
PAPER MANUSCRIPT SUBMITTED TO
INTERNATIONAL JOURNAL OF COMPUTERS AND APPLICATIONS

(Final Version)

Paper Title: DRBD: Dynamic Reliability Block Diagrams for System Reliability

Modelling1

Paper Number: 202-2552

Authors: Dr. Haiping Xu, Assistant Professor
 Computer and Information Science Department
 University of Massachusetts Dartmouth

Email: hxu@umassd.edu

Dr. Liudong Xing, Associate Professor
Electrical and Computer Engineering Department

 University of Massachusetts Dartmouth
Email: lxing@umassd.edu

Ryan Robidoux, Lecturer

 Computer and Information Science Department
 University of Massachusetts Dartmouth

Email: u_rrobidoux@umassd.edu

Corresponding Author:

Dr. Haiping Xu, Assistant Professor
Computer and Information Science Department
University of Massachusetts Dartmouth
285 Old Westport Rd.
North Dartmouth, MA 02747

Phone: (508) 910-6427
Fax: (508) 999-9144
Email: hxu@umassd.edu

1 Manuscript submitted on August 27, 2007; accepted on September 2, 2008.

mailto:hxu@umassd.edu
mailto:lxing@umassd.edu
mailto:u_rrobidoux@umassd.edu
mailto:hxu@umassd.edu

DRBD: DYNAMIC RELIABILITY BLOCK DIAGRAMS

FOR SYSTEM RELIABILITY MODELLING

Haiping Xu*, Liudong Xing** and Ryan Robidoux*
*Computer and Information Science Department

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

E-mail: {hxu, u_rrobidoux}@umassd.edu

**Electrical and Computer Engineering Department

University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA

E-mail: lxing@umassd.edu

ABSTRACT

With the rapid advances of computer-based technology in mission-critical domains such as aerospace,

military, and power industries, critical systems exhibit more complex, dependent, and dynamic behaviors.

Such dynamic system behaviors cannot be fully captured by existing reliability modelling tools. In this

paper, we introduce a new reliability modelling tool, called dynamic reliability block diagrams (DRBD),

to model dynamic relationships between system components. Due to the complexity of DRBD models

that involve dynamic conceptual modelling constructs, such as a state dependency (SDEP) block, design

errors, which are subtle and difficult to detect, can be easily introduced during the modelling process. In

order to formally verify and validate the correctness of a DRBD model, we propose a Petri net based

approach by converting DRBD constructs into colored Petri nets (CPN). We use a case study to illustrate

how to convert a DRBD model into colored Petri nets, and how to use an existing Petri net tool to analyze

and verify dynamic system behavioral properties. Our case study and experimental results show that

DRBD models are a powerful tool for system reliability modelling, and our proposed verification

approach can effectively ensure the correct design of DRBD models for complex and large-scale

computer-based systems.

Key Words: Reliability modelling, dynamic reliability block diagram (DRBD), colored Petri net (CPN),

formal verification, model checking

 1

1. Introduction

With the rapid advances in computer-based technology, system reliability becomes an issue of increasing

practical concern and research attention. Mission-critical computer-based systems, such as those used in

aerospace, military, and power industries, exhibit more and more complex, dependent, and dynamic

behaviors. For example, due to a state dependency existing among components, where the failure of one

component can cause other components to become inaccessible, system components do not necessarily

fail independently. Failure to model state dependencies accurately usually results in overstated or

understated system reliability, which renders reliability analysis less effective in system design and tuning

activities. Existing research efforts on this challenging issue do not fully address complexities of state

dependency relationships among components. As a special type of state dependency, a system with spares

usually consists of one or more duplications of units for enhancing the system reliability. There are three

types of sparing configurations, namely hot, cold, and warm. A hot spare operates in synchrony with a

primary (i.e., online) component, and is prepared to take over at any time; a cold spare is unpowered until

needed to replace a faulty component [1]. A warm spare is a trade-off between hot and cold spares in

terms of reconfiguration time and power consumption. For all the three types of sparing approaches, a

reconfiguration process happens when the primary component fails or is deactivated (i.e., put into a

sleeping mode). Among the existing reliability modelling tools, only the dynamic fault tree (DFT) has the

capability to model all the three types of redundant behaviors [2]. However, the DFT approach assumes

that a reconfiguration can only be triggered by the failure of a primary component; it cannot model a

situation where a reconfiguration is triggered by the deactivation of a primary component. Load sharing is

another major dynamic behavior of mission-critical systems. A load sharing represents a condition where

two or more components share the same workload. A load sharing condition usually involves components

that perform the same task. Components in the load sharing redundancy exhibit different failure

characteristics when one or more of them have failed or have been deactivated. The traditional fault trees

and DFT model do not consider the load sharing behavior [2]. The BlockSim tool supports the load

sharing configuration, but it only considers the increased load on the operating components due to the

failure of some load sharing components; it cannot model the practical case in which a component in a

load sharing configuration is put into the sleeping mode [3].

The reliability block diagram (RBD) model has been widely used as one of the most practical reliability

modelling tools due to its simplicity [4, 5]. An RBD is a success-oriented network describing the

functions of a system. Specifically, each RBD model consists of an input point, an output point, and a set

of blocks. Each block represents a physical component that functions correctly. The blocks in the RBD

 2

are arranged in a way that illustrates the proper combinations of working components that keep the entire

system operational [4]. Typically, if there is at least one path connecting between the input and output

points, the system is operational. On the other hand, the failure of a component is indicated by the

removal of the corresponding block in an RBD model; if enough blocks are removed to interrupt the

connection between the input and output points, the system fails. The main virtues of the RBD model are

that it is easy to read and understand for engineers who design and test systems, and managers who make

decisions on system configuration. With knowledge of the system, design engineers can readily construct

and modify the corresponding RBD model, and communicate with people from different disciplines.

However, similar to other existing tools, the traditional RBD model has a distinct disadvantage that it

cannot fully capture the dependent and dynamic behaviors of large and complex systems.

Motivated by the advantages of using RBD models and the inadequacies of existing modelling tools to

model dependencies and dynamic relationships among components in a large and complex system, we

introduce a new modelling approach called dynamic reliability block diagrams (DRBD). The DRBD

model extends the traditional RBD model by fully considering various dependencies and system

dynamics. Some key DRBD modelling constructs, such as SDEP (state dependency) block and SPARE

(spare part) block, has been formally specified using the Object-Z formal specification language in our

previous work [6], which provides precise definitions for DRBD model behaviors. To ensure a correct

design of a DRBD model that accurately represents the actual system in terms of its reliability behaviors,

we need to formally verify behavioral properties of DRBD models. This requires a conversion of the

DRBD model to a formalism, e.g., the Petri net formalism [7, 8], which is supported by effective analysis

and verification tools.

The rest of the paper is organized as follows. Section 2 summarizes the related work. Section 3 introduces

the key DRBD constructs. Section 4 describes how to convert DRBD constructs into colored Petri nets.

Section 5 provides a case study to illustrate how to develop DRBD models and how to formally verify the

correctness of a DRBD model using state space analysis and model checking techniques. Finally, Section

6 gives the conclusions and future work.

2. Related Work

Previous work related to our research includes work on modelling dynamic reliability behaviors, and

work on formal specification and verification of reliability models. Dynamic fault tree (DFT) has been

proposed as an extension to the traditional (static) fault trees by including additional gates for modelling

 3

sequential and sparing behaviors [2]. The DFT approach offers limited capability to model dependency

relationships among components, and it cannot accurately and fully model and analyze large systems

subject to complex dynamics and dependencies. Furthermore, the DFT approach cannot manage problems

caused by concurrency among dependencies. The ReliaSoft’s BlockSim tool incorporates a standby

container into the traditional RBD model for modelling the standby redundancy [3], but only cold spares

are considered in this tool. Reference [9] recently introduced a set of DRBD constructs as an extension to

the RBD models. The DRBD constructs are used to model dynamic dependency relationships among

components; however, in comparison to the DFT approach, the DRBD constructs introduced in [9] are

very complicated and difficult to use, thus they are not practically usable. In this paper, we introduce a

brand new set of DRBD constructs, which are derived from our previous work [6]. Our proposed DRBD

constructs are based on simple notations; yet they are very powerful in modelling dynamic system

reliability behaviors.

Very little work has been done on formal specification and verification of reliability models. Coppit and

his colleagues used the Z formalism to specify various DFT gates, such as AND, OR, KOFM and Priority

AND (PAND) [10, 11]. The Z formalism is very useful in providing formal and precise definitions for

DFT gates; however, in their approach, only state schemas are defined, while the operation schemas for

modelling the dynamic behaviors of gates are missing. Furthermore, no solutions are provided for

verification of DFT models to ensure a correct design. Xu and Xing used the Object-Z formalism to

specify both the state space and operations of a DRBD construct as a class schema, and discussed about

formal verification techniques for DRBD models [6]. Additional related work to our proposed approach

includes converting fault trees (FT) into generalized stochastic Petri nets (GSPN) to support dependability

analysis [12]. The aim of the GSPN approach is to exploit the modelling and decision power of GSPN for

both qualitative and quantitative analysis of a modeled system. Similarly, Everdij and Blom proposed to

use dynamically colored Petri nets (DCPN) to develop PDP (piecewise-deterministic Markov processes)

models [13]. They showed that DCPN has similar modelling power to PDP, and it is more powerful than

deterministic and stochastic Petri nets. Although the above approaches used Petri net formalism to model

and analyze system reliability, unlike our approach, dynamic system reliability properties, such as state-

based dependency, were not concerned. Furthermore, our approach has a major difference from their

approaches: instead of providing quantitative analysis of system reliability using Petri nets, we use

colored Petri nets for verification of the correctness of a reliability model (i.e., a DRBD model). Such

verification is necessary because when dynamic reliability properties are involved, a DRBD model of a

large and complex system becomes very complicated. Thus, it becomes vital to ensure the correctness of

the DRBD model before any qualitative and quantitative analysis is conducted.

 4

3. Dynamic Reliability Block Diagrams

3.1 A Motivating Example

Consider a cluster of sensor nodes in a clustered

wireless sensor network system as shown in Fig. 1.

The cluster head manages the cluster by assigning

duty cycles to sensor nodes and coordinating intra-

and inter-cluster transmissions. The cluster head has a cold spare (i.e., the secondary cluster head in Fig. 1)

that is activated when the primary cluster head fails. All the sensor nodes, except the cluster heads, within

the cluster are divided into two mutually exclusive subsets (S1, S2). We assume each subset can provide

desired sensing coverage. Initially, sensor nodes in S1 are operational; while sensor nodes in S2 are in a

sleeping mode. To preserve the limited energy of sensor nodes, the duty cycle of sensor nodes will be

adjusted. At certain point of time, sensor nodes in S1 will be put into a sleeping mode, and sensor nodes

in S2 will be activated to maintain the desired sensing coverage. The entire cluster is considered to be

operational if at least one of the two subsets of sensor nodes is operational and one cluster head is

functioning. One of the major tasks in development of a reliability model for the above example is to

model the state dependency between difference components, for example, the Deactivation ->

Activation state dependency between node set S1 to node set S2. However, most of the existing

reliability modelling tools (e.g., RBD) cannot capture the state dependency between components. Other

tools, such as DFT, may support modelling a functional dependency, where the failure of a component

causes some other dependent components to become inaccessible or unusable; they cannot capture the

Deactivation -> Activation state dependency among components. In order to properly model

various state dependency as well as other types of dependency relationships, e.g., sparing relationship and

load sharing relationship, we propose a set of new dynamic reliability bock diagram (DRBD) constructs

as an extension to the existing RBD modelling tool in the following section.

Primary Cluster Head

Sensor Nodes in S1

Sensor Nodes in S2

Secondary Cluster Head

Figure 1. A clustered wireless sensor network system

3.2 DRBD Constructs

To model the state dependency between the two subsets of sensor nodes (S1, S2), we define a new DRBD

controller component called SDEP (state dependency) block. The SDEP block can be used to model

the state dependency relationship between S1 and S2, where the deactivation (or sleeping) of one subset

of sensor nodes leads to the activation (or wake-up) of the other subset of sensor nodes. Fig. 2 (a)

illustrates the general structure of this block, where A stands for an activation event occurred on a

 5

component that leads to an Active state of that component, D stands for a deactivation event occurred on a

component that leads to a Standby state of that component, and F stands for a failure event occurred on a

component that leads to a Failed state of that component. The occurrence of a trigger event (A, D or F)

will force all dependent events (A, D, or F) to happen. In other words, our proposed SDEP block can be

used to model nine types of dependency relationships among system components, namely (A, A), (A, D),

(A, F), (D, A), (D, D), (D, F), (F, A), (F, D), and (F, F). Since the DFT approach can only be used to

model a (F, D) state dependency, DRBD is more powerful in modelling state-based dependent behaviors.

T rigger

A|D|F

1

SDEP

n

A|D|F

A|D|F Primary
Unit

A

1

SPARE

n

A

D|F

D|F

1

LSH

n

D|F

k/n

...

D|F D|F

C|W|H C|W|H

Dependent/Target Components Spare Components Load Sharing Components

(a) SDEP (state dependency) block (b) SPARE (spare part) block (c) LSH (load sharing) block

Figure 2. DRBD controller component blocks

To model the cold standby sparing cluster head subsystem, we define a new DRBD controller component

called SPARE (spare part) block. Fig. 2 (b) illustrates the general structure of this block, where C|W|H

stands for cold|warm|hot spare. Specifically, this block models the behavior that the deactivation or

failure of the primary component will lead to the activation of the first spare component; the deactivation

or failure of the first spare component will lead to the activation of the second spare component, and so on.

All the spare units could be in cold, warm, or hot standby state, and must be used in the order from 1 to n.

Fig. 3 illustrates the DRBD model of the

wireless sensor network system as described

in Fig. 1. The model is developed using SDEP

and SPARE blocks. The components labeled

S1 and S2 represent the sets of sensor nodes in

series structures, which constitute the

corresponding subsets or sensor nodes. From

the figure, we can see that the failure of the

primary cluster head will automatically activate the secondary cluster head; while the deactivation of

either S1 or S2 will automatically activate the other one. Besides the capability of modelling the state

Primary
Cluster head

Secondary
Cluster Head

SPARE

F

A

S1

S2

SDEP SDEP

D

A D

A

C

Figure 3. The DRBD model of the example system

 6

dependencies and the various sparing behaviors, more new DRBD blocks and concepts have been

proposed to model other dynamic relationships. An example of such new DRBD blocks is the LSH (load

sharing) block as illustrated in Fig. 2 (c). As shown in the figure, a LSH block annotated with “k/n” refers

to a load sharing controller component with n load sharing components, among which at least k

components must be active or functioning. If currently there are exactly k active components, and one of

them is deactivated or fails, all other active components will be deactivated, and thus enter Standby states.

However, it is possible that when one of the k active components fails, some other active components

may also fail due to overloading if they are not deactivated timely. These possible results are represented

by the label “D|F” in Fig. 2 (c). Other important DRBD constructs include SEQ (sequence dependency)

block and PAND (priority AND) block. Sequence dependence enforces the occurrence order of state

change events. For example, a SEQ block connecting two components C1 and C2 with a (F, F) sequence

dependency can be used to specify that C1 must fail before C2 fails; thus, it precludes the case that C2

fails before C1 fails. Similarly, a priority AND or PAND block can be used to detect the occurrence order

of certain events. A classic example of using a PAND controller component is a fault-tolerant system that

consists of a primary component (C1) and a standby spare (C2) connected to a switch controller (C3) [14].

If the switch controller fails after the primary component fails, the standby component can be successfully

switched into an Active state; thus the system can continue to operate. Otherwise, if the switch controller

fails before the primary component fails, then the standby component cannot be activated, and the system

fails even though the spare part is still operational. In a DRBD model with a PAND block that connects

C1, C2 and C3, the PAND block can automatically detect the failure order of C1 and C3; if it detects that

C3 fails first, it will prohibit the activation of C2 when C1 fails. Note that both SEQ block and PAND

block are defined as DRBD constructs in our proposed approach; however, due to space limitation, in this

paper, we only illustrate those controller blocks that are used in our examples.

4. Conversion of DRBD Constructs to Colored Petri Nets

The introduction of new DRBD constructs as an extension to the RBD model can greatly enhance the

modelling power for system reliability behaviors. However, to derive a correct result from a DRBD

model in an industrial setting, we must first face one major concern, which is how we can be certain that

the model is correct. In other words, how can we be confident that the model is an accurate representation

of the actual system for its reliability properties? This problem is not severe when we develop a standard

RBD model, because it only contains a few static modelling constructs. However, when we design a

DRBD model that involves new dynamic conceptual modelling constructs, engineers are more likely to

bring design errors into the model due to the complexity of the newly introduced dynamic modelling

 7

constructs, e.g., a SDEP block. Such design errors could be very subtle and difficult to detect when the

model is not trivial, and it may result in an incorrect reliability model that leads to inaccurate results when

the model is evaluated. Traditional simulation approaches to model testing is not suitable for verifying

DRBD models because it is hard (almost impossible) to cover all execution paths. A promising way to

solve this problem is to use formal methods to verify the behavioral properties of a DRBD model before

the evaluation process starts. That is, to verify if the DRBD model satisfies the specified behavioral

properties of the system under investigation. For example, we may use temporal logic [15] to specify the

following system property of a computer system, “if component A fails, component B and C will also fail,

which will lead to the failure of the whole system S.” The temporal formula in LTL (Linear Temporal

Logic) can be written as [](¬A→(¬B∧¬C)∧<>¬S), where the box [] and the diamond <> represent the

always operator and eventually operator, respectively. The above temporal formula says that it is always

true that the failure of A immediately leads to the failure of B and C, and will eventually leads to the

failure of the system S. One way to verify such a system behavioral property is to use the model checking

technique [16], where a “true” result indicates that the reliability model developed for system S does have

this property; while a “false” result indicates that the model developed for system S is incorrect. When a

DRBD model is proved to be incorrect, any quantitative evaluation results derived from the DRBD model

might not be usable, so the DRBD model must be corrected and re-verified.

Although the semantics of DRBD components and constructs can be formally defined in Object-Z as we

did in our previous work [6], it is not straightforward and feasible to verify the behavioral properties of

DRBD models based on the Object-Z formalism due to a lack of analysis and verification tool support. A

better approach to verifying a DRBD model is to convert it into a formal model such as a state machine or

a Petri net model, which is supported by powerful verification tools. We adopt the Petri net formalism

because it has the advantages of being user friendly based on its graphical notations, and the powerful, but

intuitive rules for defining structure and dynamic behaviors [7]. Petri nets provide a graphically defined

intuitive way to model conditions, events, and their relationships, as well as essential characteristics like

nondeterminism and concurrency. In a colored Petri net model, there are places and colored tokens that

represent conditions, and transitions that represent events. A colored token, residing in a place, has a

value, which can be tested against certain guards associated with transitions. When some specified guards

become true, events can occur – this is depicted in the net model by the “firing” of transitions, which

changes the distribution of tokens in the net, and also modifies the system state. So, a Petri net provides

an executable model that directly defines the concept of a system’s state space. Based on our significant

experience with colored Petri nets for many years, the Petri net formalism can achieve an effective

balance between theoretical concepts and practical modelling techniques.

 8

C1 C2SPARE
CF A

C1 C2LSH
F F

C1
F D

C2SDEP
2/2

D|FD|F

colset STATE = with Active | Standby | Failed;
var x, y, z : STATE;

z

y

y

z

x

xx

y

zx

y

z

LSH-2

LSH-1SDEP

[x=Failed, y=Active]

output (z);
action (Standby);

Spare

[x=Failed, y=Standby]

output (z);
action (Active);

C2C1C2

STATE

C2

STATE

C1

STATE

C1

STATE

[x=Failed, y=Active]
output (z);
action (Standby);

output (z);
action (Standby);[x=Failed, y=Active]

(a) State dependency (b) Cold spare (c) Load sharing

Figure 4. Conversion of DRBD constructs into colored Petri nets (CPN)

Fig. 4 demonstrates how to convert some key DRBD constructs into colored Petri nets. In Fig. 4 (a),

component C1 and C2 are connected by a SDEP block with a (F, D) state dependency, i.e., the failure of

C1 will lead to the deactivation of C2. In its corresponding colored Petri net, the two components are

represented by two places C1 and C2, where the place types are defined by the color set STATE with three

different colors, namely “Active”, “Standby” and “Failed”. When the transition guard [x=Failed,

y=Active] evaluates to true, i.e., place C1 contains a “Failed” token and place C2 contains an “Active”

token, the transition SDEP becomes enabled and can fire. The firing of the transition will remove the

tokens in place C1 and C2, and return a “Failed” token and a “Standby” token to place C1 and C2,

respectively. Note that place C2 now contains a “Standby” token, which indicates that C2 enters a

Standby state due to the failure of component C1. Similarly, Fig. 4 (b) illustrates how to convert a SPARE

block into a colored Petri net. The colored Petri net corresponding to a SPARE block shows that when C1

becomes failed, and C2 is in a Standby state, C2 will be activated. In Fig. 4 (c), the LSH block annotated

with “2/2” indicates that the LSH block is functioning only when both of the load sharing components C1

and C2 are functioning. When either of the components fails, the other component will be deactivated

accordingly, and the whole LSH block becomes no longer functioning. In its corresponding colored Petri

net, we use two transitions LSH-1 and LSH-2 to model the load sharing behaviors. When component C1

fails and C2 is in an Active state, the transition LSH-1 may fire, and its firing will force C2 to enter a

Standby state. Similarly, when C2 fails and C1 is in an Active state, the transition LSH-2 may fire, and its

firing will force C1 to enter a Standby state. Note that both the transition LSH-1 and LSH-2 can fire only

when their associated transition guards evaluate to true. Thus, if component C1 and C2 fail at the same

time, no transition (LSH-1 or LSH-2) can fire.

 9

5. Case Study: Development and Verification of DRBD Models

5.1 DRBD Models of Load Sharing Servers with Routers

Load sharing across multiple servers would enhance responsiveness and scale well with session load;

while a single server might not be able to cope with increasing demand for multiple sessions

simultaneously. Now consider two load sharing server computers connected to a router. When a client

attempts to access a server through the router, the router will automatically select a node in the server

pool based on a load sharing algorithm, and redirect the request to that node.

Fig. 5 (a) shows the DRBD model of the above system that consists of two load sharing servers with a

router. As shown in the figure, a router (component R1) is connected to two server computers (component

C1 and C2). The two computers are connected in a parallel structure and controlled by a LSH block. The

annotation “2/2” indicates that the parallel structure is functioning only when both C1 and C2 are in their

Active states. Since clients can only access the server computers through the router, an (F, D) state

dependency exists from component R1 to both C1 and C2, i.e., when the router fails, the computers will

be deactivated for their network connections, and enter Standby states. Note that to simplify our

conversion process, in the DRBD model shown in Fig. 5 (a), we used two SDEP blocks, which only

involve one dependent/target component; however, the two SDEP blocks are equivalent to a single SDEP

block with two dependent/target components C1 and C2, which follows the general form of a SDEP block

defined in Fig. 2 (a).

R1

R2

SPARE

C

SDEP

F

D

F

A

C1

C2

LSH

D|F

D|F

SDEP

SDEP SDEP

F

F

D

D

D

F

R1

F

D

C1

C2

LSH

D|F

D|F

SDEP

SDEP

F

D

2/2 2/2

(a) Load sharing servers connected to a router (b) Load sharing servers connected to a router with a CSP

F

F

F

F

Figure 5. DRBD models of load sharing servers with router(s)

 10

In order to make the system more reliable, we introduce a cold spare (CSP) for the router, which is

represented by component R2 annotated with letter “C” in Fig. 5 (b). The DRBD model in Fig. 5 (b)

describes when component R1 fails, component R2 will automatically be activated and continues to

provide network access for component C1 and C2. When component R2 also fails, component C1 and C2

will be deactivated, and thus become inaccessible.

5.2 Conversion of DRBD Model to Colored Petri Nets

The DRBD model in Fig. 5 (b) can be converted into a colored Petri net as shown in Fig. 6. The four

components in Fig. 5 (b) are modeled by the four places R1, R2, C1 and C2, and each place can contain a

colored token with one of the three different colors, i.e., “Active”, “Standby” and “Failed”. An active

component may fail when its corresponding Fail_Ri or Fail_Ci (i = 1..2) transition fires, in which case,

the “Active” token in the corresponding component place will be replaced by a “Failed” token. Note that

since we only allow cold standby component in this example, a component in a Standby state cannot fail.

Initially, the four component places R1, R2, C1 and C2 contain “Active”, “Standby”, “Active” and

“Active” colored token, respectively. According to the DRBD model in Fig. 5 (b), when either R1 or R2 is

active, the parallel structure containing R1 and R2 is functioning. This is represented by firing either

colset UNIT = unit with e;
colset BOOL = bool;
colset STATE = with Active | Standby | Failed;
var x, y, z : STATE;
var u : UNIT;
var b : BOOL;

z

u

u

u
y

x

b

z

y

b

x

b

x

x

x

x

x

y

z

x
y z

x

x

zy

y

x

y z

x

x

y

b

b
y

z

x

x

y

x

y y

x

y z

x T7

[x=Failed orelse y=Failed]

output (b);
action (true);

T6

T5 [x=Active, y=Active, z=Active]output (b);
action (true);

T1

[x=Active]

T2

[x=Active]

LSH_2

[x=Failed, y=Active]

output (z);
action
(Standby);

LSH_1

[x=Failed,
y=Active]

output (z);
action (Standby);

SDEP_R1_C2

[x=Failed,
y=Active]

output (z);
action (Standby);

SDEP_R2_C1

[x=Failed, y=Active]

output (z);
action
(Standby);

SDEP_R2_C2

[x=Failed, y=Active]

output (z);
action (Standby);

Fail_C2

[x=Active]

output (y);
action (Failed);

Stop

[b=true]

Run

[b=true]

SDEP_R1_C1

[x=Failed, y=Active]
output (z);
action (Standby);

Fail_R2

[x=Active]

output (y);
action (Failed);

Fail_R1

[x=Active]

output (y);
action (Failed);

Fail_C1

[x=Active]

output (y);
action (Failed);

Spare

[x=Failed, y=Standby]

output (z);
action (Active);

Syn_2

UNIT

Syn_1

UNIT

R1_or_R2

STATE

C2

1`Active

STATE

System_down

BOOL

C1

1`Active

STATE

System_up

BOOL

R2
1`Standby

STATE

R1

1`Active

STATE

u

output (b);
action (true);

[x=Failed]

1

1

1

1

Figure 6. The colored Petri net model converted from the DRBD model in Fig. 5

 11

transition T1 or T2 when either the place R1 or R2 contains an “Active” token, thus an “Active” token can

be deposited into place R1_or_R2. When both component C1 and C2 are also active, the transition T5

may fire, and a Boolean token “true” is deposited into place System_up, which enables the Run transition.

This scenario shows that when component R1 (or R2) and component C1 and C2 are functioning, the

system must be functioning. On the other hand, when component R2 fails, the transition T6 may fire, and

the firing of transition T6 will deposit a Boolean token “true” into place System_down. Similarly, when

either component C1 or C2 fails (denoted by guard [x=Failed orelse y=Failed] for transition T7),

the transition T7 may fire and deposit a Boolean token “true” into place System_down. A Boolean token

“true” in place System_down enables the Stop transition, which indicates that the system cannot be

functioning. Finally, if component R1 fails, it will activate component R2 due to the spare part

redundancy; thus, it should not lead to the failure of the whole system.

The next step to convert the DRBD model in Fig. 5 (b) into a colored Petri net model is to convert the

DRBD controller blocks into colored Petri nets according to the conversion methods described in Fig. 4.

As shown in Fig. 6, the four transitions SDEP_Ri_Cj (i, j = 1..2) represent the four SDEP blocks in Fig. 5

(b), which define the state dependency between a router and a server computer. The Spare transition

corresponds to the SPARE block in Fig. 5 (b), which activates component R2 when R1 fails. The

transitions LSH_1 and LSH_2 are used to model the LSH block for the two load sharing components C1

and C2, which deactivates the other component when one of them fails. In addition, there are two

synchronization places Syn_1 and Syn_2, which are used to synchronize the transition SDEP_R1_C1 and

Spare, and SDEP_R1_C2 and Spare, respectively. When transition SDEP_R1_C1 (SDEP_R1_C2) fires, a

unit token is deposited into the synchronization place Syn_1 (Syn_2) to ensure that the firing of transition

SDEP_R1_C1 (SDEP_R1_C2) precedes the firing of transition Spare, so the transition SDEP_R1_C1

(SDEP_R1_C2) will not accidentally become disabled when the “Failed” token in place R1 (R2) is

removed due to the firing of transition Spare. When the transition Spare fires, it deposits an “Active”

token into place R2 in order to activate the spare part. This should lead to the continuous functioning of

the whole system.

5.3 State Space Analysis and Model Checking of Colored Petri Nets

We now use an existing Petri net tool, called CPN Tools [17], to analyze our colored Petri net model.

CPN Tools is a program that supports editing, simulating, and analyzing colored Petri nets, which include

a state space analysis engine that can generate a full or partial state space, and produce a standard state

space report containing information such as boundedness, liveness, and deadlock-freeness properties [18].

 12

Table 1. Results from state space analysis tool

 Result-1 Result-2 Result-3

 Statistics

State Space
 Nodes: 33
 Arcs: 69
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 33
 Arcs: 62
 Secs: 0

Liveness Properties

Dead Markings [32]

Dead Transition Instances
 Router'SDEP_R2_C1 1
 Router'SDEP_R2_C2 1

Live Transition Instances
 None

DeadMarking(32)

val it = true : bool

print(NodeDescriptor 32)

32:
C1 1: 1`Standby
C2 1: 1`Standby
R1 1: empty
R2 1: empty
R1_or_R2 1: 1`Active
Syn_1 1: empty
Syn_2 1: empty
System_down 1: empty
System_up 1: empty
val it = () : unit

Reachable'(1, 32)

A path from node 1 to 32:
[1, 3, 11, 25, 30, 32]
val it = true : bool

Statistics

State Space
 Nodes: 67
 Arcs: 162
 Secs: 0
 Status: Full

Scc Graph
 Nodes: 67
 Arcs: 141
 Secs: 0

Liveness Properties

Dead Markings
 None

Dead Transition Instances
 None

Live Transition Instances
 None

When running the analysis tool in CPN Tools for our colored Petri net model, we get Result-1 as shown

in Table 1. The result shows that there is a dead marking (state 32) in the reachability graph of the Petri

net model, which can also be verified by executing the command DeadMarking(32) as shown in Table

1, Result-2. By executing the command print(NodeDescriptor 32), it prints out the marking for

state 32 as shown in Table 1, Result-2. From the result, we can see that in the dead marking S32, both the

places System_up and System_down contains no token (i.e., empty). This implies that the Petri net model

must contain a deadlock, where none of the transitions Run and Stop is enabled. By executing the

command Reachable'(1, 32), we find a path from node 1 to node 32, i.e., [1, 3, 11, 25, 30, 32]. When

we further tracing the dead marking state using the CPN Tools, we can calculate the firing sequence that

leads to the dead marking, which is: S1, Fail_R1, S3, SDEP_R1_C1, S11, SDEP_R1_C2, S25, Spare, S30,

T2, S32. From Fig. 6, it is easy to see that the dead marking is due to the firing of transition SDEP_R1_C1

(SDEP_R1_C2) that deposits a “Standby” token in place C1 (C2) when component R1 fails. When

component R2 is activated, component C1 and C2 should also be activated accordingly. However, such

state dependency from component R2 to C1 (C2) is not presented in the DRBD model in Fig. 5 (b). This

design error can be fixed by adding an (A, A) state dependency from R2 to C1 and C2 in Fig. 5 (b).

Accordingly, we need to revise the colored Petri net model in Fig. 6 as follows: (1) add a new transition

SDEP_R2_C12 with places R2, C1 and C2 as both the input places and output places; (2) add a new

synchronization place Syn_3 with SDEP_ R2_C12 as input transition and T2 as output transition; (3) set

 13

the guard of transition SDEP_ R2_C12 such that R2 contains an “Active” token and both C1 and C2

contain a “Standby” token, i.e., [x=Active, y=Standby, z=Standby]; and (4) set the output of

transition SDEP_ R2_C12 as “Active” tokens deposited into both C1 and C2 place, i.e., output (s,

t); action (Active, Active). We analyze the revised colored Petri net again using the CPN

Tools, and now we get the results as shown in Table 1, Result-3. The results indicates that there is no

dead marking in the revised Petri net model, which ensures that the revised Petri net model is deadlock

free.

Furthermore, we can use model checking technique to verify properties of our colored Petri net models.

CPN Tools facilitate analysis of state spaces by means of CTL-like temporal logic, called ASK-CTL, for

formulating queries about states, as well as queries about state changes (e.g., the occurrence of certain

transitions) [19]. For example, the Formula_1 listed in Table 2, which is written in ML language, defines

a CTL-like temporal formula EXIST_UNTIL(TT, NOT(MODAL(TT))). In this formula, TT represents

the constant “true” value, and the operator MODAL(A), as a state formula, is true if starting from the

current state, there exists an immediate transition from which the argument A is true. Since in the above

formula, the argument A is constant true, NOT(MODAL(TT)) specifies a state that has no immediate

transition that can fire, i.e., a deadlock marking. The operator EXIST_UNTIL(A1, A2) is true if there

exists a path, starting from the current state, A1 is true for each state along the path until A2 becomes true.

Thus, the complete formula EXIST_UNTIL(TT, NOT(MODAL(TT))) specifies whether there exists a

path that involves a deadlock marking. In Table 2, the columns denoted as “After Rev” and “Before Rev”

present the model checking results for the Petri net models after and before revision, respectively. From

the model checking results for Formula_1, we can see that the original model (before revision) contains a

deadlock marking; while the revised one has no deadlock marking.

Table 2. Model checking results for the Petri net models before and after revision

Formulas ASK-CTL in ML After Rev Before Rev

Formula_1
val myASKCTLformula = EXIST_UNTIL(TT, NOT(MODAL(TT)));
eval_node myASKCTLformula InitNode; false true

Functions
fun R1_Failed n = (Mark.R1 1 n = 1`Failed);
fun R2_Failed n = (Mark.R2 1 n = 1`Failed);
fun SystemFailed n = (Mark.System_down 1 n = 1`true);

- -

Formula_2

val isFailed = FORALL_UNTIL(TT, NF("", SystemFailed));
val system = OR(NOT(NF("", R2_Failed)), isFailed);
val myASKCTLformula = INV(system);
eval_node myASKCTLformula InitNode

true true

Formula_3

val isFailed = FORALL_UNTIL(TT, NF("", SystemFailed));
val system = OR(NOT(NF("", R1_Failed)), isFailed);
val myASKCTLformula = INV(system);
eval_node myASKCTLformula InitNode;

false true

 14

In Table 2, we further define three functions: R1_Failed, R2_Failed and SystemFailed. The function

R1_Failed (or R2_Failed) returns true if place R1 (or R2) contains a colored token “Failed”, which

indicates that the corresponding component fails. Similarly, the function SystemFailed returns true when

place System_down contains one colored token “true”, which indicates that system is not functioning. In

Formula_2 from Table 2, we define a temporal formula isFailed = FORALL_UNTIL(TT, NF("",

SystemFailed)), where the operator FORALL_UNTIL(A1, A2) is true if from the current state, for all

paths in the reachability graph of the Petri net model, A1 is true for each state along the path until reaching

a state on the path where A2 must hold. Therefore, the CTL formula specifies that from the current state,

whether the system will eventually become not functioning. We now consider the relationship between

the failure of component R2 and the failure of the whole system. At any time (state), the system model

should satisfy the following property: (R2_Failed → <>SystemFailed), which is equivalent to

(¬R2_Failed ∨ <>SysFailed). This property can be specified by the temporal formula system =

OR(NOT(NF("", R2_Failed)), isFailed). Since this property should be satisfied at any time, the

formula INV(system) must be true for our Petri net models, where INV(system)is true if from the

current state, the argument system is true for all reachable states. The model checking results show that

both Petri net models (before and after revision) satisfy this property. Similarly, we may also verify the

relationship between the failure of component R1 and the failure of the whole system. Since the failure of

component R1 will activate component R2 due to the spare part redundancy; thus, it should not lead to the

failure of the whole system. The model checking result of Formula_3 for our revised Petri net model is

false, which verifies that the revised model does not satisfy the property (if written in LTL):

[](R1_Failed → <>SystemFailed), i.e., the failure of R1 will not always lead to the failure of the

whole system. On the other hand, the model checking result of Formula_3 for the original Petri net model

(with deadlock marking) is true, which indicates that the above property is satisfied. In other words, it is

true that the failure of component R1 will always lead to the failure of the whole system. However, we

notice that along the path that leads to the deadlock marking, it is impossible to deposit a colored token

“true” into place System_down; thus, it seems that the model checking result should also be false. The

reason it returns a true result is because the path that leads to the deadlock marking is a finite sequence,

and in this case, the CPN Tools will evaluate the temporal formula FORALL_UNTIL(TT, NF("",

SystemFailed)) to true, although SystemFailed does not eventually become true along that path.

6. Conclusions and Future Work

Existing system reliability modelling approaches cannot fully capture dynamic relationships between

components, such as state dependency and redundancy. In this paper, we propose a new modelling

 15

approach called dynamic reliability block diagrams (DRBD) to resolve the shortcomings of the existing

work. Our proposed approach provides a powerful but easy-to-use reliability modelling tool for complex

and large computer-based systems. The methods we proposed for conversion of DRBD constructs to

colored Petri nets provide a potential solution for automated conversion of a DRBD model to colored

Petri nets, and automated verification of DRBD models, which is demonstrated in our recent work [20].

The case study illustrates how a DRBD model of a computer-based system can be developed, and how

formal verification approach can be used to ensure a correct design of the DRBD model. In our future

work, we will develop a software tool that can automatically translate DRBD models into colored Petri

nets for formal verification. We also plan to develop efficient evaluation methods for DRBD models in

order to analyze and predict system reliability performance. A comprehensive system reliability

modelling tool that supports editing, formal verification, and evaluation of DRBD models for complex

and large-scale systems is envisioned as our future, more ambitious research direction.

Acknowledgement

This material is based upon work partially supported by the Research Seed Initiative Fund (RSIF),

College of Engineering, UMass Dartmouth. We thank all anonymous referees for the careful review of

this paper and the suggestions for improvements they provided.

References

[1] B. W. Johnson, Design and analysis of fault tolerant digital systems (Boston, USA, Addison-Wesley

Longman Publishing Co. Inc., 1989).

[2] R. Manian, J. B. Dugan, D. Coppit, & K. J. Sullivan, Combining various solution techniques for dynamic

fault tree analysis of computer systems, Proc. of the IEEE International High-Assurance Systems

Engineering Symposium, 1998.

[3] BlockSim, System reliability analysis software using an RBD or fault tree approach, ReliaSoft

Corporation, http://www.reliasoft.com/BlockSim/, accessed on June 12, 2007.

[4] M. Rausand & A. Høyland, System reliability theory: models, statistical methods, and applications (New

York, USA, Wiley-Interscience, 2003).

[5] W. Wang, J. M. Loman, R. G. Arno, P. Vassiliou, E. R. Furlong, & D. Ogden, Reliability block diagram

simulation techniques applied to the IEEE std. 493 standard network, IEEE Transactions on Industry

Applications, 40(3), May/June 2004, pp. 887-895.

[6] H. Xu & L. Xing, Formal semantics and verification of dynamic reliability block diagrams for system

reliability modelling, In Proc. of the 11th International Conference on Software Engineering and

Applications (SEA 2007), November 19-21, 2007, Cambridge, Massachusetts, USA.

 16

[7] T. Murata, Petri nets: properties, analysis and applications, Proc. of the IEEE, Vol. 77, No. 4, April 1989,

pp. 541-580.

[8] K. Jensen, Colored Petri nets: basic concepts, analysis methods and practical use, Volume 2, analysis

methods (Monographs in Theoretical Computer Science, Springer-Verlag, 1997).

[9] S. Distefano & L. Xing, A new approach to modelling the system reliability: dynamic reliability block

diagrams, Proc. of the 52nd Annual Reliability & Maintainability Symposium (RAMS’06), Newport Beach,

CA, January 2006, pp. 189-195.

[10] D. Coppit, K. J. Sullivan, & J. B. Dugan, Formal semantics of models for computational engineering: a

case study on dynamic fault trees, Proc. of the International Symposium on Software Reliability

Engineering, San Jose, California, 2000, pp. 270-282.

[11] D. Coppit & K. J. Sullivan, Formal specification in collaborative design of critical software tools, Proc. of

the Third IEEE International High-Assurance Systems Engineering Symposium, Washington, D.C.,

November 13-14, 1998, pp. 13-20.

[12] A. Bobbio, G. Franceschinis, R. Gaeta, & L. Portinale, Exploiting Petri nets to support fault tree based

dependability analysis, Proc. of the 8th International Workshop on Petri Nets and Performance Models

(PNPM), 1999, pp. 146-155.

[13] M. H. C. Everdij & H. A. P. Blom, Petri-nets and hybrid-state Markov processes in a power-hierarchy of

dependability models, Proc. of the IFAC Conf. on Analysis and Design of Hybrid Systems, June 2003,

Saint-Malo, Brittany, France.

[14] E. J. Henley & H. Kumamoto, Probabilistic Risk Assessment: Reliability Engineering, Design, and

Analysis (IEEE Press, 1992).

[15] Z. Manna & A. Pnueli, The temporal logic of reactive and concurrent systems - specification (Springer-

Verlag New York, Inc, 1992).

[16] E. M. Clarke, O. Grumberg, & D. A. Peled, Model Checking (MIT Press, 2001).

[17] Jensen, K., Kristensen, L. M., & Wells, L., Coloured Petri nets and CPN Tools for modelling and

validation of concurrent systems, International Journal on Software Tools for Technology Transfer,

Springer-Verlag, 2006.

[18] A. V. Ratzer, L. Wells, H. M. Lassen, et. al., CPN Tools for editing, simulating, and analyzing colored

Petri nets, Proc. of the 24th International Conference on the Application and Theory of Petri Nets,

Eindhoven, The Netherlands, June 2003.

[19] A. Cheng, S. Christensen, & K. H. Mortensen, Model Checking Coloured Petri Nets Exploiting Strongly

Connected Components, In Proc. of the International Workshop on Discrete Event Systems, Edinburg,

Scotland, UK, pages 169-177. August 1996.

[20] R. Robidoux, Automated verification of a computer system reliability model, Master’s Thesis, Computer

and Information Science Department, University of Massachusetts Dartmouth, July 2007.

 17

Biographies

Haiping Xu received the B.S. degree in Electrical Engineering from Zhejiang

University, Hangzhou, China, in 1989, the M.S. degree in Computer Science

from Wright State University, Dayton, OH, in 1996, and the Ph.D. degree in

Computer Science from the University of Illinois at Chicago, IL, in 2003. Since

2003, he has been with the University of Massachusetts Dartmouth, where he is

currently an Assistant Professor at the Computer and Information Science

Department, and a Co-Director of the Concurrent Software Engineering

Laboratory. His research interests include distributed software engineering, formal methods, Internet

security, multi-agent systems, and service-oriented systems. He is a senior member of the IEEE Computer

Society and a professional member of the ACM.

Liudong Xing received the B.E. degree in Computer Science from Zhengzhou

University, China, in 1996, the M.S. degree and the Ph.D. degree in Electrical

Engineering from the University of Virginia, in 2000 and 2002, respectively. Her

major field of study is reliability engineering and fault-tolerant computing. She is

currently an Associate Professor with the Electrical and Computer Engineering

Department, University of Massachusetts Dartmouth. Her current research

interests include dependable computing and networking, hardware and software

reliability engineering, fault-intrusion tolerant computing, and wireless sensor networks.

Ryan Robidoux received the B.S. degree and the M.S. degree in Computer

Science from the University of Massachusetts Dartmouth, MA, in 2005 and 2007,

respectively. His major research interests include neural network, software

engineering, formal methods, and web services. He is currently a lecturer in the

Computer and Information Science Department at the University of

Massachusetts Dartmouth, and a research associate and a software developer at

the Kaput Center for Research and Innovation in Mathematics Education.

 18

	ABSTRACT
	Key Words: Reliability modelling, dynamic reliability block

