Presented on Feb. 26 (Monday), 2001at 3:30 PM inroom 1027SEO

FROM OBJECT TO AGENT: AN APPROACH TO USING FORMAL
METHODSIN SOFTWARE DESIGN AND ANALYSIS

BY
HAIPING XU
B.S., Zhgjiang University, Hangzhou, China, 1989
M.S., Zhegjiang University, Hangzhou, China, 1992
M.S., Wright State University, Dayton, OH, 1998

PH.D. THESIS FROPOSAL
Submitted as partial fulfill ment of the requirements
For the degreeof Doctor of Philosophy in Computer Science
In the Graduate Coll ege of the
University of lllinaisat Chicago, 2001

Chicago, lllinais

TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION
1.1 Badkground
1.2 Related Work
1.2.1 Forma Methodsin Objed-Oriented Design
1.2.2 Agent-Oriented Methoddogy and Formal Approaches
1.3 Contributions of Our Work

2. INHERITANCE MODELING IN OBJECT-ORIENTED DESIGN
2.1 Introduction
2.2 G-net Model Background
2.3 Extending G-nets for ClassModeling
2.4 Extending G-net Modelsto Suppart Inheritance
2.5 Modeling Different Forms of Inheritance
2.6 Modeling Inheritance Anomaly Problem
2.7 Discusson

3. AN AGENT-BASED G-NET MODEL
3.1 Introduction
3.2 Agent-based G-net Model
3.3 Sdlingand Buying Agent Design
3.4 Verifying Agent-Based G-net Models
3.5 Discusson

4. A FRAMEWORK FOR MODELING AGENT-ORIENTED SOFTWARE
4.1 Introduction
4.2 An Agent-Oriented Model
4.2.1 An Architedure for Agent-Oriented Modeling
4.2.2 Inheritance Modeling in Agent-Oriented Design
4.3 Examples of Agent-Oriented Design

4.3.1 A Hierarchy of Agentsin an Eledronic Marketplace
4.3.2 Modeling Agentsin an Eledronic Marketplace
4.4 Handling Multiple Inheritancein Agent-Oriented Models

4.5 Discusson

5. ANALYSIS OF AGENT-ORIENTED MODELS
5.1 Introduction
5.2 A Simplified Petri Net Model for a Buying Agent and Two Selling Agents
5.3 Deallock Detedion and Redesign of Agent-Oriented Models
5.4 Property Verificaion by UsingModel Chedking
5.5 Discusson

6. FUTURE RESEARCH PLANS
6.1 Introduction
6.2 A Unified Model for Objed-Oriented and Agent-Oriented Design
6.3 Extending Agent-Oriented G-net Model for Mobile Agent Design
6.4 Seaurity Issuesin Mobile Agent Design

BIBLIOGRAPHY

PUBLICATIONS OF THE AUTHOR

CURRICULUM VITAE

Chapter 1

| ntroduction

1.1Background

The development of software systems garts with two main adivities, namely software requirements
analysis and software design [Sommervile 1993[Pressman 1997. The purpose of software requirements
analysis is to understand the problem thoroughy and reduce patential errors caused from incomplete or
ambiguous requirements. The product of the requirements analysis adivity is a software requirements
spedficdion, which serves as a mntrad between the austomers and the software designers. The purpaose of
the software design is to follow the software requirements Pedficaion and to depict the overall structure
of a system by demmposing the system into its logicd components. The design adivity trandates
requirements into a representation of the software that can be assessd for quality before mding begins.
Like software requirements, the product of the design adivity is a design spedfication, which serves as a

contrad between the software designers and the programmers.

There ae two ways to achieve the purposes of these two adivities. One is to spedfy and analyze systems
formally, and the other is to describe aad model systems naturaly. When spedfying, modeling and
analyzing the behavior of a aiticd and complex system, we usually choose aspedficdion language that
can formally depict the properties of the system. This is becaise formal languages can be used to describe
system properties clealy, predsely and in detail, and to enable design and analysis techniques to evolve
and operate in a systematic manner. Since the 1960s, reseachers have been working on forma modeling
of criticd and complex systems such as concurrent and distributed systems. Among these formal methods,
Petri nets [Murata 1989, as a graphicd and mathematicd modeling toal, are well recognized and widely
used in various applicaion domains because of its smplicity and flexibility to depict the dynamic system
behaviors, and its grong expressve and analytic power for system modeling. Although Petri nets have been
successully used for system modeling and analysis in various domains, forma methods are till not a
popular way for most of the industry/commercial software development. Therefore, many Petri net

reseachers have devoted efforts to enhance/extend the theory and techniques of Petri nets, including Hgh-

level Petri nets such as CPN (Colored Petri Nets) [Jensen 1997, and tried to build a bridge between formal

methods and industry/commercial software development.

Meanwhil e, in the industry, there ae several transitions of software engineeing paradigms during the last
few decales. In the seventies, structured programming was the dominant approach to software
development. Along with it, software engineaing tedhnologies were developed in order to esse ad
formali ze the system development life gycle: from planning, through analysis and design, and finaly to
system construction, transition and maintenance. In the eghties, objed-oriented (OO) languages
experienced a rise in popularity, bring with it new concepts uch as data encapsulation, inheritance,
messaging and pdymorphism. By the end o the eghties and beginning of the nineties, a junde of
modeling approadches grew to suppart the OO market. For instance, the Unified Modeling Language (UML)
[Rational 1997, which urifies threepopular approaches to OO modeling: the Booch method [Booch 1994,
OMT [Rumbaugh et al. 1991 and OOSE [Jambson et al. 1997, bemmes the most popular modeling
language for objed-oriented software systems. Although the objed-oriented paradigm has achieved a
considerable degree of maturity, reseachers continually strive for more dficient and powerful software
engineeing techniques, espedaly as lutions for even more demanding applicaions. The anergence of
agent techniques is one of the examples of such efforts. In the last few yeas, the agent research community
has made substantial progress in proving a theoreticd and pradicd understanding of many aspeds of
agents and multi-agent systems [Green et al. 1997 [Jennings et al. 199§. Agents are being advocaed as a
next generation model for engineeing complex, distributed systems [Jennings 200(. Yet despite of this
intense interest, the cncepts of agent-oriented paradigm are till not matured, and the methoddogy,
espedally the techniques for agent modelingin pradica use, is yet to be reseached.

Although there have been many efforts on objed and agent modeling, to provide aframework for objed-
oriented design and agent-oriented design is gill a big challenge. Due to the ladk of formalisms for
pradica complex software design, we dam to use and extend a type of high-level Petri nets, cdled G-nets
[Perkusich and de Figueiredo 1997, to model objeds and agents in objed-oriented design and agent-
oriented design respedively. Our proposed formalism has the alvantage of being easy to understand, easy
to use, and pradicdly it is helpful for designers to design complex software systems, and to use eisting
Petri net todls to analyze its corrednessand to verify its behavior properties such as liveness In addition,
since we view an agent as an extension of an objed, i.e., an adive objed [Shoham 1993, our objed
models and agent models maybe combined to provide aunified framework for complex software design,

espedaly for Internet appli cations uch as eledronic commerce.

1.2Related Work

1.2.1Formal Methodsin Objea-Oriented Design

The ooncepts of objed-oriented paradigm, such as encapsulation and inheritance, have been widely used in
system modeling because they allow us to describe asystem easily, intuitively and naturally [Rumbaugh et
al. 1991 [Booch 1994[Jambson et al. 199[Eliens 1995. With the increasing complexity of nowadays
software systems, objed-oriented software designers began to understand the usefulness of formal
methods. Along with this trend, objed-oriented formal methods became one of hot reseach isues for the
last few yeas. Many reseachers have suggested oljed-oriented formal methods, such as OPN (Objed
Petri Nets) [Bastide 1995, VDM++ [Lano 1993 and Objed-Z [Stepney et al. 1994. Among them, the
reseach on the OPN methods have been adively studied to extend the Petri nets formalism to various
forms of objed Petri nets, such as OBJSA [Battiston et al. 1988, LOOPN++ [Lakos and Keen 1994, CO-
OPN/2 [Biberstein et al. 1997 and G-nets [Perkusich and de Figueiredo 1997. Although the results of
such studies are promising, these formalisms do not fully suppart al the major concepts of objed-oriented

methoddogy. We now give abrief description of these formalisms.

OBJSA nets, suggested by E. Battiston, define a ¢assof algebraic nets that are extended with modularity
fedures. Their name refleds that they integrate Superposed Automata nets and the dgebraic spedfication
language OBJ [Battiston et al. 1988[Battiston et al. 1995. OBJSA nets correspond to the semantics model
described by algebraic notations, and CLOWN (CLass Orientation With Nets) is a notation developed on
the top d OBJSA nets with objed-oriented feaures added [Battiston et al. 199. CLOWN attributes can
be dedared as constant (const) or variable (var), and all the adions that an objed can exeaute ae spedfied
by the “method’ clauses. In addition, the “interface” dause defines the interadion between a CLOWN
objed and some other objeds, and the inheritancefeaures are extended by the “inherits’ clause.

In CLOWN, the data structure of a dassis defined by agebraic notations, and the @ntrol structure of the
classis defined by a dass net. Objeds in CLOWN are represented as distingushed individual tokens
flowing in the corresponding classnet. CLOWN does not take the full advantage of this formalism becaise
only the control structure of a system is modeled by Petri nets. Since objed-oriented feaures in CLOWN

are not cgptured at the net level, there ae limitations in using existing Petri net tods for system analysis.

O. Biberstein suggests the spedficaion language, cdled CO-OPN/2 (Concurrent Objed-Oriented Petri
Nets) [Biberstein et al. 1996 Biberstein et al. 1997, which is designed to spedfy and model large scde
concurrent systems. The dassdefinition in CO-OPN/2 consists of two parts. “Signature” part is to describe
the interfacewith other classes, and “Body” part is to describe the internal behaviors and operations of a
class The spedficaion method d CO-OPN/2 is smilar with that of CLOWN, but the differences are that
CO-OPN/2 supparts abstrad data type in order to reuse its type defined in other classes, and the methods
dedared in “Signature” part is used as interfacetransition. The problem of CO-OPN/2 is that the unfolding

mechanism for a CO-OPN/2 spedficaion is not provided, therefore the analysis and simulation method o
CO-OPN/2isunclea.

C. Lakos propeses a dassof objed-oriented Petri nets, cdled LOOPN++ (Language for Objed-Oriented
Petri Nets) [Lakos and Keen 1994 Lakos 1995, Lakos 19950. LOOPN++ uses the text-based grammar to
spedfy systems. In the spedfication of LOOPN++, the dassdefinition consists of three parts: “Fields’ to
define data, “Function” to describe expresson with parameters and operation, and “Actions’ to represent
the behavior of a system. The “Fields’ part is a dedaration of atoken in Petri nets, and is used to represent

the states of places. The “Functions’ and “Actions’ part together represent the transitions of Petri nets.

One of the major charaderistics of LOOPN++ is the feaure for “super places’ and “super transitions’, used
to represent the nesting structure of nets. It becomes a base to suppart the dstradion of nets. The super
place ad super transition can be defined by labeling at the corresponding place ad transition of nets with
the name of an external objed. With this fedure, “Parent” phrases can be used to represent (multiple)
inheritance of clases. Regardless of continuous reseach on LOOPN++, it has some deficiencies in fully
supparting the objed-oriented concepts. First, LOOPN++ does not fully refled the adual concepts of
objeds becaise the nets include the global control structure of systems, and tokens are only passve data
types [Lakos 1997. Seand, LOOPN++ tries to represent the astradion by the feaure of fusion only, but
is not sufficient for abstradion of functional behavior and states. Third, LOOPN++ provides the “Export”
phrase, but the message passng mechanism for the interadion among objeds is not supparted. Finally,
LOOPN++ is well applied in the objed-oriented software development methoddogy of Shlae-Mellor
[Lakos and Keen 1994, but not in the methoddogy of OMT/UML, which is one of the most popular
approaches nowadays.

G-nets [Perkusich and de Figueiredo1997[Deng et al. 1993 suppart the oncepts of objeds better than in
CO-OPN/2 or LOOPN++, at least in our concerns. As one form of high-level Petri nets, G-nets are based
on the @ncept of modules corresponding to ohjeds. There ae two separate parts to describe the net
structure of an objed in G-nets. One is cdled GSP (Generic Switch Placg, which contains the name of an
objed, the definition of attributes and methods, and initial marking of the net. The other oneis cdled the IS
(Internal Structure), which describes the behaviors of methods with a variant of Petri nets. There ae speda
places in the nets, such as ISP (Instantiated Switching Place to make amethod cal and GP (Goal Place to

end amethod exeaution. These fedures can be unfolded into Pr/T nets.

A fascinating feaure of G-nets is its suppart for encapsulation of objeds, messge passng for objed
interadions, and low coupling between objeds. The use of the unique identifier for an objed makes it
posshle to represent reaursive method cdls. Also, the mechanism for method cdl in G-nets is quite
suitable for modeling client-server systems. Although G-nets are useful for objed modeling and the

structure of a G-net is smilar with that of an objed in OMT/UML, it does not suppat inheritance

mechanism. In addition, it is difficult to represent the estradion hierarchy with net elements of G-nets.

The @ove objed models are widely referenced and compared among hgh-level objed-oriented Petri nets.
Other similar research includes: OPNets by Lee[Lee ad Park 1993, which are focused on the decoupling
of inter-objed communication knowledge and the seperation of synchronizaion constraints from the
internal structure of objeds, OCoNs (Objed Coordination Nets) by Giese [Giese et al. 1998 are to
describe the wordination of the behavior of a dass on a service Although these formalisms suppart
sufficiently the basic concepts of objeds guch as encgpsulation and modularization, they do not incorporate
the concepts of abstradion and/or inheritance, and they do not clealy suggest the analysis or simulation
methods.

1.2.2Agent-Oriented Methodologies and Formal Approaches

Agent technology has recaved a greda ded of attention in the past few yeas and, as aresult, the industry is
beginning to get interested in using this technology to develop its own products. In spite of the different
developed agent theories, languages, architedures and the successul agent-based applications, very little
work for spedfying and design techniques to develop agent-based appli caions using agent technology has
been done [Iglesias et al. 1999. The role of agent-oriented methoddogies is to assst all the phases of the
life g/cle of an agent-based applicaion, including its management. A number of groups have reported on
methoddogies for agent design, touching on representational mechanisms as they suppat the
methoddogy. Examples of such work are D. Kinny and his colleagues BDI agent model [Kinny et al.
1994 and the Gaia methoddogy suggested by M. Wodldridge [Wod dridge et al. 2004.

Formal methods for agent modeling are mostly concerning about agent spedfication and agent design.
Several forma approaches have tried to bridge the gap between formal theories and implementations.
Though forma methods are not so easily scdable in pradice, they are espedally useful for verifying and
analyzing criticd applications, prototypes and complex cooperating systems. Traditional formal languages
such as Z have been used [Luck et al. 1997, providing an elegant framework for describing an agent
system at different levels of abstradions. Since there is no notion of time in Z, it is not quite suitable to
spedfy agent interadions. Another approach has been the use of temporal modal logic [Wooldridge 1999
that allows the representation of dynamic aspeds of the ayents and a basis for spedfying, implementing
and verifying agent-based systems. The implementation of the spedficaion can be done by diredly
exealuting the agent spedficaion with a language such as Concurrent Metatem [Fisher and Wooldridge
1997 or by compiling the agent spedficaion. The usage of forma methods for multi-agent spedfication
such as DESIRE [Brazer et al. 1997 is an interesting alternative to be used as a detailed design language

in agent-oriented methoddogy. DESIRE (framework for Design and Spedfication of Interading Reasoning
components) propacses a mmponent-based perspedive based on task decompasiti on.

During the last few yeas, many efforts have been put on developing multi-agent systems, however there is
alad of reseach on formal spedficeation and design of such systems [Iglesias et al. 1998[Rogers et al.
2004. As the multi-agent technology begins to emerge & a viable solution for large-scde industrial and
commercia applicdions, there is an increasing real to ensure that the systems being developed are robust,
reliable and fit for purpose. The mncept of agent-oriented methoddogy is dill new, and there ae different
views on thisisale [Iglesias et al. 1999[Jennings 200(. In this propcsal, we take the view that an agent is
an extension of an objed. Thus, based on the mncepts of objed-oriented methoddogy, we propacse our
agent-oriented design model, which is a nature goproach for most of the objed-oriented designers.

1.3 Contributions of Our Work

The work reported in this Ph.D. thesis proposal is aimed at propcsing a technique for modeling and
analyzing objed-oriented and agent-oriented software systems. The concepts of agent-orientation are based
on the concepts of objed-orientation, but need to be extended with additional feaures, such as mechanisms
for dedsion-making and asynchronous message passng. The major contributions of our work are listed as

follows:

¢ Extended the original G-net model to suppart classmodeling and inheritance modeling.

* Designed an agent-based G-net model, and proved properties related to liveness concurrency and
effedivenessfor agent communication.

¢ Extended the gyent-based G-net model to suppart inheritance modeling in agent-oriented design.

¢ Performed experiments with an existing Petri net tool to model and analyze aent-oriented

software systems.

Chapter 2

Inheritance M odeling in Objed-Oriented Design

2.1Introduction

One of the key isaues in objed-oriented (OO) approach is inheritance. The inheritance medhanism alows
users to spedfy a subclassthat inherits fedures from some other class i.e., its superclass A subclass has
the similar structure and behavior as the superclass but in addition it may have some other fedures. As an
esential concept of the OO approad, inheritance is both a cgnitive tod to ease the understanding of
complex systems and a technicd suppart for software reuse and change. With the emergence of formalisms
integrating the OO approach and the Petri net (PN) theory, the question arises how inheritance may be
supparted by such formalism, in order that they benefit from the alvantages of this concept and existing
Petri net tods. Inheritance has been originally introduced within the framework of data processng and
sequential langueges, while PNs are mainly concerned with the behavior of concurrent processes.
Moreover, it has been pointed out that inheritance within concurrent OO languages entail s the occurrence
of many difficult problems such as the inheritance aomaly problem [Matsuoka and Yonezava 1993.
Thus, to incorporate inheritance mecdhanism into Objed Petri Net (OPN) has been viewed as a challenging
task.

The @ncepts of inheritance define both the static feaures and dynamic behavior of a subclassobjed. The
static feaure spedfies the structure of a subclassobjed, i.e., its methods and attributes; whil e the dynamic
behavior of a subclass objed refers to its date and its dynamic fedures such as overriding, dynamic
binding and pdymorphism [Drake 1998. Most of the eisting objed-oriented Petri nets (OOPN)
formalism, such as CLOWN, LOOPN++ and CO-OPN/2, fail to provide auniform framework for class
modeling and inheritance modeling in terms of these two feaures, and they usualy use text-based
formalism to incorporate inheritance into Petri nets. The problems of these gproaches are that they do not
take full advantage of the Petri net formalism, and therefore, we canot use existing Petri net toalsto verify
the behavior properties of a subclassobjed in terms of inheritance Little work has been done to model

inheritance of dynamic behavior. Examples of such work are the concept of life-cycle inheritance proposed

10

by van der Aalst and Basten [Aalst and Basten 1997[Basten and Aalst 200Q and the SBOPN formalism
with additional inheritance feaures siggested by Xie [Xie 2000. However, these formliasms are ather too
theoretica to be used in pradicd software design, or too preliminary to cover all forms of inheritance, such
as refinement inheritance [Drake 1999.

In this chapter, we propcse a Petri net formalism, cdled extended G-nets, to model inheritance in
concurrent objed-oriented design. Based on the original G-net formalism [Perkusich and de Figueiredo
1997, we first extend G-nets into the so-cdled standard G-nets for classmodeling, then we introduce new
mechanisms to incorporate inheritance into standard G-net models. These new medhanisms are net-based,
therefore it would be passhble for us to translate our net models into cther forms of Petri nets, such as Pr/T
net, and use existing Petri net tools for behavior property analysis, e.g., to analyze the inheritance anomaly

problem.

2.2G-net Model Background

A widely acceted software engineeing principle is that a system should be composed of a set of
independent modules, where eatt module hides the internal detail s of its processng adiviti es and modules
communicate through well-defined interfaces. The G-net model provides grong suppart for this principle
[Perkusich and de Figueiredo 1997[Deng et al. 1993. G-nets are an objed-based extension of Petri nets,
which is a graphicdly defined model for concurrent systems. Petri nets have the strength of being visualy
appeding, while dso being theoreticdly mature and supparted by robust tools. We assume that the reader
has a basic understanding of Petri nets [Murata 1989. But, as a general reminder, we note that Petri nets
include three basic antities: placenodes (represented graphicdly by circles), transition nodes (represented
graphicdly by solid bars), and dreded arcs that can conned places to transitions or transitions to places.
Furthermore, places can contain markers, cdled tokens, and tokens may move between placenodes by the
“firing’ of the eswciated transitions. The state of a Petri net refers to the distribution of tokens to place
nodes at any particular point in time (this is ometimes cdled the marking of the net). We now procee to
discussthe basics of standard G-net models.

A G-net system is compased of a number of G-nets, eat of them representing a self-contained module or
objed. A G-net is composed of two parts: a speda place cled Generic Switch Place (GSP) and an
Internal Structure (1S). The GSP provides the éstradion of the module, and serves as the only interface
between the G-net and other modules. The IS, a modified Petri net, represents the detailed design of the
module. An example of G-netsis $rown in Figure 1. Here the G-net models represent two oljeds — a Buyer
and a Seller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by
elipses, and the internal structures of these models are represented by round-cornered redanges that
contain the detailed design of four methods: buyGoods(), askPriceg(), returnPricg) and sellGoods(). The

11

functionality of these methods are defined as foll ows. buyGoods() invokes the method sell Goods() defined
in G-net Seller to buy some goods; askPrice() invokes the method returnPrice() defined in G-net Sdller to
get the price of some goods; returnPrice() is defined in G-net Seller to cadculate the latest price for some
goods and sellGoods() is defined in G-net Seller to wait for the payment, ship the goods and generate the
invoice A GSP of a G-net G contains a set of methods G.MS spedfying the services or interfaces provided
by the module, and a set of attributes, G.AS, which are state variables. In G.IS the interna structure of G-
net G, Petri net places represent primitives, whil e transitions, together with arcs, represent connedions or
relations among those primitives. The primitives may define locd adions or method cdls. Method cdls are
represented by speda places cdled Instantiated Switch Places (I1SP). A primitive becomes enaled if it
recaves a token, and an enabled primitive can be exeauted. Given a G-net G, an ISP of G is a 2-tuple
(G'.Nid, mtd), where G’ could be the same G-net G or some other G-net, Nid is a unique identifier of G-net
G, and mtd O G’.MS. Each ISP(G’.Nid, mtd) denotes a method cdl mtd() to G-net G’. An example ISP
(denoted as an €llipsis in Figure 1) is $own in the method askPricg)) defined in G-net Buyer, where the
method askPrice) makes a method cdl returnPriceg() to the G-net Seller to query about the price for some
goods. Note that we have highlighted this cdl in Figure 1 by the dashed-arc, but such an arc is not adualy
a part of the static structure of G-net models. In addition, we have omitted all function parameters for

simplicity.

/ buyGoods() askPrice() \ /raurnPrice() sellGoods() \
t6 8

1 t3
I1SP(Sdller,
sellGoods()

12 t4

Figure 1. G-Net model of buyer and sell er objeds

t5 t7

ISE,’(ée! ler,
refurnPrice() caculate sell_
price goods

2.3Extending G-netsfor ClassModeling

From the aove description, we can seethat a G-net model esentially represents a module or an objed
rather than an abstradion of a set of similar objeds. In a recent paper [Xu and Shatz 200q, we have
extended the G-net model to suppat class modeling. The ideaof this extension is to generate aunique
objed identifier, G.Oid, and initiali ze the state variables when a G-net objed is instantiated from a G-net G.

12

An ISP method invocdion is no longer represented as the 2-tuple (G’ .Nid, mtd), instead it is the 2-tuple
(G.0id, mtd), where different objed identifiers could be asciated with the same G-net classmodel.

The token movement in a G-net objed is smilar to that of origina G-nets [Perkusich and de Figueiredo
1997. A token tkn is a triple (seq, sc, mtd), where seq is the propagation sequence of the token, sc O
{before, after} is the status color of the token and mtd is a triple (mtd_name, para_list, result). For
ordinary places, tokens are removed from input places and deposited into output places by firing
transitions. However, for the spedal 1SP places, the output transitions do not fire in the usual way. Recadl
that marking an ISP place orresponds to making a method cal. So, whenever a method cdl is made to a
G-net objed, the token deposited in the ISP has the status of before. This prevents the enabling of
asciated output transitions. Instead the token is “processed” (by attaching information for the method
cdl), and then removed from the I SP. Then an identicd token is deposited into the GSP of the cdled G-net
objed. So, for example, in Figure 1, when the Buyer objed cdls the returnPrice() method o the Seller
objed, the token in placel SP(Sler, returnPrice()) is removed and atoken is deposited into the GSP place
GSP(Sdler). Throughthe GSP of the cdled G-net objed, the token is then dispatched into an entry placeof
the gpropriate cdled method, for the token contains the information to identify the cdled method. During
“exeaution” of the method, the token will read areturn place(denoted by double drcles) with the result
attached to the token. As on as this happens, the token will return to the ISP of the cdler, and have the
status changed from before to after. The information related to this completed method cdl is then
detached. At thistime, output transitions (e.g., t4 in Figure 1) can become enabled and fire.

More spedficdly, when a G-net objed G_ol with G.Oid makes a method cdl ISP(G’.0id, mtd(para_list))
in itsthread/processwith G.Pid, the procedure for updating a G-net token gTkn is as foll ows:

1. Cadl_before: gTkn.seq —~ gTkn.seq + <G.Oid, G.Pid, mtd>; gTkn.msg ~ (mtd, para_list, NULL);
gTkn.sc — before.
Transfer the gTkn token to the GSP placeof the cdled G-net objed with G’.0Oid.

3. Wait for the result to be stored in gTkn.msg.result, and the gTkn token to be returned.

4, Cdl_after: gTkn.seq — gTkn.seq— LAST(gTkn.seq); gTkn.sc — after.

We cdl a G-net model that supparts class modeling a standad G-net model. We now provide afew key

definitions for our standard G-net models.

Definition 2.1 G-net system
A G-net system (GNS) isatriple GNS = (INS, GC, GO), where INSis a set of initiadli zetion statements used
to instantiate G-nets as G-net objeds; GC is a set of G-nets which are used to define dasses; and GOisa

set of G-net objeds which are instances of G-nets.

13

Definition 2.2 G-net

A G-net is a2-tuple G = (GSP, 1S), where GSP is a Generic Switch Place (GSP) providing an abstradion
for the G-net; and IS isthe Internal Sructure, which is a set of modified Pr/T nets. A G-net is an abstrad of
aset of similarly G-net objeds, and it can be used to model a dass

Definition 2.3 G-net objed
A G-net objed is an instantiated G-net with a unique objed identifier. It can be represented as (G, OID,
ST), where G isa G-net, OID isthe unique objed identifier and ST isthe state of the objed.

Definition 2.4 Generic Swnitching Place (GSP)
A Generic Switch Place (GSP) is a triple of (NID, MS, AS), where NID is a unique identifier (class
identifier) of a G-net G; MS is a set of methods defined as the interfaceof G-net G; and AS is a set of
attributes defined as a set of instance variables.

Definition 2.5 Internal Sructure (1S
The interna structure of G-net G (representing a das9, G.IS, is a net structure, i.e., a modified Pr/T net.
G.ISconsists of aset of methodks.

Definition 2.6 Method

A method isatriple (P, T, A), where P is a set of places with three speda places cdled entry place, ISP
place and god place Each method can have only one entry place and one god place, but it may contain
multiple ISP places. T is a set of transitions, and ead transition can be asciated with a set of guards. A is
aset of arcs defined as: ((P-{god place}) x T) O ((T x (P-{ entry place}).

2.4 Extending G-netsto Support Inheritance

An example of G-nets is iown in Figure 2. Here the G-net model represents an urbounded buffer class
The generic switch placeis represented by GSP(UB) enclosed by an €lli psis, and the internal structure of
this model is represented by a rounded bax which contains the detail ed design of four methods: isEmpty(),
put(e), get() and who(). The functionality of these methods are defined as follows: isEmpty() chedks if the
buffer is empty and return a bodean value, put(e) stores an item e into the buffer, get() removes an item
from the buffer and returns that item, and who() prints the objed identifier of the unbounded buffer. For
clarity, in Figure 2, we put the signatures of these four methods in a redange on the right side of the GSP
place atheinterfaceof G-net UB. An example of ISP is shown in the method get() (denoted as an €lli psis),
where the method get() makes a method cdl isEmpty() to the G-net module/objed itself to chedk if the

14

buffer is empty. Note that we have extended G-nets to allow the use of the keyword self to refer to the
module/objed itself.

bod isEmpty();
void put(e);

Item get();
l int who();

ﬁmmyo put(e) 9et) who() \

syn

ISP (salf, t10
isEmpty())

return print_Oid
true

111

J

Figure 2. G-net model of unbounded buffer class(UB)

To ded with the cncurrency issue in our G-net models, we extended our model by introducing a
synchronization module to synchronize methods defined in the internal structure of the G-net. For instance,
in the unbounded huffer class model we introduced a synchronizaion module syn to synchronize the
methods get() and put(e). This medhanism is necessary becaise these methods neel to access the same
unbounded buffer and they should be mutually exclusive. Generaly, to design the synchronization module,
we can either fulfill al synchronizaion requirements in one synchronizaion module or distribute them in
several synchronizaion modules. To simplify our model, we follow the second option. Therefore, eadh
classmodel may contain as many synchronization modules as necessary, and ead synchronizaion module
can be used to synchronize anong a group of methods. As we will seg the synchronization module can not
only be used to synchronize methods defined in a dassmodel, but also can be used to synchronize methods
defined in a subclassmodel and methods defined in its superclass(ancestor) model.

With inheritance, when we instantiate aG-net Sub G (a subclasg, it is not enoughto just asociate an Oid
with Sub_G and initialize the state variables defined in Sub G class We must assciate the same Oid with
al of Sub G's superclasses (ancestors) and initialize dl state variables defined in those dasss. The
initialized part corresponding to the subclass and ead of the superclasses (ancestors) is cdled primary
suboljed and suboljed respedively [Rosse et al. 199G[Drake 1998. When a method cdl i s made to the
objed Sub G ok (i.e, aninstantiation of classSub G), it is always the case that only the GSP placeof the

15

primary suboljed is marked. The suboljeds corresponding to the superclasses (ancestors) of Sub G are
not adivated unlessthe method cdl to Sub G_obj is not defined in the subclassmodel Sub G.

BB extends UB
GSEB) int who(); I restricted

l void put(e); /I redefined

bod isFull();

f who() isFull) put(e) defaut \
/’ \

1SP (self,
t1 t3 isFull()) t10

print check
_error _full

SN
:

12 t4

S

Figure 3. G-net model of bounded bufer class (BB)

When a method cdl is not found in a subclass model, we need to resolve the problem by seaching the
methods defined in the superclassmodels. To dothis, we define anew mechanism cdl ed a default place A
default placeis a default entry place defined in the internal structure of a subclassmodel and isdrawn as a
dash-lined circle, as gown in Figure 3. When a method is dispatched in a subclass model, the methods
defined in the subclass model are seached first. If there is a match, one of the entry places of those
methods is marked; otherwise, the default place is marked instead. After the dispatching, necessary
synchronization constraints are established by the synchronization modues. If the default placeis marked,
the method cdl is then forwarded to a named superclassmodel. At firdt, it may seem that we can use the
ISP method invocaion medanism to forward an existing method cal. However this is not quite proper.
Note that the initial method cdl will attach information associated with the cdl to the gTkn token. Now the
subsequent cdl to the superclasswould again attach the same information to the token, and the method cdl
will adualy be invoked more than once. To solve this problem, we introduce anew mechanism cdled a
SuperclassSwitch Place (SF).

An S (denoted as an elipsisin Figure 3) is gmilar to an ISP, but with the difference that the S is used
to forward an existing method cdl to a suboljed (corresponding to a superclassmodel) of the objed itself
rather than to make a new method cdl. Essentialy, an SS does not update the gTkn token because dl the
information for the method cdl has aready been attached by the original 1SP method cdl. In the context of

multi ple inheritance, we represent an S medhanism in subclassSub G as SF(G’), where G’ is one of the

16

superclases of Sub G. Note that the objed identifier is not necessary, as in the cae of ISP method
invocaion, because the method cdl will be forwarded to the objed itself (i.e., its siboljed). When the
method cdl is forwarded to the suboljed corresponding to the superclassmodel G', the GSP placeof the
superclassmodel G’ is marked, and the methods defined in the superclassmodel are seached. If a method
defined in the superclassmodel is matched, asin the cae of ISP method invocaion, the matched method is
exeauted, and the result is dored in gTkn.msg.result and the gTkn token returns to the S place
Otherwise, the default place (if any) in the superclass is marked, and the methods defined in the
grandparent classmodel are seached. This procedure can be repeded urtil the cdled method is found. If
the method searching ends up in a dasswith no methods matched and no default place defined, a “method
undefined” exception should be raised. This stuation can be avoided by static type cheding.

Now consider a bounded huffer classexample & $own in Figure 3. We define abounded buffer classBB
as a subclass of an urbounded buffer class UB. Since the buffer has a limited size of MAX_SZE, when
there is a put (e) method cdl, the size of the buffer needs to be deded to make sure that the buffer
cgpadty is not exceaded. In this case, the method put (€) defined in the dassmodel UB is no longer corred,
and it neads to be redefined in the subclass model BB. A simple way to redefine the method put (€) in
subclass BB is to first make an 1SP method cdl isFull() to the bounded buffer objed itself. The method
isFull() is used to chedk if the bounded buffer is full and it is added to the BB classmodel as $own in
Figure 3. If it returns true, i.e., the bounded buffer has arealy been full, an error or exception will be
generated; otherwise, the method cdl put(e) will be forwarded to its superclass UB by using an S
mechanism. Here we use an S to allow reuse of the original method put(e) defined in classUB. As we
will explain later, we cdl this stuation refinement inheritance. Note that if we use I1SP(self, put(e)) in this
situation, a deal loop will occur. This is becaise the methods defined in the subclass will always be
seached first; and consequently, the method put(e) defined in subclassBB will be cdled reaursively. Again

we seethe value of introducing the S mechanism.

It is also important to notice that a synchronization module can be used to synchronize methods defined in
a subclassmodel and methods defined in the superclassmodel. However, in this case, all methods defined
in superclass (ancestor) models must be synchronized as a whole. For instance, in Figure 3, the refined
method put(e) defined in subclass BB is g/nchronized with al methods defined in the superclass UB, yet
the synchronization between the method put(e) and the inherited method isEmpty() is unrecessary.

To formally define extended G-nets with inheritance, we need to redefine the internal structure and define
the oncept of Synchronization Modue and Abstract SuperclassModue. Based on the formal definiti ons of
standard G-net model in Sedion 2.2, we now provide afew key definitions for our extended G-net models

with inheritance fedaures.

17

Definition 2.7 Internal Sructure (1S /I to replacedefinition 25
The internal structure of G-net G is a triple (M, S, A), where M is a set of methods, S is a set of
synchronization modues, and A is an optional Abstract SuperclassModue. The acs connedingM and S,

or conneding S and A belongto S. There ae no dired arcs between M and A.

Definition 2.8 Synchronization Modue
A synchronizaion module is 4-tuples (P, A, I, O), where P is a single placeused to hold an sTkn token,
which is a mlorlesstoken, and A is a set of arcs defined as: (P x ISM.T) O (ISM.T x P); | isa set of arc

inscriptions on placeincoming arcs, and O is a set of arc inscriptions on placeoutgoing arcs.

Definition 2.9 Abstract SuperclassModue

An Abstract SuperclassModueisatriple (P, T, A), where Pisaset of placesincludes threespeda places:
default place god place and Superclass Switch Place (SS°). T is a set of transitions with optional guards.
Aisaset of arcsdefined as: ((P—{god place}) x T) O (T x (P—{default place})).

2.5Modéling Different Forms of I nheritance

Typicdly, to creae asubclass model, we spedalize asuperclass by adding rew protocols. We cdl this
augment inheritance [Drake 199§. Alternatively, we can restrict or refine asuperclassby overriding one or
more of its methods. This happens in three caes. method restriction, method replacement and method
refinement. We cdl ead of them restrictive inheritance replacement inheritance and refinement
inheritance [Drake 199§.

Augment inheritanceis graightforward - new protocols, which are not defined in the superclassmodel, are
added to a subclassmodel. For instance, consider the design of the subclassBB as $own in Figure 3. We
require aserviceto ched if the buffer is aready full. This can be done by adding a new method isFull () to
the subclass BB. Since the method isFull() does not override any methods in class UB, we have used

augment inheritance.

In some caes, we regard a dassas a spedalizaion of another class with some superclass methods absent
from the protocol of the subclass We cdl this type of inheritance restrictive inheritance Restrictive
inheritance adualy runs counter to the semantics and intentions of inheritance because the “IS-A”
relationship between superclassand subclassis broken. However, restrictive inheritance may be necessary
when wing an existing class hierarchy that cahnot be modified. Usualy, restrictive inheritance is
implemented in the subclassby overriding the disall owed superclassmethods to produce @ror messages or

signal exceptions. Here we use atrivia example to ill ustrate how to model restrictive inheritance. Suppose

18

we nedl to disallow the inherited method who() in our subclassBB. This can be ssmply done by redefining
method who() in classBB; the redefined method who() does nothing but prints an error message to indicae
that the method cal for who() is disall owed in subclassmodel BB.

A subclass can completely redefine the behavior of its superclassfor a particular method defined in the
superclass Inheritancein this case is cdled replacement inheritance With this form of method overriding,
we say that the method in the subclass replaces the method defined in the superclass Repladng a
superclass method generally occurs when the subclass can define amore dficient method a needs to
define amethod in a different way. An example of replaceanent inheritance would be posshle in the
bounded buffer example, if we redesign the method get() in subclass BB to make the “remove” adion

more dficient.

More frequently, the semantics of a subclass demand that the subclass respond to a method cdl by a
method that includes the behavior of its superclass but extends it in some way. In this case, we say that the
subclass method refines the superclass method, i.e., there is a refinement inheritance. Pradicdly, method
refinement is more common than method replacament becaise it provides a semantic consistence with
spedalizaion. When implementing method refinement, we may simply refine the method by copying the
relevant superclass method into the subclassmodel. However, we would like our extended G-net formalism
to provide a medhanism that supparts automatic sharing of the superclass method. This capability is
supparted by the S mechanism and it has been ill ustrated by the method refinement of put(e) in bounded
buffer BB as $own in Figure 3.

2.6 Modeling Inheritance Anomaly Problem

Inheritance anamaly refers to the phenomenon that synchronizaion code canot be dfedively inherited
without non-trivial re-definitions of some inherited methods [Matsuoka axd Yonezava 1993[Thomas
1994. As a mnsequence some well-known propaosals for concurrent objed-based languages, such as
families of Actor langueges, POOL/T, Procol and ABCL/1, chose to not suppat inheritance & a
fundamental languege feaure [Matsuoka axd Yonezava 1993. Also some langueges like Concurrent
Smalltalk or Orient84/K do provide inheritance but do not suppart intra-objed concurrency - that isthereis
only asingethread of control within an objed [Thomas 1994.

There have been previous efforts to solve the inheritance anomaly problem [Mitchell and Wellings 1994,
but most of the propcosals are based on quasi concurrency, where only one thread at a time is allowed to
exeaute. As dated in [Thomas 1994, this type of inheritance anomaly seems to be dmost solved. “True”
concurrency refers to cases that more than one thread can be exeauted in an object at the same time.

Reference [Thomas 1994 talked about solutions in this context. The inheritance aomaly problem has

19

usually been approached in terms of analyzing the caises. The caises have been classfied as partitioning
of acceptable states, history-only sensitiveness of acceptable states, and modification of accetable states
[Matsuoka and Yonezava 1993. Here, we analyze the inheritance axomaly problem based on clarifying

the terminology of “synchronization constraints’, and we dways view a ancurrent system asa “true” one.

As we will see synchronization constraints among methods can be spedfied explicitly or implicitly. An
explicit synchronization constraint refers to the ncurrent/mutual exclusive exeaution between two
methods in an objed. For instance, in the unbounded buffer example, method get() and method who() can
be exeauted concurrently, however the exeaution of method get() and method put(e) must be mutualy
exclusive. This type of synchronization constraint credes the inheritance anomaly problem when a method
m1 defined in a subclassmodule neelds to be mutually exclusive with a particular inherited method m2 that
is defined in its guperclass (ancestor) module. A simple way to ded with this stuation is to refine the
method m2 (e.g., to use the S mechanism in our extended G-net model) and to establish mutual
exclusion between m1 and m2 in the subclass module. In this case the method defined in the superclass

(ancestor) module can be reused by arefinement inheritance.

An implicit synchronization constraint refers to cases where accetance of a method in an objed is based
on that objed’s gate. The state of an objed can be dhanged by exeauting a method in that objed. For
instance, when a buffer is in a state of “empty”, the method get() is not allowed to exeaute; however, after
exeauting the method put(e), the state of the buffer is changed from “empty” to “partial,” and at this time,
the method cal of get() becomes acceptable. Since the methods get() and put(e) are indiredly synchronized
through the state of the buffer, we cdled this type of synchronizaion constraint an implicit
synchronization constraint. The implicit constraints can be further classfied in terms of two different views
of an objed’s gate, namely internal view and external view. Under an internal view, the state of an objed
can be catured by the evaluation of state variables of the objed [Matsuoka and Yonezava 1993. For
example, the state “empty” of a buffer can be catured by cheding if the state variable of buffer_size
evaluates to “0". This type of synchronizaion can aways be alded to a subclass module without
redefining inherited methods because it can be eaily maintained by cheding state variables before

allowing the exeaution of a method.

Another view is the external view, where the state is captured indiredly by the externally ohservable
behavior of the objed [Matsuoka and Yonezava 1993. For example, a state under external view could be
the state of a buffer objed when the last exeauted method is put(e). When synchronization constraints with
resped to the external view of an objed’s date ae alded to a subclassmodule, some methods defined in a
superclass (ancestor) module must be redefined. Fortunately, in most cases, as long as no deallocks are
introduced, we can again use refinement inheritance to reuse the original method defined in the superclass

(ancestor) module. We use the dasdc example of gget() to ill ustrate this stuation. Consider a new bounded

20

buffer classBB1, defined as a subclass of bounded buffer class BB, and add a new method cdled gget().
The behavior of gget() is almost identica to that of get(), with the sole exception that it can not be exeauted
immediately after the invocaion of put(e) [Matsuoka and Y onezava 1993. The design of the new bounded
buffer BB1 is illustrated in Figure 4. To establish the synchronization between methods gget() and put(e),
the method put(e) must be redefined in the subclass module BB1. Suppose we have a objed bbl, an
instance of classBB1. Initially, the token in the synchronization module syn is “0”. Whenever there is a
method cdl other than put(e) to objed bbl, the token will be removed and deposited badk to the
synchronization module with the same value of “0”. However, if there is a method cdl for put(e), the token
in the synchronization module syn will be removed first, and then the method cdl put(e) will be forwarded
to its superclass BB by using the SIP(BB) medchanism. After the method cdl of put(e), a token with value
“1” will be deposited into the synchronization module syn. At this time, if there is a method cdl for gget(),
the cdl must wait because atoken with value “0” is necessary to enable the transition t1. Thus the
synchronization between methods gget() and put(e) is corredly established. Note that we canot reuse the
method get() when designing the method gget() by using the SS?(BB) mechanism. This is inapplicable
because gget() and get() are two dfferent methods. In addition, we neel to redefine the methods isEmpty()
and isFull () to avoid deadlocks.

BB1 extends BB
bodl isEmpty(); // redefined
bod isFull(); I/ redefined
void pu(e); /I redefined
Item gget();

pt(e) isEmpty() isFull () default
'
<n> 4

\
~

t6 8 t10 t12

<n>

S(BB) SP(BB) 4 SPBB) y SPEB)

SN

t7 t9 111 113
<0>

Figure 4. G-net model of bounded buffer class (BB1)

<1>

2.7 Discusson

Inheritance has been introduced into several objed-oriented net models, such as LOOPN++ [Lakos and
Keen 1994 and CO-OPN/2 [Biberstein et al. 1997. However, those methods do not use net-based

extensions to cgpture inheritance properties. Our approach explicitly models inheritance d the net level to

21

maintain an urderlying Petri net model that can be exploited during design smulation or analysis. In future
work, we will explore an algorithmic basis for synthesis of subclass models as well as investigate how to
analyze etended G-nets at an abstrad level, with consideration for the state explosion problem. Isales like

design consistency and deadlock avoidancewill be of primary concern.

22

Chapter 3

An Agent-based G-net Mod€

3.1Introduction

Agents are beaoming one of the most important topics in distributed and autonomous decentrali zed systems
(ADS) [Mendes et al. 1997[Arai et al. 1999. With the increasing importance of eledronic commerce
aaossthe Internet, the neal for agents to suppart both customers and suppliersin buying and selling goods
or services is growing rapidly. Most of the technologies supparting today’s agent-based eledronic
commerce systems gem from distributed artificial intelligence (DAI) reseach [Guttman et al. 1998[Green
et al. 1997. Applications developed with multi-agent systems (MAS) in eledronic commerce ae examples
of such efforts. A multi-agent system (MAS) is a concurrent system based on the notion of autonomous,
readive, and internally-motivated agents in a decentralized environment. The increasing interest in MAS
reseach is due to the significant advantages inherent in such systems, including their ability to solve
problems that may be too large for a centralized single agent, to provide enhanced speed and reli ability, and
to tolerate uncertain data and knowledge [Green et al. 1997. The notable systems developed with MASin
eledronic commerce ae Kasbhah [Chavez and Maes 19969 and MAGMA [Tsvetovatyy et al. 1997. Kasbah
is meant to represent a marketplace where Kasbah agents, ading on behalf of their owners, can filter
through ads and find those that their users might be interested in. The ayents then proceal to negotiate to
buy and sell items. MAGMA moves the marketplace metaphor to an open marketplaceinvolving agents
buying/selling physicd goods, investments and forming competitive/cooperative dliances. These aents
negotiate with ead other througha global bladkboard.

Notice that the example we provide in Figure 1 (Chapter 2) follows the Client-Server paradigm, in which a
Sdler objed works as a server and a Buyer objed is a dient. Although the standard G-net model works

well i n objed-based design, it isnot sufficient in agent-based design for the foll owing reasons:
1. Agents in multi-agent systems are usualy developed by different vendors independently, and those

agents will be widely distributed aaosslarge-scde networks sich as the Internet. To make it possble

for those aents to communicate with ead other, it is esentia for them to have a @mmon

23

communication language and to follow common protocols. However the standard G-net model does
not diredly suppart protocol-based language communicéation between agents.

2. The underlying agent communication model is usualy asynchronous, and an agent may dedde
whether to perform adions requested by some other agents. The standard G-net model does not
diredly suppat asynchronous message passng and dedsion-making, but only suppats s/nchronous
method invocationsin the form of ISP places.

3. Agents are ommonly designed to determine their behavior based on individual goals, their knowledge
and the environment. They may autonomously and spontaneously initiate internal or external behavior

at any time. Standard G-net models can only diredly suppart a predefined flow of control.

3.2 Agent-based G-net Model

To suppart agent-based design, we first need to extend a G-net to suppat modeling an agent class-. The
basic ideais smilar to extending a G-net to suppart classmodeling for objed-based design [Xu and Shatz
2004. When we instantiate an agent-based G-net (an agent class model) G, an agent identifier G.Aid is
generated and the mental state of the resulting agent objed (an adive objed [Shoham 1993) isinitialized.
In addition, at the dasslevel, five spedal modules are introduced to make an agent autonomous and
internally-motivated. They are the Goal module, the Plan module, the Knowledge-base module, the
Environment module and the Planrer module. The template for an agent-based G-net model is sown in

Figure 5. We describe eat of the alditional modules as foll ows:

» A Goa moduleis an abstradion of a goal model [Kinny et al. 1996, which describes the goals that an
agent may posshly adopt, and the events to which it can respond. It consists of a goal set which
spedfies the goal domain and one or more goal states.

e« A Plan module is an abstradion of a plan model [Kinny et al. 1999 that consists of a set of plans,
known as a plan set. A plan may be intended or committed, and only committed plans will be
adhieved.

* A Knowledge-base module is an abstradion of a belief model [Kinny et al. 1994, which describes the
information about the environment and internal state that an agent of that classmay hold. The posshle
beli efs of an agent are described by a belief set.

* An Environment module is an abstrad model of the environment, i.e., the model of the outside world
of an agent. The Environment module only models elements in the outside world that are of interest to
the agent and that can be sensed hy the agent.

e A Planrer module is the heat of an agent that may dedde to ignore an incoming message, to start a

new conversation, or to continue with the aurrent conversation. In the Planner module, committed

1 We view the astract of a set of similar agents as an agent class and we cdl an instance of an agent class
an agent or an agent objed.

24

plans are atieved, and the Goal, Plan and Knowledge-base modules of an agent are updated after
ead communicaive ad [Finin et al. 1997[Odell 200Q or if the ewvironment changes.

‘ Goal ‘ ‘ Plan ‘ ‘ KnmNIadgebase‘ Environment ‘
v v : v !

‘ Planner ‘

incoming message outgoing message private utility
adion_1 adion_m adion_1 adion_n utility_1 utility_p

message_ message_ message_ message_ utility_1 utility_p
processing processing processing processing

S O

Qp(sen) MSP(sdlf) MSP(G' Aid) MSP(G'.Aid) return raurrj

Notes: G'.Aid = mTkn.body.msg.recéver as defined later in this sdion

Figure 5. A generic agent-based G-Net model

The internal structure (I1S) of an agent-based G-net consists of three sedions: incoming message, outgoing
message, and private utility. The incoming/outgoing message sedion defines a set of message processng
units (MPU), which correspond to a subset of communicaive ads. Each MPU, labeled as action_i in
Figure 5, is used to process incoming/outgoing messages, and may use |SP-type modeling for cdls to
methods defined in its private utility sedion. Unlike with the methods defined in a standard G-net model,
the private utility functions or methods defined in the private utility sedion can only be cdled by the aent
itself.

Although bath objeds (passve objeds) and agents use message-passng to communicae with ead other,
messge-passng for objeds is a unique form of method invocation, while ayents distinguish diff erent types
of messages and model these messages frequently as geedr-ads and use wmplex protocols to negotiate
[lglesias et al. 199§. In particular, these messages must satisfy standardized communicative (speed) ads,
which define the type and the mntent of the message (e.g., the FIPA agent communication languege, or
KQML) [FIPA 200Q[Finin et al. 1997]. Note that in Figure 5, ead named MPU action_i refers to a
communicative ad, thus our agent-based model supparts an agent communication interface In addition,
agents analyze these messages and can dedde whether to exeaute the requested adion. As we stated before,
agent communications are typicdly based on asynchronous message passng. Since aynchronous message
passng is more fundamental than synchronous message passng, it is useful for us to introduce anew

medhanism, cdled Message-pasing Switch Place (MSP), to dredly suppat asynchronous message

25

passng. When atoken readies an MSP (we represent it as an elli psisin Figure 5), the token is removed and
deposited into the GSP of the cdled agent. But, unlike with the standard G-net |SP mechanism, the cdling
agent does not wait for the token to return before it can continue to exeaute its next step. Since we usually
do not think of agents as invoking methods of one-another, but rather as requesting adions to be performed
[Jennings et al. 199§, in our agent-based model, we restrict the usage of ISP mechanisms, so they are only
used to refer to an agent itself. Thus, in our models, one ggent may not diredly invoke amethod cefined in
another agent. All communicaions between agents must be caried out through asynchronous message
passng as provided by the MSP medhanism.

A template of the Planner module is shown in Figure 6. Sincethe modules Goal, Plan and Knowledge-base
have the same interfacewith the Planner module, for brevity, we represent them as a single speda place
(denoted by double dlipses in Figure 6), which contains a token Goal/PlavKB that represents a set of
godls, a set of plans and a set of beliefs. The Environment module is also represented as a spedal placethat
contains a token Environment as a model of the outside world of the agent. The Planrer module is goal-
driven because the transition start_a_conversation may fire whenever an attempt is made to achieve a
committed goal. In addition, the Planner module is also message-triggered becaise cetain adions may
initi ate whenever a message arives (either from some other agent or the agent itself). If the message wmes
from some other agent, it will be dispatched to a MPU defined in the incoming messages sedion of the
agent-based G-net’s internal structure. After the message is processed, the MPU will transfer the processed
message & atoken to the GSP placeof the ggent itself. Thisis done by sending a message MSP(self) to the
agent itself. Upon arrival of this internal message, the transition internal may fire, and the next action will

be determined based on the aent’s current mental state. Alternatively, the next adion could be to ignore
the message or to continue with the aurrent conversation. In either case, a token will be depaosited in place
updae_god/plan’kb, and the transition updae may fire. As a @mnsequence the aent’s mental state may
change. If the next adion is to continue the cnversation, the tag of the token will be changed from
internal to external, and the token will be deposited in placedispatch_ougoing_message. In thiscase, the
corresponding MPU will be cdled before the message is snt to some other agent by using the MSP
medhanism. In addition, an agent may provide aset of private utility functions for itself and alow other
functional units to make synchronous method cdls to it. Whenever there is a method cdl, the token
deposited in the GSP place will be moved to place dispatch_uiliti es and then will be dispatched to a

method defined in the private utiliti es sedion.

26

Goal/Plan/KB Environment

A A4

external

\A 4

from

dispatch_ transition
mggg;l next_ ke Start a update
adion conversation
ignore private
utilities

dispatch_
outgoing_
message

dispatch_
utilities

incoming messages

to place“ god” : |
to place* knowledge base’ é é é é

outgoing messages private utilities

AA

Figure 6. A template of Planner module

As a result of this extension to G-nets, the structure of tokens in the agent-based G-net model should be
redefined. In addition to the ordinary token introduced in place syn, esentialy there ae five types of
colored tokens, namely the message token mTkn, the goal token gTkn, the plan token pTkn, the knowledge
token kTkn and the environment token eTkn. One way to construct the gTkn, pTkn, KTkn and eTkn is as
linked lists. In other words, a gTkn represents a list of goals, pTkn represents a list of plans, a kTkn
represents a list of fads, and an eTkn represents a list of events that are of the ggent’s interests. Sincethese
four types of tokens confine themselves to those spedal places of their corresponding modules, we do not

describe them further in this paper.

A mTkn is a 2-tuple (tag, body), where tag [{internal, external, private} and body is avariant, which is
determined by the tag. According to the tag, the token deposited in a GSP will finally be dispatched into a
MPU or a method defined in the internal structure of the agent-based G-net. Then the body of the token
mTkn will be interpreted differently. More spedficdly, we define the mTkn body as foll ows:

struct Message{

int sender; /1 the identifier of the message sender
int receiver; /1 the identifier of the message receiver
string protocol _type; /1 the type of contract net protocol
string nane; /1 the name of incom ng/outgoing nessages
string content; /1 the content of this nessage

}s

enum Tag {internal, external};

27

struct Mdlnvocation {
Triple (seq, sc, ntd); // as defined in Section 2.1

if (nmTkn.tag O {internal, external})

then nirkn. body = struct {
Message nsg; /1 message body
}
el se nTkn. body = struct {
Message nsgQ; /'l message body
Tag ol d_t ag; /'l to record the old tag: internal/external
M dl nvocation mv; /1 to trace nethod invocations
}

When mTkn.tag [{internal, external}, and an ISP method cdl occurs, the foll owing steps will take place

1. The two variables old_tag and miv are atached to the mTkn to define mTkn.body.old_tag and
mTkn.body.miv, respedively. Then, mTkn.tag (the aurrent tag, one of internal or external) is recorded
into mTkn.body.old_tag, and mTkn.tagis <t to private.

2. Further method cdls are traced by the variable mTkn.body.miv, which is a triple of (seq, sc, mtd). The
tradng agorithmis defined asin the original G-net definitions [9].

3. After al the ISP method cdls are finished and the mTkn token returns to the original ISP, the mTkn.tag
is st badk as mTkn.body.old_tag, and bah the variables old_tag and miv are detached.

We now provide afew key definiti ons giving the formal structure of our agent-based G-net models.

Definition 3.1 Agent-based G-net

An agent-based G-net is a 7-tuple AG = (GSP, GL, PL, KB, EN, PN, 1S), where GSP is a Generic Switch
Place providing an abstrad for the agent-based G-net, GL is a Goa module, PL is a Plan module, KB isa
Knowledge-base module, EN is an Environment module, PN is a Planner module, and IS is an internal
structure of AG.

Definition 3.2 Planner Modue

A Planner modue of an agent-based G-net AG is a mlored sub-net defined as a 7-tuple (IGS, IGO, IPL,
IKB, IEN, IS DMU), where IGS, IGO, IPL, IKB, IEN and Il Sare interfaces with GSP, Goal module, Plan
module, Knowledge-base module, Environment module and internal structure of AG, respedively. DMU is

aset of dedsion-making urnit, and it containsthree dstrad transitions. make _dedsion, sensor and update.

28

Definition 3.3 Internal Sructure (1S
An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the
incoming/outgoing message sedion, which defines a set of message processng urits (MPU); and PU isthe

private utility sedion, which defines a set of methods.

Definition 3.4 Message Processng Unit (MPU)

A message processng unt (MPU) isatriple (P, T, A), where P is a set of places consisting of threespedal
places: entry place ISP and MSP. Each MPU has only one entry place ad one MSP, but it may contain
multiple ISPs. T is a set of transitions, and ead transition can be asciated with a set of guards. A is a set
of arcsdefined as: (P-{MSP}) x T) O ((T x (P-{entry}).

Definition 3.5 Method

A method is a triple (P, T, A), where P is a set of places with three spedal places. entry place, ISP and
return place Each method has only one entry place ad one return place but it may contain multiple I SPs.
T isaset of transitions, and ead transition can be asciated with a set of guards. A is a set of arcs defined
as. ((P-{return}) x T) O ((T x (P-{entry}).

3.3Sdling and Buying Agent Design

To illustrate how to design a selling/buying agent by using our agent-based G-net model, we use an
example derived from [Odell 200Q. Figure 7 (a) is a modified example of an FIPA contrad net protocol,
which depicts a template of protocol expressed as a UML sequence diagram for a price-negotiation
protocol between a buying agent and a selling agent. To corredly draw the sequence diagram for this
template, we need to introduce two new notations, i.e., the end of protocol operation “«” and the iteration of

communicative ads operation “x”. Examples of using these two notations are & follows. In Figure 7 (a),

we put amark of “¢” in front of the message name “refuse’ to indicae that this message ends the protocol.
In the same figure, a mark “+” is put on the right corner of the narrow redangle for the message “propose’

to indicete that the ommunicative adionsin this sdion can be repeded zero or more times.

When a mnversation based on this contrad net protocol begins, the buying agent sends a request for price
to a selling agent. The selli ng agent can then choaose to response to the buying agent by refusing to provide
price or submitting a propasal. Here the “x” in the dedsion diamond indicates an exclusive-or dedsion. If a
propasal is offered, the buying agent has a dhoice of either accepting or rejeding the propasal. If a selling
agent receves a rejed-propcsal message, it may send the buying agent a new proposal or replies the
buying agent with a confirmation message. If the selli ng agent receéves an accept-proposal message, it will
simply send a mnfirmation messge to the buying agent. Whenever a cnfirmation messge is snt, the
protocol ends. Figure 7 (b) and 7 (c) shows two adual cases of this protocol template. In Figure 7 (b), the

28

selling agent’s propasal is accepted by the buying agent in one round; while Figure 7 (¢) shows the cae
that the proposal is acceted by the buying agent in the second round.

‘ Buyer ‘ ‘ Seller ‘ ‘Buyer ‘ ‘Se!ler ‘ ‘Buyer ‘ ‘ Seller ‘

request-price request-price request-price

!

L « refuse
propose propose
i propose L
acept-proposal_[ac@pt-proposa reject-proposal
‘eject-proposal [A ropose -
T propose « confirm
acapt-proposal acapt-proposal

« confirm

< }eject-proposal
D « confirm U

@ (b) ©

]

Figure 7. A contrad net protocol between buying and selling agent

‘ Goal ‘ ‘ Plan ‘ ‘Knowledg&base ‘ ‘ Environment ‘
v 3 3 H H

‘ Planner ‘

v

incoming messages outgoing messages private utilities
propcse refuse confirm | request-price accept-propasal reject-proposal utility_1 utility_p

mesg_pr- mesg_pr- mesg_pr- mesg_pr=T~ mesg_pr- mesy_pr= utili - utilr
ocessng ocessng ocessng ocessng ocessng ocessng ty 1 ty p
t4

Wsen) MSP(sdf) MSP(sdlf) MSP(G'.Aid) MSP(G .Aid) MSP(G .Aid) return retly

Notes: G'.Aid = mTkn.body.msg.receiver as defined later in this sction

Figure 8. An Agent-based G-net model for buying agent class

Based on the mommunicaive ads (e.g., request-price, propcse dc.) nealed for this contrad net protocol, we
may design the buying agent as in Figure 8. In Figure 8, the Goa and Knowledge-base modules remain as
abstrad units and can be refined in further detailed design. The Planner module may use Figure 6 as a
template, with the transition start_a_conversation and the placenex_action left to be refined in further
detailed design too. In the private utiliti es sedion, we may define some necessary functions that can be

cdled by the buying agent itself. Examples of such private utility functions could be: compare price,

30

updae_know-ledge base etc. The design of the selling agent is smilar. We define MPUs of request-price,
accept-propcsal and rejed-propaose in the incoming messages sedion of the selling agent, and define

MPUs of propase, refuse and confirm in the outgoing messages sedion of the selli ng agent.
3.4Verifying Agent-based G-net models

One of the advantages of building a formal model for agents in agent-based design is to ensure a ©rred

designthat mees certain spedfications. A corred design of agents at least has the foll owing properties:

e L3-live any communicaive ad can be performed as many times as nealed.
e Concurrent: anumber of conversations among agents can happen at the same time.

« Effedive an agent communicaion protocol can be wrredly traced in the agent models.

To verify the mrreanessof agent-based G-net models for selling/buying agents with resped to the dbove
properties, we first reduce our agent-based G-net models to an ordinary Petri net as follows: (1) simplify
the Goal module and Knowledge-base module & ordinary places with ordinary tokens; (2) omit the puldic
services and private utiliti es sedions; (3) simplify mTkn tokens as ordinary tokens; (4) use net reduction to
simplify the Petri net corresponding to an MPU/Method as a single place and (5) use the dose world

asumption and make our system only contains two agents, i.e., a buying agent and a selli ng agent.

The resulting ordinary Petri net is ill ustrated in Figure 9. To verify the mrrednessof our agent-based G-
net model for agent communicaion, we utilize some key definitions and theorems as adapted from
[Murata1989.

Definition 3.6 Incidence Matrix

For a Petri net N with n transitions and m places, the incidence matrix A = [ajj] is an n x m matrix of
integers and itstypicd entry is given by

aij = aij " - ajj”
where aij+ = w(i,j) isthe weight of the ac from transition i to output placej and ajj™ = w(,i) is the weight

of the ac from input placej to transition i.

Definition 3.7 Firing Count Vedor
For some sequence of transition firingsin a Petri net N, a firing court vedor x is defined as an nvedor of
nonnegative integers, where the ith entry of x denotes the number of times that transition i must fire in that

firing sequence.

31

(goa/plan/kb) (env)
al b1l cl
— 0 0

(external)

(start_a_
conversat

. (start_a_
(dispatch_ conversation)

incoming_

(dispatch_
incoming_

ispatch_

(propose, refuse, confirm) (request_price, accept_proposal,
reject_proposal)

(request_price, accept_proposal,
6 (propose, refuse, confirm) t34
Seler

reject_proposal) tl
Buye

Figure 9. A transformed model of buying and selli ng agents

Definition 3.8 T-invariant

For a Petri net N, an nvedor x of integers (x # 0) is cdled a T-invariant if x is an integer solution of

T
homogeneous equation A x = 0, where A isthe incidence matrix of Petri net N.

Definition 3.9 Sugport and minimal-suppat T-invariant

The set of transitions corresponding to non-zero entries in a T-invariant x > 0 is cdled the suppat of a T-
invariant and is denoted as ||| A suppat is sid to be minimal if no proper non-empty subset of the
suppart is also a suppat. Given a minimal suppatt of a T-invariant, there is a unique minimal T-invariant

corresponding to the minimal suppart. Such a T-invariant is cdled the minimal-suppat T-invariant.

Definition 3.10 L3-live Petri net
A Petri net N with initial marking Mg, denoted as (N, M), is said to be L3-liveif for every transtion t in

the net, t appeas infinitely often in some firing sequence L(N, M), where L(N, Mg) is the set of all
posshble firing sequences from Mg in the net (N, Mg).

Theorem 3.1 An nvedor x is a T-invariant of a Petri net N iff there eists a marking Mg and a firing

sequence o that reproduces the marking M, and x defines the firing court vedor for o.

32

Theorem 3.2 A Petri net N with initial marking Mg is L3-live if there exists a set of minimal-suppart T-

invariants that covers al the transitions in the net, and for ead minimal-suppat T-invariant there eists a

firing sequencethat reproduces the initial marking M.

Proof: Let T be the set of transitions in Petri net (N, Mg), I' be the set of minimal-suppart T-invariants that

covers al the transitions in T. From the given condition, we know that for Ot O T, Ox O I', which covers

transition t. Since for the minimal-suppat T-invariant x, there eists a finite firing sequence p that

pepepep..

reproduces the initial marking Mg, t appeas in p. Let the infinite firing sequence o

where “»” is the mncatenation operator between finite sequences, t appeas in o infinitely often. By

0

definition 4.5, Petri net (N, Mg) isL3-live

Enoccooocooooo0oo000o00000000O0O0O00O0O00O0OO0OOHOO Y
L N|OCOOCDO0O0O0O000000000000000000000000—00 Yo
XN|OOODOOOO00000000000000000000000O0—H00 To0
—_Njoooocoocoocoococoocoooooooocoordo0oo0oo+do0o0o0o0 Y Y 7ooo
_NDOOOOOOOOO0O0O0O0O0O00O0OO0O00O0O00OOHH000 7000000
CNooOOOOOOOOOO00OO0OO00O0OO0O0O0O0O0OOHO00O 70000000
oNocoOoOO0OOOO0O0O0OO00O00O0O0O00O00OH0000 Y0000 0OOOO
- NOOODOOO0O00000000000000O0H0000 TO00O0O0O0OOOOO
vnNfoocooooO0O0O0O0OOOOOOOOOOH0O0OOO Y 7ooooo0o000O0O
TNjoooooooooooooooooco-Hoo Y Y 'oooooooooooo
VN[O OOOODO0O0OO000O0000O00000000000000000000
ON|OOC OO0 O0O00000000000000000000000000000O0
sNocoooooocoooocoocood-d-d T 7ooooooddHd000000O
EdlococoococoocoocoocoocodooTooooooooooooooooo00O
_Hdloocoooococoooococoocodo0oo07ooo0o0o0000O0O0O0OO0O0O0OO00O
xdlooooo0000OO0O0O0OOHO0 "TO0O0OOD0OOOO0OOO0O0OO0O0O0OO0O0O
_dloodooocodoococo“ 7700000000000 0co0o0co0o0o0o0o000
00000011000 7000000000000 00000O000000O
CH0000O0H0000 7 0000000000000 00000000000O0
odloccoodoo0o0oo0To0o0o0o00000OO0O00O0O0O0O0O0O0O00OO0O00OO0O0O
- H00O0 10000 7000000000000 0O00O000000000O
vHdlodoocooco“77ooooocoococoo0oooco0000000O0OO0OO00OO0OO
THldoo T " 7o0ooo0o0oco0oo00co0co00c0o0000o0c0000000O000O
UHOCCOO0O000O0OO00O00000000000000000000O000O
000 0000000000000 00000000000000000000O0
CHT T 0000001000000 000000000000000O -

dNoTLereeaduunggo338INRILIREIISSBIBE

HdNeEResSeeddddaddgddaddUaNNINNNNNARONARQ

Table 1. The incidence matrix A of the Petri net in Figure 9

The incidence matrix A of the Petri net in Figure 9 islisted in Table 1. By using Definition 3.6 and 3.9, we

can cdculate aset of minimal-suppart T-invariants as foll ows:

[110100101001000000001000000000100100

X]_:

[001000000000100100110100101000a0mQ

X2:

[111100101001100100110100011001100100

X3:

33

X4=[111001100011010010110010010101001001
X5=[110010010101001001111001100011019010

From Theorem 3.1, for ead minimal-suppart T-invariant x; in our example, there exists a marking Mg and
a firing sequence oj, which reproduces the marking Mg, and x; defines the firing count vedor for oj.
Obvioudly, the foll owing firing sequences 61, 09, ... g reproducetheinitial markingMp=[0110000
00000001100000000D&ndxq, Xp, ... x5 define the firing count vedors for gq, 0o, ... Og

respedively:

01 = <t21, 131, t34, t1, t4, 19, 12, t7, t12>

0o = <t3, 113, t16, t19, 122, 127, 120, t25, t30>

03 = <t3, t13, t16, t19, 122, t27, 120, 126, t30, t31, t34, t1, t4, 19, t2, t7, t12>
04 = <t3, 114, 117, 119, 123, 128, 120, 126, t30, t33, t36, t1, 16, t11, t2,t7,t12>

05 = <t21, 132, 135, 11, t5, 110, t2, t8, t12, t15, t18, t19, t24,t29,t20,125,t30>

Since the @ove minimal-suppart T-invariants cover al the transitions in the net, and for eady minimal-

suppat T-invariant, there exists a firing sequence that reproduces the initial marking Mg, from Theorem
3.2, we conclude that our Petri net model with initial marking Mg is L3-live i.e., for any transition t in our

net model, we ca find an infinite firing sequence that t appeas infinitely often. Consequently, any
communicaive ad can be performed as many times as needed?.

In Figure 9, it is obvious to seethat our net model is unbounded. This is because transitions t3 and t21 can
fire @ many times as neeaded. This behavior shows that both the buying and selling agent may initiate
conversations autonomously and concurrently (as we stated before, the initiation of a new conversation is
goa driven). There can be & many conversations as necessary between the buying agent and the selling
agent. As an example, a buying agent may request prices of several goods from a selling agent at the same

time, and several buying agents may request price of the same goods from a selli ng agent concurrently.

In addition, we may trace a agent communicaion protocol p in our net model with a firing sequence o.
For a protocol p, a arresponding firing sequence o in our net model has more semantics than the protocol
itself becaise when we adualy exeaute aprotocol in our net, we need to do additional work, such as
updating the goal or knowledge base dter ead communicaive ad. Since amarking M that is readable

from Mg, but M # M, represents that there ae still some ongoing conversations in the net, to corredly

2 One of the limitations for invariant approach isthat it is not sufficient to prove a Petri net is L4-liveor live, i.e., from any marking M
that is reachable from Mg, it is possble to ultimately fire any transition of the net.

34

trace aprotocol p in our net model, it is essentia for us to find a firing sequence o that reproduces the
initial marking M. In other words, we need to make sure that there will be no residua tokens for a
conversation left in the net after that conversation completes. In this case, we say that the protocol p can be
effedivdy tracal as a firing sequence ¢ in our net model. To show that a protocol p can be dfedively
traced, we use the mntrad net protocol examplesin Figure 7 (b) and Figure 7 (¢). These two protocols can

be tracead in our net model asfoll ows:

Op = <t3, 113, t16, t19, 122, 127, t20, 126, t30, t31, t34, t1, t4, 19, t2, t8, t12, t14, t17, t19, 123, 128, 120, 126,

t30, t33, t36, t1, t6, t11, t2, t7, t12>
Oc = <3, t13, 116, t19, t22, 127, 120, 126, t30, t31, t34, t1, t4, 19, t2, 18, t12, t15, t18, t19, 124, 129, t20, t26,

t30, t31, t34, t1, t4, 19, t2, 18, 112, t14, t17, t19, 123, 128, t20, 126, t30, t33, t36, t1, t6, t11, t2, t7, t12>

By Definition 3.7, we cdculate their corresponding firing count vedors xp, and X, as foll ows:

Xp=[221101111012110110220110021102101101
Xc=[331201122013111111330111031113201J]201

By Definition 3.8, it is easy to verify that bath X,y and X are T-invariants because bath of the eguations
ATxb =0 and ATxC = 0 are satisfied. This sows that both firing sequences oy, and o can reproduce the
initial marking Mq. In other words, we prove that both protocols in Figure 7 (b) and 7 (c) can be dfedively
tracal in our agent-based model.

3.5Discusgon

One of the most rapidly growing areas of interest for Internet technology is that of eledronic commerce
Consumers are looking for suppliers lling products and services on the Internet, while suppliers are
looking for buyers to increase their market share. For convenience and efficiency, we believe that multi-
agent system (MAYS) is an effedive way to automate the time consuming processof looking for buyers or
sellers and negotiate in order to oltain the best ded. Althoughthere ae severa implementations of agent-
based eledronic marketplaces available [Chavez axdd Maes 199¢[Tsvetovatyy et al. 1997, formal
framework for such systems are few. It is an increasing reed to provide forma methods in MAS

spedfication and designto ensure robust and reliable products.

35

Chapter 4

A Framework for Modeling Agent-Oriented
Software

4.1 Introduction

To avoid huilding a methoddogy from scratch, the reseachers on agent-oriented methoddogies have
foll owed the gproach of extending existing methodd ogies to include the relevant aspeds of agents. These
extensions have been caried out mainly in two areas. objeded-oriented (OO) methoddogies and know
engineaing (KE) methoddogies [I glesias et al. 1998. Now we give abrief introduction to these two ways
of extensions.

To extend oljed-oriented methoddogies for agent modeling is a nature way for most of the software
engineas. This is becaise there ae similarities between the objed-oriented paradigm and the agent-
oriented paradigm [Kinny et al. 1994. Since the ealy times of distributed artificial intelligence (DAI), the
close relationship between DAI and Objed-Based Concurrent Programming (OBCP) was established
[Gasser and Briot 1997. As gated by Shoham, the ayents can be @mnsidered as active objeds, i.e., objeds
with a mental state [Shoham 1993. Both paradigms use message passng for communicaion and can use
inheritance and aggregation for defining its architedure. The main difference is the cnstrained type of
messges in the AO paradigm and the definition of a state of an agent in terms of its beliefs, desires and
intentions[lIglesias et al. 1999.

The popularity of objed-oriented methoddogies is another potential advantage for this approach. Many
objed-oriented methoddogies are being wed in the industry with success Examples of such
methoddogies are Objed Modeling Technique (OMT) [Rumbaugh et al. 1991], Objed-Oriented Software
Engineaing (OOSE) [Jambson et al. 1997, Objed-Oriented Design [Booch 1994 and Unified Modeling
Language (UML) [Rational 1997. This experience ca be akey to fadlitate the integration of agent

technology into OO methoddogies. This is becaise, on the one hand, the software engineeas can be

36

reluctant to use and lean a complete new methoddogy, and on the other hand, the managers would prefer

to foll ow methoddogies that have been succesdully tested.

Previous work based on this approach includes. agent modeling technique for systems of BDI agents
[Kinny et al. 1996, agent-oriented analysis and design [Burmeister 1996 and agent unified modeling
language (AUML) [Odell 200Q.

For the seaond approach, knowledge engineaing methoddogies can provide agood tasis for multi -agent
systems modeling since they ded with the development of knowledge based systems. Sincethe gyents have
cognitive daraderistics, these methoddogies are quite helpful to modeling agent knowledge. The
extension of current knowledge methoddogies can take alvantage of the aquired experience in these
methoddogies. In addition, both the existing tools and the developed problem solving method libraries can
be reused. An example of this approac is the Gaia methoddogy for agent-oriented analysis and design
suggested by Wooldridge and his coll esgues [Wooldridge et al. 2004 .

In this proposal, we aop the first approach, however unlike previous work, our approach uses the
principle of “separation of concerns’ in agent-oriented design. We separate the traditional objed-oriented
feaures and reasoning mechanisms in our agent-oriented software model as much as posshble, and we
discuss how reuse can be adieved in terms of functional units, such as message processng urits (MPUSs)
and private functions, in agent-oriented design. While some people alvocaed that inheritance has limited
value in conceptua models of agent behavior [Jennings 200Q[Wooldridge et al. 2000, we ill ustrate a
useful role for inheritance in our agent-oriented models. Our agent-based model is derived from the general
agent model given in [Xu and Shatz 2001a], and the extensions that crede an agent-oriented model are
derived from the framework presented in [Xu and Shatz 20014.

4.2 An Agent-Oriented M odel

4.2.1An Architedure for Agent-Oriented M odeling

To reuse the design of agent-based G-net model shown in Figure 5 (Chapter 3), we kegp aur agent-oriented
G-net model to have the same structure as an agent-based G-net model. However, to ded with inheritance,
we must revise our Planner module. In our new Planner module, we introduce new medchanisms gich as
synchronots Superclass svitch Place (ASP), and dedsion-making urits gich as abstrad transitions. The
template of the Planrer module is $own as in Figure 10°. Similarly as before, the modules Goal, Plan,
Knowledge-base and Environment are represented as four spedal places (denoted by double dlipses in

37

Figure 10), ead of which contains a token that represents a set of goals, a set of plans, aset of beliefsand a
model of the environment, respedively. These four modules conned with the Planner module through
abstrad transitions, denoted by shaded redangesin Figure 10 (e.g., the éstrad transition make _dedsion).
Abstrad transitions represent abstrad units of dedsion-making or mental-state-updating. At a more
detailed level of design, abstrad transitions would be refined into sub-nets; however how to make dedsions
and how to update an agent’s menta state is beyond the scope of this paper, and will be mnsidered in our
future work. In the Planner module, there is a unit caled autonamous unit that makes an agent autonomous
and internall y-motivated. An autonamous unit contains a sensor (represented as an abstrad transition),
which may fire whenever the pre-conditions of some committed plan are satisfied or when new events are
ceptured from the environment. If the estrad transition sensor fires, based on an agent’s current mental
state (goal, plan and knowledge-base), the autonomous unit will then dedde whether to start a conversation
or simply update its mental state. This is done by firing either the transition start_a_conversation or the

transition automatic_updde after exeauting any necessary adions asociated with placenew_action.

" AAA Y

wy

fromtransition
“update”

@utonamous unit

private

incoming messages

ASP(super)

private utiliti es

to place “ Goal”

to place “ Plan”

to place “ Knowledge base”
b

R !

00 o

outgoing messages

Figure 10. A template for the Planner module (initial design)

Note that the Planner module is both goal-driven and event-driven because the transition sensor may fire
when any committed plan is ready to be adieved or any new event happens. In addition, the Planner
module is also message-triggered becaise cetain adions may initiate whenever a message atrives (either

from some other agent or from the ayent itself). A message is represented as a message token with a tag of

3 Actually, this module purpasely contains a somewhat subtle design error that is used to demonstrate the
value of automated verification in Chapter 5.

38

internal/external/private. A message token with atag of external represents an incoming message which
comes from some other agent, or a newly generated outgoing message before sending to some other agent;

while amessage token with a tag of internal is a message forwarded by an agent to itself with the MSP
medhanism. In either case, the message token with the tag of internal/external should not be involved in
an invocation of a method cdl. On the @ntrary, a message token with a tag of private indicaes that the
token is currently involved in an invocaion of some method cdl. When an incoming message/method
arrives, with a tag of external/private in its corresponding token, it will be dispatched to the gpropriate
MPU/method defined in the internal structure of the agent. If it is a method invocation, the method defined
in the private utility sedion of the internal structure will be exeauted, and after the exeaution, the token will

return to the cdling urit, i.e, an ISP of the cdling agent. However, if it is an incoming message, the
messge will be first processed by a MPU defined in the incoming message sedion in the internal structure
of the agent. Then the tag of the token will be changed from external to internal before it is transferred
bad to the GSP of the recever agent by using MSP(self). Note that we have extended G-nets to allow the
use of the keyword self to refer to the ggent objed itself. Upon the arival of atoken tagged asinternal ina
GSP, the transition internal may fire, followed by the firing of the astrad transition make dedsion. Note
that at this point of time, there would exist tokens in those spedal places Goal, Plan and Knowledge-base,
so the transition bypass is disabled (due to the “inhibitor arc”®) and may not fire (the purpaose of the
transition bypassis for inheritance modeling, which will be aldressd in Sedion 4.2.2). Any necessary
adions may be exeauted in placenext_action before the mnversation is either ignored or continued. If the
current conversation is ignored, the transition ignare fires; otherwise, the transition continue fires. If the
transition cortinue fires, a newly constructed outgoing message, in the form of a token with a tag of
external, will be dispatched into the appropriate MPU in the outgoing message sedion of the interna

structure of the agent. After the message is processed by the MPU, the message will be sent to a recever
agent by using the MSP(Recever) medhanism. In either case, a token will be deposited into place
updae_god/plan/kb, allowing the astrad transition updae to fire. As a onsequence, the Goal, Plan and
Knowledge-base modules are updated if needed, and the ggent’ s mental state may change.

To ensure that all dedsions are made upon the latest mental state of the ayent, i.e., the latest values in the
goal, plan, and knowledge-base modules, and similarly to ensure that the sensor always captures the latest
mental state of the ayent, we introduce asynchronization urt syn, modeled as a place marked with an
ordinary token (bladk token). The token in place syn will be removed when the @strad transition
make_dedsion or sensor fires, thus delaying further firing of these two abstrad transitions urtil completion
of adions that update the values in the goal, plan and knowledge-base modules. This mechanism is
intended to guaranteethe mutual exclusive exeaution of dedsion-making, capturing the latest mental state
and events, and updating the mental state. Note that we have used the label <e> on ead of the acs

4 Aninhibitor arc conneds a placeto atransition and defines the property that the transition asociated with
the inhibitor arc is enabled only when there ae no tokensin the input place

39

conneding with the placesyn to indicae that only ordinary tokens may be removed from or deposited into

the placesyn.

4.2.2Inheritance Modeling in Agent-Oriented Design

Althoughthere ae different views with resped to the ancept of agent-oriented design[lglesias et al. 199§

[Jennings 2000, we mnsider an agent as an extension of an objed, and we believe that agent-oriented
design should keep most of the key feaures in objed-oriented design. Thus, to progress from an agent-

based model to an agent-oriented model, we neeal to incorporate some inheritance modeling capabiliti es.

But inheritance in agent-oriented design is more mmplicaed than in objed-oriented design. Unlike an
objed (passve objed), an agent objed has mental states and reasoning mechanisms. Therefore, inheritance
in agent-oriented design invokes two issles: an agent subclass may inherit an agent superclasss
knowledge, goals, plans, the model of its environment and its reasoning mechanisms; on the other hand, as
in the cae of objed-oriented design, an agent subclassmay inherit al the services that an agent superclass
may provide, such as private utility functions. There is existing work on agent inheritance with resped to
knowledge, goals and plans [Kinny and Georgeff 1997[Crnogorac et al. 1997. However, we believe that
since inheritance happens at the dasslevel, an agent subclassmay be initiaized with an agent superclasss
initial mental state, but new knowledge aquired, new plans made, and new goals generated in a individual

agent objed (as an instance of an agent superclasg, can not be inherited by an agent objed when creaing
an instance of an agent subclass A superclasss reasoning medianism can be inherited, however it is
beyond the scope of this paper. For simplicity, we assume that an instance of an agent subclass (i.e., an
subclassagent) always uses its own reasoning mechanisms, and thus the reasoning mechanisms in the ggent
superclass $iould be disabled in some way. Thisis necessary because diff erent reasoning mechanisms may
deduce different results for an agent, and to resolve this type of conflict may be time-consuming and make
an agent’s reasoning medhanism inefficient. Therefore, in this paper we only consider how to initidize a
subclass agent’s mental state while an agent subclass is instantiated; meanwhile, we cncentrate on the
inheritance of services that are provided by an agent superclass i.e., the MPUs and methods defined in the
internal structure of an agent class Before presenting our inheritance scheme, we neel the following
definiti on:

Definition 4.1 Subagnt and Primary Subagnt

When an agent subclassA is instantiated as an agent objed AO, a unique ayent identifier is generated, and
al superclasses and ancestor classes of the agent subclass A, in addition to the agent subclassA itself, are
initialized. Each of those initialized classes then becomes a part of the resulting agent objed AO. We cadl

an initialized superclassor ancestor classof agent subclassA a subagent, and the initialized agent subclass

A the primary subagent.

40

The result of initializing an agent class is to take the agent class as a template and creade a o©ncrete
structure of the aent classand initialize its date variables. Since we represent an agent classas an agent-
oriented G-net, an initidized agent class is modeled by an agent-oriented G-net with initialized state
variables. In particular, the four tokens in the speda places of an agent-oriented G-net, i.e., gTkn, pTkn,
kTkn and eTkn, are set to their initial states. Since different subagents of AO may have goals, plans,
knowledge and environment models that conflict with those of the primary subagent of AQ, it is desirable
to resolve them in an ealy stage. In our case, we ded with those @nflicts in the instantiation stage in the
following way. All the tokens gTkn, pTkn, kTkn and eTkn in ead subagent of AO are removed from their
asciated spedal places, and the tokens are combined with the gTkn, pTkn, KTkn and e€Tkn in the primary
subagent of AO.> The resulting tokens gTkn, pTkn, kTkn and eTkn (newly generated by unifying those
tokens for ead type), are put badk into the spedal places of the primary subagent of AO. Consequently, all
subagents of AO lose their abiliti es for reasoning, and only the primary subagent of AO can make necessary
dedsions for the whole gyent objed. More spedficdly, in the Planner module (as sown in Figure 10) that
belongs to a subagent, the astrad transitions make dedsion, sensor and updae can rever be enabled
because there ae no tokens in the following spedal places: Goal, Plan and Knowledge-base. If a message
tagged as internal arrives, the transition bypass may fire and a message token can diredly go to a MPU
defined in the interna structure of the subagent if it is defined there. This is made possble by conneding
the transition bypasswith inhibitor arcs (denoted by dashed lines terminated with a small circle in Figure
10) from the spedal places Goal, Plan and Knowledge-base. So the transition bypasscan only be enabled
when there ae no tokens in these places. In contrast to this behavior, in the Planrer module of a primary
subagent, tokens do exist in the spedal places Goal, Plan and Knowledge-base. Thus, the transition bypass
will never be enabled. Insteal, the transition make dedsion must fire before an outgoing message is
dispatched.

To reuse the services (i.e., MPUs and methods) defined in a subagent, we neeal to introduce anew
medanism cdled Asynchronows Superclass svitch Place (ASP). An ASP (denoted by an ellipsisin Figure
10) is smilar to a MSP, but with the difference that an ASP is used to forward a message or a method call
to a subagent rather than to send a message to an agent objed. For the MSP mechanism, the recever could
be some other agent objed or the ggent objed itself. In the cae of MSP(self), a message token is always
sent to the GSP of the primary subagent. However, for ASP(super), a message token is forwarded to the
GSP of a subagent that is referred to by super. In the cae of single inheritance, super refers to a unique
superclass G-net, however with multi ple inheritance, the reference of super must be resolved by seaching

the dasshierarchy diagram.

® The processof generating the new token values would involve ations ich as conflict resolution among
goals, plans or knowledge-bases, which is a topic outside the scope of our model and this paper.

41

When a message/method is not defined in an agent subclassmodel, the dispatching mechanism will depaosit
the message token into a arresponding ASP(super). Consequently, the message token will be forwarded to
the GSP of a subagent, and it will be again dispatched. This processcan be repeaed urtil the root subagent
isreaded. In this cese, if the message is ill not defined at the root, an exception occurs. In this paper, we
do not provide exception handling for our agent-oriented G-net models, and we asaume that all incoming

messages have been corredly defined in the primary subagent or some other subagents.

4.3 Examples of Agent-Oriented Design

4.3.1A Hierarchy of Agentsin an Eledronic Marketplace

Consider an agent family in an eledronic marketplacedomain. Figure 11 shows the ayentsin a UML class
hierarchy notation. A shopping agent class is defined as an abstrad agent class that has the adility to
register in a marketplacethrough a fadlit ator, which serves as a well-known agent in the marketplace A
shopping agent class cannot be instantiated as an agent objed, however, the functionality of a shopping
agent classcan be inherited by an agent subclass such as a buying agent classor a selli ng agent class Both
the buying agent and selling agent may reuse the functionality of a shoppng agent class by registering
themselves as a buying agent or a selling agent through a fadlit ator. Furthermore, a retailer agent is an
agent that can sell goods to a austomer, but it also neals to buy goods from some selli ng agents. Thus a
retailer agent classis designed as a subclass of both the buying agent classand the selling agent class In
addition, a austomer agent classmay be defined as a subclass of a buying agent class and an auctionee
agent classmay be defined as a subclassof a selling agent class In this paper, we only consider four types
of agent class i.e., the shopping agent class the buying agent class the selling agent classand the retail er

agent class The modeling of the austomer agent classand auctionee agent classcan be done in a similar

way.

‘ Shopping agent ‘
‘ Buying agent ‘ ‘ Selling agent ‘
Customer agent ‘ ‘ Retailer agent ‘ ‘ Auctioneer agent

Figure 11. The dass hierarchy dagram of agentsin an electronic marketplace

42

4.3.2Modeling Agentsin an Eledronic Marketplace

Asin Chapter 3, to design an agent, we first neal to define the necessary communicaive ads of that agent.
The coommunicdive ads for a shopping agent, fadlit ator agent, buying agent and selli ng agent are shown as
agent UML (AUML) sequence diagram in Figure 12. Figure 12 (a) depicts a template of a @ntrad net
protocol for a registration-negotiation protocol between a shopping agent and a fadlit ator agent. Figure 12
(b) is the same example of a mntrad net protocol as in Figure 7 (&), which depicts a template of a price-
negotiation protocol between a buying agent and a selli ng agent. Figure 12 (c) shows an example of price-
negotiation contrad net protocol that is instantiated from the protocol template in Figure 12 (b).

Consider Figure 12 (a). When a monversation based on a mntrad net protocol begins, the shopping agent
sends a request for registration to a fadli tator agent. The fadlit ator agent can then choose to respond to the
shopping agent by refusing its registration or requesting agent information. Here the “x” in the dedsion
diamond indicates an exclusive-or dedsion. If the fadlitator refuses the registration based on the
marketplacés sze the protocol ends; otherwise, the fadlitator agent waits for agent information to be
supplied. If the agent information is corredly provided, the fadlit ator agent then still has a choice of either
acceting or rgjeding the registration based on the shoppng agent’s reputation and the marketplacés
functionality. Again, if the fadlitator agent refuses the registration, the protocol ends; otherwise, a
confirmation message will be provided afterwards. Similarly, the price-negotiation between a buying agent

and aselling agent is clealy ill ustrated in Figure 12 (b).

‘ shopping agmt‘ ‘ fadlitator agaﬂ{ ‘ buying agent ‘ ‘ selli ng agent ‘ ‘ buying agent ‘ ‘ selling agent ‘
[request-registration I ‘ request-price ‘ ‘ request-price [
T « refuse i

propose

T request-info

supply-info ! acapt-proposal i reject-proposal
1 T rej ect-proposal ! T
o refuse propose
I propose i 1
. i
3 acept-info acept-proposal
e O s s
< Erq’ect-proposal

« confirm

e) « confirm
D « confirm ‘U d

@ (b) (©

Figure 12. Contrad net protocols (a) A template for the registration protocol (b) A template
for the price-negotiation protocol (c) An example of the price-negotiation protocol

43

‘ Goal ‘ ‘ Plan ‘ ‘ Knowledge-base ‘ ‘ Environment ‘

‘ Planner ‘
incoming messages outgoing messages private utilities

request-info refuse accept_info confirm request-registration suppy-info utility_1 utility_p
mesg_prT mesg_pr- mesg_pr- mesg_pr- mesg_pr= mesg_pr= utili- utili=
ocessng ocessng ocessng ocessng ocessng ocessng ty 1 ty_p
t4
{S’(s&lf) MSP(selfy MSP(selfy MSP(self) MSP(G'.Aid) MSP(G'.Aid) return ray

Figure 13. An agent-based G-Net model for shopping agent class(SC)

Based on the communicdive ads (e.g., request-registration, refuse, etc.) nealed for the contrad net

protocol in Figure 12 (@), we may design the shopping agent class as in Figure 13. The Goal, Plan,

Knowledge-base and Environment modules remain as abstrad units and can be refined in a further detail ed

design stage. The Planner module may reuse the template shown in Figure 10. The design of the fadlit ator

agent classis smilar, however it may suppat more protocols and should define more MPUs and methods

initsinterna structure.

an ‘ ‘ anvledgebase‘ ‘Environment ‘

GSHBC)
BC extends SC God Pl
Planner
incoming messages outgoing messages private utilities
propase request-price acaept-propasal reject-propasal utility_1 utility_p
message message_ message_ message_ utility_1 utility_p
processng processng processng processng
Qsp(self) MSP(G'.Aid) MSP(G'.Aid) MSP(G' .Aid) return raum/

Figure 14. An agent-based G-Net model for buying agent class(BC)

44

With inheritance, a buying agent class as a subclassof a shopping agent class may reuse MPUSmethods
defined in a shopping agent classs internal structure. Similarly, based on the communicaive ads (e.g.,
request-price, refuse, etc.) needed for the wntrad net protocol in Figure 12 (b), we may design the buying
agent classas in Figure 14. Note that we do not define the MPUs of refuse and confirm in the internal
structure of the buying agent class for they can be inherited from the shopping agent class A selli ng agent
classor a retailer agent classcan be designed in the same way. In addition to their own MPU/methods, a
selling agent classinherits all MPU/methods of the shoppng agent class and a retail er agent classinherits
al MPU/methods of both the buying agent classand the selli ng agent class

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying agent
objea BO, which receves a message of request-info from a fadlit ator agent objedt FO. A mTkn token will

be deposited in the GSP of the primary subagent of BO, i.e., the GSP of the arresponding buying agent
class (BC). The transition external in BC's Planrer module may fire, and the mTkn will be moved to the
placedispatch_incoming_message. Since there is no MPU for request-info defined in the internal structure
of BC, the mTkn will be moved to the ASP(super) place Since super here refers to a unique superclass—
the shopping agent class (SC) — the mTkn will be transferred to the GSP of SC. Now the mTkn can be
corredly dispatched to the MPU for request-info. After the message is processed, MSP(self) changes the
tag of the mTkn from external to internal, and sends the processed mTkn token badk into the GSP of BC.

Note that MSP(self) aways snds a mTkn badk to the GSP of the primary subagent. Upon the arival of this
messge token, the transition internal in the Planrer module of BC may fire, and the mTkn token will be
moved to the placecheck primary. Since BC corresponds to the primary subagent of BO, there ae tokens
in the speda places Goal, Plan, Knowledge-base and Environment. Therefore the astrad transition
make _dedsion may fire, and any necessary adions are exeauted in place neX_action. Then the arrent
conversation is either ignored o continued based on the dedsion made in the &strad transition
make _dedsion. If the aurrent conversation is ignored, the goals, plans and knowledge-base ae updated as
needed; otherwise, in addition to the updating of goals, plans and knowledge-base, a newly constructed
mTkn with a tag of external is deposited into placedispatch_outgoing_message. The new mTkn token has
the message name suppy-info, following the protocol defined in Figure 12 (a). Again, there is no MPU for
supdy-info defined in BC, so the new mTkn token will be dispatched into the GSP of SC. Upon the arival

of the mTkn in the GSP of SC, the transition external in the Planrer module of SC may fire. However at
this time, SC does not correspond to the primary subagent of BO, so al the tokens in the speda places of
Goal, Plan, Knowledge-base have been removed. Therefore, the transition bypassis enabled. When the
transition bypass fires, the mTkn token will be diredly deposted into the place
dispatch_ougoing_message, and now the mTkn token can be rredly dispatched into the MPU for supdy-
info defined in SC. After the message is processed, the mTkn token will be transferred to the GSP of the

recaver mTkn.body.msg.receiver, and in this case, it is afadlit ator agent objed.

45

For the reuse of private utility functions defined in a superclass the situation is the same & in the cae of
objed-oriented design. In addition, there ae four different forms of inheritance that are commonly used,
namely augment inheritance restrictive inheritance, replacament inheritance and refinement inheritance
The usage of these four forms of inheritance in agent-oriented design is aso similar to that in objed-
oriented design. Examples concerning reuse of private utility functions and dfferent forms of inheritance
can be found in Sedion 2.5 or [Xu and Shatz 2000.

4.4Handling Multiple Inheritancein Agent-Oriented Models

With single inheritance, the super in ASP(super) in an agent objed AO, as an instance of an agent classA,
refers to the subagent of AO, which corresponds to the unique superclass of A. However, with multiple
inheritance, super may refer to any one of the subagents, which corresponds to a superclassor an ancestor
classs of A. The reference of super then needs to be resolved. In this dion, we propose amodified
breadth-first-seach algorithm to find the gpropriate reference of super. The dgorilthm is based on the
hierarchy of inheritance diagram and the MPU/Methods defined in ead agent-oriented G-net. Before

presenting our algorithm, we need the foll owing definitions:

Definition 4.2 Parent Set P(s)
Let s be an agent-oriented G-net, the parent set, P(s), is a set of agent-oriented G-nets, where eat of the

elementsis a superclassof s.

Definition 4.3 Interface Set Interface(s)
Let sbe an agent-oriented G-net, the interface set, Interfacg(s), is a set of MPU/methods defined in G-net s.

Definition 4.4 ClassHierarchy GraphG
A classhierarchy graphG=(V, E) isaformal description of the hierarchy of inheritance diagram. The dass
hierarchy graph G is a direded acyclic graph G=(V, E), where V is a set of nodes of agent-oriented G-nets,

and E isa set of arcs denotes the inheritance relationship.

The breadth-first-search algorithm is © named because it discovers all the vertices at distance k from s
before procesdng any vertices at distance k+1. To keep tradk of progress the breadth-first-seach agorithm
colors eat vertex white, gray, or bladk. All vertices gart out white and may later become gray and then
black. A vertex is processed the first time it is encountered during the search, at which time it becmes
nonwhite. Gray and bladk vertices, therefore, have been processed, but breadth-first seach distinguishes
between them to ensure that the seach proceals in a breadth-first manner. In addition, we assume that we
have the foll owing data structures: the wlor of ead vertex u 00 V is gored in the variable color[u], and a

first-in, first-out queue Q is used to manage the set of gray vertices. The dgorithmis presented as foll ows:

46

for ead vertexu OV —{s}
do color[u] « WHITE
color[s] — GRAY
Q- {s
whileQ # @
dou « headQ]
for ead v O P(u)

doif color[v] = WHITE

© © N oo g A~ wWw DR

then if mTkn.body.msg.name O Interface(v)

[ERN
o

then super — v; return true

[EEY
=

else color[v] « GRAY; ENQUEUE(Q,V)

[ERN
N

DEQUEUE(Q)
13. color[u] « BLACK
14. return false

If atrue value returns, a MPU/Method is discovered, and the mTkn can be diredly deposited into the GSP
of super; otherwise, the MPU/Method can not be found and an exception occurs. As gated before, we do
not consider such exceptions in this paper. Note that this algorithm works corredly for both single and
multi-level inheritance, and it has the alvantage that the message token can be deposited diredly to the
appropriate GSP of a subagent without going through possble intermediate subagents.

Since a tasscan have more than one superclass (with multi ple inheritance), the inheritance hierarchy has
the structure of a direded acyclic graph rather than a treeor forest. In this case, ambiguous or conflicting

inheritance can occur. The threeisaues that must be dedt with are & foll ows:

« Name wrflict: two or more ancestors of a dass might have messages with the same name, or state
variables with the same name and type.

* Repeated inheritance When a dass A inherits from two superclasses that share a ©mmon ancestor,
there ae two copies of the same aicestor class In class A, the usage of state variables and
MPUs/methods defined in the common ancestor classis ambiguous.

* Dominarce problem: When a dassA inherits from two superclasses that share a ©@mmon ancestor, and
if a MPU/method defined in the common ancestor classis redefined by one of its auperclasss, the

reference of this MPU/methodin the subclassA is ambiguous.

For the name nflict problem, we usually use aqualified name to solve the problem. For instance, if both a
selling agent class SAC and a buying agent class BAC defines MPU/method m_1, the intended

47

message/method cdled in aretail er agent classRAC must be referred to as SAC::m_1 or BAC::m_1, unless
m_1 is redefined in RAC. For the repeaed inheritance problem, we asume that only one wpy of the
common ancestor classis maintained. Therefore, if a state variable or MPU/method defined in a common
ancestor of superclasses of class A is referenced, it is aways meant to the unique one. Finaly, for the
dominance problem, we asaume that a redefined MPU/method has a dominance over the original one.

Obvioudly, our modified breadth-first-search algorithm corredly enforces this rule of dominance

4 5Discusson

Multi-agent systems (MAS) have become one of the most rapidly growing areas of interest for distributed
computing. Although there ae several implementations of MAS available, formal frameworks for such
systems are few [Brazer et al. 1999[Rogers et al. 2000]. In this chapter, we introduced an agent-oriented
model rooted in the Petri net formalism, which provides a foundation that is mature in terms of both
existing theory and tool suppat. An example of an agent family in eledronic commerce was used to
ill ustrate the modeling approach. Models for a shopping agent, selling agent, buying agent and retail er
agent were presented, with emphasis on the dharaderistics of being autonomous, readive and internally-
motivated. Our agent-oriented models also provide a clean interface between agents, and agents may
communicate with ead other by using contrad net protocols. By the example of registration-negotiation
protocol between shopping agents and fadlit ator agents, and the example of a price-negotiation protocol
between shopping agents and buying agents, we ill ustrated how to creae agent models and how to reuse

functional units defined in an agent superclass

For our future work, we will consider the refinements of the Goal, Plan, Knowledge-base and Environment
modules. Also, the astrad transitions defined in the Planrer module, i.e., make _dedsion, sensor and
updae, can be refined into corred sub-nets that capture adion sequences gedfic to those adivities. This
work will provide a bridge to aher work concerned with such agent adivities [Deng and Chang
199Q[Murata et al. 1991a[Murata et al. 19914. We will aso look further into isaues like deadlock

avoidance and state exploration problems in the ayent-oriented design and verificaion processes.

48

Chapter 5

Analysis of Agent-Oriented M odels

5.1Introduction

One of the alvantages of building a forma model for agents in agent-oriented design is to help ensure a
corred design that meds certain spedficaions. A corred design of agent should med certain key
requirements, such as liveness deallock freeness and concurrency. Also certain properties, such as the
inheritance mechanism, neal to be verified to ensure its corred functionality. Petri nets offer a promising,
tod-supparted technique for chedking the logic corrednessof a design. In this dion, we use aPetri tod,
cdled INA (Integrated Net Analyzer) [Roch and Starke 1999, to analyze and verify our agent models. We
use an example of a simplified Petri net model for the interadion between a single buying agent and two

selling agents.

The INA tod is an interadive analysis toadl that incorporates a large number of powerful methods for
analysis of P/T nets [Roch and Starke 1999. These methods include analysis of: (1) structural properties,
such as dructural boundedness T- and P-invariant analysis, (2) behavioral properties, such as
boundedness safeness liveness deallock-freeness and (3) model cheding, such as cheding
Computation Tree Logic (CTL) formulas. These analyses employ various techniques, such as linea-
algebraic methods (for invariants), readability and coverability graph traversals. Here we focus on

behavioral properties verification and model chedking.
5.2A Simplified Petri net Model for a Buying Agent and Two Selling Agents

The interadion between a buying agent and two selli ng agents can be modeled as a net asin Figure 15. To
derive this net model, we use aGSP placeto represent ead selling agent. This is pradicd becaise an
agent-oriented G-net model can be abstraded as a single GSP place and agent models can only interad
with ead other through GSP places. Meanwhile, for the buying agent, whose dassis a subclass of a

shoppng agent class we simplify it as foll ows:

49

Since the speda places of Goal, Plan, Knowledge-base have the same interfaces with the planner

module in an agent class we fuse them into one single placegod/plankb. Furthermore, we simplify

thisfused placegod/plankb and the placeof environment as ordinary places with ordinary tokens.

We omit the private utiliti es sedions in both the shopping subagent model and the buying primary

subagent model. Thus, to oltain our simplified model, we do not need to trandate the | SP mecdhanism,
athoughsuch atrandation to a Petri net form can be found in [Deng et al. 1993.

GSRShopping)

(goal/plan/kb_1)(inhib_arc_1)(environment_1)

T Pi® P4

t2

(check_
primary_:

incoming messages P15

(internal _1

P6

Shopping: Shopping Subagent
Buying: Buying Primary Subagent
(Buying Agent Class extends
Shopping agent Class)

Selling_1: Selling Agent_1
Selling_2: Selling Agent_2

List of message processing units

P8:
P9:

request_info
refuse

(make_ t
dedsion_J) A

(dispatch

v (sensor_1)

(new_
action_1)

outgoing_

automatic__
e 1)

P10:
P11:
P16:
P17:
P25:
P31:
P32:
P33:

P30
incoming messages

138 (start_a_
conversation_|2)

(update

O
t42
A4 A4

accept_info

confirm
request-registration
supply_info
propose
request-price
accept-proposal
reject-proposal

to superclass Iplgn/kb_
“ (update_2) vy tﬁ | t4;4‘
outgoing messages
to superclass

)(update_
god/plan/kb_1)
t20 é?r-\
& (update_1) v 122
outgoing messages GSRSelling_1)
GSRBuying) (goal/plarvkb_2)(inhib_arc_2)(environment_2)
P20 P35
O O
(external_: (4& v
(dispatch_ SO RS
incoming (check_ 2f>24
message 1 primary_2 GSRSelling_2)
(sensor_2) P36
t25 »
dispatch_\ (new_ >
P25 outgoing_ action_2)
(next_ t46
action_2) (automatic_ ——
pdae_2)
t30 t35

Figure 15. A transformed model of one buying agent and two selling agents

50

3. We simplify mTkn tokens as ordinary tokens. Although this smplificaion will cause the reatability
graph of our transformed Petri net to become larger, this smplifies the message tokens, allowing s to
ignore message detail s, which is appropriate for the purpase in this paper (we will explain it further in
Sedion 5.4).

4. We use net reduction (i.e., net transformation rules [Shatz et al. 1994) to simplify the Petri net
corresponding to an MPU/Method as a single place For instance, the MPU identified as propose in
Figure 14 isrepresented as placeP25in Figure 15.

5. We use the dosed-world assumption and consider a system that only contains three aents, i.e., a
buying agent and two selling agents. A system contains more than three gents can be verified in the

same way.

5.3Deadlock Detedion and Redesign of Agent-Oriented M odels

Now we use the INA todl to analyze the simplified agent model ill ustrated in Figure 15. To reduce the
state space we further reduce the net by fusing the MPUs in the same incoming/outgoing message sedion.
For instance, in Figure 8, we fuse the places P8, P9, P10 and P11 into one singe places. Obviously, this
type of net reduction [Shatz et al. 1999 does not affed the properties of liveness deallock-freenessand
the corrednessof inheritance mecdhanism. In addition, we set the cgadty of ead placein our net model as
1, which means at any time, some processng urits, such as MPUs, can only process one message.
However, the property of concurrency is gill preserved because different transitions can be simultaneously
enabled (and not in conflict); providing the standard Petri net notion of concurrency based on the
interleaved semantics. For example, transitions t25 and t27 can be simultaneously enabled, representing
that message procesdng for a wnversation and dedsion-making for another conversation can happen at

the same time.

To verify the corredness of our agent model, we utilize some key definitions for Petri net behavior

properties as adapted from [Murata 1989.

Definition 5.1 Reachalility
In a Petri net N with initial marking Mg, denoted as (N, Mg), a marking Mp, is sid to be reachalle from a

marking M if there exists a sequence of firings that transforms Mg to Mp. A firing or occurr ence sequence
isdenoted by 0 = Mg t1 M1 t2 M2 ...th M or simply 0 =t1t2 ... tn. In this case, Mp, isreatable from Mg

by o and we write Mg [0 > Mp,.

Definition 5.2 Boundedness

51

A Petri net (N, Mg), is sid to be k-bounded or simply bounded if the number of tokens in eat placedoes
not excee a finite number k for any marking reatable from Mq. A Petri net (N, M) is sid to be safe if it
is 1-bounded.

Definition 5.3 Liveness
A Petri net (N, M), is sid to be live if for any marking M that is readable from Mg, it is posdble to

ultimately fire any transition of the net by progressng some further firing sequence.

Definition 5.4 Revesibility
A Petri net (N, M) is sid to be revesibleif, for ead marking M that is reatable from the initial marking

Mo, Mg isreatable from M.

With our net model in Figure 8 asinput, the INA tool produces the following results:

Conput ation of the reachability graph
St ates generated: 8193
Arcs generated: 29701

Dead st ates:
484, 485, 8189
Nunmber of dead states found: 3
The net has dead reachabl e states.
The net is not |ive.
The net is not live and safe.
The net is not reversible (resetable).
The net is bounded.
The net is safe.
The following transitions are dead at the initial narking:
7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33
The net has dead transitions at the initial marking.

The analysis ows that our net model is not live, and the dead reatable states indicae adeadlock. By
tradng the firing sequence for those dead reatable states, we find that when there is a token in placeP29,
both the transitions t34 and t35 are enabled. At thistime, if the transition t35 fires, atoken will be deposited
into placeP30. After firing transition t40, the token removed from placeP24, by firing transition t29, will

return to placeP24, and this makes it possble to fire d@ther transition t27 or t29 in a future state. However

52

if the transition t34 fires, instead dof firing transition t35, there will be no tokens returned to placeP24. So,
transition t27 and t29 will be disabled forever, and a deadlock situation occurs.

“KTA 7y “[Tu ‘ ‘

internal !
T
T

wy

fromtransition
“update”

fautonomous unit

sensor

private

v new.

action
O™
automatic_

update
—

incoming messages

ASP(super)

to place “ Goal"
to place “ Plan”
to place “ Knowledge base”

Pulitiatbiioio st

<

private utilities

outgoing messages

Figure 16. A template for the Planrer modue (revised design)

To corred this error, we need to modify the design of the Planner module in Figure 10. The model
modification is to add a new arc from transition start_a_conversationto placesyn, and the crred version
of our Planrer module design is siown as in Figure 16. Correspondingly, we ald two new arcs in Figure
15: an arc from transition t16 to place P7, and another arc from transition t34 to place P24. After this
corredion, we can again evaluate the revised net model by using the INA too. Now we obtain the
foll owing results:

Conput ation of the reachability graph
States generated: 262143
Arcs generated: 1540095

The net has no dead reachabl e states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial nmarking:
7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

53

Li veness test:

Warni ng: Liveness analysis refers to the net where all dead transitions
are ignored.

The net is live, if dead transitions are ignored.

The conputed graph is strongly connect ed.

The net is reversible (resetable).

This automated analysis ows that our modified net model is live ignoring, of course, any transitions that
are ded in the initial marking. Thus, for any marking M that is readiable from Mo, it is possble to
ultimately fire aty transition (except those dead transitions) of the net. Since the initial marking Mg
represents that there is no ongoing (adive) conversations in the net, amarking M that is readable from Mg,
but where M £ Mo, implies that there must be some @nversations adive in the net. By showing that our net
model is live, we prove that under al circumstances (no matter if there ae, or are not, any adive
conversations), it is possble to eventualy perform any neealed future comnmunicaive ad. Consider the
ded transitions t7, 19, t14, t15, t16, t17 and t20. These imply that the dedsion-making urits in the shopping
subagent are disabled. The remaining deal transition, t28, implies that the primary subagent always makes

dedsions for the whole buying agent.

Our net modd is safe becaise we have set the cgadty of ead placein our model to 1 A net model with
cgoadty k (k> 1) for eat place ca be proved to be k-bounded in the same way. However, the state space

may increase dramaticdly.

In addition, the analysis tells us that our net model is revesible, indicating that the initial marking Mg can
be reproduced (recdl definition 4.4, given ealier). Sincethe initial marking Mg represents that there ae no

ongoing (adive) conversations in the net, the reversible property proves that every conversation in the net

can be eventually completed.

5.4 Property Verification by Using M odel Chedking

To further prove aditional behavioral properties of our revised net model, we use some model cheding
cgpabiliti es provided by the INA tool. Model cheding is atechnique in which the verification of a system
is carried out by using a finite representation of its tate space Basic properties, such as an absence of
deadlock or satisfadion of a state invariant (e.g., mutual exclusion), can be verified by cheding individual
states. More subtle properties, such as guaranteeof progress require cheding for spedfic cyclesin agraph
representing the states and pcssble transitions between them. Properties to be thedked are typicdly

54

described by formulaein a branching time or linea time temporal logic [Clarke et al. 1989 [Clark and
Wing 199q.

The INA tod alows us to state properties in the form of CTL formulae[Roch and Starke 1999[Clarke et
al. 1984. Using this notation, we can spedfy and verify some key properties of our revised net model, such
as concurrency, mutual exclusion, and proper inheritance behavior:

e Concurrency

The following formula says that, in the readability graph of our revised net model, there eists a path that
leadsto a state in which all the places P5, P13, P22 and P28 are marked.

EF(P5 &(P13 &(P22 &P28))) Result: The formula is TRUE
Result explanation: A TRUE result indicaes that al the places P5, P13, P22 and P28 can be marked at the
same time. From Figure 8, we seethat incoming/outgoing messages are dispatched in these places. So the
result impli es that diff erent messages can be dispatched in our net model concurrently.

e Mutua Exdusion

The following formula says that, in the readability graph of our revised net model, there eists a path that
leadsto a state in which both places P27 and P30 (or both places P29 and P30) are marked.

EF(P27 &P30) V (P29 &P30)) Result: The formula is FALSE

Result explanation: A FALSE result indicaes that it is impossble to mark both places P27 and P30 (or
bath places P29 and P30) at the same time. From Figure 8, we seethat place P27 represents any adions
exeauted after dedsion-making, and place P30 is used for updating the plan, goal and knowledge-base.
Thus, this result guarantees that dedsions can only be made upon the latest mental state, i.e., the latest
values in plan, goal and knowledge-base modules. Similarly, the fad that P29 and P30 cannot be marked at

the same time guarantees the requirement that the sensor can always capture the latest mental state.

* Inheritance Mechanism (dedsiornr-making in subagent)

The following formula says that, in the readability graph of our revised net model, P12, P14 and P15 are
not marked in any state on all paths.

55

AG - P12 &(-Pl4 & P15)) Result: The formula is TRUE

Result explanation: A TRUE result indicates that places P12, P14 and P15 are not marked under any
circumstance From Figure 8, we see that P12, P14 and P15 belong to dedsion-making urits in the
shopping subagent. As we stated ealier, al dedsion-making mechanisms in subagents sould be disabled,
with al dedsion-makings for an agent being achieved by the primary subagent. So, the result implies a
desirable feaure of the inheritance medanism in our net model.

e Inheritance Mechanism (ASP message forwarding 1)

The following formula says that, in the readability graph of our revised net model, P26 or P34 are dways
marked before P5 or P6 is marked.

Al (P26 VP34)B(P5 VP6)] Result: The forrmula is TRUE

Result explanation: A TRUE result indicates that neither place P5 nor P6 can become marked before the
placeP26 or P34 is marked. From Figure 8, we seethat placeP26 and P34 represent ASP places, and P5
and P6 represent the message dispatching urits. The result implies that messages will never be dispatched
in a shopping subagent unlessa MPU is not found in the primary buying subagent, in which case, either the
ASP placeP26 or P34 will be marked.

¢ Inheritance Mechanism (ASP message forwarding I1)

The following formula says that, in the readability graph of our revised net model, P26 (P34) is aways
marked before P5 (P6) is marked.

Al P26 BP5] VA[P34 BP6] Result: The formula is FALSE

Result explanation: We exped that for every incoming (outgoing) message, if it is not found in the primary
buying subagent, it will be forwarded to the shopping agent, and dispatched into a MPU of the incoming
(outgoing) message sedion. However, the FALSE result indicaes that our net model does not work as we
have expeded. By looking into the generic agent model, we can observe that when we aeded the net
model in Figure 8, we simplified al messge tokens as ordinary tokens, i.e., bladk tokens. This
simplification makes it posgble for an incoming (outgoing) message to be dispatched into an outgoing
(incoming) message sedion. Therefore, a message might be processed by a MPU that is not the desired

one. To solve this problem, we may use wlored tokens, instead of ordinary tokens, to represent message

56

tokens, and attach guards to transitions. However, in this paper, by using ordinary placétransition net (not a
colored net), we obtain a simplified model that is sufficient to ill ustrate our key concepts.

5.5Discusgon

In this Chapter, we discussed how to verify livenessproperties of our net model by using an existing Petri
net toadl, the INA tool. The value of such an automated analysis cgpability was demonstrated by detedion of
a dealock situation due to a design error. The revised model was then proved to be both live and
revasible. In addition, some model cheding techniques were used to prove some alditional behavioral
properties for our agent model, such as concurrency, mutual exclusion, and corrednessof the inheritance
mechanism. Although we proved some key behavioral properties of our agent model, our formal method
approach is aso o value in credaing a dea understanding of the structure of an agent, which can increase
confidence in the crredness of a particular multi-agent system design. Also, in producing a detailed
design, where the @strad transitions in the planner module ae refined, we may again use Petri net todls to

capture further design errors.

57

Chapter 6

Future Research Plans

6.1 1ntroduction

Communicaion among distributed processes is an essential requisite in nowadays computing systems. A
communication paradigm represents the set of rules to be followed in exchanging data and synchronizing
the exeaution of processes. The nature of currently available computing systems is pushing a lot towards a
distributed approach which asaumes that computing resources and data ae no longer located on the same
machine, and migration of code and datais exeauted in order to speed up the whole exeaution process The
classc client-server paradigm asuumes that the dient functionalities are somehow digoint from the
exeadtion power of the server. Since aserver usually provides srvice to a large number of clients, the
amourt of data exchanged may be considerable. Therefore, the work of the server is usually limited to the
mere exeaution of some basic procedures for the data retrieval and storage, while the data processng
mainly takes placeon the dient host. This type of scheme is used when we want to creae avery smple
system from the management point of view, or structures with a high level of seaurity. An advantage of this
architedure is the possbility of controlli ng the type of message and the ways of communication between
clients and servers. In other words, the server only ded with what is expeded during the design phase.
Consequently, the level of seaurity is very high. Since dients and servers can be viewed as passve objeds,

the objea-oriented paradigm provides the best framework for developing a dient-server appli cation.

Unlike the dient-server paradigm, a multi-agent system consists of a set of agents, i.e., adive objeds
[Shoham 1993. Agents usualy do not communicate with ead other in a way of method invocaion,
instead, an agent can send meaningful messages, posshly attached with a pieceof code, to another agent.
The recaver agent may analyze the receved message, exeaute the atached code and dedde whether to
perform the requested adions. Therefore, an agent must be &le to ded with messages that might not be
expeded during the design phase, and the communication mechanism among agents sould be in a way of
asynchronous message passng. This way of communicaion is smilar to the remote evaluation (REV)

paradigm [Stamos and Gifford 199Q, which implies that server receves not only the processng requests

58

from the dient, but aso the whole mde needed for performing operations on the data. However, agent
communication in a multi-agent system is more flexible and more complicated than the server-client
interadions in REV paradigm. Although we may use objed-oriented approach to design a multi-agent
system, it may complicate the design process while we deding with asynchronous message passng
medhanism and those mental dedsions of agents. Thus an agent-oriented approach, such as the one we

proposed, is necessary to be used to design a multi-agent system.

A third communication paradigm is the mobile ayent paradigm. As one of the new agent tedchniques,
mobile agent is becoming a promising paradigm pertinent to the highly distributed, dynamic, heterogeneous
and open environment, such as Internet. Mobile ayents are aitonomous agents that can migrate aound a
computer network, and exeaute & different locations during their life spans. A mobile agent consumes
fewer network resources in that they transfer the computation to the data rather than the data to the
computation, which is adopted by traditional distributed computing. As one of our future plans, we will try
to extend our agent-oriented G-net models for mobile agent modeling.

6.2 A Unified Model for Objed-Oriented and Agent-Oriented Design

Internet is becoming the most complex environment that provides an open, dynamic and heterogeneous
environment for large distributed systems. An Internet applicdion, such as an eledronic commerce
applicaion, usualy consists of a set of both objeds and agents. In those situations, an objed usually works
as a server and provides srvices to various clients (including agents), while aents may communicae with
ead other and negotiate to achieve their own goals. Therefore, a unified model for both objed modeling
and agent modeling might be useful for this type of applicaions. Based on our previous work, we will try
to unify our objed model and agent model, and provide auniform framework for Internet applicaion
designs.

The basic ideabehind this unified model isto provide both synchronous and asynchronous message passng
mechanisms for a distributed system. In a complex software system with both objeds and agents, objeds
usually use synchronous message passng to communicate with ead other, while agents communicated
with ead other by using asynchronous message passng. Moreover, an agent could be a dient of an objed
server, and it may also use synchronous message passng to get services from an objed. Synchronous
messge pasding in a form of method invocation is more dficient than asynchronous messge passng,
however it is not flexible enough for agent communicaions. Therefore, to provide both mecdhanisms for a

complex software system designis not only areseach isaue, but also could be a pradicd attempt.

58

6.3 Extending Agent-Oriented G-net M odel for M obile Agent Design

In a broad sense, a software agent is any program that ads on behaf of a (human) user, just as different
types of agents (e.g., travel agents, insurance gents, seaetaries) represent other people in day-to-day
transadions in the red world. A mohile aent then is a program which represents a user in a @mputer
network, and is cgpable of migrating autonomously (under its own control) from node to node in the
network, to perform some computation on behalf of the user. Its tasks are determined by the aent
application, and cen range from online shopping to red-time device @ntrol to dstributed scientific
computing. Applicaions can injed mobile agents into a network, allowing them to roam the network either
on a predetermined path, or one that the agents themselves determine based on dynamicdly gathered
information. Having acawmplished their goas, the aents may either terminate or return to their “home

site” in order to report their results to the user.

Harrison et al. identified several advantages of the mobile agent paradigm, in comparison with remote
procedure cdls (RPC) [Tay and Ananda 1990 and messge-passng. These alvantages include: reduce
network usage, increase aynchrony between clients and servers, add client-spedfied functionality to

servers, dynamicdly update server interfaces and introduce @ncurrency [Harrison et a. 1995.

The mobile aggent paradigm can be exploited in a variety of ways, ranging from low-level system
administration to middieware to user-level applicdions. An example of such application could be an
eledronic marketplace Vendors can set up online shops with products, services or information for sale. A
customer’s agent would carry a shoppng list along with a set of preferences, visit various sllers, find the
best ded based on the preferences, and purchase the product using digital forms of cash. This application
imposes a broad spedrum of requirements on mobile agent systems. Apart from nohbility, it neals
mechanisms for restricted resource acces seaure dedronic commerce, protedion of agent data, robustness
and user control over roving agents. For our future work, we will try to extend our agent-oriented model for
agent mobility modeling. This work will be based on previous work [Picco et al. 1999[Roman et al.
1997[Asperti and Busi 1996[Fan and Xu 200(0.

6.4 Seaurity Issuesin Mobile Agent Design
Messages ent aaossan open network like the Internet are inherently inseaure. As amobile ayent traverses
the network, its code and data ae vulnerable to various types of seaurity threas. We cnsider the following

types of attadks on communication links that the system needs to proted against [Ford 1994:

Passve attacks. In passve dtadks, the alversary does not interfere with the message traffic, but only

attempts to extrad useful information from it. The simplest form of such attad is eavesdropping, which

60

can result in the ledkage of sensitive information stored in the message (agent) being transmitted. Even if
the alversary is unable to dedpher the message ntents (because of encryption, for example), useful
information may be gleaned from the sizes and frequency of message exchanged, or merely the fad that
two principles are in communication. This type of pasdve atad is usualy cdled traffic andysis in the
seaurity literature. To counter passve dtadks, a confidentiality (i.e., privacy) mechanism is therefore

necessary.

Active attacks: In the cae of open networks like the Internet, we must assume avery general threa model
in which the aversary can arbitrarily intercept and modify network-level message, or even delete them
atogether and insert forged ones. These ae termed as adive dtads, since they involve adive interference
by the alversary. Another type of attadk in this caegory involves impersonaion, The alversary
impersonates one of the legitimate principals in the system and can attempt to intercept messages intended
for that principal. Active dtadks require greaer sophisticaion on the part of the alversary, but can also be
more dangerous than passve dtads. While we can not always prevent al such attadks, the damage caused
by them can be minimized if the communicaion link provides assurances of data integrity and
authentication. Here data integrity means that data is either delivered unmodified or a flag is raised to
signdl if it has been tampered with, and authentication requires that the source and destination of the

message is unambiguously identified.

If time permitted, we will try to model mobile ayents and hostile agents with our agent framework. Our
purpose is to study the different forms of attadk and to verify that some mobile agyent design might be
vulnerable to some types of attack. The alvantages of this research will be the automated verification of an
agent design by using existing Petri net toals.

61

Bibliography

[Adst and Basten 1997 W.M.P. van der Aalst and T. Basten, “Life-cycle Inheritance A Petri-net-based
approach,” In P. Azema and G. Balbo, editors, Application andTheory of Petri Nets 1997, volume
1248 d Ledure Notesin Computer Science, pages 62--81. Springer-Verlag, Berlin, 1997

[Arai et al. 1999 S. Arai, K. Miyaz&i, and S. Kobayashi, “Multi-agent Reinforcement Leaning for Crane
Control Problem: Designing Rewards for Conflict Resolution,” Procealings of 4th Internationd
Symposium on Autonamous Decentralized Systems (ISADS'99), Tokyo, Japan, 20-23 March 1999

[Asperti and Busi 1996 AndreaAsperti and Nadi Busi, “Mobil e Petri Nets,” Tedhnicd Report UBLCS-96-
10, University of Bologna, 1996

[Bastide 1995 R. Bastide, “Approaches in Unifying Petri Nets and the Objed-Oriented Approach,”
Procealings of the Internationd Workshop on Objed-Oriented Programmning and Models of
Concurrency, Turin, Italy, June 1995

[Basten and Aalst 2000 T. Basten and W.M.P. van der Aalst, “Inheritance of Dynamic Behavior:
Development of a Groupware Editor,” In G. Agha, F. De Cindo, and G. Rozenberg, editors,
Concurrent Objed-Oriented Programming and Petri Nets, Ledure Notes in Computer Science,
Advancesin Petri Nets, Springer-Verlag, Berlin, 200Q

[Battiston et al. 198§ E. Battiston, F. De Cindio and G. Mauri, “OBJSA Nets: a Classof High Level Nets
Having Objeds as Domains’, in Advances in Petri Nets 88, G. Rozenberg (ed.), LNCS 340, Springer
Verlag, 1988

[Battiston et al. 1999 E. Battiston, A. Chizzoni and F. De Cindio, “Inheritance and Concurrency in
CLOWN,” 16" Internationa Conference on Application andTheory of Petri nets, 1% Workshop on
Objed-Oriented Programmning andModels of Concurrency, Turin, Italy, June 1995

[Battiston et al. 1994 E. Battiston, A.Chizzoni and F. De Cindio, “Modeling a Cooperative Development
Environment with CLOWN,” 17" Int'l Conference on Application and Theory of Petri nets, 2™
Workshop onObjed-Oriented Programming andModels of Concurr ency, Osaka, Japan, June 1996

[Biberstein et al. 199 O. Biberstein, D. Buchs and N. Guelfi, “Modeling of Cooperative Editors Using
CO-OPN/2,” 17" Internationa Conference on Application andTheory of Petri nets, 2™ Workshop on
Objed-Oriented Programmning andModels of Concurrency, Osaka, Japan, June 1996

[Biberstein et al. 1997 O. Biberstein, D. Buchs and N. Guelfi, “CO-OPN/2: A Concurrent Object-Oriented

Formalism,” Proceealings of the Second IFIP Conference on Formal Methods for Open Objed-Based
Distributed Systems (FMOODS), Canterbury, UK, July 1997, pp. 57-72.

62

[Booch 1994G. Booch, Objed-Oriented Analysis and Design, with Applications (2" ed),
Benjamin/Cummings, San Mateo, California, 1994

[Brazer et al. 1997 Brazer, F.M.T., Dunin Keplicz, B., Jennings, N., and Treur, J., “DESIRE: Modeling
Multi-Agent Systems in a Compaositional Formal Framework”, Internationd Journal of Cooperative
Information Systems, vol. 6, Speda Issue on Formal Methods in Cooperative Information Systems:
Multi-Agent Systems, (M. Huhrs and M. Singh, eds.), 1997, pp. 67-94.

[Brazer et al. 199§ F. Brazer, F. Cornelisen, R. Gustavson, C. Jonker, O. Lindeberg, B. Polak, and J.
Treur, “Agents Negotiating for Load Baancing of Eledricity Use” In: M.P. Papazoglou, M.
Takizava, B. Kramer, S. Chanson (eds.), Procedalings of the 18th Internationd Conference on
Distributed Computing S/stems, ICDCS98, IEEE Computer Society Press 1998 pp. 622629,

[Burmeister 1994 Birgit Burmeister, “Models and Methoddogy for Agent-Oriented Analysis and Design,”
In K. Fischer, editor, Working Notes of the KI'96 Workshop on Agent-Oriented Programrming and
Distributed Systems, DFKI Document D-96-06, 1996

[Chavez axd Maes 1996 Anthony Chavez Pattie Maes, “Kasbah: An Agent Marketplacefor Buying and
Selling Goods,” Procealings of the First Internationd Conference on the Practical Application d
Intelli gent Agents and Multi-Agent Techndogy, London, UK, April 1996

[Clark and Wing 19964 E. M. Clarke and J. M. Wing, “Forma Methods: State of the Art and Future
Diredions,” ACM Computing Suiveys, vol. 28, no. 4, Decamber 1996 pp. 626643

[Clarke et al. 1984 E. M. Clarke, E. A. Emerson and A. P. Sistla. “Automatic verificaion of finite-state
concurrent systems using temporal logic spedficaions,” ACM Transactions on Programrming
Languags and §stems, 8(2), 1986 pp. 244263

[Crnogorac et al. 1997 Lobel Crnogorac Anand S. Rao, Kotagiri Ramamohanarao, “Analysis of
Inheritance Mechanisms in Agent-Oriented Programming,” IJCAI (1) 1997 647-654.

[Deng et al. 1993 Y. Deng, S. K. Chang, A. Perkusich and J. de Figueredo, “Integrating Software
Engneaing Methods and Petri Nets for the Spedficaion and Analysis of Complex Information
Systems,” Proceedings of The 14th Int’| Conf. on Application andTheory of Petri Nets, Chicago, June
21-25, 1993 pp. 206223

[Deng and Chang 1990 Y. Deng and S. K. Chang, “A G-net Model for Knowledge Representation and
Reasoning,” |EEE Transactions on Knowledge and Data Engineeing, Vol.2, No.3, September 199Q
pp. 295-310.

[Drake 1998 Caeb Drake, Objed-oriented programning with C++ and Snalltalk. Upper Saddle River,
New Jersey, PrenticeHall, 1998

[Eliens 1999 A. Eliens, Principles of Objed-Oriented Sdtware Devdopment, Addison-Wesley, 1995

[Fan and Xu 2000 X. Fan and D. Xu, “SAFIN: An Open Framework for Mobile Agents,” The 2000
Internationa Conferenceon Artificial Intelli gence (IC-Al'2000), Las Vegas, June 2000

63

[Finin et al. 1997 Tim Finin, Yannis Labrou, and James Mayfield, “KQML as an agent communicaion
language,” in Jeff Bradshaw (Ed.), Sdtware Agents, MIT Press Cambridge, 1997

[FIPA 2000 FIPA, FIPA ACL Message Structure Spedfication, Foundation for Intelligent Physicd
Agents, Technicd Report XC00061, 200Q

[Fisher and Wooldridge 1997 M. Fisher and M. Wodldridge, “On the Forma Spedficaion and
Verification of Multi-Agent Systems,” Internationad Journa of Cooperative Information Systems,
1(6): 37-65, 1997

[Ford 1994 Warwick Ford, Computer Comnunications Seaurity — Principles, Sandad Protocols and
Techniques, PrenticeHall, 1994

[Gasser and Briot 1993 Les Gaser and Jean-Pierre Briot, “Objed-Based Concurrent Processng and
Distributed Artificial Intelligence” In Nicholas M. Avouris and Les Gassr, editors, Distributed
Artificial Intelligence Theory and Praxis, pages 81-108, Kluwer Academic Publishers: Boston, MA,
1992

[Giese et al. 1998 H. Giese, J. Graf and G. Wirtz, “Modeling Distributed Software Systems with Objed
Coordination Nets,” Procealings for the Int'l Symposium on Sditware Engineeing for Parallel and
Distributed Systems, Japan, April 1998 pp.39-49.

[Greenet al. 1997 S. Green, L. Hurst, B. Nange, P. Cunringham, F. Somers, R. Evans, “ Software Agents:
A Review,” Technical report TCD-CS-1997-06, Trinity College Dublin, May 1997.

[Guttman et al. 1998 R. Guttman, A. Moukas, and P. Maes, “Agent-mediated Eledronic Commerce A
Survey,” Knowledge Engineaing Review, June 1998

[Harrison et al. 1999 Colin G. Harrison, David M. Chessand Aaron Kershenbaum, “Mobile Agents: Are
They aGoodldea?” Tedh. Rep., IBM Reseach Division, T. J. Watson Reseach Center, March 1995

[lglesias et al. 1998 Carlos Argel Iglesias, Mercedes Garrijo, José Centeno-Gonzdez, “A Survey of
Agent-Oriented Methoddogies,” Procealings of the Fifth Internationd Workshop onAgent Theories,
Architedures, and Language (ATAL-98), 1998 pp. 317-330.

[Jensen 1997 K. Jensen, Colored Petri Nets: Basic concepts, Analysis methods, and Practical use, Vol. 1,
No. 2, Springer-Verlag, 1992

[Jacobson et al. 1999 I. Jambson, et a., Objed-Oriented Sdtware Engineaing: A Use Case Driven
Approach, Addison-Wesley Publi shing Company, 1992

[Jennings et al. 1999 N. R. Jennings, K. Sycara and M. Wooldridge, “A Roadmap of Agent Research and
Development,” Int’l Journal of Autonamous Agents and Multi-Agent Systems, 1(1), 1998 pp. 7-38.

[Jennings 2000 N. R. Jennings, “On Agent-Based Software Engineeing,” Artificial Intelligence,
117(2000: 277-296

[Kendall 200Q Elizébeth A. Kendall, “Role Modeling for Agent System Anaysis, Design, and
Implementation,” IEEE Concurr ency, April-June, 2000 pp. 34-41.

64

[Kinny and Georgeff 1997 David Kinny, Michad P. Georgeff, “Modeling and Design of Multi-Agent
Systems,” Procealings of the 4th Int’| Workshop onAgent Theories, Architedures, and Languag
(ATAL-97), 1997, pp. 1-20.

[Kinny et al. 1994 D. Kinny, M. Georgeff, and A. Rao, “A Methoddogy and Modeling Technique for
Systems of BDI Agents,” Tedh. Rep. 58, Austraian Artificial Intelligence Ingtitute, Melbourne,
Australia, Jan. 1996

[Lakos and Keen 1994 C. Lakos and C. Keen, “LOOPN++: A New Language for Objed-Oriented Petri
Nets,” Tedhnical Report R94-4, Networking Research Group, University of Tasmania, Australia, April
1994

[Lakos 1995 C. Lakos, “Pragmatic Inheritance Isaies for Objed Petri Nets’, Procealings of Tedhndogy
of Objed-Oriented Languags and §stems (TOOLS) Pacific 1995 Melbourne, Australia, Prentice-
Hall, 1995

[Lakos 1995K C. Lakos, “The Objed Orientation of Objed Petri Nets,” Procealings of the Internationd
Workshop onObjed-Oriented andModels of Concurrency, Turin, Italy, June 1995

[Lakos 1997 C. Lakos, “On the Abstradion of Coloured Petri Nets,” Proceedings of Petri Net Conference
97, Touloure, France, 1997,

[Lano 1993 K. Lano, Formal Objed-Oriented Devdopment, Springer-Verlag, 1995

[Lee and Park 1993 Y. K. Lee and S. J. Park, “OPNets: An Objed-Oriented High-Level Petri Net Model
for Real-Time System Modeling,” Journal of Systems and Sdtware, 20(1): 69-86, 1993

[Luck et a. 1997 Michad Luck, Nathan Griffiths and Mark d'Inverno, “From Agent Theory to Agent
Congtruction: A Case Study,” In J. P. Muller, M.Wooldridge axd N. R. Jennings, editors, Intelli gent
Agents 1l (LNAI 1193, Ledure Notes in Artificial Intelligence Springer-Verlag: Heidelberg,
Germany, 1997

[Matsuoka and Yonezava 1993 Satoshi Matsuoka axd Akinori Yonezava, “Analysis of inheritance
anomaly in objed-oriented concurrent programming languages’. In Gul Agha €. al., editors, Research
Diredionsin Concurrent Objed-Oriented Programning, pages 107-150. MIT Press 1993

[Mendes et al. 1997 M. Mendes, O. Falsarella, |. Fontes, S. Krause, W. Loyolla, C. Mendez, P.S. Silva, C.
Tobar, “Architedural Considerations about Open Distributed Agent Suppart Platforms,” Proceeadings
of 3rd Int’| Symp. on Autonomous Decentralized Systems (ISADS'97), Berlin, Germany, April 1997.

[Mitchell and Wellings 1994 S. Mitchell and A. Wellings, “Synchronization, Concurrent Objed-Oriented
Programming and the Inheritance Anomaly”, Computer Languags, 1996 Vol. 22, No. 1, pp. 15- 26.

[Murata 1989 T. Murata, “Petri Nets: Properties, Analysis and Applicaions,” Procealings of the IEEE,
77(4): 541-580, April 1989

65

[Murataet al. 1991a] T. Murata, V. S. Subrahmanian and T. Wakayama, “A Petri Net Model for Reasoning
in the Presence of Inconsistency”, IEEE Transactions on Knowledge and Data Engineeing, Vol. 3,
No.3, September 1991 pp. 281-292

[Murata et al. 19918 T. Murata, P.C. Nelson, and J. Yim, “A Predicae-Transition Net Model for Multiple
Agent Planning,” Information Siences, 57-58, 1991, pp. 361-384.

[Odell 200Q James Odell, H. Van Dyke Parunak, Bernhard Bauer, “Representing Agent Interadion
Protocols in UML,” 1ICSE 2000 Workshop on Agent-Oriented Sdtware Engineeaing (AOSE-2000),
June 10, 200Q Limerick, Ireland.

[Perkusich and de Figueiredo 1997 A. Perkusich and J. de Figueiredo, “G-nets: A Petri Net Based
Approach for Logicd and Timing Analysis of Complex Software Systems,” Journa of Systems and
Sdtware, 39(1): 39-59, 1997,

[Picco et al. 1999 G. P. Picco, A. L. Murphy and G.-C. Roman, "Lime: Linda meds Mobhility,"
Procealings of the 21st Internationd Conferenceon Sdtware Engineaing (ICSE'99), May 1999
[Pressman 1997 Roger S. Pressman, Sdtware Engineging: A Practitioner's Approach, 4th Edition,

McGraw-Hill, 1997

[Rational 1997 Rational Software Corporation, Unified Modeling Languag (UML) version 10, Rational
Software Corporation, 1997

[Roch and Starke 1999 S. Roch and P. H. Starke, INA:Integrated Net Analyzer, Version 2.2, Humboldt-
Universitédt zu Berlin, Institut fir Informatik, April 1999

[Rogers et al. 200q T. J. Rogers, Robert Ross V. S. Subrahmanian, “IMPACT: A System for Building
Agent Applicaions,” Journa of Intelli gent Information Systems (JII'S), 14(2-3): 95-113(2000.

[Roman et al. 1997 G.-C. Roman, P. J. McCann and J. Y. Plun, “Mobile UNITY: Reasoning and
Spedficaion in Mobile Computing,” ACM Transactions on Sdtware Engineering andMethoddogy,
Vol. 6, No. 3, July 1997, pp. 250-282

[Rosse et al. 1999 J. G. Rosse Jr., D. P. Friedman and M. Wand, “Modeling Suboljed-Based
Inheritance”, Proceeadings of ECOOP’ 96, Vol. 1219 Ledure Notes in Computer Science, pp. 248274,
Springer-Verlag, 1996

[Rumbaugh et al. 1997 J. Rumbaugh et a., Objed-Oriented Modeling andDesign, Prentice Hall, New
York, 1991

[Shatz et al. 1994 S. M. Shatz, S. Tu, T. Murata, and S. Duri, “An Applicaion of Petri Net Reduction for
Ada Tasking Deallock Analysis,” IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No.
12, Deceamber 1996 pp. 13071322

[Shoham 1993 Yoav Shoham, “Agent-Oriented Programming,” Artificial Intelligence, 60(1): 51-92,
March 1993

[Sommervile 1995 lan Sommervile, Sdtware Engineaing, Fifth Edition, Addison-Wesley, 1995

66

[Stamos and Gifford 199Q James W. Stamos and David K. Gifford, “Remote Evauation,” ACM
Transactions on Programming Languages and stems, 12(4): 537-565, October 199Q

[Stepney et al. 1999 Susan Stepney, Rosalind Barden, and David Cooper, editors, Objed Orientationin Z,
Workshops in Computing, Springer-Verlag, 1992

[Tay and Ananda 19970 B. H. Tay and A. L. Ananda, “A Survey of Remote Procedure Calls,” Operating
Systems Review, 24(3): 68-79, July 199Q

[Thomas 1994 Laurent Thomas, “Inheritance Anomaly in True Concurrent Objed Oriented Languages. A
Proposal”, IEEE TENCON' 94, August 1994 pp. 541-545

[Tsvetovatyy et al. 1997 M. Tsvetovatyy, M. Gini, B. Mobasher, Z. Wiedkowski, “MAGMA: An Agent-
Based Virtua Market for Eledronic Commerce” Applied Artificial Intelligence speda issue on
Intelli gent Agents, No. 6, September 1997

[Wooldridge 1999 Michad Wooldridge, “Agents and Software Engineaing,” AlI*IA Notizie XI, 3,
September 1998

[Woodldridge et al. 2000 M. Woadldridge, N. R. Jennings, and D. Kinny, “The Gaia Methoddogy for
Agent-Oriented Analysis and Design,” Internationd Journal of Autonamous Agents and Multi-Agent
Systems, 3(3), 200Q pp. 285312

[Xie 2000 X. Xie, Design Suppa for Sate-Based Distributed Objed Sdtware, Ph.D. thesis, EECS
Department, The University of Illi nois at Chicago, Decanber 200Q

[Xu and Shatz 2000 H. Xu and S. M. Shatz, “Extending G-nets to Suppat Inheritance Modeling in
Concurrent Objed-Oriented Design,” |IEEE Internationd Conference on Sstems, Man, and
Cybernetics (SMC), October 2000 Nashvill e, Tennessee USA, pp. 31283133

[Xu and Shatz 2001a] H. Xu and S. M. Shatz, “An Agent-based Petri Net Model with Application to
Seller/Buyer Design in Eledronic Commerce” To appea in the Proc. of the 5" Internationa
Sympaosium on Autonamous Decentrali zed Systems (ISADS), March 2001, Dallas, Texas.

[Xu and Shatz 20014 H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” To
appea in the Proc. of the 21¥ Internationa Conference on Distributed Computing S/stems (ICDCS),
April 2001, Phoenix, Arizona.

67

Publications of the Author

(1]

(2]

(3]

(4]

(5]

6]

(8]

(9]

H. Xu and S. M. Shatz, "An Approach to Using Forma Methods in Agent-Oriented Design and
Analysis," (submitted to journal), January 2001

H. Xu and S. M. Shatz, "A Framework for Modeling Agent-Oriented Software," To appea in the
Procealings of the 21st Internationd Conference on Distributed Computing Systems (ICDCS-21),
April 16-19, 2001, Phoenix, Arizona, USA.

H. Xu and S. M. Shatz, "An Agent-based Petri Net Model with Applicaion to Seller/Buyer Designin
Eledronic Commerce” To appea in the Procealings of the Fifth Internationd Symposium on
Autonamous Decentrali zed Systems (ISADS 2001), March 26-28, 2001, Dall as, Texas, USA.

H. Xu and S. M. Shatz, "Extending G-nets to Suppart Inheritance Modeling in Concurrent Objed-
Oriented Design,” Procedalings of the IEEE Internationd Conference on $stems, Man, and
Cybernetics (SMC 2000, October 8-11, 2000 Nashvill e, Tennesee USA, pp. 31283133

R. K. Gedela, S. M. Shatz and H. Xu, "Compasitional Petri Net Models of Advanced Tasking in Ada-
95," Computer Languages, July 1999 Vol.25, No.2, pp.55-87.

R. K. Gedela, S. M. Shatz and H. Xu, "Formal Modeling of Synchronization Methods for Concurrent
Objeds in Ada 95," Procealings of the ACM Annud Internationd Conference on Ada (S GAda99),
October 17-21, 1999 Redondo Bead, CA, USA, pp. 211-220.

K. Warendorf, H. Xu, and A. Verhoeven, "Case-based Instructional Planning for Leaning in a
Context," Proceedings of PACES/'SPICIS 97(24-27 February 1997), Singapore, pp. 354-360.

H. Xu, X. Ruan, Z. Chen, S. Hu and H. Ren, "Hypertext and Multi-knowledge Source Based ICTS
(Intelli gent Chinese Tutoring System)," Journal of Chinese Information Processng, 1992 Voal. 6, No.
2, pp.8-16.

Q. Hu, H. Xu, Y. Zhang and C. Zhou, "Software Design of an Expert Control System in Vacam
Didtill ation,” Control andInstrumentsin Chemical Industry, 1992 Vol. 19, No. 4, pp.25-29.

[10]X. Ruan, S. Hu, Z. Chen and H. Xu, "The Presentation and Inference of Chinese Language

Knowledge," Proceealings of the Internationad Conference on "Information & System', A.M.S.E.,
October 1991 Hangzhou, China.

[11]H. Xu, Z. Chen, and S. Hu, "Design and Implementation Techniques for an Intelligent Chinese

Tutoring System," Proceedings of the Seaond Nationd Conference on Computer Application, October
1991, Beijing, China, pp. 988991

[12]H. Xu, "Software Design of an Microcomputer-based Nuclea Scder,” Process Automation

Instrumentation, 1991, Vol. 12, No. 10, pp.13-16.

68

Curriculum Vitae

Haiping Xu was born in Pinghy a mastal city of Zhegjiang, China. He got his ealy educdion in his
hometown, and skipped two grades in primary school. As a gifted child, Haiping skipped one more grade in
senior high school and was admitted to the "Juvenile Class' of Zhejiang University in April 1985 when he
wasonly 15yeasold. In July 1989 Haiping Xu got his B.S. degreein Eledricd Engineeing.

Owing to Haiping's excdlent performance in his undergraduate study, in 1989 he was admitted dredly to
the Graduate Schod of Zhejiang University without entrance eamination. Haiping' s research area was
Intelligent Computer Aided Instruction (ICAI), and he worked on a projed cdled “Intelligent Chinese
Language Tutoring System” in the Artificia Intelligence Lab at Computer Science Department. In March
1992 Haiping Xu not only got his M.S. degree but also was awarded the diploma and medal of "Excell ent
Graduate Student of Zhejiang University".

After graduated from Zhejiang University, Haiping Xu was employed as a software enginee in the
Ministry of Eledronics Industry in Beijing, China. Then from June 1993to May 1996 he successvely

worked as a senior engineea in Shenyan Company and Hewlett-Packard Company in Beijing, China.

In May 1996 Haiping Xu went to Singapore and worked there & a short-term research scholar in the
Intelligent Systems Lab at Nanyang Technologicd University. During the four months there, Haiping built
an intelli gent tutoring system prototype for the cmmputer science murse "Data Structures and Algorithms"

and published an international conference paper.

In August 1996 Haiping Xu came to the United States, and began to fulfill his unfinished ambition in his
graduate study. Haiping was awarded a reseach assstantship from the Computer Science and Engineeing
Department at Wright State University, and worked in the aeaof paralel and dstributed computing. In
1998 due to his excdlent performance in his graduate study, Haiping Xu was awarded the Dayton Area
Graduate Studies Ingtitute (DAGSI) Scholarship and got his M.S. degreein computer science

In August 1998 Haiping dedded to continue his Ph.D. study at the University of Illinois at Chicago. Now
heisaPh.D. candidate in the Eledricd Engineeing and Computer Science Department at UIC. During the
two and a half yeas gudy at UIC, Haiping hes published four conference papers and one journa paper.
Currently, Haiping's reseach interest is to apply Petri net formalism to software development, with

applications to eledronic commerce ad Internet seaurity.

69

