
1

02/26/01 Department of EECS, UIC 1

From Object to Agent: An Approach to Using Formal
Methods in Software Design and Analysis

HAIPING XU

PH.D. THESIS PROPOSAL

Electrical Engineering and Computer Science Department

The University of Illi nois at Chicago, 2001

Chicago, Illi nois

02/26/01 Department of EECS, UIC 2

Outline

• Introduction: Related work and our approach.
• Part 1: Inheritance modeling in object-oriented design.
• Part 2: Design of agent-based G-net model.
• Part 3: Modeling agent-oriented software.
• Part 4: Analysis of agent-oriented models.
• Part 5: Future research plans.

2

02/26/01 Department of EECS, UIC 3

Why Formal Methods?

• To write formal requirements specification, which
serves as a contract between the user and the
designer.

• To be used in software design. Design errors may be
caught in an early design stage.

• To support system analysis and verification.
– model checking
– theorem proving

02/26/01 Department of EECS, UIC 4

Formal Methods in Object-Oriented
Design

• Object-oriented formal methods
– OPN (Object Petri Nets), VDM++, Object-Z etc.

• Examples of OPN approaches
– OBJSA/CLOWN: CLass Orientation with Nets*
– CO-OPN/2: Concurrent Object-Oriented Petri Nets*
– LOOPN++: Language for Object-Oriented Petri Nets*
– G-nets: Generic Petri Nets**

* Do not support net-based analysis and verification.

** Do not support inheritance.

• Our proposed formal models are based on G-nets.

3

02/26/01 Department of EECS, UIC 5

Agent-Oriented Approaches and
Formal Methods

• The agents can be considered as active objects, i.e.,
objects with a mental state.

• However, object-oriented methodologies do not
address the following aspects:
– asynchronous message-passing mechanism
– mental state: plan, goal and knowledge
– autonomous behavior

• Agent-oriented approaches: provide guidelines for
agent specification and design.
– KGR methodologies: based on BDI model.
– Gaia methodologies: based on role modeling.

02/26/01 Department of EECS, UIC 6

Agent-Oriented Approaches and
Formal Methods (continue)

• Very little work on how to formally specify and design agents.
– DESIRE (DEsign and Specification of Interacting REasoning components)

provides a compositional framework for modeling agents.
– dMARS (distributed MultiAgent Reasoning System) is based on Procedure

Reasoning System (PRS) and supports formal reasoning.

– Agent models based on Petri nets, such as [Moldt and Wienberg 1997]
[Merseguer et al. 2000] [Xu and Deng 2000]

• However, they do not explicitly model agent interactions, and
they do not address the issue of inheritance.

• Unlike the previous work, our proposed agent models:
– support protocol-based agent interaction/communication.
– support reuse of functional units of our agent class models.

4

02/26/01 Department of EECS, UIC 7

Our Incremental Approach

Object-based G-nets (the original G-nets)

Standard G-nets (support class modeling)

Object-Oriented G-nets
(support inheritance)

Agent-based G-nets (support agent
modeling)

Agent-Oriented G-nets (support
inheritance)

02/26/01 Department of EECS, UIC 8

Advantages of Our Approach

• Based on the Petri net formalism, which is a mature
formal model in terms of both existing theory and tool
support.

• Support reuse of object or agent designs.
• Provide a nature way for object-oriented software

designers to design agent systems.
• Support net-based modeling and analysis.

– provide a clean interface among objects or agents.
– support net–based behavior analysis and verification.
– may unify the object-oriented G-nets and agent-oriented G-

nets to model complex software systems.

5

02/26/01 Department of EECS, UIC 9

Contributions of Our Work

• Extended the original G-net model to support class
modeling and inheritance modeling.

• Designed an agent-based G-net model, and proved
properties related to liveness, concurrency and
effectiveness for agent communication.

• Extended the agent-based G-net model to support
inheritance modeling in agent-oriented design.

• Performed experiments with an existing Petri net tool
to model and analyze agent-oriented software
systems.

02/26/01 Department of EECS, UIC 10

Part 1: Inheritance Modeling in
Object-Oriented Design

• Allows users to specify a subclass that inherits
features from its superclass.

• Question: how inheritance can be incorporated into
formalisms such as object Petri nets (OPN)?

• CLOWN, LOOPN++ and CO-OPN/2 use text-based
grammar to incorporate inheritance into Petri nets.

• Examples of net-based inheritance modeling:
– life-cycle inheritance [Aalst and Basten 1997]

– extended SBOPN formalism [Xie 2000]

6

02/26/01 Department of EECS, UIC 11

G-nets: A High Level Petri Net

• Defined to support modeling of systems as a set of
independent and loosely-coupled modules.

• Provide support for incremental design and
successive modification.

• Are not fully object-oriented due to a lack of support
for inheritance.

02/26/01 Department of EECS, UIC 12

An Example

Figure 1. G-net models of buyer and seller objects

GSP(Buyer)

ISP(Seller,
sellGoods())

 buyGoods() askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

BuyGoods();
askPrice();

returnPrice();
sellGoods();

7

02/26/01 Department of EECS, UIC 13

Extending G-nets to Support
Class Modeling

• Motivation: to support inheritance.
• Interpret a G-net as a model of class.
• Instantiate a G-net G:

– generates a unique object identifier G.Oid

– initializes the state variables defined in G

– ISP method invocation becomes 2-tuple (G’.Oid, mtd)

02/26/01 Department of EECS, UIC 14

Formal Definitions of the Standard
G-net Model

Definition 2.1 G-net system

A G-net system (GNS) is a triple GNS = (INS, GC, GO), where INS is a set of initialization statements used to instantiate G-nets as G-net objects;

GC is a set of G-nets which are used to define classes; and GO is a set of G-net objects which are instances of G-nets.

Definition 2.2 G-net

A G-net is a 2-tupleG = (GSP, IS), where GSP is a Generic Switch Place (GSP) providing an abstraction for the G-net; and IS is the Internal

Structure, which is a set of modified Pr/T nets. A G-net is an abstract of a set of similarly G-net objects, and it can be used to model a class.

Definition 2.3 G-net object

A G-net object is an instantiated G-net with a unique object identifier. It can be represented as (G, OID, ST), where G is a G-net, OID is the unique

object identifier and ST is the state of the object.

Definition 2.4 Generic Switching Place (GSP)

A Generic Switch Place (GSP) is a triple of (NID, MS, AS), where NID is a unique identifier (class identifier) of a G-net G; MS is a set of methods

defined as the interface of G-net G; and AS is a set of attributes defined as a set of instance variables.

Definition 2.5 Internal Structure (IS)

The internal structure of G-net G (representing a class), G.IS, is a net structure, i.e., a modified Pr/T net. G.ISconsists of a set of methods.

Definition 2.6 Method

A method is a triple (P, T, A), where P is a set of places with three special places called entry place, ISP placeand goal place. Each method can

have only one entry placeand one goal place, but it may contain multiple ISP places. T is a set of transitions, and each transition can be associated

with a set of guards. A is a set of arcs defined as: ((P-{goal place}) x T) ∪ ((T x (P-{entry place}).

8

02/26/01 Department of EECS, UIC 15

Different Forms of Inheritance

• Augment Inheritance: new protocols are added to a
subclass model.

• Restrictive Inheritance: some superclass methods
are absent from the protocol of the subclass.

• Replacement Inheritance: a subclass can completely
redefine the behavior of its superclass for a particular
method defined in the superclass.

• Refinement Inheritance: the subclass contains a
method that includes the behavior of its superclass,
but extends it in some way.

02/26/01 Department of EECS, UIC 16

Extending G-net to Support Inheritance

• Default Place: a default entry place defined in the
internal structure of a subclass model.

• The default place is marked only if the method is not
defined in the subclass model.

• Superclass Switch Place (SSP): is used to forward a
method call to a subobject of the object itself.

9

02/26/01 Department of EECS, UIC 17

A G-net Model of Unbounded Buffer UB

GSP(UB)

check
_empty

isEmpty()

Figure 2. G-net model of unbounded buffer class (UB)

bool isEmpty();
void put(e);
item get();
int who();

who()

print_Oid

ISP (self,
isEmpty())

 get()

t1

t2

syn

put(e)

return
_false

return
_true

remove

print
_error

store

t3

t4

t5

t6 t7

t8 t9

t10

t11

02/26/01 Department of EECS, UIC 18

A G-net Model of Bounded Buffer BB

GSP(BB)

print
_error

 who()

Figure 3. G-net model of bounded buffer class (BB)

BB extends UB
bool isEmpty();
bool isFull();
void put(e);
Item get();

default

SSP(UB)

ISP (self,
isFull())

isFull()

t1

t2

syn

put(e)

SSP(UB)

check
_full

print
_error

return
_true

return
_false

t5

t6 t7

t8 t9

t3

t4

t10

t11

10

02/26/01 Department of EECS, UIC 19

Part 2: An Agent-based G-net Model

• Becomes one of the most important topics in
distributed and autonomous decentralized systems.

• Multi-agent systems (MAS): autonomous, reactive
and internally-motivated agents.

• However, the standard G-net model is not sufficient
for agent modeling because:
– Do not support a common communication language and

common protocols among agents.
– Do not support asynchronous message passing directly.
– Be awkward to model agent’s mental state, such as goals,

plans and knowledge.

02/26/01 Department of EECS, UIC 20

An Agent-based G-net Model

GSP(G)

message_
processing

incoming message

Figure 4. A generic agent-based G-net model

Goal

 outgoing message

action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

private util i ty
utilit y_1 utilit y_p

…

…

…

…

…

…

utilit y_1 utilit y_p

Plan Environment

Notes: G’ .Aid = mTkn.body.msg.receiver

11

02/26/01 Department of EECS, UIC 21

A Temple of Planner Module

GSP(G)

Figure 5. A template of Planner module

Goal/Plan/KB Environment

ignore

start_a_
conversation

…

…

…

…

…

continue

external
internal

update

to place “ goal”

to place “ knowledge base”

from
transition
“ update”

update_
goalplan/kb

next_
action

dispatch_
uti lit ies

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

private_
uti lit ies

incoming messages

outgoing messages private util ities

02/26/01 Department of EECS, UIC 22

Definitions of the Message Token: mTkn
struct Message{

int sender; // the identifier of the message sender
int receiver; // the identifier of the message receiver
string protocol_type; // the type of contract net protocol
string name; // the name of incoming/outgoing messages
string content; // the content of this message

};

enum Tag {internal, external};

struct MtdInvocation {
Triple (seq, sc, mtd); // as defined in Section 2.1

}

if (mTkn.tag ∈ {internal, external})
then mTkn.body = struct {

Message msg; // message body
}
else mTkn.body = struct {

Message msg; // message body
Tag old_tag; // to record the old tag: internal/external
MtdInvocation miv; // to trace method invocations

}

12

02/26/01 Department of EECS, UIC 23

Formal Definitions of Agent-based
G-net Model

Definition 3.1 Agent-based G-net

An agent-based G-net is a 7-tupleAG = (GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic Switch Placeproviding an abstract for the agent-

based G-net, GL is a Goal module, PL is a Plan module, KB is a Knowledge-basemodule, EN is an Environment module, PN is a Planner module,

and IS is an internal structureof AG.

Definition 3.2 Planner Module

A Planner module of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO, IPL, IKB, IEN, IIS, DMU), where IGS, IGO,

IPL, IKB, IEN and IISare interfaces with GSP, Goal module, Plan module, Knowledge-basemodule, Environment module and internal structureof

AG, respectively. DMU is a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and update.

Definition 3.3 Internal Structure (IS)

An internal structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the incoming/outgoing message section, which

defines a set of message processing units (MPU); and PU is the private utility section, which defines a set of methods.

Definition 3.4 Message Processing Unit (MPU)

A message processing unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three special places: entry place, ISP and MSP. Each

MPU has only one entry place and one MSP, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a

set of guards. A is a set of arcs defined as: ((P-{ MSP}) x T) ∪ ((T x (P-{ entry}).

Definition 3.5 Method

A method is a triple (P, T, A), where P is a set of places with three special places: entry place, ISP and return place. Each method has only one entry

place and one return place, but it may contain multiple ISPs. T is a set of transitions, and each transition can be associated with a set of guards. A is a

set of arcs defined as: ((P-{ return}) x T) ∪ ((T x (P-{ entry}).

02/26/01 Department of EECS, UIC 24

Selling and Buying Agent Design

Buyer Buyer BuyerSeller Seller Seller

request-price

x

• refuse

propose

x

accept-proposal

reject-proposal

• confirm

request-price

propose

accept-proposal

• confirm

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(a) (b) (c)

Figure 6. A contract net protocol between buying
and selling agent

propose

x

accept-proposal

reject-proposal

*

13

02/26/01 Department of EECS, UIC 25

Selling and Buying Agent Design
(continue)

GSP(G)

mesg_pr-
ocessing

incoming messages

Figure 7. An Agent-based G-net model for buying agent class

Plan

 outgoing messages

propose refuse

t4

Environment

 Planner

MSP(self) MSP(self) MSP(self) MSP(G’ .Aid)

confirm request-price accept-proposal reject-proposal

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private utili ties

utility_1 utility_p

…

…

utili-
ty_1

utili-
ty_p

mesg_pr-
ocessing

MSP(G’ .Aid) MSP(G’ .Aid)

mesg_pr-
ocessing

Notes: G’ .Aid = mTkn.body.msg.receiver

Goal Knowledge-base

02/26/01 Department of EECS, UIC 26

Verifying Agent-based G-net Model

• L3-live: any communicative act can be performed as
many times as needed.

• Concurrent: a number of conversations among
agents can happen at the same time.

• Effective: an agent communication protocol can be
correctly traced in the agent models.

14

02/26/01 Department of EECS, UIC 27

Verifying Agent-based G-net Model
(continue)

GSP(G)

Figure 8. A transformed model of buying and selling agents

(goa/plan/kb) (env)

(ignore) (continue)

(external) (internal)

(next_
action)

GSP(G)

Buyer Seller

(dispatch_
incoming_
message)

(dispatch_
incoming_
message)

(dispatch_
outgoing_
message)

(dispatch_
outgoing_
message)

(next_
action)

(external) (internal)

(start_a_
conversation)

(start_a_
conversation)

(env)

(continue)(ignore)

a1 b1 c1 a2 b2 c2

d1 d2e1 e2

f1 g1 h1 f2 g2 h2
i1 i2

j1 j2

k1 l1 m1 k2 l2 m2

t1 t2

t4 t5 t6 t7 t8

t9 t10 t11
t12 t13 t14 t15

t16 t17 t18

t19 t20
t21t3

t22 t23 t24 t25 t26

t27 t28 t29
t30 t31

t34

t32

t35

t33

t36

(update) (update)

(propose, refuse, confirm)

(request_price, accept_proposal,
reject_proposal)

(request_price, accept_proposal,
reject_proposal)

(propose, refuse, confirm)

(goa/plan/kb)

02/26/01 Department of EECS, UIC 28

Part 3: A Framework for Modeling
Agent-Oriented Software

• Extend existing methodologies:
– object-oriented (OO) methodologies ==> KGR approaches.
– knowledge engineering (KE) methodologies ==> Gaia

methodologies.

• Follow the first approach, and separate traditional
object-oriented features and reasoning mechanism to
enhance reuse.

• Show the useful role of inheritance in agent-oriented
software design.

15

02/26/01 Department of EECS, UIC 29

Reuse of the Agent-based Model

GSP(G)

message_
processing

incoming message

Figure 9. A generic agent-based G-Net model

Goal

 outgoing message

action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’ .Aid) MSP(G’ .Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

private util ity

utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

Notes: G’ .Aid = mTkn.body.msg.receiver

02/26/01 Department of EECS, UIC 30

Redesign of the Planner Module to
Support Inheritance

• Abstract transitions: represents abstract units of
decision-making or mental-state-updating.

• Autonomous units: makes an agent autonomous and
internally-motivated.

• Asynchronous Superclass switch Place (ASP): is
used to forward a method call to a subagent of the
agent itself.

16

02/26/01 Department of EECS, UIC 31

A Template for the Planner Module
(initial design)

GSP(G)

Figure 10. A template for the Planner module (initial design)

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “ Goal”
to place “ Plan”
to place “ Knowledge base”

from transition
“ update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utilit y

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private util ities

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

02/26/01 Department of EECS, UIC 32

Examples of Agent-Oriented Design
(class hierarchy)

Shopping agent

Customer agent

Buying agent Selling agent

Retailer agent Auctioneer agent

Figure 11. The class hierarchy diagram of agents in an
electronic marketplace

17

02/26/01 Department of EECS, UIC 33

Examples of Agent-Oriented Design
(contract net protocol)

shopping agent facil itator agent

request-registration

• refuse

request-info
x

• confirm

(a) (b)

Figure 12. Contract net protocols (a) A template for the registration
protocol (b) A template for the price-negotiation protocol (c) An
example of the price-negotiation protocol

supply-info

x
accept-info *

buying agent selli ng agent

request-price

• refuse

x

accept-proposal

reject-proposal x

propose

propose

accept-proposal

reject-proposal
x

• confirm

• refuse

buying agent selli ng agent

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(c)

02/26/01 Department of EECS, UIC 34

Examples of Agent-Oriented Design
(shopping agent class)

GSP(SC)

mesg_pr-
ocessing

incoming messages

Figure 13. An agent-based G-Net model for shopping agent class (SC)

Goal

 outgoing messages

request-info refuse

t4

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(self)

accept_info confirm request-registration supply-info

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private util ities

utility_1 utility_p

…

…

utili-
ty_1

utili-
ty_p

mesg_pr-
ocessing

MSP(G’ .Aid) MSP(G’ .Aid)

mesg_pr-
ocessing

Plan Environment

18

02/26/01 Department of EECS, UIC 35

Examples of Agent-Oriented Design
(buying agent class)

 GSP(BC)
BC extends SC

message_
processing

incoming messages

Figure 14. An agent-based G-Net model for buying agent class (BC)

Goal

 outgoing messages

propose request-price

Knowledge-base

 Planner

MSP(self) MSP(G’ .Aid) MSP(G’ .Aid) MSP(G’ .Aid)

accept-proposal reject-proposal

message_
processing

message_
processing

message_
processing

 return return

private util ities

utility_1 utility_p

…

…

utility_1 utility_p

Plan Environment

02/26/01 Department of EECS, UIC 36

Part 4: Analysis of Agent-Oriented
Models

• To help ensure a correct design that meets certain
specifications.

• To meet certain requirements such as liveness,
deadlock freeness and concurrency.

• Use Petri net tool: INA (Integrated Net Analyzer)
– verifying structural properties

– verifying behavioral properties
– modeling checking (CTL formulas)

19

02/26/01 Department of EECS, UIC 37

A Transformed Model of One Buying Agent and Two Selling Agents

GSP(Shopping)

Figure 15. A transformed model of one buying agent and two sell ing agents

(goal/plan/kb_1)

(make_
decision_1)

(start_a_
conversation_1)

(continue_1)

(external_1)
(internal_1)

(update_
goal/plan/kb_1)

(check_
primary_1)

(dispatch_
outgoing_
message_1)

(dispatch_
incoming_
message_1)

GSP(Selling_2)

(bypass_1)

(ignore_1)

(next_
action_1)

(sensor_1)

(automatic_
update_1)

(new_
action_1)

(update_1)

outgoing messages

incoming messages

(environment_1)

(dispatch_
incoming_
message_1)

GSP(Selling_1)

GSP(Buying)

ASP(Super)

(ignore_2)

(continue_2)

(goal /plan/kb_2) (environment_2)

(bypass_2) (sensor_2)

(internal_2)

(external_2)

(automatic_
update_2)

(new_
action_2)

(start_a_
conversation_2)

(make_
decision_2)

(update_
goal/plan/kb_2)

(update_2)

(next_
action_2)

Shopping: Shopping Subagent
Buying: Buying Primary Subagent
(Buying Agent Class extends
Shopping agent Class)
Selling_1: Selling Agent_1
Selling_2: Selling Agent_2

List of message processing units
=========================

P8: request_info
P9: refuse
P10: accept_info
P11: confirm
P16: request-registration
P17: supply_info
P25: propose
P31: request-price
P32: accept-proposal
P33: reject-proposal

outgoing messages

incoming messages

to superclass
ASP(Super)

to superclass

(dispatch_
outgoing_
message_2)

(check_
primary_2)

P1 P2
P3 P4

P5
P6

P8 P9 P10 P11

P12
P13

P14

P15

P16 P17

P18 P19
P20 P21

P22
P23

P25 P26

P27
P28

P29

P30

P31 P33 P32
P34

P36

P35

t1
t2

t3 t4 t5 t6 t7 t8
t9

t10
t16

t12 t13 t14
t15

t11
t17

t18 t19

t20

t21
t22

t23 t24

t25 t26 t27
t28

t29

t30
t31

t32 t33 t34 t35

t36
t37 t38

t40

t41
t42 t43 t44

t46

t45

(syn_1)

(syn_2)

P7

P24

t39

(inhib_arc_1)

(inhib_arc_2)

02/26/01 Department of EECS, UIC 38

Experiment Result -1

Computation of the reachability graph

States generated: 8193

Arcs generated: 29701

Dead states:

484, 485,8189

Number of dead states found: 3

The net has dead reachable states.

The net is not live.

The net is not live and safe.

The net is not reversible (resetable).

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial marking.

20

02/26/01 Department of EECS, UIC 39

Redesign of the Planner Module
GSP(G)

Figure 16. A template for the Planner module
(revised design)

Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “ Goal”
to place “ Plan”
to place “ Knowledge base”

from transition
“ update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utiliti es

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

02/26/01 Department of EECS, UIC 40

Experiment Result - 2

Computation of the reachability graph

States generated: 262143

Arcs generated: 1540095

The net has no dead reachable states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

Liveness test:

Warning: Liveness analysis refers to the net where all dead transitions
are ignored.

The net is live, if dead transitions are ignored.

The computed graph is strongly connected.

The net is reversible (resetable).

21

02/26/01 Department of EECS, UIC 41

Property Verification by Using
Modeling Checking

• Concurrency

EF(P5 &(P13 &(P22 &P28))) Result: The formula is TRUE

• Mutual Exclusion

EF(P27 &P30) V (P29 &P30)) Result: The formula is FALSE

• Inheritance Mechanism (decision-making in subagent)

AG(-P12 &(-P14 &-P15)) Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding I)

A[(P26 VP34)B(P5 VP6)] Result: The formula is TRUE

• Inheritance Mechanism (ASP message forwarding II)

A[P26 BP5]VA[P34 BP6] Result: The formula is FALSE

02/26/01 Department of EECS, UIC 42

Concluding Comments

• There is an increasing need to ensure that complex
software systems being developed are robust,
reliable and fit for purpose.

• Petri nets are an excellent formalism for formal
specification because they tend to provide a visual,
and thus easy to understand, model.

• Extending G-nets to support inheritance in object-
oriented design and agent-oriented design provides
an effective way for modeling complex software
systems.

22

02/26/01 Department of EECS, UIC 43

Part 5: Future Research Plans

• A unified model for object-oriented and agent-
oriented software design.
– complex software systems with both objects and agents.

– object-object, agent-agent, and object-agent interactions.

• Extending agent-oriented G-net model for mobile
agent design.
– incorporate mobility into our agent models.
– with application to electronic marketplace.

• Security issues in mobile agent design.
– passive attack vs. active attack.

– mobile agent and hostile agent modeling.

