From Objed to Agent: An Approach to Using For mal
Methodsin Software Design and Analysis

HAIPING XU

PH.D. THESIS PROPOSAL
Eledricd Engineaing and Computer Science Department
The University of Illinois at Chicago, 2001
Chicago, Illi nois

02/26/01 Department of EECS, UIC 1

Outline

 Introduction: Related work and our approach.

« Part 1: Inheritance modeling in object-oriented design.
» Part 2: Design of agent-based G-net model.

» Part 3: Modeling agent-oriented software.

» Part 4: Analysis of agent-oriented models.

» Part 5: Future research plans.

02/26/01 Department of EECS, UIC 2

Why Formal Methods?

» To write formal requirements specification, which
serves as a contract between the user and the
designer.

» To be used in software design. Design errors may be
caught in an early design stage.

» To support system analysis and verification.
— model checking
— theorem proving

02/26/01 Department of EECS, UIC

Formal Methods in Object-Oriented
Design

» Object-oriented formal methods

— OPN (Object Petri Nets), VDM++, Object-Z etc.
« Examples of OPN approaches
OBJSA/CLOWN: CLass Orientation with Nets*
CO-OPN/2: Concurrent Object-Oriented Petri Nets*
— LOOPN++: Language for Object-Oriented Petri Nets*

— G-nets: Generic Petri Nets**
* Do not support net-based analysis and verification.

** Do not support inheritance.
» Our proposed formal models are based on G-nets.

02/26/01 Department of EECS, UIC

Agent-Oriented Approaches and
Formal Methods

» The agents can be considered as active objects, i.e.,
objects with a mental state.

» However, object-oriented methodologies do not
address the following aspects:
— asynchronous message-passing mechanism
— mental state: plan, goal and knowledge
— autonomous behavior
» Agent-oriented approaches: provide guidelines for
agent specification and design.
— KGR methodologies: based on BDI model.
— Gaia methodologies: based on role modeling.

02/26/01 Department of EECS, UIC 5

Agent-Oriented Approaches and
Formal Methods (continue)

« Very little work on how to formally specify and design agents.

— DESIRE (DEsign and Specification of Interacting REasoning components)
provides a compositional framework for modeling agents.

— dMARS (distributed MultiAgent Reasoning System) is based on Procedure
Reasoning System (PRS) and supports formal reasoning.

— Agent models based on Petri nets, such as [Moldt and Wienberg 1997]
[Merseguer et al. 2000] [Xu and Deng 2000]

« However, they do not explicitly model agent interactions, and
they do not address the issue of inheritance.
* Unlike the previous work, our proposed agent models:
— support protocol-based agent interaction/communication.
— support reuse of functional units of our agent class models.

02/26/01 Department of EECS, UIC 6

Our Incremental Approach

‘ Objed-based G-nets (the original G-nets) ‘

.

‘ Standard G-nets (suppart classmodeling) ‘

. 5 . 5

Objed-Oriented G-nets Agent-based G-nets (suppart agent
(suppoart inheritance) modeli ng)

Agent-Oriented G-nets (suppart
inheritance)

02/26/01 Department of EECS, UIC

Advantages of Our Approach

» Based on the Petri net formalism, which is a mature
formal model in terms of both existing theory and tool
support.

» Support reuse of object or agent designs.

» Provide a nature way for object-oriented software
designers to design agent systems.

» Support net-based modeling and analysis.

— provide a clean interface among objects or agents.
— support net-based behavior analysis and verification.

— may unify the object-oriented G-nets and agent-oriented G-
nets to model complex software systems.

02/26/01 Department of EECS, UIC

Contributions of Our Work

Extended the original G-net model to support class
modeling and inheritance modeling.

Designed an agent-based G-net model, and proved
properties related to liveness, concurrency and
effectiveness for agent communication.

Extended the agent-based G-net model to support
inheritance modeling in agent-oriented design.
Performed experiments with an existing Petri net tool

to model and analyze agent-oriented software
systems.

02/26/01 Department of EECS, UIC 9

Part 1: Inheritance Modeling in
Object-Oriented Design

Allows users to specify a subclass that inherits
features from its superclass.

Question: how inheritance can be incorporated into
formalisms such as object Petri nets (OPN)?
CLOWN, LOOPN++ and CO-OPN/2 use text-based
grammar to incorporate inheritance into Petri nets.
Examples of net-based inheritance modeling:

— life-cycle inheritance [Aalst and Basten 1997]

— extended SBOPN formalism [Xie 2000]

02/26/01 Department of EECS, UIC 10

G-nets: A High Level Petri Net

» Defined to support modeling of systems as a set of
independent and loosely-coupled modules.

* Provide support for incremental design and
successive modification.

» Are not fully object-oriented due to a lack of support
for inheritance.

02/26/01 Department of EECS, UIC 11

An Example

BuyGoods(); returmnPrice);
askPrice(); L sell Goods();

buyGoods() askPrice() returnPrice() sdl Goods()

t

ISRsdler
sl Goods()

3 .
g ISH{Sdler,
refurnPrice()) calculate

price

L
© 4

Figure 1. G-net models of buyer and sell er objeds

02/26/01 Department of EECS, UIC 12

Extending G-nets to Support
Class Modeling

» Motivation: to support inheritance.
* Interpret a G-net as a model of class.
* Instantiate a G-net G:

— generates a unique object identifier G.Oid

— initializes the state variables defined in G
— ISP method invocation becomes 2-tuple (G’.Oid, mtd)

02/26/01 Department of EECS, UIC 13

Formal Definitions of the Standard
G-net Model

A G-net system (GNS) isatriple GNS = (INS, GC, GO), where INSisa set of initiaization statements used to instantiate G-nets as G-net ohjects;
GCisaset of G-nets which are used to define dasses; and GOis aset of G-net objeds which areinstances of G-nets.

Definition 2.2 G-net
A G-netisa2-tuple G = (GSP, |S), where GSPis a Generic Saitch Place (GSP) providing an abstraction for the G-net; and ISisthe Internal
Structure, which isa set of modified Pr/T nets. A G-net isan abstract of a set of similarly G-net objeds, and it can be used to model a class.

Definition 2.3 G-net object
A G-net object is an instantiated G-net with a unique objed identifier. It can be represented as (G, OID, ST), where G isaG-net, OID isthe unique
object identifier and ST isthe state of the object.

Definition 2.4 Generic Saitching Place (GSP)
A Generic Switch Place (GSP) isatriple of (NID, MS, AS), where NID isaunique identifier (classidentifier) of a G-net G; MSisa set of methods
defined astheinterface of G-net G; and ASisaset of attributes defined as a set of instance variables.

Definition 2.5 Internal Structure (1S)
Theinternal structure of G-net G (representing aclass, G.IS isanet structure, i.e., amodified Pr/T net. G.IS consists of a set of methods.

Definition 2.6 Method

A method isatriple (P, T, A), where Pisaset of places with threespedal places called entry place, ISP place and goal place. Each method can
have only one entry place and ane goal place, but it may contain multiple ISP places. T isaset of transitions, and each transition can be asciated
with a set of guards. A isaset of arcs defined as: ((P-{god place}) x T) O (T x (P-{entry place}).

02/26/01 Department of EECS, UIC 14

Different Forms of Inheritance

« Augment Inheritance: new protocols are added to a
subclass model.

» Restrictive Inheritance: some superclass methods
are absent from the protocol of the subclass.

* Replacement Inheritance: a subclass can completely
redefine the behavior of its superclass for a particular
method defined in the superclass.

» Refinement Inheritance: the subclass contains a

method that includes the behavior of its superclass,
but extends it in some way.

02/26/01 Department of EECS, UIC 15

Extending G-net to Support Inheritance

» Default Place: a default entry place defined in the
internal structure of a subclass model.

» The default place is marked only if the method is not
defined in the subclass model.

» Superclass Switch Place (SSP): is used to forward a
method call to a subobject of the object itself.

02/26/01 Department of EECS, UIC 16

A G-net Model of Unbounded Buffer UB

bod isEmpty();
void pu(e);
item get();
int who();
ﬂsmmyo pu(e) get) who)
t 3 110
print_Oid
store
check
—empt
2 4 t11

Figure 2. G-net model of unbounded buffer class (UB)

02/26/01 Department of EECS, UIC 17

A G-net Model of Bounded Buffer BB

BB extendsUB
bool isEMpty();
bool isFUIl();
void pu(e);
l tem g
/ wha() isFull() pu(e) default \
ISP (sdlf,
1 <] isFull0) 110
eturn uB
it ek g o ssPUB)
_ermor _full
print
_error
©2 @ 111
18

Figure 3. G-net model of bounded buffer class (BB)

02/26/01 Department of EECS, UIC 18

Part 2: An Agent-based G-net Model

* Becomes one of the most important topics in
distributed and autonomous decentralized systems.

* Multi-agent systems (MAS): autonomous, reactive
and internally-motivated agents.

 However, the standard G-net model is not sufficient
for agent modeling because:

— Do not support a common communication language and
common protocols among agents.

— Do not support asynchronous message passing directly.

— Be awkward to model agent’s mental state, such as goals,
plans and knowledge.

02/26/01 Department of EECS, UIC 19

An Agent-based G-net Model

(o | [| [ovseme] [
I : ; : i

| e |

incoming message: outgoing message private ility
adion_1 adion_m adion_1 adion_n utility_1 utilty_p

messege_ _/messge_ messge message utlty_1 ilty_p
processing | processng processing processing

MSP(self) MSP(salf) MSP(G' Aid) MSP(G Aid) return retum

Notes: G'.Aid = miTkn.bodv.msa.receiver

Figure 4. A generic agent-based G-net model

02/26/01 Department of EECS, UIC 20

10

A Temple of Planner Module

GSP(G) Goal/Pla/KB

external

| dispatch_
| incoming_
| message

incoming messages

toplace” goal”

to place” knowledge base’

intemal
from
transition
ot RSN update
adion conversation
private_
dispatch_ utilities
outgoing_
messge
dispatch_
utilities
outgoing messages private utilities

Figure 5. A template of Planner module

02/26/01

Department of EECS, UIC

21

Definitions of the Message Token: mTkn

struct Message{
int sender;
int receiver;
string protocol _type;
string nane;
string content;

}i

I/ the identifier of the nessage sender
/1 the identifier of the nmessage receiver
/1 the type of contract net protocol

/1 the nane of inconing/outgoing mesages
/1 the content of this nessage

enum Tag {internal, external};

struct Mdlnvocation {
Triple (seq, sc, mtd);
}

/1 as defined in Section 2.1

if (nTkn.tag O {internal, external})

then nifkn. body = struct {

Message nsg;

/1 message body

el se nTkn. body = struct {
Message nsg; /1 message body
Tag ol d_tag; Il to record the old tag: internal/eternal
Mdl nvocation mv; /1 to trace nethod invocations
}
02/26/01 Department of EECS, UIC 22

11

Formal Definitions of Agent-based
G-net Model

Definition 3.1 Agent-based G-net

An agent-based G-net isa 7-tuple AG = (GSP, GL, PL, KB, EN, PN, |S), where GSP isa Generic Switch Place providing an abstract for the agent-
based G-net, GL isa Goal module, PL isaPlan module, KB is a Knowledge-base module, EN isan Environment module, PN is a Planner module,
andISisan internal structure of AG.

Definition 3.2 Planner Module

A Planrer modue of an agent-based G-net AG isa colored sub-net defined asa 7-tuple (IGS, 1GO, IPL, IKB, IEN, Il S DMU), where IGS IGO,
IPL, IKB, IEN and || Sare interfaces with GSP, Goal module, Plan module, Knowledge-base module, Environment module and internal structure of
AG, respedively. DMU is aset of decision-making unit, and it contains threeabstract transitions: make_decision, sensor and update.

Definition 3.3 Internal Sructure (1S
Aninternal structure (1S of an agent-based G-net AG isatriple (IM, OM, PU), where IM/OM is the incoming/outgoi ng message sedion, which
defines a set of message processng units (MPU); and PU isthe private utility sedion, which defines a set of methods.

Definition 3.4 Message Processng Unit (MPU)

A message processng wit (MPU) isatriple (P, T, A), where P isa set of places consisting of threespedal places: entry place, ISP and MSP. Each
MPU has only one entry place axd one MSP, but it may contain multiple ISPs. T isaset of transitions, and each transition can be asciated with a
set of guards. Aisaset of arcs defined as: ((P-{MSP}) x T) O ((T x (P-{entry}).

Definition 3.5 Method

A methodisatriple (P, T, A), where P isaset of places with threespecial places: entry place, ISP and return place. Each method has only one entry
placeand onereturn place, but it may contain multiple |SPs. T isa set of transitions, and each transition can be associated with a set of guards. Aisa
set of arcs defined as: ((P-{return}) x T) O ((T x (P-{entry}).

02/26/01 Department of EECS, UIC 23

Selling and Buying Agent Design

[ooe] [sae] [oow] [sae] [sow] [sas]

request-price request-price request-price

L « refuse

propose propose
f_ propase W
accept-proposal [acept-proposal rejed-proposal
‘ejed-proposa v o .
propose W + corfirm
I« s
accept-proposal amept-proposal

‘ejed-proposal i ’
| « confirm
U‘ « confirm D | -

@ (b) (©

Figure 6. A contract net protocol between buying
and selling agent

02/26/01 Department of EECS, UIC 24

12

Selling and Buying Agent Design

(continue)

|
! : : : :

‘ Fenner ‘

'

incoming messages. outgoing messages. private utilities
propase refuse confirm | request-price accept-propesdl rejed-propasd utility_1 utility_p

Goa H P Hmwm@m“g ment ‘

MSP(sslf) MSP(saf) MSP(sdlf) MSP(G' Aid) MSP(G Aid) MSG Aid) retum return

Notes: G'.Aid = mTkn.body.msg.recever

Figure 7. An Agent-based G-net model for buying agent class

02/26/01 Department of EECS, UIC 25

Verifying Agent-based G-net Model

« L3-live: any communicative act can be performed as
many times as needed.

» Concurrent: a number of conversations among
agents can happen at the same time.

» Effective: an agent communication protocol can be
correctly traced in the agent models.

02/26/01 Department of EECS, UIC 26

13

Verifying Agent-based G-net Model

(continue)

Figure 8. A transformed model of buying and selling agents

02/26/01 Department of EECS, UIC 27

Part 3: A Framework for Modeling
Agent-Oriented Software

» Extend existing methodologies:
— object-oriented (OO) methodologies ==> KGR approaches.
— knowledge engineering (KE) methodologies ==> Gaia
methodologies.

» Follow the first approach, and separate traditional
object-oriented features and reasoning mechanism to
enhance reuse.

» Show the useful role of inheritance in agent-oriented
software design.

02/26/01 Department of EECS, UIC 28

14

Reuse of the Agent-based Model

[| [5n | [oorores] [ormemer |
I : : : :

‘ Aaner ‘

i

incoming message: ougoing message private uility
action_1 action m action_1 action_n utility_1 utility_p

message_ message_ message_ message utility_1 Lility_p
processng | processing processing processing

MSP(slf) MSP(self) MSP(G’ Aid) MSPG' Ad) reum rewm

Notes: G'.Aid = mTkn.bodv.msa.recever

Figure 9. A generic agent-based G-Net model

02/26/01 Department of EECS, UIC

29

Redesign of the Planner Module to

Support Inheritance

» Abstract transitions: represents abstract units of
decision-making or mental-state-updating.

» Autonomous units: makes an agent autonomous and

internally-motivated.

» Asynchronous Superclass switch Place (ASP): is
used to forward a method call to a subagent of the
agent itself.

02/26/01 Department of EECS, UIC

30

15

A Template for the Planner Module
(initial design)

fautonamous unit

AsP(super)

outgaing messages

Figure 10. A template for the Planner module (initial design)

02/26/01 Department of EECS, UIC 31

Examples of Agent-Oriented Design
(class hierarchy)

Shopping agent

JAN

‘ Buying agent ‘ ‘ Selling agent

Figure 11. The class hierarchy diagram of agentsin an
eledronic marketplace

02/26/01 Department of EECS, UIC 32

16

Examples of Agent-Oriented Design
(contract net protocol)

] [faclitator agend I] [salingagent | [buyingagent | [seingagent |
request-price il o pice N
1 e
propaz
" popaz
acpt-propesl - reject-propceal
propaz H
" propo iy e
accept-propasl P
reject-propasal
- corfim
D « corfirm |j
@ (b) (0

Figure 12. Contrad net protocols (a) A template for the registration
protocol (b) A template for the price-negotiation protocol (c) An
example of the price-negotiation protocol

02/26/01 Department of EECS, UIC

33

Examples of Agent-Oriented Design
(shopping agent class)

[on | [om | [soseree | [[omm]
: : : ;

‘ Ranner ‘

outgoing messages private utlities
reques-registration supply-info. utility 1 uility_p

MSP(slf) MSP(self) MSP(self) MSP(self) MSP(GAid) MSP(GAid) rewm return

Figure 13. An agent-based G-Net model for shoppng agent class(SC)

02/26/01 Department of EECS, UIC

34

17

Examples of Agent-Oriented Design
(buying agent class)

(oo J [e pE===Y
BC extends SC. Goal Plan Knowledge-base Environment.
; ; ; ;

‘ Aenner ‘

i

incoming messages. ougoing messages. private utilities
propase request-price accept-propasal rejed-propasal utility_1 utility_p

messege_ messge_ messge_ messge_ utlity_1 dility_p
processing processing processing processing

MSP(self) MSP(G Aid) MSP(G Aid) MSP(G'Ad) return return

Figure 14. An agent-based G-Net model for buying agent class(BC)

02/26/01 Department of EECS, UIC 35

Part 4: Analysis of Agent-Oriented
Models

* To help ensure a correct design that meets certain
specifications.
* To meet certain requirements such as liveness,
deadlock freeness and concurrency.
» Use Petri net tool: INA (Integrated Net Analyzer)
— verifying structural properties
— verifying behavioral properties
— modeling checking (CTL formulas)

02/26/01 Department of EECS, UIC 36

18

A Transformed Model of One Buying Agent and Two Selling Agents

GG (o e v) Shoy
t C

o

Figure 15. A transformed model of one buying agent and two selling agents

02/26/01 Department of EECS, UIC 37

Experiment Result -1

Conput ati on of the reachability graph
States generated: 8193
Arcs generated: 29701

Dead states:
484, 485, 8189

Nunber of dead states found: 3

The net has dead reachabl e states.

The net is not live.

The net is not live and safe.

The net is not reversible (resetable).

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:
7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial marking.

02/26/01 Department of EECS, UIC 38

19

Redesign of the Planner Module

T :L j ‘

inena ||
ched_
primeny puonamous unit
private
. dispatch_
: private_
tilty

fonae
upcte_

“ updae’

<e>|

:g gg;};\ .ﬁw private utilti es
o ace - 111
= 00%
outgoing messages
Figure 16. A template for the Planner module
02/26/01 Department of EECS, UIC 39

Experiment Result - 2

Conput ati on of the reachability graph
States generated: 262143
Arcs generated: 1540095

The net has no dead reachabl e states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:
7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

Li veness test:

War ni ng: Liveness analysis refers to the net where all dead transitions

are ignored.
The net is live, if dead transitions are ignored.
The conputed graph is strongly connected.
The net is reversible (resetable).

02/26/01 Department of EECS, UIC

40

20

Property Verification by Using
Modeling Checking

Concurrency

EF(P5 &(P13 &(P22 &P28))) Result: The fornmula is TRUE
Mutual Exdusion

EF(P27 &P30) V (P29 &P30)) Result: The fornmula is FALSE
Inheritance Mecharnism (dedsion-making in subagent)

AGQ(-P12 &(-Pl14 & P15)) Result: The fornmula is TRUE
Inheritance Mecharism (ASP message forwarding)

Al (P26 VP34) B(P5 VP6)] Result: The formula is TRUE
Inheritance Mechansm (ASP message forwarding I1)

Al P26 BP5] VA[P34 BP6] Result: The fornmula is FALSE

02/26/01 Department of EECS, UIC 41

Concluding Comments

* There is an increasing need to ensure that complex
software systems being developed are robust,
reliable and fit for purpose.

» Petri nets are an excellent formalism for formal
specification because they tend to provide a visual,
and thus easy to understand, model.

» Extending G-nets to support inheritance in object-
oriented design and agent-oriented design provides
an effective way for modeling complex software
systems.

02/26/01 Department of EECS, UIC

42

21

Part 5: Future Research Plans

* A unified model for object-oriented and agent-
oriented software design.
— complex software systems with both objects and agents.
— object-object, agent-agent, and object-agent interactions.
» Extending agent-oriented G-net model for mobile
agent design.
— incorporate mobility into our agent models.
— with application to electronic marketplace.
» Security issues in mobile agent design.
— passive attack vs. active attack.
— mobile agent and hostile agent modeling.

02/26/01 Department of EECS, UIC 43

22

