

A PETRI NET BASED XML FIREWALL SECURITY MODEL FOR
WEB SERVICES INVOCATION

Mihir M. Ayachit and Haiping Xu
Computer and Information Science Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747

Email: {g_mayachit, hxu}@umassd.edu

ABSTRACT
An XML firewall differs from a conventional firewall
because its major task is to control access to web services
rather than to filter untrusted addresses. An XML firewall
can effectively protect web services from being attacked
by inspecting a complete XML message including its
head and data segments, and rejecting unauthorized web
services invocation. In this paper, we propose a formal
XML firewall security model using role-based access
control (RBAC). Our proposed model supports user
authentication and user authorization according to
information stored in a user database and a policy
database associated with an XML firewall. The formal
model is designed compositionally using Petri nets, which
can serve as a high-level design for XML firewall
implementation. The key components of our
compositional security model are the application model
and the XML firewall model. To illustrate the advantages
of our formal approach, we use an existing Petri net tool
to verify some key properties of our model, such as
boundedness and liveness.

KEY WORDS
XML firewall, web services, role-based access control
(RBAC), Petri net model, formal verification

1. Introduction

Web services are Internet-based software components that
support open, XML-based standards and communication
protocols. As more businesses deploy web services into
applications that dynamically interact with other
applications and data sources, the issue of how to secure
them from intruders and other possible threats becomes
more important [1]. Security problems in web services are
severe because the Internet is an insecure and untrustable
public network infrastructure, where the information
available to be accessed over the Internet has different
levels of business confidentiality. Furthermore, a service
consumer may invoke web services using false identity,
or corrupt the services by attacking the service providers,
for example, using a denial of service attack. Thus,
security consideration becomes very critical for the
successful deployment of web services applications.

Conventional firewalls have been designed as a major
component to protect a network or a server from being
attacked. However, they may provide no security at all for
web services. This is because web services normally use
the SOAP protocol over HTTP, whose port is typically
not blocked by conventional firewalls. To protect web
services from being attacked, we develop a general
framework, called XML firewall security model, which
enforces access restrictions for web services invocation.
In our model, the access to web services is only granted to
those users who are authenticated and authorized to have
access to the services. The model is formally defined
using the Petri net formalism, which is a mature
formalism with existing theory and tool support [2]. There
are two types of components in the XML firewall security
model, namely, the application model and the XML
firewall model. In the XML firewall model, we adopt the
role-based access control (RBAC) mechanism to
effectively deploy user authorization and access rights.
The RBAC model has been proposed as one of the most
attractive solutions to providing security features in
different distributed computing infrastructure [3]. In an
RBAC model, users are assigned roles with permissions,
which are access modes that can be exercised on a
particular object in the system. RBAC ensures that only
authorized users are given access to certain data or
resources. Most of the RBAC models follow the same
basic structure of subject, role and privilege. However, in
a more sophisticated role-based access control model,
access decisions for an application will depend on the
combination of the required credentials of users and the
context and state of the system, as well as other factors
such as relationship, time and location [4]. The RBAC
mechanism we use in our model depends on not only the
user’s identity, but also the current state of the system. In
our XML firewall, we can define certain policy rules that
specify the users’ access to the web services based on the
system state. Thus, our XML firewall model is stateful.

There is very little work done in the past on how to
protect web service providers from being attacked.
Previous work on protecting web services from
unauthorized access emphasized on developing pattern-

547-034 61

nicholas

based language for XML firewall [5]. Fernandez and his
colleagues classified firewalls into three categories,
namely, packet filter firewall, proxy-based firewall, and
stateful firewall [6]. They proposed two patterns for XML
firewall, which are security assertion coordination pattern
using RBAC for access to distributed resources, and filter
pattern for filtering XML messages or documents
according to institution policies. Instead of proposing
pattern languages for stateless XML firewall, we design a
stateful XML firewall protected system that may assign
permissions to various roles according to the current
system. Furthermore, since XML firewalls are critical
systems for businesses, to ensure the correctness of the
system design, we develop a formal model using Petri
nets, and demonstrate how existing Petri net tools can be
used to verify the key properties of our model.

Currently, there are also a few XML firewall products
available in the market to secure web services developed
by leading companies. For example, the Forum Systems
Company has an XML security appliance that is a
combination of hardware and software and resides in front
of servers that contain sensitive XML tagged information
[7]. The appliance encrypts XML fields in real time, as
the data goes into the server. It then decrypts it when the
data exits the server. Although such XML firewall
implementations can help to protect web services, their
functionalities are still very limited. For example, they are
usually not state-based, so they cannot protect web
services from certain threats such as a denial of service
attack. In this paper, we propose a general solution to
implementing XML firewalls based on a Petri net based
XML firewall security model, which is formally defined
and supports formal verification as we did in our previous
work [8]. Meanwhile, our formal model can serve as a
high-level design for XML firewall implementation, and
may provide a potential solution to automated software
development as illustrated in [9].

The rest of the paper is organized as follows. Section 2
presents an architectural design of XML firewall
protected systems. Section 3 introduces the compositional
Petri net based XML firewall security model, including
the application model and the XML firewall model.
Section 4 performs some formal analysis of the Petri net
models using an existing Petri net tool. Section 5 gives
the conclusions and future work.

2. Architectural Design of XML Firewall

To deal with security issues in web services invocation,
we build an XML firewall security model to protect web
services from threats in an unsecured environment. Such
threats include unauthorized access and access without
sufficient permissions. Our approach focuses on building
the XML firewall model that coordinates authentication
and access rights. The proposed model for XML firewalls
can filter XML messages according to policies enforced
in a policy base associated with each XML firewall.

The XML based firewall security model consists of three
major components: applications, XML firewalls and web
services. The architecture of an XML firewall protected
service-oriented system is illustrated in Figure 1. As
shown in the figure, a user interacts with the application
through the user interface. The application logic is the
business logic inside the application, which varies from
application to application. The application logic processes
the requests from the user and initiates service calls. A
service call can be an invocation of a single web service
or a group of web services. The request from the
application is checked by the XML firewall for
authenticity and access limitations depending on the
system state. If the request is valid, the XML firewall will
pass the request to the corresponding web service;
otherwise, the request is rejected. The administrator of the
XML firewall can change the policies of the firewall at
runtime. Each web service has its own logic to process the
corresponding method request and returns the result to the
XML firewall. Upon receiving the results from the web
services, the XML firewall passes the results back to the
application. When the application receives the results
from the XML firewall, the application logic processes
these results and may send appropriate messages to the
user through its user interface.

Figure 2 is the refinement of the XML firewall, which
describes the important components inside an XML
firewall model. When a user starts the application, he first
logs into the application. Then the user’s access requests
are processed by the computational logic. Based on the
user’s requests, the computational logic initiates the
needed service calls. The service call with the user’s
information is intercepted by the XML firewall for
authentication and authorization. The user is authenticated
by checking against the UserInfo database, i.e., the
UserInfoDB as shown in Figure 2. If the user’s
identification is valid, he is assigned a role from the Role
database, i.e., the RoleDB; otherwise, an access denied
message is sent to the application. The role assignment is
based on the current state of the user as well as the state

 Application (Service Consumer)

 XML Firewall

 Response

Application Logic

Web Service 1 Web Service n Admin

Policy Change
Request

User Interface

…

Response Request

User

Figure 1. Protecting service provider using stateful
XML firewall

State Info

Service Provider

Request

62

User Login Computational Logic
 [valid user]

authenticate
user

[valid] [invalid]

Assign
Role

 UserInfoDB

Create
User Space

StateDB

 PolicyDB

Access
Request

Invoke
Service

Web Service 1 Web Service n

Return
Results

Figure 2. XML firewall architecture

check
permissions

[access
passed]

RoleDB

[access
denied]

…

XML Firewall

Application

of the system, which is determined by the status of
incoming message and the information stored in the State
database, i.e., the StateDB. After the role assignment is
done, a user space is created by using policies from the
Policy database (i.e., the PolicyDB), which contains the
access permissions of the user. The user space is then
compared with the service request to determine whether
the incoming request from the user has permissions to
invoke the web service. If the user has the permissions,
then the request is passed to the corresponding web
service; otherwise, an access denied message is sent to the
application. Upon receiving a request from the XML
firewall, the web service process the request and returns
the result to the XML firewall, which is then passed back
to the computational logic in the application.

3. Compositional Petri Net Models of XML

Firewall

Petri nets are a graphical and mathematical modeling tool
applicable to many systems [2]. A Petri net is a directed,
connected, and bipartite graph in which each node is
either a place or a transition. In a Petri net model, tokens
are used to specify information or conditions in the
places. For an ordinary Petri net, when there is at least
one token in every input place of a transition, the
transition is enabled. An enabled transition may fire by
removing one token from every input place, and
depositing one token in each output place of the
transition. In this section, we develop a compositional
XML firewall security model for web services invocation
using Petri nets. As mentioned previously, we design our
XML firewall protected service architecture using
modular design with the basic modules, i.e., the

application model and the XML firewall model, where the
interfaces between these modules are well defined.

3.1 Application Model

Figure 3 shows the Petri net model of an application that
invokes two web services concurrently. In the application
model, we assume that a user can log into the application
by providing his username and password. Once a user
provides his username and password, a token is placed in
the Login_Request place. The username and password are
then received by firing Get_Login_Request transition and
a token is deposited into the Username_Password place.
The Check_User_DB transition is fired to check the
validity of the username and password according to the
information stored in the User_DB place, which is a
database that stores details of all registered users, for
example, the user’s contact information. If the username
and password check is valid, the Get_User_Details
transition is fired and a token is placed in the
User_Details place. At the same time, a token is
deposited into the Ready_To_Accept_Request place to
indicate that now a user access request can be processed.
It should be noted that a user could make a request to the
application only if he is authenticated by the application.
If the user fails the authentication check, then a token is
placed in the Failure place by firing the Not_Valid
transition. In this case, the transition Access_Denied can
fire and a token will be returned to the Login_Request
place. The token placed in the User_Access_Request
place represents a request from the user. The user request
is accepted by firing the Access_Request transition. Note
that the Access_Request transition can fire only if there is
a token in the Ready_To_Accept_Request place. As a
result of firing the Access_Request transition, a token is
deposited into the Dispatch_Request place. If the request
is a logout request, then the Logout transition will fire. If
the Logout transition fires, a token is taken out of the
Ready_To_Accept_Request place and User_Details place,
and a new token is returned back to initial place
Login_Request. Since there is no token in the
Ready_To_Accept_Request place now, a user must login
again before he can make further access requests.

If the request made by the user is an access request, the
Create_Request transition can fire, and a token will be
deposited into the Request_Details place. A token in the
Request_Details place contains the information retrieved
from the User_Details place combined with the
information from the incoming user request. The token in
place Request_Details enables the Computational_Logic
transition, which represents the business logic of the
application. The Computational_Logic transition is
defined as an abstract transition (denoted as shaded
rectangle in Figure 3), which is a unit of module that can
be refined later on. When the transition
Computational_Logic fires, the application applies its
business logic to the incoming request and generates
requests for web services invocation. To illustrate

63

concurrent invocations of two web services, the
application model includes two web services that are
protected by a XML firewall respectively. To simplify
matters, we assume that the user has to wait for the results
of both of the requests to be processed before any further
requests can be made. Notice that the XML firewall
model shown in the figure (in a dashed line box) can be
used to secure a single or a group of web services. We
will refine the XML firewall in Section 3.2. The goal of
the XML firewall is to perform the authentication and
authorization verification of incoming requests from the
application. Hence, when the application accepts the
request, the XML firewall performs the authentication
verifications and checks the access rights. If the user is an
authorized user, and if he has the necessary permissions to
the web service that is requested, then the web service
will be invoked. This logic is represented in the Figure 3
as the XML_FW transition. By firing the transition
XML_FW, a token is deposited in place Done_Checking
for further processing. If the user request is authentic and
the user has all the necessary permissions, the transition
Req_for_WS can fire. When the transition fires, a token
representing this request will be deposited into place
WS_Req, and enables the WS_Logic transition. The
transition WS_Logic is defined as an abstract transition
that represents the corresponding web service logic. After
processing the web service, a token representing the result
is deposited into the FW_Result place. On the other hand,
if the web service access is denied, the Access_Denied
transition fires, and a token representing an access denied
message is placed in the FW_Result place.

Now the Accept_Result transition in the application can
fire if we have a token in the FW_Result place in both of
the XML firewalls. Once the result is accepted, a token is
deposited into the Init/Result place, which can be used by
Computational_Logic transition for further processing.
After the Computational_Logic transition fires, a token is
returned to the User_Access_Request place, which
enables the next user access request.

3.2 XML Firewall Model

The XML firewall module in Figure 3 (displayed inside
the dashed line box) can be refined as shown in Figure 4.
To make the Petri net model self-contained, we have
shown an abstraction of the application model with two
places and two transitions. In this model, we also include
an abstract web service module that is denoted by the
abstract transition WS_Logic.

As we discussed earlier, the computational logic in the
application handles all the incoming requests coming
from the user and invokes the corresponding web
services. When the Computational_Logic generates a web
service request, a token is placed into the WS_Request
place indicating a method call. The Check_If_Existing
transition can fire in order to check if the user is an
existing user or a new one, where the user who made the
request is checked for identity. If the user is not found in
the UserInfo_ DB, then the user is recognized as a first
time user and the First_Time_User transition can fire. For
each first time user, the Perform_Background_Check

Ready_To_
Accept_Request

 WS_Logic WS_Logic

 User_DB

Req_for
_WS1

Req_for
_WS2

Dispatch_Request

User_Details

Create_Request Details

Access_
Request

Logout

User_Access
_Request

Get_Login_
Request

Username_
Password

Check_User_DB

Not_Valid

 Failure

 Valid

Get_User_
Details

Login_Request

Computational
_Logic

 XML_FW XML_FW

Access_
Denied

Access_
Denied

Req_for
_WS

Req_for
_WS

Accept
_Result

 Figure 3. Petri net model of an application that invokes two web services concurrently

 Request_

FW_
Result

FW_
Result

Access_Denied

Init/Result

WS_Req

WS_Req

 Done_Checking Done_Checking

64

transition can fire and a background check is performed
using information stored in BG_Check_DB. A user
becomes a valid member if the background check is
passed. As a result of valid authentication, the
Update_Databases transition is fired to update the
UserInfo_DB and Role_DB. Meanwhile, a token is
deposited into the Valid_User_Request place indicating a
valid user request. If the authentication fails, the
Check_Failed transition will fire and a token indicating
access denied is placed in the FW_Result place.

The user is identified as a regular user if his user profile
exists in the UserInfo_DB database. For a regular user,
the Existing_User transition can fire and a token is
deposited into the Valid_User_Request place. Once the
token is deposited into the Valid_User_Request place, the
authorization process starts by firing the
Start_Authorization transition. The state information for
the incoming request is generated by firing the
Fetch_State_Info transition, which uses state information
that is already stored in the State_DB. Since the incoming
request may hold state information itself (e.g., the time of
the request), the state of the incoming request is computed
using State_DB as well as the status of the incoming
request. After the state information is generated, a token
indicating current state of the request is placed in the
State_Info place. Then, the Assign_Role transition can fire
to assign the roles to the user using information stored in
the Role_DB. In addition, a user session is created by
firing the Create_Session transition. The user session
defines the period of time during which, a user can
interact with an application. The user session begins when
the user starts to access the web services and ends when
the user finishes the web services invocation. If the

session expires during the invocation, the WS_Logic
transition returns a timeout result back to the XML
firewall. The next task is to fetch a policy from the
Policy_DB. The Fetch_Policy transition can fire when
there is a token in the User_Role place and the State_Info
place. A policy is fetched from the Policy_DB based on
the user role and current state of the system. After a
policy is fetched and a session is created, a user space is
created that contains the user information, permissions
and the session information. A token representing a user
space will be deposited into the UserSpace place.

A token in the Access_Request place represents a web
service invocation request. The Check_Permission
transition can fire to check the Access_Request with the
User_Space to determine its access permissions. After the
checking, a token representing the result will be deposited
into the place Permission_Result. If the user has the
needed permissions, then the Pass transition fires. After
the web service request is processed (i.e., the firing of the
WS_Logic transition), a token representing the result of
the web service invocation is passed to the XML firewall.
This token enables the Accept_WS_Response transition.
The result from the web service also updates information
in the State_DB. On the other hand, if the user does not
have sufficient permissions to invoke a web service, the
Fail transition fires, and a token representing access
denial is placed in the Access_Failed place. When the
transition Access_Denied fires, a token is deposited into
the FW_Result place, which indicates the web service
access is denied. From the above model, we can see that
the FW_Result place may hold two types of tokens: one
representing an access denied message, and another one
representing the result from web service invocation. With

Start_Authorization

Access_
Request

Create_
Session

Fail

User_Request

Computational
_ Logic

Init/Result

WS_Request
Check_If_Existing

First_Time
 _User

Existing_User

Perform_
Background_
Check

BG_Check_DB

Check_
Failed

Check_
Passed

Update_
Databases

Role_DB
Assign_Role Fetch_State

_Info

User_Role

Policy_DB

Fetch_
Policy

Create_UserSpace

UserSpace
(Username,
Permissions,
Session) Check_Permission

Pass

Access
_Failed

 WS_Logic

Accept
_Result

Accept_WS_Response

FW_
Result

UserInfo_DB

StateInfo

Figure 4. Petri net model of an XML firewall with one application and one web service

Valid_User
_Request

Access_
Denied

State_DB

 Application

Permission_Result

65

a token in the FW_Result place, the transition
Accept_Result defined in the abstract application model
can fire. As a result, a token will be deposited into the
Init/Result place, and the Computational_Logic transition
will decide the next step of the actions. Whenever the
Computational_Logic transition fires, a new token will be
returned to the initial place User_Request to allow further
user requests.

4. Analysis of XML Firewall Model

One of the advantages of using Petri nets to model XML
firewall protected systems is its support for formal
analysis using existing Petri net analysis tools. In this
section, we show how to use the INA (Integrated Net
Analyzer) tool [10] to analyze some key properties of our
model. The INA tool is a program that can be used to
analyze a Petri net model for its general properties, for
example, the safety and liveness property. The INA tool is
an interactive analysis tool that incorporates a large
number of methods for analysis of Petri nets. These
methods include analysis of structural properties such as
structural boundedness, T- and P- invariant analysis and
behavioral properties, such as boundedness, safety,
liveness, and deadlock-freeness. To verify the correctness
of our XML firewall models, we utilize some key
definitions for Petri net behavior properties as adapted
from [2].

Definition 4.1 Reachability: In a Petri net N with initial
marking M0, denoted as (N, M0), a marking Mn is said to
be reachable from a marking M0 if there exists a sequence
of firings that transforms M0 to Mn. A firing or occurrence
sequence is denoted by s = M0 t1 M1 t2 M2 … tn Mn or
simply s = t1 t2 … tn. In this case, Mn is reachable from M0
by s and we write M0 [s > Mn.

Definition 4.2 Boundedness: A Petri net (N, M0), is said
to be k-bounded or simply bounded if the number of
tokens in each place does not exceed a finite number k for
any marking reachable from M0. A Petri net (N, M0) is
said to be safe if it is 1-bounded.

Definition 4.3 Liveness: A Petri net (N, M0), is said to be
live if for any marking M that is reachable from M0, it is
possible to ultimately fire any transition of the net by
progressing some further firing sequence.

Definition 4.4 Reversibility: A Petri net (N, M0) is said
to be reversible if, for each marking M that is reachable
from the initial marking M0, M0 is reachable from M.

We first use our net model in Figure 3 as an input to the
INA tool. The INA tool produces the following results:

Deciding structural boundedness
The net is structurally bounded.
The net is bounded.

Computation of the reachability graph
States generated: 238
The net has no dead transitions at the initial
marking.
The net has no dead reachable states.
The net is safe.

Livenesstest:
Computing the strongly connected components
The net is live.
The net is live, if dead transitions are
ignored.
The net is live and safe.
The net is reversible (resetable).

The analysis result shows that our net model is live. Thus,
for any marking M that is reachable from M0, it is possible
to ultimately fire any transition of the net. As a result, as
long as there are valid user requests with the needed
permissions, the WS_Logic transition can fire eventually.

The result also shows that our model is bounded and safe.
This means that each place in the net may contain at most
one token at any time. For example, only one token is
allowed to be deposited into the place Dispatch_Request
at any time. This model works properly when user
requests are handled sequentially. However, to handle
multiple user access requests at the same time, we need to
revise our net model as follows: we first remove the arc
from the Computational Logic to the
User_Access_Request place, and then we make the arc
between the User_Access_Request place and the
Access_Request transition bidirectional. As a result of
these changes, there can be multiple tokens in the
Dispatch_Request place, which shows that multiple user
access requests can be handled concurrently. Finally, the
analysis tells us that our net model is reversible. This
indicates that the initial marking M0 can be reproduced
(by Definition 4.4). Since the initial marking M0
represents that there are no web service requests being
processed at the net. The reversibility property proves that
every web service request can be processed successfully.

Now using our net model defined in Figure 4 as an input
to the INA tool, it produces the following results:

Deciding structural boundedness
The net is structurally bounded.
The net is bounded.

Computation of the reachability graph
States generated: 34
The net has no dead transitions at the initial
marking.
The net has no dead reachable states.
The net is safe.

Computing the strongly connected components
The net is live.
The net is live, if dead transitions are
ignored.
The net is live and safe.
The net is reversible (resetable).

By showing that our XML firewall net model is live, we
prove that under all circumstances, it is possible to

66

eventually fire any transition in the net. For example, the
transition Start_Authorization is proved to be live.
However, in our model, every incoming web service
request from the application is checked for authentication
first. If the authentication is passed, then the request is
further processed for authorization. On the other hand, if
the authentication check fails, our net model will send an
access denied message to the application without doing
any authorization operations. This indicates that the
Start_Authorization transition can fire only if the
authentication has been passed (i.e., the user is an existing
user or the background check has been passed for a first-
time user). Since we cannot guarantee the existence of a
valid (authenticated) user, we cannot guarantee that the
transition Start_Authorization can fire eventually. This
conflicts with the analysis result, which says that the
transition Start_Authorization is live. By looking into our
net model, we observe that we have simplified our net
model with ordinary tokens or black tokens. Since the
black tokens do not hold sufficient information to indicate
the success or failure of a background check, it is always
possible to fire the transition Check_Passed in Figure 4.
As a consequence, the transition Start_Authorization can
ultimately be fired. To solve this problem, we can use
colored tokens instead of ordinary tokens to represent the
background check results, and attach guards for
transitions. In this case, both the transition Check_Passed
and Start_Authorization cannot fire if the background
check fails.

The analysis result also shows that our net model is safe
and bounded. Since we have shown only one application
in our net model, we can expect that there can be at most
one token in the WS_Request place at any time. However,
when there are multiple applications that invoke multiple
web services at the same time, more than one token can
be deposited into the WS_Request place, and the net
model becomes no longer safe. In addition, the analysis
result shows that the model is reversible, which indicates
that after the invocation of a web service, the system can
successfully return to its initial state.

Notice that the Petri net models we have developed in this
paper are compositional. This means we can easily
develop a Petri net model that consists of multiple
applications, multiple firewalls, and multiple web
services. Since both of the application model and the
XML firewall model have been proved to be live, it is
easy to prove that a compositional model with multiple
applications, firewalls and web services is also live.

5. Conclusion and Future Work

We introduced a Petri net based XML firewall security
model that supports secured web services invocation. Our
approach adopts the role-based access control (RBAC)

mechanism, so user roles and permissions for web
services invocation can be assigned dynamically. Our
approach is stateful, where user permissions are assigned
according to system and user’s state information
including user’s previous web service invocation history.
Therefore, our approach may effectively protect web
services from certain type of threats, for example, the
denial of service attack. To illustrate the advantages of
our formal approach, we use the INA tool to verify that
our Petri net models are live and safe. In our future work,
we plan to refine our Petri net models and build a
prototype of stateful XML firewall protected service-
oriented system, and show that our approach is feasible
and effective.

References

[1] S. Mysore, Securing web services – concepts,

standards, and requirements, White paper, Sun
Microsystems, October 2003.

[2] T. Murata, Petri nets: properties, analysis and
applications, Proce of the IEEE, 77(4): 541-580,
April 1989.

[3] H. Feinstein R. Sandhu, E. Coyne and C. Youman,
Role-based access control models, IEEE Computer,
29(2):38–47, 1996.

[4] Guangsen Zhang, Manish Parashar, Context-aware
dynamic access control for pervasive applications,
Proc. of the Communication Networks and
Distributed Systems Modeling and Simulation
Conference (CNDS 2004), Western Multi-
Conference (WMC), San Diego, CA, USA, 2004.

[5] E. B. Fernandez, Two patterns for web services
security, Proc. of the 2004 Intl. Sym. on Web Services
and Applications (ISWS'04), Las Vegas, NV, 2004.

[6] E. B. Fernandez, M. M. Larrondo-Petrie, N. Seliya,
N. Delessy-Gassant, and M. Schumacher, A pattern
language for firewalls, In M. Schumacher, E. B.
Fernandez, D. Hybertson, F. Buschmann, and P.
Sommerlad (Eds.), Security Patterns, Wiley 2005.

[7] D. Allen, Forum Systems' XWall Web Services
Firewal, Retrieved on February 29, 2006, from
http://www.networkmagazine.com/shared/article/sho
wArticle.jhtml?articleId=18900090

[8] H. Xu and S. M. Shatz, A framework for model-
based design of agent-oriented software, IEEE
Transactions on Software Engineering (IEEE TSE),
January 2003, Vol. 29, No. 1, pp. 15-30.

[9] H. Xu and S. M. Shatz, ADK: an agent development
kit based on a formal model for multi-agent systems,
Journal of Automated Software Engineering (AUSE),
October 2003, Vol. 10, No. 4, pp. 337-365.

[10] S. Roch and P. H. Starke, INA: Integrated Net
Analyzer, Version 2.2, Humboldt-Universitat zu
Berlin, Institut für Informatik, April 1999.

67

