nets (GSPN) to support dependability 

analysis [12]. The aim of the GSPN approach is to exploit the modelling and decision power of GSPN for 

both qualitative and quantitative analysis of a modeled system. Similarly, Everdij and Blom proposed to 

use dynamically colored Petri nets (DCPN) to develop PDP (piecewise-deterministic Markov processes) 

models [13]. They showed that DCPN has similar modelling power to PDP, and it is more powerful than 

deterministic and stochastic Petri nets. Although the above approaches used Petri net formalism to model 

and analyze system reliability, unlike our approach, dynamic system reliability properties, such as state-

based dependency, were not concerned. Furthermore, our approach has a major difference from their 

approaches: instead of providing quantitative analysis of system reliability using Petri nets, we use 

colored Petri nets for verification of the correctness of a reliability model (i.e., a DRBD model). Such 

verification is necessary because when dynamic reliability properties are involved, a DRBD model of a 

large and complex system becomes very complicated. Thus, it becomes vital to ensure the correctness of 

the DRBD model before any qualitative and quantitative analysis is conducted. 
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3.  Dynamic Reliability Block Diagrams 

 

3.1 A Motivating Example 

 

Consider a cluster of sensor nodes in a clustered 

wireless sensor network system as shown in Fig. 1. 

The cluster head manages the cluster by assigning 

duty cycles to sensor nodes and coordinating intra- 

and inter-cluster transmissions. The cluster head has a cold spare (i.e., the secondary cluster head in Fig. 1) 

that is activated when the primary cluster head fails. All the sensor nodes, except the cluster heads, within 

the cluster are divided into two mutually exclusive subsets (S1, S2). We assume each subset can provide 

desired sensing coverage. Initially, sensor nodes in S1 are operational; while sensor nodes in S2 are in a 

sleeping mode. To preserve the limited energy of sensor nodes, the duty cycle of sensor nodes will be 

adjusted. At certain point of time, sensor nodes in S1 will be put into a sleeping mode, and sensor nodes 

in S2 will be activated to maintain the desired sensing coverage. The entire cluster is considered to be 

operational if at least one of the two subsets of sensor nodes is operational and one cluster head is 

functioning. One of the major tasks in development of a reliability model for the above example is to 

model the state dependency between difference components, for example, the Deactivation -> 

Activation state dependency between node set S1 to node set S2. However, most of the existing 

reliability modelling tools (e.g., RBD) cannot capture the state dependency between components. Other 

tools, such as DFT, may support modelling a functional dependency, where the failure of a component 

causes some other dependent components to become inaccessible or unusable; they cannot capture the 

Deactivation -> Activation state dependency among components. In order to properly model 

various state dependency as well as other types of dependency relationships, e.g., sparing relationship and 

load sharing relationship, we propose a set of new dynamic reliability bock diagram (DRBD) constructs 

as an extension to the existing RBD modelling tool in the following section. 

Primary Cluster Head

Sensor Nodes in S1

Sensor Nodes in S2

Secondary Cluster Head

 

Figure 1. A clustered wireless sensor network system 

 

3.2 DRBD Constructs 

 

To model the state dependency between the two subsets of sensor nodes (S1, S2), we define a new DRBD 

controller component called SDEP (state dependency) block. The SDEP block can be used to model 

the state dependency relationship between S1 and S2, where the deactivation (or sleeping) of one subset 

of sensor nodes leads to the activation (or wake-up) of the other subset of sensor nodes. Fig. 2 (a) 

illustrates the general structure of this block, where A stands for an activation event occurred on a 
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component that leads to an Active state of that component, D stands for a deactivation event occurred on a 

component that leads to a Standby state of that component, and F stands for a failure event occurred on a 

component that leads to a Failed state of that component. The occurrence of a trigger event (A, D or F) 

will force all dependent events (A, D, or F) to happen. In other words, our proposed SDEP block can be 

used to model nine types of dependency relationships among system components, namely (A, A), (A, D), 

(A, F), (D, A), (D, D), (D, F), (F, A), (F, D), and (F, F). Since the DFT approach can only be used to 

model a (F, D) state dependency, DRBD is more powerful in modelling state-based dependent behaviors. 

 

T rigger

A|D|F

1

SDEP

n

A|D|F

A|D|F Primary
Unit

A

1

SPARE

n

A

D|F

D|F

1

LSH

n

D|F

k/n

... ... ...

D|F D|F

C|W|H C|W|H

Dependent/Target Components Spare Components Load Sharing Components

(a) SDEP (state dependency) block (b) SPARE (spare part) block (c) LSH (load sharing) block

Figure 2. DRBD controller component blocks 

 

To model the cold standby sparing cluster head subsystem, we define a new DRBD controller component 

called SPARE (spare part) block. Fig. 2 (b) illustrates the general structure of this block, where C|W|H 

stands for cold|warm|hot spare. Specifically, this block models the behavior that the deactivation or 

failure of the primary component will lead to the activation of the first spare component; the deactivation 

or failure of the first spare component will lead to the activation of the second spare component, and so on. 

All the spare units could be in cold, warm, or hot standby state, and must be used in the order from 1 to n. 

 

Fig. 3 illustrates the DRBD model of the 

wireless sensor network system as described 

in Fig. 1. The model is developed using SDEP 

and SPARE blocks. The components labeled 

S1 and S2 represent the sets of sensor nodes in 

series structures, which constitute the 

corresponding subsets or sensor nodes. From 

the figure, we can see that the failure of the 

primary cluster head will automatically activate the secondary cluster head; while the deactivation of 

either S1 or S2 will automatically activate the other one. Besides the capability of modelling the state 

Primary
Cluster head

Secondary
Cluster Head

SPARE

F

A

S1

S2

SDEP SDEP

D

A D

A

C

 
Figure 3. The DRBD model of the example system 
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dependencies and the various sparing behaviors, more new DRBD blocks and concepts have been 

proposed to model other dynamic relationships. An example of such new DRBD blocks is the LSH (load 

sharing) block as illustrated in Fig. 2 (c). As shown in the figure, a LSH block annotated with “k/n” refers 

to a load sharing controller component with n load sharing components, among which at least k 

components must be active or functioning. If currently there are exactly k active components, and one of 

them is deactivated or fails, all other active components will be deactivated, and thus enter Standby states. 

However, it is possible that when one of the k active components fails, some other active components 

may also fail due to overloading if they are not deactivated timely. These possible results are represented 

by the label “D|F” in Fig. 2 (c). Other important DRBD constructs include SEQ (sequence dependency) 

block and PAND (priority AND) block. Sequence dependence enforces the occurrence order of state 

change events. For example, a SEQ block connecting two components C1 and C2 with a (F, F) sequence 

dependency can be used to specify that C1 must fail before C2 fails; thus, it precludes the case that C2 

fails before C1 fails. Similarly, a priority AND or PAND block can be used to detect the occurrence order 

of certain events. A classic example of using a PAND controller component is a fault-tolerant system that 

consists of a primary component (C1) and a standby spare (C2) connected to a switch controller (C3) [14]. 

If the switch controller fails after the primary component fails, the standby component can be successfully 

switched into an Active state; thus the system can continue to operate. Otherwise, if the switch controller 

fails before the primary component fails, then the standby component cannot be activated, and the system 

fails even though the spare part is still operational. In a DRBD model with a PAND block that connects 

C1, C2 and C3, the PAND block can automatically detect the failure order of C1 and C3; if it detects that 

C3 fails first, it will prohibit the activation of C2 when C1 fails. Note that both SEQ block and PAND 

block are defined as DRBD constructs in our proposed approach; however, due to space limitation, in this 

paper, we only illustrate those controller blocks that are used in our examples. 

 

4. Conversion of DRBD Constructs to Colored Petri Nets 

 

The introduction of new DRBD constructs as an extension to the RBD model can greatly enhance the 

modelling power for system reliability behaviors. However, to derive a correct result from a DRBD 

model in an industrial setting, we must first face one major concern, which is how we can be certain that 

the model is correct. In other words, how can we be confident that the model is an accurate representation 

of the actual system for its reliability properties? This problem is not severe when we develop a standard 

RBD model, because it only contains a few static modelling constructs. However, when we design a 

DRBD model that involves new dynamic conceptual modelling constructs, engineers are more likely to 

bring design errors into the model due to the complexity of the newly introduced dynamic modelling 
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constructs, e.g., a SDEP block. Such design errors could be very subtle and difficult to detect when the 

model is not trivial, and it may result in an incorrect reliability model that leads to inaccurate results when 

the model is evaluated. Traditional simulation approaches to model testing is not suitable for verifying 

DRBD models because it is hard (almost impossible) to cover all execution paths. A promising way to 

solve this problem is to use formal methods to verify the behavioral properties of a DRBD model before 

the evaluation process starts. That is, to verify if the DRBD model satisfies the specified behavioral 

properties of the system under investigation. For example, we may use temporal logic [15] to specify the 

following system property of a computer system, “if component A fails, component B and C will also fail, 

which will lead to the failure of the whole system S.” The temporal formula in LTL (Linear Temporal 

Logic) can be written as [](¬A→(¬B∧¬C)∧<>¬S), where the box [] and the diamond <> represent the 

always operator and eventually operator, respectively. The above temporal formula says that it is always 

true that the failure of A immediately leads to the failure of B and C, and will eventually leads to the 

failure of the system S. One way to verify such a system behavioral property is to use the model checking 

technique [16], where a “true” result indicates that the reliability model developed for system S does have 

this property; while a “false” result indicates that the model developed for system S is incorrect. When a 

DRBD model is proved to be incorrect, any quantitative evaluation results derived from the DRBD model 

might not be usable, so the DRBD model must be corrected and re-verified.  

 

Although the semantics of DRBD components and constructs can be formally defined in Object-Z as we 

did in our previous work [6], it is not straightforward and feasible to verify the behavioral properties of 

DRBD models based on the Object-Z formalism due to a lack of analysis and verification tool support. A 

better approach to verifying a DRBD model is to convert it into a formal model such as a state machine or 

a Petri net model, which is supported by powerful verification tools. We adopt the Petri net formalism 

because it has the advantages of being user friendly based on its graphical notations, and the powerful, but 

intuitive rules for defining structure and dynamic behaviors [7]. Petri nets provide a graphically defined 

intuitive way to model conditions, events, and their relationships, as well as essential characteristics like 

nondeterminism and concurrency. In a colored Petri net model, there are places and colored tokens that 

represent conditions, and transitions that represent events. A colored token, residing in a place, has a 

value, which can be tested against certain guards associated with transitions. When some specified guards 

become true, events can occur – this is depicted in the net model by the “firing” of transitions, which 

changes the distribution of tokens in the net, and also modifies the system state. So, a Petri net provides 

an executable model that directly defines the concept of a system’s state space. Based on our significant 

experience with colored Petri nets for many years, the Petri net formalism can achieve an effective 

balance between theoretical concepts and practical modelling techniques.  

 8



 

C1 C2SPARE
CF A

C1 C2LSH
F F

C1
F D

C2SDEP
2/2

D|FD|F

colset STATE    = with Active | Standby | Failed;
var x, y, z         : STATE;

z

y

y

z

x

xx

y

zx

y

z

LSH-2

LSH-1SDEP

[x=Failed, y=Active]

output (z);
action (Standby);

Spare

[x=Failed, y=Standby]

output (z); 
action (Active);

C2C1C2

STATE

C2

STATE

C1

STATE

C1

STATE

[x=Failed, y=Active]
output (z);
action (Standby);

output (z);
action (Standby);[x=Failed, y=Active]

 
(a) State dependency                           (b) Cold spare                                    (c) Load sharing 

 
Figure 4. Conversion of DRBD constructs into colored Petri nets (CPN) 

 

Fig. 4 demonstrates how to convert some key DRBD constructs into colored Petri nets. In Fig. 4 (a), 

component C1 and C2 are connected by a SDEP block with a (F, D) state dependency, i.e., the failure of 

C1 will lead to the deactivation of C2.  In its corresponding colored Petri net, the two components are 

represented by two places C1 and C2, where the place types are defined by the color set STATE with three 

different colors, namely “Active”, “Standby” and “Failed”. When the transition guard [x=Failed, 

y=Active] evaluates to true, i.e., place C1 contains a “Failed” token and place C2 contains an “Active” 

token, the transition SDEP becomes enabled and can fire. The firing of the transition will remove the 

tokens in place C1 and C2, and return a “Failed” token and a “Standby” token to place C1 and C2, 

respectively. Note that place C2 now contains a “Standby” token, which indicates that C2 enters a 

Standby state due to the failure of component C1. Similarly, Fig. 4 (b) illustrates how to convert a SPARE 

block into a colored Petri net. The colored Petri net corresponding to a SPARE block shows that when C1 

becomes failed, and C2 is in a Standby state, C2 will be activated. In Fig. 4 (c), the LSH block annotated 

with “2/2” indicates that the LSH block is functioning only when both of the load sharing components C1 

and C2 are functioning. When either of the components fails, the other component will be deactivated 

accordingly, and the whole LSH block becomes no longer functioning. In its corresponding colored Petri 

net, we use two transitions LSH-1 and LSH-2 to model the load sharing behaviors. When component C1 

fails and C2 is in an Active state, the transition LSH-1 may fire, and its firing will force C2 to enter a 

Standby state. Similarly, when C2 fails and C1 is in an Active state, the transition LSH-2 may fire, and its 

firing will force C1 to enter a Standby state. Note that both the transition LSH-1 and LSH-2 can fire only 

when their associated transition guards evaluate to true. Thus, if component C1 and C2 fail at the same 

time, no transition (LSH-1 or LSH-2) can fire.  
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5. Case Study: Development and Verification of DRBD Models 

 

5.1 DRBD Models of Load Sharing Servers with Routers 

 

Load sharing across multiple servers would enhance responsiveness and scale well with session load; 

while a single server might not be able to cope with increasing demand for multiple sessions 

simultaneously. Now consider two load sharing server computers connected to a router. When a client 

attempts to access a server through the router, the router will automatically select a node in the server 

pool based on a load sharing algorithm, and redirect the request to that node.  

 

Fig. 5 (a) shows the DRBD model of the above system that consists of two load sharing servers with a 

router. As shown in the figure, a router (component R1) is connected to two server computers (component 

C1 and C2). The two computers are connected in a parallel structure and controlled by a LSH block. The 

annotation “2/2” indicates that the parallel structure is functioning only when both C1 and C2 are in their 

Active states. Since clients can only access the server computers through the router, an (F, D) state 

dependency exists from component R1 to both C1 and C2, i.e., when the router fails, the computers will 

be deactivated for their network connections, and enter Standby states. Note that to simplify our 

conversion process, in the DRBD model shown in Fig. 5 (a), we used two SDEP blocks, which only 

involve one dependent/target component; however, the two SDEP blocks are equivalent to a single SDEP 

block with two dependent/target components C1 and C2, which follows the general form of a SDEP block 

defined in Fig. 2 (a). 
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R2

SPARE

C

SDEP

F

D

F

A

C1

C2

LSH

D|F

D|F

SDEP

SDEP SDEP
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D

D
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F

R1

F

D

C1

C2

LSH

D|F
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SDEP
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F

D

2/2 2/2

(a)  Load sharing servers connected to a router                (b)  Load sharing servers connected to a router with a CSP

F

F

F

F

Figure 5.  DRBD models of load sharing servers with router(s) 
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In order to make the system more reliable, we introduce a cold spare (CSP) for the router, which is 

represented by component R2 annotated with letter “C” in Fig. 5 (b). The DRBD model in Fig. 5 (b) 

describes when component R1 fails, component R2 will automatically be activated and continues to 

provide network access for component C1 and C2. When component R2 also fails, component C1 and C2 

will be deactivated, and thus become inaccessible. 

 

5.2 Conversion of DRBD Model to Colored Petri Nets 

 

The DRBD model in Fig. 5 (b) can be converted into a colored Petri net as shown in Fig. 6. The four 

components in Fig. 5 (b) are modeled by the four places R1, R2, C1 and C2, and each place can contain a 

colored token with one of the three different colors, i.e., “Active”, “Standby” and “Failed”. An active 

component may fail when its corresponding Fail_Ri or Fail_Ci (i = 1..2) transition fires, in which case, 

the “Active” token in the corresponding component place will be replaced by a “Failed” token. Note that 

since we only allow cold standby component in this example, a component in a Standby state cannot fail.  

 

Initially, the four component places R1, R2, C1 and C2 contain “Active”, “Standby”, “Active” and 

“Active” colored token, respectively. According to the DRBD model in Fig. 5 (b), when either R1 or R2 is 

active, the parallel structure containing R1 and R2 is functioning. This is represented by firing either 
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[x=Active]

output (y);
action (Failed);

Fail_C1

[x=Active]

output (y);
action (Failed);

Spare

[x=Failed, y=Standby]

output (z); 
action (Active);

Syn_2

UNIT

Syn_1

UNIT

R1_or_R2

STATE

C2

1`Active

STATE

System_down

BOOL

C1

1`Active

STATE

System_up

BOOL

R2
1`Standby

STATE

R1

1`Active

STATE

u

output (b);
action (true);

[x=Failed]

1

1

1

1

 

Figure 6. The colored Petri net model converted from the DRBD model in Fig. 5 
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transition T1 or T2 when either the place R1 or R2 contains an “Active” token, thus an “Active” token can 

be deposited into place R1_or_R2. When both component C1 and C2 are also active, the transition T5 

may fire, and a Boolean token “true” is deposited into place System_up, which enables the Run transition. 

This scenario shows that when component R1 (or R2) and component C1 and C2 are functioning, the 

system must be functioning. On the other hand, when component R2 fails, the transition T6 may fire, and 

the firing of transition T6 will deposit a Boolean token “true” into place System_down. Similarly, when 

either component C1 or C2 fails (denoted by guard [x=Failed orelse y=Failed] for transition T7), 

the transition T7 may fire and deposit a Boolean token “true” into place System_down. A Boolean token 

“true” in place System_down enables the Stop transition, which indicates that the system cannot be 

functioning. Finally, if component R1 fails, it will activate component R2 due to the spare part 

redundancy; thus, it should not lead to the failure of the whole system. 

 

The next step to convert the DRBD model in Fig. 5 (b) into a colored Petri net model is to convert the 

DRBD controller blocks into colored Petri nets according to the conversion methods described in Fig. 4. 

As shown in Fig. 6, the four transitions SDEP_Ri_Cj (i, j = 1..2) represent the four SDEP blocks in Fig. 5 

(b), which define the state dependency between a router and a server computer. The Spare transition 

corresponds to the SPARE block in Fig. 5 (b), which activates component R2 when R1 fails. The 

transitions LSH_1 and LSH_2 are used to model the LSH block for the two load sharing components C1 

and C2, which deactivates the other component when one of them fails. In addition, there are two 

synchronization places Syn_1 and Syn_2, which are used to synchronize the transition SDEP_R1_C1 and 

Spare, and SDEP_R1_C2 and Spare, respectively. When transition SDEP_R1_C1 (SDEP_R1_C2) fires, a 

unit token is deposited into the synchronization place Syn_1 (Syn_2) to ensure that the firing of transition 

SDEP_R1_C1 (SDEP_R1_C2) precedes the firing of transition Spare, so the transition SDEP_R1_C1 

(SDEP_R1_C2) will not accidentally become disabled when the “Failed” token in place R1 (R2) is 

removed due to the firing of transition Spare. When the transition Spare fires, it deposits an “Active” 

token into place R2 in order to activate the spare part. This should lead to the continuous functioning of 

the whole system. 

 

5.3 State Space Analysis and Model Checking of Colored Petri Nets 

 

We now use an existing Petri net tool, called CPN Tools [17], to analyze our colored Petri net model. 

CPN Tools is a program that supports editing, simulating, and analyzing colored Petri nets, which include 

a state space analysis engine that can generate a full or partial state space, and produce a standard state 

space report containing information such as boundedness, liveness, and deadlock-freeness properties [18].  
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Table 1. Results from state space analysis tool 

 Result-1 Result-2 Result-3 

 Statistics 
-------------------------- 
State Space 
     Nodes:  33 
     Arcs:   69 
     Secs:   0 
     Status: Full 
 
Scc Graph 
     Nodes:  33 
     Arcs:   62 
     Secs:   0 
 
Liveness Properties 
-------------------------- 
Dead Markings [32] 
 
Dead Transition Instances 
     Router'SDEP_R2_C1 1 
     Router'SDEP_R2_C2 1 
 
Live Transition Instances 
     None 

DeadMarking(32) 
-------------------------- 
val it = true : bool 
 
print(NodeDescriptor 32) 
-------------------------- 
32: 
C1 1: 1`Standby 
C2 1: 1`Standby 
R1 1: empty 
R2 1: empty 
R1_or_R2 1: 1`Active 
Syn_1 1: empty 
Syn_2 1: empty 
System_down 1: empty 
System_up 1: empty 
val it = () : unit 
 
Reachable'(1, 32) 
-------------------------- 
A path from node 1 to 32: 
[1, 3, 11, 25, 30, 32] 
val it = true : bool 

Statistics 
--------------------------
State Space 
     Nodes:  67 
     Arcs:   162 
     Secs:   0 
     Status: Full 
 
Scc Graph 
     Nodes:  67 
     Arcs:   141 
     Secs:   0 
 
Liveness Properties 
--------------------------
Dead Markings 
     None 
 
Dead Transition Instances 
     None 
 
Live Transition Instances 
     None 

 

When running the analysis tool in CPN Tools for our colored Petri net model, we get Result-1 as shown 

in Table 1. The result shows that there is a dead marking (state 32) in the reachability graph of the Petri 

net model, which can also be verified by executing the command DeadMarking(32) as shown in Table 

1, Result-2. By executing the command print(NodeDescriptor 32), it prints out the marking for 

state 32 as shown in Table 1, Result-2. From the result, we can see that in the dead marking S32, both the 

places System_up and System_down contains no token (i.e., empty). This implies that the Petri net model 

must contain a deadlock, where none of the transitions Run and Stop is enabled. By executing the 

command Reachable'(1, 32), we find a path from node 1 to node 32, i.e., [1, 3, 11, 25, 30, 32]. When 

we further tracing the dead marking state using the CPN Tools, we can calculate the firing sequence that 

leads to the dead marking, which is: S1, Fail_R1, S3, SDEP_R1_C1, S11, SDEP_R1_C2, S25, Spare, S30, 

T2, S32. From Fig. 6, it is easy to see that the dead marking is due to the firing of transition SDEP_R1_C1 

(SDEP_R1_C2) that deposits a “Standby” token in place C1 (C2) when component R1 fails. When 

component R2 is activated, component C1 and C2 should also be activated accordingly. However, such 

state dependency from component R2 to C1 (C2) is not presented in the DRBD model in Fig. 5 (b). This 

design error can be fixed by adding an (A, A) state dependency from R2 to C1 and C2 in Fig. 5 (b). 

Accordingly, we need to revise the colored Petri net model in Fig. 6 as follows: (1) add a new transition 

SDEP_R2_C12 with places R2, C1 and C2 as both the input places and output places; (2) add a new 

synchronization place Syn_3 with SDEP_ R2_C12 as input transition and T2 as output transition; (3) set 
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the guard of transition SDEP_ R2_C12 such that R2 contains an “Active” token and both C1 and C2 

contain a “Standby” token, i.e., [x=Active, y=Standby, z=Standby]; and (4) set the output of 

transition SDEP_ R2_C12 as “Active” tokens deposited into both C1 and C2 place, i.e., output (s, 

t); action (Active, Active). We analyze the revised colored Petri net again using the CPN 

Tools, and now we get the results as shown in Table 1, Result-3. The results indicates that there is no 

dead marking in the revised Petri net model, which ensures that the revised Petri net model is deadlock 

free. 

 

Furthermore, we can use model checking technique to verify properties of our colored Petri net models. 

CPN Tools facilitate analysis of state spaces by means of CTL-like temporal logic, called ASK-CTL, for 

formulating queries about states, as well as queries about state changes (e.g., the occurrence of certain 

transitions) [19]. For example, the Formula_1 listed in Table 2, which is written in ML language, defines 

a CTL-like temporal formula EXIST_UNTIL(TT, NOT(MODAL(TT))). In this formula, TT represents 

the constant “true” value, and the operator MODAL(A), as a state formula, is true if starting from the 

current state, there exists an immediate transition from which the argument A is true. Since in the above 

formula, the argument A is constant true, NOT(MODAL(TT)) specifies a state that has no immediate 

transition that can fire, i.e., a deadlock marking. The operator EXIST_UNTIL(A1, A2) is true if there 

exists a path, starting from the current state, A1 is true for each state along the path until A2 becomes true. 

Thus, the complete formula EXIST_UNTIL(TT, NOT(MODAL(TT))) specifies whether there exists a 

path that involves a deadlock marking. In Table 2, the columns denoted as “After Rev” and “Before Rev” 

present the model checking results for the Petri net models after and before revision, respectively. From 

the model checking results for Formula_1, we can see that the original model (before revision) contains a 

deadlock marking; while the revised one has no deadlock marking.  
 

Table 2. Model checking results for the Petri net models before and after revision 

Formulas   ASK-CTL in ML After Rev Before Rev 

Formula_1 
val myASKCTLformula = EXIST_UNTIL(TT, NOT(MODAL(TT)));
eval_node myASKCTLformula InitNode; false true 

Functions 
fun R1_Failed n = (Mark.R1 1 n = 1`Failed); 
fun R2_Failed n = (Mark.R2 1 n = 1`Failed); 
fun SystemFailed n = (Mark.System_down 1 n = 1`true); 

- - 

Formula_2 

val isFailed = FORALL_UNTIL(TT, NF("", SystemFailed));
val system = OR(NOT(NF("", R2_Failed)), isFailed); 
val myASKCTLformula = INV(system); 
eval_node myASKCTLformula InitNode 

true true 

Formula_3 

val isFailed = FORALL_UNTIL(TT, NF("", SystemFailed));
val system = OR(NOT(NF("", R1_Failed)), isFailed); 
val myASKCTLformula = INV(system); 
eval_node myASKCTLformula InitNode; 

false true 
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In Table 2, we further define three functions: R1_Failed, R2_Failed and SystemFailed. The function 

R1_Failed (or R2_Failed) returns true if place R1 (or R2) contains a colored token “Failed”, which 

indicates that the corresponding component fails. Similarly, the function SystemFailed returns true when 

place System_down contains one colored token “true”, which indicates that system is not functioning. In 

Formula_2 from Table 2, we define a temporal formula isFailed = FORALL_UNTIL(TT, NF("", 

SystemFailed)), where the  operator FORALL_UNTIL(A1, A2) is true if from the current state, for all 

paths in the reachability graph of the Petri net model, A1 is true for each state along the path until reaching 

a state on the path where A2 must hold. Therefore, the CTL formula specifies that from the current state, 

whether the system will eventually become not functioning. We now consider the relationship between 

the failure of component R2 and the failure of the whole system. At any time (state), the system model 

should satisfy the following property: (R2_Failed → <>SystemFailed), which is equivalent to 

(¬R2_Failed ∨ <>SysFailed). This property can be specified by the temporal formula system = 

OR(NOT(NF("", R2_Failed)), isFailed).  Since this property should be satisfied at any time, the 

formula INV(system) must be true for our Petri net models, where INV(system)is true if from the 

current state, the argument system is true for all reachable states. The model checking results show that 

both Petri net models (before and after revision) satisfy this property. Similarly, we may also verify the 

relationship between the failure of component R1 and the failure of the whole system. Since the failure of 

component R1 will activate component R2 due to the spare part redundancy; thus, it should not lead to the 

failure of the whole system. The model checking result of Formula_3 for our revised Petri net model is 

false, which verifies that the revised model does not satisfy the property (if written in LTL): 

[](R1_Failed → <>SystemFailed), i.e., the failure of R1 will not always lead to the failure of the 

whole system. On the other hand, the model checking result of Formula_3 for the original Petri net model 

(with deadlock marking) is true, which indicates that the above property is satisfied. In other words, it is 

true that the failure of component R1 will always lead to the failure of the whole system. However, we 

notice that along the path that leads to the deadlock marking, it is impossible to deposit a colored token 

“true” into place System_down; thus, it seems that the model checking result should also be false. The 

reason it returns a true result is because the path that leads to the deadlock marking is a finite sequence, 

and in this case, the CPN Tools will evaluate the temporal formula FORALL_UNTIL(TT, NF("", 

SystemFailed)) to true, although SystemFailed does not eventually become true along that path. 

 

6.  Conclusions and Future Work 
 

Existing system reliability modelling approaches cannot fully capture dynamic relationships between 

components, such as state dependency and redundancy. In this paper, we propose a new modelling 
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approach called dynamic reliability block diagrams (DRBD) to resolve the shortcomings of the existing 

work. Our proposed approach provides a powerful but easy-to-use reliability modelling tool for complex 

and large computer-based systems. The methods we proposed for conversion of DRBD constructs to 

colored Petri nets provide a potential solution for automated conversion of a DRBD model to colored 

Petri nets, and automated verification of DRBD models, which is demonstrated in our recent work [20]. 

The case study illustrates how a DRBD model of a computer-based system can be developed, and how 

formal verification approach can be used to ensure a correct design of the DRBD model. In our future 

work, we will develop a software tool that can automatically translate DRBD models into colored Petri 

nets for formal verification. We also plan to develop efficient evaluation methods for DRBD models in 

order to analyze and predict system reliability performance. A comprehensive system reliability 

modelling tool that supports editing, formal verification, and evaluation of DRBD models for complex 

and large-scale systems is envisioned as our future, more ambitious research direction.  
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