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Abstract—Deep learning models have shown great promise 
for predicting hydropower generation. Previous research has 
focused on energy output prediction or predictive maintenance 
using traditional artificial neural networks (ANNs). However, 
these models lack sustainability in the face of changing 
environmental conditions. The need for dynamic, real-time 
modeling becomes apparent in rapidly changing environments, 
where speed and accuracy of execution are critical. In this 
paper, we present a framework for real-time evolving deep 
learning (RT-EDL) models designed to accurately predict 
hydropower generation on a daily, weekly, and monthly basis. 
Our evolving model employs backpropagation techniques and a 
stochastic gradient descent optimizer to continuously fine-tune 
the model using newly acquired data points in real time. To 
validate our approach, we conduct a case study using the RT-
EDL model and show how the hyperparameters in the evolving 
model can be adjusted to achieve optimal operation. Our 
experimental results not only demonstrate the feasibility and 
effectiveness of our real-time evolving model, but also highlight 
its superiority over traditional deep learning methods.  

Keywords—deep learning model, real-time evolving model, 
changing environments, fine-tuning, hydropower generation 

I. INTRODUCTION 

A recent United Nations (UN) report emphasizes the 
urgent need to ensure a sustainable and habitable future for 
all, as the window of opportunity is rapidly closing [1]. It is 
estimated that renewable energy sources will have to double 
to 60% of global electricity by 2030 to curb the threat of 
climate change. There is no doubt that climate change has 
become the overarching issue of the 21st century. A 
prominent example is the phenomenon of global warming - 
the continuous increase in the Earth’s surface temperature 
observed since the pre-industrial era (1850-1900). This 
warming phenomenon is largely attributable to human 
activities, particularly the burning of fossil fuels, which has 
led to an increase in the level of “heat-trapping” greenhouse 
gas in the Earth’s atmosphere [2]. Hydropower is one of the 
most efficient technologies for the production of renewable 
energy and the largest renewable source of electricity, 
playing a crucial role in mitigating rising temperatures. 
However, many existing hydropower plants are in need of 
modernization. According to the International Renewable 
Energy Agency (IRENA), the average age of these 
hydropower plants is close to 40 years, and many countries 
face significant challenges due to their aging infrastructure 
[3]. Specifically, hydropower plants in North America and 
Europe exhibit considerably older ages, averaging around 50 
years. Therefore, there is a pressing need to incorporate 
recent advancements in computer technology, such as 
artificial intelligence and machine learning (AI/ML), to 
revolutionize the field of renewable energy utilization. A 

critical challenge in advancing renewable energy utilization 
is the accurate prediction of hydropower generation. While 
traditional machine learning techniques like artificial neural 
networks (ANNs) have been successful in predicting energy 
output and facilitating maintenance [4], their reliance on 
historical data makes them progressively less reliable in the 
context of changing environmental dynamics, such as shifts 
in global temperature and weather variations from season to 
season and year to year. The upcoming retrofit of 
hydroelectric plants provides an excellent opportunity to 
integrate real-time evolving models, a machine learning 
approach that improves accuracy through real-time data 
[5][6], into the day-to-day operations of hydropower plants. 
These real-time evolving models can accurately predict 
hydropower generation on various time scales, enabling plant 
managers to optimize decision-making and operational 
efficiency. In this paper, we introduce a framework for real-
time evolving deep learning (RT-EDL) models and 
demonstrates its superiority over traditional machine learning 
methods. The proposed RT-EDL model is based on a deep 
neural network that utilizes backpropagation techniques, 
refines each neural component using a stochastic gradient 
descent optimizer, and continuously adapts to real-time data 
for enhanced accuracy. 

In our approach, the RT-EDL model can be used to 
predict future hydropower generation on a  daily, weekly and 
monthly basis, and can be incrementally trained in real time 
using newly acquired labeled data points as  the actual 
hydropower generation becomes available. Our main 
contribution is the use of a real-time evolving model that 
offers significant advantages over traditional AI/ML methods 
in the face of changing environmental conditions. Unlike 
traditional ML models, which are trained using historical data 
and do not take into account new trends in model changes, 
real-time evolving models continuously assimilate data over 
time and are able to capture new patterns in the data as a result 
of environmental changes. This continuous adaptation 
enhances prediction accuracy by ensuring the model’s 
alignment with the most current data, resulting in more 
precise forecasts. These characteristics make a real-time 
evolving model especially advantageous in dynamic, high-
speed environments, as evidenced in this research. In our case 
study, we demonstrate that the introduced real-time evolving 
model significantly outperforms traditional machine learning 
methods in predicting hydropower generation. 

II. RELATED WORK 

There have been many previous efforts in predicting 
hydropower generation using traditional machine learning 
methods. Barzola-Monteses et al. attempted to predict the 
energy output of an Ecuadorian hydropower plant using 
ANNs [7]. They developed ANN structures based on * This material is based on work supported by Office of Naval Research 
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multilayer perceptron (MLP), long short-term memory 
(LSTM) and sequence-to-sequence (seq2seq) LSTM. They 
showed that the MLP univariate and differentiated model 
outperformed the other architectures based on analysis in 
several different scenarios. Velasquez and Flores used 
traditional machine learning methods for predictive 
maintenance of hydroelectric plants [8]. They implemented 
deep leaning models using LSTM for early detection of 
anomalies through fault classification or time-series behavior 
hydroelectric plant control variable data. Abdulkadir et al. 
presented the use of multilayer perceptron neural networks 
for modeling power generation as a function of reservoir 
variables for two hydroelectric dams in Nigeria [9]. The 
results of the correlation coefficients show that these 
networks can reliably model power generation as a function 
of reservoir variables for future energy forecasting. While the 
above methods are promising in predicting hydroelectricity 
generation through traditional machine learning, they may 
fall short in capturing new data patterns due to environmental 
changes. In contrast, our approach improves prediction 
accuracy by continuously adjusting to real-time data and 
synchronizing the model with the latest available data points. 

Previous work related to real-time learning models is 
summarized as follows. Song et al. introduced an autonomous 
incremental computing framework and architecture tailored 
for deep learning in IoT applications [5]. Their approach 
provides autonomous data diagnostics for deep learning-
based IoT systems, aiming to reduce data transfer while 
employing incremental and unsupervised training techniques. 
This strategy addresses the challenges posed by the large 
amount of dynamic raw IoT data generated in an ever-
changing environment. Aragón et al. implemented an 
incremental approach using LSTM models for continuous 
load forecasting in energy management systems [9]. Their 
approach was compared with the popular statistical model 
ARIMA and the results showed that the LSTM algorithm 
holds great promise in combining continuous load forecasting 
with incremental learning. Ford et al., proposed a real-time 
self-adaptive classifier (RT-SAC) for identifying suspicious 
bidders in the online auction house such as Ebay [10]. In their 
approach, RT-SAC is initialized on a historical dataset and 
then incrementally trained to gradually adapt to new bidding 
data in real time, thus supporting efficient detection of 
suspicious bidders in online auctions. While the discussed 
methodologies are effective in adapting to dynamic 
environments, they are not specifically designed to predict 
hydroelectricity generation. Instead, we introduce a novel 
strategy that employs real-time evolving deep learning 
models designed specifically for predicting hydropower 
generation. By using real-time learning models, this approach 
complements existing incremental methods to provide a 
pragmatic solution for efficiently and effectively predicting 
future hydropower generation. 

III. REAL-TIME EVOLVING DEEP LEARNING MODELS 

A. Pre-training the RT-EDL Model  

Pre-training of the RT-EDL model was done using a 
traditional machine learning approach that utilizes 
TensorFlow’s Keras to build a sequential deep learning 
model. Keras serves as an application programming interface 
(API) for deep learning tasks, specifically through its 
sequential model, which consists of stacked layers, each with 
an input and output tensor. The model starts with an input 
layer, followed by a hidden layer initialized using the Dense 

function, forming a structure of interconnected neurons. The 
output layer is constructed specifically for regression, and 
thus contains a single neuron for the application of 
hydropower generation prediction. The model is configured 
using mean squared error (MSE) as the loss function and 
mean absolute error (MAE) as an additional metric. The 
model is trained using the Keras fit function over a specified 
number of epochs and batch size, with a standardized 20% 
validation split. Determining the number of neurons in each 
hidden layer required systematic testing in power of 2 
increments. Similarly, the learning rate needed to be 
manually checked and adjusted from maximum to minimum 
values. Various batch sizes were also tested, again in power 
of 2 increments. Table I shows the selected hyperparameters 
for pre-training of the RT-EDL models. 

TABLE I.  MANUAL TUNING OF HYPERPARAMETERS 

Parameter Chosen value Min value Max value 

Activation Function Leaky ReLu N/A N/A 

Neurons in Hidden Layer 1 128 4 512 

Neurons in Hidden Layer 2 64 4 512 

Neurons in Hidden Layer 3 32 4 512 

Learning Rate 0.003 0.0001 0.1 

Epochs 500 N/A N/A 

Batch size 32 2 128 

B. Updating the RT-EDL Model 

The flowchart for updating the RT-EDL model is shown 
in Fig. 1. The pre-trained RT-EDL model is used as the initial 
model for real-time training. As shown in the figure, the most 
recent plant operational data are used for data point 
replacement in the moving training window, which contains 
a fixed number of data points for real-time training. Once the 
real-time training process is completed, the updated RT-EDL 
model is ready to be used for real-time energy prediction. 

 
Fig. 1. Flowchart for updating the RT-EDL model 

The real-time training process for RT-EDL models 
described above can be repeated when new data points are 
acquired. Some or all of the data points in the moving training 
window can be replaced by new data points. The latest 
version of the RT-EDL model can then be fine-tuned to 
support real-time energy prediction using the data points in 
the moving training window. Finally, the fine-tuned RT-EDL 
model becomes ready for further real-time training. 

C. Real-Time Training 

The purpose of real-time training is to fine-tune the RT-
EDL model as new data points emerge. The standard deep 
learning approach involves training the model repeatedly on 
the entire training dataset for a set number of epochs. The 
model is then tested using the test dataset to evaluate its 
performance. This approach is not suitable for real-time 
implementation of the RT-EDL model. Since the RT-EDL 
model does not have access to future data points, new training 
data  points must be added to a moving training window over 
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time. The model must then adapt to the new data points in the 
window, hence the term “evolving model”. Before we 
describe the details of the real-time fine-tuning process, we 
provide a few definitions for the moving training window. 

Definition 3.1 Moving Training Window. A moving 
training window Ψ is defined as a 2-tuple (RD, ND), where 
RD is a list of recent data points kept in the window and ND 
is a list of newly acquired data points added to the window. 

Definition 3.2 Window Size. The window size of a moving 
training window Ψ is the number of data points contained in 
the window that consists of both recent data points (i.e., 
Ψ.RD)  and newly acquired data points (i.e., Ψ.ND). For a 
window size of n, n data points will be used to fine-tune the 
RT-EDL model. 

Definition 3.3 Window Speed. The window speed of a 
moving training window Ψ is the number of new data points 
to be added to Ψ for each round of training and prediction to 
fine-tune the RT-EDL model. Let the window size be n and 
the window speed be m, m new data points and m oldest data 
points will be added to and removed from Ψ, respectively.  

Fig. 2 shows an example of a moving training window 
with a window size of 6 and a window speed of 3. As shown 
in the figure, the number of incoming data points is set to 3. 
Since the window size is 6, when 3 new data points are added 
to the window, the oldest 3 data points must be removed. It is 
important to note that the window speed and window size 
must be chosen appropriately for specific training and 
prediction purposes. For example, if monthly energy 
prediction is required, a window size of 6 would be too small 
and may result in an underfitting of the model. Conversely, if 
daily energy prediction is required, a window of 30 could be 
too large and may result in model overfitting. 

 
Fig. 2. An example of moving training window  

The model is used to predict hydropower generation for 
the next day, the next week, and the next month outside of the 
moving training window. To evaluate the accuracy of both 
the traditional approach and our approach using RT-EDL 
models, we define a few evaluation metrics as follows.  

Definition 3.4 Prediction Accuracy. The prediction 
accuracy pa for a singular energy prediction is defined as in 
(1), where x is the actual value to be predicted, and y is the 
predicted value. 

𝑝𝑎 = 1 −
|𝑥−𝑦|

𝑚𝑎𝑥(|𝑥|,|𝑦|)
                           (1) 

In our approach using RT-EDL models, the prediction 
accuracies on a daily, weekly, and monthly basis are 
compared with the average prediction accuracy avgpa for a 
number of singular days, which is defined as in (2). 

𝑎𝑣𝑔𝑝𝑎 = ∑ 𝑝𝑎𝑖
𝑛
𝑖=1 = ∑ (1 −

|𝑥𝑖−𝑦𝑖|

max(|𝑥𝑖|,|𝑦𝑖|)
)𝑛

𝑖=1       (2) 

where n is the number of data points in the test dataset, and xi 
and yi are the actual value to be predicted and the predicted 
value in data point i (1 ≤ i ≤ n), respectively. 

Before the model can be evaluated, it must be fine-tuned 
using the data points in a newly created moving training 
window. We refer to the collection of data points in the 
window as the batch data. Algorithm 1 details the fine-tuning 
process for the RT-EDL model. 

Algorithm 1 Fine-tuning the RT-EDL Model 

Input: Current RT-EDL model Ф, current moving training 
window Σ of size τ, and η new labeled data points  
Output: Fine-tuned RT-EDL model Ф’ 

1.  Remove the η oldest labeled data points from Σ. 
2.  Add η new labeled data points to the updated Σ. 
3.  Set the maximum epochs to σ 
4.  Initialize the number of iterations i to 0 
5.  while i < σ 
6.      for each labeled data point α in Σ 
7.          Train model on data point α using backpropagation  
8.          Calculate the training accuracy ta as in (1) 
9.      Calculate the average training accuracy avgta as in (2) 
10.    if avgta does not improve and avgta  ≥ 90 break; 
11.    i = i +1 
12. return Fine-tuned RT-EDL model Ф’ 

As seen in Algorithm 1, the new batch data is created by 
removing η oldest labeled data points from the moving 
training window Σ and adding η newly labeled data points. 
The batch data is then used to train RT-EDL for a maximum 
of σ epochs. The epoch-based stopping condition is used to 
ensure fast computational efficiency, which is a key 
requirement of this methodology. Additional stopping 
conditions that stabilize model performance are intended to 
reduce overfitting by identifying if the model is no longer 
improving. Combined with a 90% average training accuracy 
threshold, our method ensures that the model stops training 
only when the accuracy is high enough. Note that our 
methods for calculating the training accuracy ta and the 
average training accuracy avgta are consistent with the 
methods for calculating the prediction accuracy pa and the 
average prediction accuracy avgpa defined in (1) and (2), 
respectively. Finally, the fine-tuned RT-EDL model is 
returned and can be used in energy prediction applications. 

Algorithm 2 shows the complete process of pre-training, 
real-time training and predicting hydropower generation on a 
daily, weekly, and monthly basis using the RT-EDL model.  

Algorithm 2 Real-Time Training and Prediction (Reactive) 

Input: Historical data pool, window size τ, and window speed η 
Output: null 

1.  Pre-train RT-EDL model Ф using historical data points. 
2.  Create a new moving training window Σ of size τ  
3.  Add the most recent τ data points in historical data pool to Σ 
4.  Initialize number of days d to 0 
5.  while (true)  
6.      for i from 1 to η  
7.          Predict and print out the next day energy generation  
8.          d = d + 1 
9.          if number d day is the first day of a week 
10.            predict and print out next week’s energy generation 
11.        else if number d day is the first day of a month  
                 predict and print next month’s energy generation 
12.     Invoke Algorithm 1 with model Ф, window Σ and η newly   

      labeled data points; obtain fine-tuned RT-EDL model Ф’  
13.     Let current RT-EDL model Ф be Ф’ 

This process starts with a pre-training phase using 
historical data points as described in Section III.A and the 
creation of an initial moving training window. The RT-EDL 
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model initiates the prediction process using the pre-trained 
model and provides the predicted next day’s energy 
generation. Subsequently, the model extends its predictions 
to weekly or monthly intervals, contingent upon whether the 
current day marks the beginning of a week or a month. 
Following this, Algorithm 1 is invoked to update the moving 
training window and fine-tune the RT-EDL model. This 
process (line 6 through 13 in Algorithm 2) is repeated. Given 
the reactive nature of the algorithm, the cycle of fine-tuning 
the model and predicting energy generation will continue 
until it is manually terminated. 

IV. OPTIMIZING HYPERPARAMETERS 

In this section, we show how to prepare the training and 

the test datasets, and how to optimize the hyperparameters of 

the RT-EDL model, including the window size and the 

window speed, through a series of simulations. 

A. Dataset Preparation 

The first step in obtaining a suitable dataset for energy 
prediction is to find an existing dataset with energy outputs 
of hydropower plants. These data points must be suitable for 
a real-time environment, hence the need for daily energy 
output. The output parameter, or label, is the daily energy 
output of the hydropower plant in megawatt-hours (MWh). 
Table 1 lists the input parameters selected for the test dataset. 

TABLE II.  INPUT PARAMETERS 

Parameter Units Short Description 

Day Unitless 1-365 or 1-366 on leap year 

Temperature Fahrenheit Average daily temperature 

Temperature 
Departure 

Fahrenheit 
Temperature departure from 
historical mean 

Heating 
Degree Days 

Unitless  
Expected energy used to heat a 
house for a singular day 

Cooling 
Degree Days 

Unitless 
Expected energy used to cool a 
house for a singular day 

Precipitation Inches Daily recorded rainfall 

Stream Flow Cubic feet/second 
Cubic feet per second of the 
river attached to the dam 

Most of the input parameters listed in Table 1 were 
selected based on the previous work on comprehensive 
identification of relevant variables affecting hydropower 
generation [11]. The parameters related to degree days 
assume that temperature of 65℉ requires neither heating nor 
cooling to be comfortable. If the daily temperature mean 
(daily high plus daily low divided by 2) exceeds 65℉, the 
difference between the mean and 65℉ is the cooling degree 
days. Conversely, if the daily temperature mean is below 
65℉, the difference between 65℉ and the mean is considered 
heating degree days [12]. 

We used an energy dataset, called RectifHyd, to obtain 
monthly hydro generation estimates for approximately 1,500 
power plants in the United States. The time span chosen for 
analysis is six years, from 2015 to 2020. The U.S. Geological 
Survey (USGS) offers a free service that generates 
streamflow data at 15-minute intervals, which was then 
averaged into daily data entries. The National Weather 
Service offers a service called NOWData that, upon selecting 
a weather station, generates a table containing daily data 
entries for a given month. Temperatures, precipitation, 
temperature deviations, descending temperature days, and 
ascending temperature days are extracted from this resource. 
Finally, six years of monthly data for each hydroelectric plant 

were simulated, resulting in 2,192 daily data points. 
Subsequently, all necessary data was compiled, resulting in 
the creation of the following two datasets. 

▪ Dataset 1 (DS1): A specific hydroelectric plant, Black 
Canyon Dam in Idaho, was selected from the RectifHyd 
dataset. Flow data from the neighboring river, the Payette 
River, and meteorological data from the nearest weather 
station, Plaza, Idaho, were collected and added to DS1. 

▪ Dataset 2 (DS2): A specific hydropower plant, Flaming 
Gorge Dam in Utah, was selected from the RectifHyd 
dataset. Flow data for the Green River and meteorological 
data from the nearest weather station, Dutch John, Utah, 
were collected and added to DS2. 

In the case study presented in Section V, the traditional 
method is trained using the first three years of data and then 
tested on the last three years of data. In our real-time 
approach, the RT-EDL model is pre-trained on three years of 
data. The remaining three years are used for real-time training 
and prediction. In constructing deep neural network models, 
the best optimizer and activation function were found to be 
RMSprop and Leaky ReLU, respectively. Table III lists the 
remaining hyperparameters manually selected for DS1 and 
DS2 based on experiments. 

TABLE III.  MANUAL TUNING OF HYPERPARAMETERS 

Parameter  Chosen Value Min Value Max Value 

Hidden Layer 1 (DS1) 1028 4 1028 

Hidden Layer 2 (DS1) 16 4 1028 

Hidden Layer 3 (DS1) 4 4 1028 

Hidden Layer 1 (DS2) 1028 4 1028 

Hidden Layer 2 (DS2) 256 4 1028 

Hidden Layer 3 (DS2) 8 4 1028 

Learning Rate 0.003 0.0005 0.1 

Epochs 35 5 50 

To avoid overfitting and ensure that the desired accuracy 
is achieved, we used 1028 neurons in the initial hidden layer 
for both datasets. The number of epochs per training batch 
was limited to 50 to ensure that real-time training could be 
completed in the expected time. After tuning the regular 
hyperparameters of the deep neural network models, the 
window size and window speed had to be optimized. In the 
following sections, we use DS2 for these experiments. 

B. Optimizing Window Sizes 

We first conducted experiments to find the optimal 
window size for daily accuracy. Real-time prediction of daily 
accuracy requires only one new data point, so the window 
speed can only be 1. Fig. 3 shows the daily accuracy results 
versus the window size.  

 
Fig. 3. Daily accuracy – window size testing 

As can be seen from the figure, although a window size 
of 25 has the highest daily accuracy of 91.78%, all the tested 
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window sizes are very close to each other in terms of 
accuracy. Since the smaller the window size, the more 
efficient the training, we consider a window size of 10 to be 
the optimal window size for daily accuracy. Similarly, we 
tested the window size for weekly predictions. Fig. 4 shows 
the accuracy results versus window size, with multiple lines 
in the figure corresponding to different window speeds. 

 
Fig. 4. Weekly accuracy – window size testing 

Fig. 4 shows that the weekly accuracies for all window 
sizes are once again very close. The most prominent window 
sizes are 10 and 17, both hovering around 93% accuracy. A 
window size of 10 was chosen for its efficiency. Finally, the 
window size for monthly prediction was tested and the results 
are shown in Fig. 5. The figure indicates that the optimal 
window size is 40. Using this window size, the model not 
only achieves an accuracy of about 87%, but also the window 
size is small enough to be efficient.  

 
Fig. 5. Monthly accuracy – window size testing 

C. Optimizing Window Speeds 

Now that all optimal window sizes have been selected, 
optimal window speeds for the monthly and weekly 
predictions must be found. Fig. 6 shows the window speed 
tests for the weekly and monthly predictions. 

 
Fig. 6. Weekly/Monthly accuracy – window speed testing 

As we can see from Fig. 6, the accuracies using window 
speeds of 3-7 for weekly predictions are all very close to each 
other. The window speed of 7 was chosen because it directly 

corresponds to a week’s worth of data and has high accuracy. 
For monthly prediction, the optimal window speed is 30 due 
to its high accuracy as well. These experiments show that 
window speed has a large effect on accuracy, while window 
size has a small effect. In Section V, these optimal window 
sizes and window speeds are used for the experiments to 
compare the accuracies between traditional machine learning 
methods and the real-time approach using RT-EDL models. 

V. CASE STUDY 

Using optimized hyperparameters, we demonstrate that 
our approach is feasible and effective, and outperforms 
traditional machine learning methods. All experiments were 
conducted on a workstation equipped with a 2.8GHz Intel 
Core i7-1165G7 processor and 16 GB of RAM. 

A. Accuracy Analysis of the Traditional Approach 

Initial testing has shown that the traditional method (no 
real-time training) using TensorFlow is likely to suffer from 
overfitting. Overfitting is when there are too many neurons, 
resulting in an overly complex model with reduced accuracy. 
Manually removing a certain percentage of neurons (called 
dropout) can solve this problem. Table IV shows the optimal 
percentage of dropout and model accuracy. 

TABLE IV. ACCURACY USING THE TRADTIONAL METHOD 

Dataset Dropout (%) Accuracy (%) 

DS1 30 82.1 

DS2 40 85.1 

Additionally, useful graphs can be created to demonstrate 
the variability of the traditional methods. Fig. 7 illustrates the 
daily testing accuracy of model predictions versus the number 
of days for the two datasets DS1 and DS2. 

   
Fig. 7. Daily testing accuracy using traditional approach for DS1 & DS2 

The graphs reveal substantial downward spikes in 
accuracy, with certain predictions dropping to nearly 20%. 
The shape of these two graphs displays significant variability, 
characterized by a sudden transition from a long period of low 
accuracy to high accuracy. This pattern implies that the model 
encounters challenges in making accurate predictions. 

B. Accuracy Analysis of the RT-EDL Model 

For the real-time approach using the RT-EDL model, 
dropout experiments were also performed on both datasets. 
Fig. 8 shows the daily testing accuracy graphs for datasets 
DS1 and DS2, with fewer downward spikes in daily accuracy. 
Using the optimal window speed 1 and window size 10, DS1 
was found to have no need for dropout. Based on the 
experimental results, the average daily prediction accuracy 
was 90.8%. This is an 8.7% improvement over the traditional 
method. For dataset DS2, using a 30% dropout rate, window 
speed 1 and window size 10, the average daily prediction 
accuracy increased to 91.6%. This is a 6.5% improvement 
over the traditional method. 
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Fig. 8. Daily testing accuracy graphs – datasets DS1 & DS2 

Fig. 9 shows the weekly testing accuracy graphs for 
datasets DS1 and DS2 with window speed 7 and window size 
10. The average weekly prediction accuracy for dataset DS1 
is 92.4% with no dropout. The average weekly prediction 
accuracy for dataset DS2 is 93.4% with a 30% dropout rate. 
Compared to the traditional method, there is an improvement 
of 10.3% and 8.3%, respectively.  

  
Fig. 9. Weekly testing accuracy graphs – datasets DS1 & DS2 

Fig. 10 shows the monthly testing accuracy graphs for 
datasets DS1 and DS2 with window speed 30 and window 
size 40. The average monthly prediction accuracy for dataset 
DS1 is 88.9% with no dropout. The average weekly 
prediction accuracy for dataset DS2 is 88.4% with 30% 
dropout. Compared to the traditional method, DS1 and DS2 
show an improvement of 6.8% and 3.3%, respectively.  

  
Fig. 10. Monthly tetsing accuracy graphs – datasets DS1 & DS2 

It is evident that there are occasional downward spikes in 
accuracy using RT-EDL models. However, these downward 
spikes are infrequent, especially compared with the graphs in 
Fig. 7. It is worth noting that such downward spikes are more 
frequent in the daily graphs because of the greater impact of 
outliers on accuracy and challenging data points, such as 
those influenced by extreme weather (e.g., hurricanes, heavy 
rainfall, and floods). In contrast, the weekly and monthly 
graphs show almost zero downward spikes. The reduction in 
downward spikes can be attributed to the higher window 
speeds, i.e., 7 for the weekly and 30 for the monthly graphs. 
The increased number of newly acquired data points 
mitigates the impact of outliers and makes the predictions 
more resilient to extreme outliers. 

VI. CONCLUSION AND FUTURE RESEARCH 

Renewable energy research has never been more relevant 
as climate change continues to dominate scientific discussion 

in the 21st century. However, the traditional machine learning 
approach was not suitable for real-time implementation and 
the accuracy was rather average. In this paper, we introduced 
the RT-EDL model, which is pre-trained using a historical 
dataset and can evolve over time. We discussed in detail the 
tuning of hyperparameters including the window speed and 
the window size. The experimental results show that our RT-
EDL-based approach outperforms the traditional machine 
learning method.  

In future studies, we plan to investigate correlations 
between input parameters to obtain accurate feature 
importance rankings and to investigate whether model 
predictions follow typical climate changes such as global 
warming trends. To improve the efficiency and effectiveness 
of our approach, we will further study automated methods to 
determine the optimal number of neurons in the hidden 
layers, the appropriate maximum number of epochs, and 
other suitable stopping conditions. Finally, we will consider 
developing an RT-EDL model that not only changes the 
weights, but also automatically adapts to environmental 
changes by self-correcting the neural network structure. 
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