

A MODEL-BASED APPROACH FOR DEVELOPMENT OF

MULTI-AGENT SOFTWARE SYSTEMS

BY

HAIPING XU
B.S., Zhejiang University, Hangzhou, China, 1989
M.S., Zhejiang University, Hangzhou, China, 1992
M.S., Wright State University, Dayton, OH, 1998

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2003

Chicago, Illinois

This thesis is dedicated to

my dear parents, Nianxiang and Ming,

without whom it would never have been accomplished.

 iii

ACKNOWLEDGMENTS

I would like to acknowledge many people for helping me during my doctoral work. I would

especially like to thank my advisor, Dr. Sol M. Shatz, for his generous time and commitment. Throughout

my doctoral work he encouraged me to develop independent thinking and research skills. He continually

stimulated my analytical thinking and greatly assisted me with scientific writing. Dr. Shatz has been a great

source of encouragement and inspiration to me. Without his support this dissertation would not have been

written.

I am also very grateful for having an exceptional thesis committee and wish to thank Dr. Ugo Buy,

Dr. Tadao Murata, Dr. Peter Nelson and Dr. Aris Ouksel for their unwavering support and assistance. I

would like to thank Dr. Jeffrey Tsai, who was one of the committee members for my Ph.D. preliminary

examination, and had provided valuable suggestions for my research directions.

I owe a special note of gratitude to Dr. Prabhaker Mateti at the Computer Science and Engineering

Department at Wright State University, who led me into the area of distributed computing before I joined

the Computer Science Department at the University of Illinois at Chicago. He has always been a great

support and encouragement to my Ph.D. study.

I extend many thanks to my colleagues and friends at the Concurrent Software Systems

Laboratory (CSSL), especially Dr. Ajay Kshemkalyani, Dr. Prasad Sistla, Dr. Xiande Xie, Zhaoxia Hu,

Yan Pan, and Chaoyue Xiong. Each of them has contributed valuable insights and suggestions.

Finally, I thank the Department of Computer Science at the University of Illinois at Chicago for

giving me this opportunity and providing an environment to do research.

HX

 iv

TABLE OF CONTENTS

CHAPTER

PAGE

1. INTRODUCTION…...…………………………………………………………………
1.1 Background and Motivations.………………………………………..….………..
1.2 Related Work………………………………………………………………...…....

1.2.1 Object-Oriented Petri Nets………………………………....……...……..
1.2.2 Formal Methods in Agent-Oriented Software Engineering.……………..

1.3 Contributions of Our Work.………………………………………………………

2. A FORMAL MODEL FOR CONCURRENT OBJECT-ORIENTED DESIGN.……...
2.1 Introduction…….……………………………………………………………..…..
2.2 G-Net Model Background…………………………………………………….…..
2.3 Extending G-Nets for Class Modeling……………………………………………
2.4 Extending G-Nets to Support Inheritance……...…………………………………
2.5 Modeling Different Forms of Inheritance………………………………………...
2.6 Modeling Inheritance Anomaly Problem…………………………………………
2.7 Summary...………………………………………………………………………..

3. FROM OBJECT TO AGENT: AN AGENT-BASED G-NET MODEL………………
3.1 Introduction…………………………………………………………………….....
3.2 Agent-Based G-Net Model………………………………………………………..
3.3 Selling and Buying Agent Design………………………………………………...
3.4 Verifying Agent-Based G-Net Models……………………………………………
3.5 Summary…...……………………………………………………………………..

4. A FRAMEWORK FOR MODELING AGENT-ORIENTED SOFTWARE………….
4.1 Introduction………….………..…………………………………………………..
4.2 An Agent-Oriented Model………………………...……………………….……...

4.2.1 An Architecture for Agent-Oriented Modeling…………………………..
4.2.2 Inheritance Modeling in Agent-Oriented Design………………………...

4.3 Examples of Agent-Oriented Design……………………………………………..
4.3.1 A Hierarchy of Agents in an Electronic Marketplace……………………
4.3.2 Modeling Agents in an Electronic Marketplace………………………….

4.4 Handling Multiple Inheritance in Agent-Oriented Models.………………………
4.5 Summary..……………………………………………………………………...…

5. ANALYSIS OF AGENT-ORIENTED MODEL………………………………………

5.1 Introduction……………………………………………………………………….
5.2 A Simplified Petri Net Model for a Buying Agent and Two Selling Agents……..
5.3 Deadlock Detection and Redesign of Agent-Oriented Models………………...…
5.4 Property Verification by Using Model Checking…………………………………
5.5 Summary…..……………………………………………………………………...

6. EXTENDING AGENT-ORIENTED G-NETS TO SUPPORT MOBILITY………….

6.1 Introduction……………………………………………………………………….
6.2 Mobile Agent Background………………………………………………………..

1
1
3
3
6

12

13
13
14
16
18
23
25
28

29
29
30
37
39
46

47
47
48
48
52
54
54
55
59
62

63
63
63
67
71
74

76
76
78

 v

TABLE OF CONTENTS (continued)

CHAPTER

PAGE

6.3 Modeling the Agent World for Mobile Agents………...……………..…………..
6.3.1 Agent World Architecture………………………………………………..
6.3.2 Intelligent Mobile Agent and Intelligent Facilitator Agent………………

6.4 Design of Intelligent Mobile Agents in an Electronic Marketplace………………
6.5 Summary...…………………………………………………………………….….

7. AN AGENT DEVELOPMENT KIT BASED ON AGENT-ORIENTED G-NET
MODEL………………………………………………………………………………...
7.1 Introduction……………………………………………………………………….
7.2 From Formal Agent Model to Agent Implementation……………………………
7.3 Design of Intelligent Agents………………………………………………………

7.3.1 Middleware Support for Agent Communication…………………………
7.3.2 A Pattern for Intelligent Agents….………………………………………
7.3.3 Inheritance in Agent-Oriented Development…………………………….
7.3.4 An Agent Development Process…………………………………………

7.4 A Case Study: Air-Ticket Trading……….……………………………………….
7.5 Summary..………………………………………………………………………...

8. CONCLUSIONS AND FUTURE WORK…………………………………………….

CITED LITERATURE……………………………………………………………………..

VITA………………………………………………………………………………………..

PUBLICATIONS OF THE AUTHOR……………………………………………………..

80
81
83
88
91

93
93
94
97
97
99

104
110
112
116

117

121

132

133

 vi

LIST OF TABLES

TABLE

PAGE

I. LEGEND FOR FIGURE 9 (DESCRIPTION OF PLACES)……………………...

II. LEGEND FOR FIGURE 9 (DESCRIPTION OF TRANSITIONS)………………

III. INCIDENCE MATRIX A OF THE PETRI NET IN FIGURE 9………………….

IV. ALGORITHM FOR RESOLVING THE Super REFERENCE.………………….

V. LEGEND FOR FIGURE 15 (DESCRIPTION OF PLACES)…………………….

VI. LEGEND FOR FIGURE 15 (DESCRIPTION OF TRANSITIONS)……………..

VII. DESCRIPTION OF TEMPORAL-LOGICAL QUANTORS……………………..

VIII. SCHEMA FOR AN AGENT INTERFACE……………………………………….

IX. A PATTERN FOR INTELLIGENT AGENTS.…………………………………...

X. DESIGN OF APPLICATION-SPECFIC AGENTS.……………………………...

42

42

43

60

66

66

72

97

102

107

 vii

LIST OF FIGURES

FIGURE

PAGE

1. G-net model of buyer and seller objects………………………………………………..

2. G-net model of unbounded buffer class (UB)………………………………………….

3. G-net model of bounded buffer class (BB)…………………………………………….

4. G-net model of bounded buffer class (BB1)…………………………………………...

5. A generic agent-based G-net model……………………………………………………

6. A template of the Planner module……………………………………………………..

7. A contract net protocol between buying and selling agent…………………………….

8. An Agent-based G-net model for buying agent class………………………………….

9. A transformed model of buying and selling agents…………………………………….

10. A template for the Planner module (initial design)……………………………………

11. The class hierarchy diagram of agents in an electronic marketplace…………………..

12. Contract net protocols (a) A template for the registration protocol (b) A template

 for the price-negotiation protocol (c) An example of the price-negotiation protocol…

13. An agent-oriented G-net model for shopping agent class (SC)………………………..

14. An agent-oriented G-net model for buying agent class (BC)…………………………..

15. A transformed model of one buying agent and two selling agents…………………….

16. A template for the Planner module (revised design)…………………………………..

17. Evolution of the mobile agent paradigm…………….…………………………………

18. Agent world architecture and an example of agent migration…..……………………..

19. Contract net protocols (a) A temple for the migration-request protocol

(b) A template for the price-negotiation protocol……...…………………...………….

20. An agent-oriented G-net model for intelligent mobile agent class (IMA)……………..

21. An agent-oriented G-net model for intelligent facilitator agent class (IFA)…………...

22. Refinement of functional units (a) Refinement of method move()

 (b) Refinement of MPU confirm-move..……………………..……………...…………

23. The class hierarchy diagram of mobile agents in an electronic marketplace…………..

24. An agent-oriented G-net model for buying mobile agent class (BMA)..………………

25. The role of ADK between formal agent model and implementation platform………...

26. The Jini community with agents of AirTicketSeller and AirTicketBuyer………………

15

19

21

26

31

 3

38

39

41

49

55

56

57

57

65

70

79

81

84

85

86

87

89

89

95

98

 viii

LIST OF FIGURES (continued)

FIGURE

PAGE

27. The architectural design of intelligent agents……………….………………..………..

28. The class hierarchy diagram of agents in an electronic marketplace…………………..

29. Classes defined in ADK and derived classes of the Agent class.……………………...

30. Relationship between classes defined for communication capabilities

 and mental states….……………..……………………………………………………..

31. User Interface of the Knowledge-base, Goal and Plan module………………………..

32. User interface of the seller agent SA_16fb……………………………………..………

33. User interface of the buyer agent BA_3b19…………………………………….……...

100

105

106

109

113

114

115

 ix

LIST OF ABBREVIATIONS

ADK Agent Development Kit

AOSE Agent-Oriented Software Engineering

ASM Abstract Superclass Module

ASP Asynchronous Superclass switch Place

AUML Agent Unified Modeling Language

AVM Agent Virtual Machine

AW Agent World

BB Bounded Buffer class

BDI Belief, Desire and Intention

BMA Buying Mobile Agent class

CLOWN Class Orientation With Nets

CO-OPN/2 Cocurrent Object-Oriented Petri Nets

CTL Computation Tree Logic

DAI Distributed Artificial Intelligence

DP Default Place

EP Entry Place

FIPA Foundation for Intelligent Physical Agents

GSP Generic Switch Place

IFA Intelligent Facilitator Agent

IMA Intelligent Mobile Agent

INA Integrated Net Analyzer

IS Internal Structure

ISP Instantiated Switch Place

KE Knowledge Engineering

 x

LIST OF ABBREVIATIONS (continued)

LOOPN++ Language for Object-Oriented Petri Nets

MA Mobile Agent

MAS Multi-Agent System

MPU Message Processing Unit

MSP Message Switch Place

OBCP Object-Based Concurrent Programming

OMT Object Modeling Technique

OO Object-Oriented

OOPN Object-Oriented Petri Nets

OOSE Object-Oriented Software Engineering

OPN Object Petri Nets

PM Planner Module

PN Petri Nets

Pr/T Nets Predicate/Transition Nets

P/T Nets Place/Transition Nets

RP Return Place

SBOPN State-Based Object Petri Nets

SM Synchronization Module

SMA Selling Mobile Agent class

SSP Superclass Switch Place

UB Unbounded Buffer class

U-Method Utility Method

UML Unified Modeling Language

 xi

SUMMARY

 The advent of multi-agent systems has brought opportunities for the development of

complex software that will serve as the infrastructure for advanced distributed applications.

During the past decade, there have been many agent architectures proposed for implementing

agent-based systems, and also some efforts to formally specify agent behaviors. However,

research on narrowing the gap between agent formal models and agent implementation is rare. In

this thesis, we present a model-based approach to designing and implementing multi-agent

software systems. Instead of using formal methods only for the purpose of specifying agent

behavior, we bring formal methods into the design phase of the agent development life cycle. Our

approach is based on the G-net formalism, which is a type of high-level Petri net defined to

support modeling of a system as a set of independent and loosely-coupled modules.

 We first introduce how to extend G-nets to support class modeling and inheritance

modeling for concurrent object-oriented design. Then, by viewing an agent as an extension of an

object with mental states, we derive an agent-oriented G-net model from our extended G-nets that

support class modeling. The agent-oriented G-net model serves as a high-level design for

intelligent agents in multi-agent systems. To illustrate our formal modeling technique for agent-

oriented software, an example of an agent family in electronic commerce is provided. We show

how an existing Petri net tool can be used to detect design errors, and how model checking

techniques can support the verification of some key behavioral properties of our agent models. In

addition, we adapt the agent-oriented G-net model to support basic mobility concepts, and present

design models of intelligent mobile agents. Finally, based on the high-level design, we derive the

agent architecture and the detailed design needed for agent implementation. To demonstrate the

feasibility of our approach, we describe a toolkit called ADK (Agent Development Kit) that

supports rapid development of application-specific agents for multi-agent systems.

 xii

1. INTRODUCTION

1.1 Background and Motivations

The development of software systems starts with two main activities, namely software

requirements analysis and software design [Sommerville 1995][Pressman 1997]. The purpose of software

requirements analysis is to understand the problem thoroughly and reduce potential errors caused from

incomplete or ambiguous requirements. The product of the requirements analysis activity is a software

requirements specification, which serves as a contract between the customers and the software designers.

The purpose of the software design is to follow the software requirements specification and to depict the

overall structure of a system by decomposing the system into its logical components. The design activity

translates requirements into a representation of the software that can be assessed for quality before coding

begins. Like software requirements, the product of the design activity is a design specification document,

which serves as a contract between the software designers and the programmers.

The purpose of software requirements analysis can be achieved in two ways. One is to specify and

analyze systems formally, and the other is to describe and model systems naturally. Conventionally,

software requirements specifications are written in natural languages, e.g., English. However, when

specifying, modeling and analyzing the behavior of a critical and complex system, choosing a specification

language that can formally depict the properties of the system is preferred. This is because formal

languages can be used to describe system properties clearly, precisely and in detail, and to enable design

and analysis techniques to evolve and operate in a systematic manner. Since the 1960’s, researchers have

been working on formal modeling of critical and complex systems such as concurrent and distributed

systems, and as a result, a number of formal specification languages and tools have been developed as a

replacement for natural languages specification techniques. Among these formal methods, Petri nets

[Murata 1989], as a graphical and mathematical modeling tool, are well recognized and widely used in

various application domains because of its simplicity and flexibility to depict the dynamic system

behaviors, and its strong expressive and analytic power for system modeling. Further efforts to

 1

2

enhance/extend the theory and techniques of Petri nets, including high-level Petri nets such as CPN

(Colored Petri Nets) [Jensen 1992], have also been devoted to make formal methods more useful in

industry/commercial software development.

 Although formal methods have been widely used in specifying and verifying complex software

systems [Clark and Wing 1996], to bridge the gap between formal models and implemented systems is still

a big challenge. Formal methods have been frequently adopted in the requirements analysis phase to

specify a system and its desired properties, e.g., behavioral properties; however, to create formal models in

the design phase and therefore verify their correctness is rare. This is not only because of the infancy of the

techniques and the apparent difficulty of the notations used, but also due to a lack of support for

modularization in most of the formal approaches, e.g., the temporal logic [Manna and Pnueli 1992].

Meanwhile, software design is the technical kernel of software engineering, and to develop critical and

complex software systems not only requires a complete, consistent and unambiguous specification, but also

a correct design that meets certain requirements. This observation has motivated our initial work of using

formal methods in concurrent object-oriented design, and further derived our model-based approach for

development of agent-oriented software systems.

On the other hand, in both academic and industrial histories, there are several transitions of

software engineering paradigms during the last few decades. In the seventies, structured programming was

the dominant approach to software development. Along with it, software engineering technologies were

developed in order to ease and formalize the system development life cycle: from planning, through

analysis and design, and finally to system construction, transition and maintenance. In the eighties, object-

oriented (OO) languages experienced a rise in popularity, bringing with it new concepts such as data

encapsulation, inheritance, messaging and polymorphism. By the end of the eighties and the beginning of

the nineties, a jungle of modeling approaches grew to support the OO market. For instance, the Unified

Modeling Language (UML) [Rational 1997], which unifies three popular approaches to OO modeling: the

Booch method [Booch 1994], OMT (Object Modeling Technique) [Rumbaugh et al. 1991], and OOSE

(Object-Oriented Software Engineering) [Jacobson et al. 1992], became the most popular modeling

3

language for object-oriented software systems. Although the object-oriented paradigm has achieved a

considerable degree of maturity, researchers continually strive for more efficient and powerful software

engineering techniques, especially as solutions for even more demanding applications. The emergence of

agent techniques is one of the examples of such efforts. In the last few years, the agent research community

has made substantial progress in proving a theoretical and practical understanding of many aspects of

software agents and multi-agent systems [Green et al. 1997][Jennings et al. 1998]. Agents are being

advocated as a next generation model for engineering complex, distributed systems [Jennings 2000]. Yet

despite of this intense interest, many concepts of the agent-oriented paradigm are still not mature, and the

methodology, especially the techniques for agent modeling in practical use, is yet to be improved.

 To provide a practical agent-oriented methodology for agent development, we view an agent as

an extension of an object, i.e., an active object [Shoham 1993], and propose a model-based approach for

development of multi-agent software systems. Instead of using formal methods only for the purpose of

specifying agent behavior, we bring formal methods into the design phase of the agent development life

cycle. Our approach is based on the G-net formalism [Deng et al. 1993] [Perkusich and de Figueiredo

1997], which is a type of high-level Petri net defined to support modeling of a system as a set of

independent and loosely-coupled modules. We select Petri nets as our base model because Petri net models

are a mature graph-based model with intuitively appealing rules for defining the structure and dynamic

behavior of general systems with concurrent components.

1.2 Related Work

1.2.1 Object-Oriented Petri Nets

The concepts of the object-oriented paradigm, such as encapsulation and inheritance, have been

widely used in system modeling because they allow us to describe a system easily, intuitively and naturally

[Rumbaugh et al. 1991][Booch 1994][Jacobson et al. 1992][Eliens 1995]. With the increasing complexity

of contemporary software systems, object-oriented software designers began to understand the usefulness

of formal methods. Along with this trend, object-oriented formal methods have become one of the hot

4

research issues for the last few years. Many researchers have suggested object-oriented formal methods,

such as OPN (Object Petri Nets) [Bastide 1995], VDM++ [Lano 1995] and Object-Z [Stepney et al. 1992].

Among them, the research on the OPN methods have been actively studied to extend the Petri net

formalism to various forms of object Petri nets, such as OBJSA [Battiston et al. 1988], LOOPN++ [Lakos

and Keen 1994], CO-OPN/2 [Biberstein et al. 1997] and G-nets [Deng et al. 1993][Perkusich and de

Figueiredo 1997]. Although the results of such studies are promising, these formalisms do not fully support

all the major concepts of object-oriented methodology. We now give a brief description of these

formalisms.

OBJSA nets, suggested by E. Battiston, define a class of algebraic nets that are extended with

modularity features. Their name reflects that they integrate Superposed Automata nets and the algebraic

specification language OBJ [Battiston et al. 1988][Battiston et al. 1995]. An OBJSA net can be viewed as

a semantics model described by algebraic notations; while CLOWN (CLass Orientation With Nets) is a

notation developed on the top of OBJSA nets with object-oriented features added [Battiston et al. 1996].

CLOWN attributes can be declared as constant (const) or variable (var), and all the actions that an object

can execute are specified by the method clauses. In addition, the interface clause defines the interface

for interactions between a CLOWN object and other objects, and the inherits clause defines the

inheritance features.

In CLOWN, the data structure of a class is defined by algebraic notations, and the control

structure of the class is defined by a class net. Objects in CLOWN are represented as distinguished

individual tokens flowing in the corresponding class net. CLOWN does not take the full advantage of the

Petri net formalism because only the control structure of a system is modeled by Petri nets. Since object-

oriented features in CLOWN are not captured at the net level, there are limitations in using existing Petri

net tools for system analysis.

O. Biberstein suggested the specification language, called CO-OPN/2 (Concurrent Object-

Oriented Petri Nets) [Biberstein et al. 1996, Biberstein et al. 1997], which is designed to specify and model

5

large-scale concurrent systems. The class definition in CO-OPN/2 consists of two parts: the Signature

part is used to describe the interface with other classes, and the Body part is used to describe the internal

behaviors and operations of a class. The specification method of CO-OPN/2 is similar with that of

CLOWN, but the differences are that CO-OPN/2 supports abstract data types in order to reuse its type

defined in other classes, and the methods declared in the Signature part are used as interface transitions.

The weakness of the CO-OPN/2 approach is that the unfolding mechanism for a CO-OPN/2 specification is

not suggested; therefore the analysis and simulation method for CO-OPN/2 is not explicitly defined.

C. Lakos proposed a class of object-oriented Petri nets, called LOOPN++ (Language for Object-

Oriented Petri Nets) [Lakos and Keen 1994, Lakos 1995a, Lakos 1995b]. LOOPN++ uses a text-based

grammar to specify systems. In a specification of LOOPN++, the class definition consists of three parts:

Fields to define data, Functions to describe expressions with parameters and operations, and

Actions to represent the behavior of a system. The Fields part is a declaration of a token in Petri nets,

and is used to represent the states of places. The Functions and Actions part together represent the

transitions of Petri nets.

One of the major characteristics of LOOPN++ is the feature for “super places” and “super

transitions”, used to represent the nesting structure of nets, and it becomes a base to support the abstraction

of nets. The super place and super transition can be defined by labeling the corresponding place and

transition of nets with the name of an external object. With this feature, Parent phrases can be used to

represent (multiple) inheritance of classes. Regardless of continuous research on LOOPN++, this approach

has some deficiencies in fully supporting the object-oriented concepts. For instance, LOOPN++ does not

fully reflect the actual concepts of objects because the nets include the global control structure of systems,

and tokens are only passive data types [Lakos 1997]. In addition, although a LOOPN++ program can be

used to simulate a system, using existing Petri net tools for system analysis is not supported.

G-nets [Deng et al. 1993][Perkusich and de Figueiredo1997] support the concepts of objects better

than CO-OPN/2 or LOOPN++ in terms of simplicity of expressing modularity and information hiding. As

6

one form of high-level Petri nets, G-nets are based on the concept of modules corresponding to objects.

There are two separate parts to describe the net structure of an object in G-nets. One is called GSP (Generic

Switch Place), which contains the name of an object, the definition of attributes and methods, and initial

marking of the net. The other one is called the IS (Internal Structure), which describes the behaviors of

methods with a variant of Petri nets. There are special places in the nets, such as ISP (Instantiated

Switching Place) to make a method call and RP (Return Place) to end a method execution. These features

can be unfolded into Pr/T (Predicate/Transition) nets for system analysis [Deng et al. 1993].

A fascinating feature of G-nets is its support for encapsulation of objects, synchronous message

passing for object interactions, and low coupling between objects. The use of the unique identifier for an

object makes it possible to represent recursive method invocations. Also, the mechanism for a method call

in G-nets is quite suitable for modeling client-server systems. Although G-nets are useful for object

modeling and the structure of a G-net is similar with that of an object, it does not support inheritance

mechanism. In addition, it is difficult to represent an abstraction hierarchy with net elements of G-nets.

The above object models are widely referenced and compared among high-level object-oriented

Petri nets. Other similar research includes: the OPNets [Lee and Park 1993] that focus on the decoupling of

inter-object communication knowledge and the separation of synchronization constraints from the internal

structure of objects; and the OCoNs (Object Coordination Nets) [Giese et al. 1998], which are used to

describe the coordination of class behaviors on a service. Although these formalisms support the basic

concepts of objects such as encapsulation and modularization, they do not incorporate the concepts of

abstraction and/or inheritance, and they do not clearly suggest analysis or simulation methods.

1.2.2 Formal Methods in Agent-Oriented Software Engineering

Agent technology has received a great deal of attention in the past few years and, as a result,

industry is becoming interested in using this technology to develop its own products. In spite of the

different developed agent theories, languages, architectures and successful agent-based applications, very

7

little work has been aimed at specifying agent architectures and creating design techniques to develop

agent-based applications using agent technology [Iglesias et al. 1998]. The role of agent-oriented

methodologies is to assist all the phases of the development life cycle for an agent-based application,

including its management. A number of groups have reported on methodologies for agent design, touching

on representational mechanisms as they support the methodology. Examples of such work are D. Kinny and

his colleagues’ BDI agent model [Kinny et al. 1996] and the Gaia methodology suggested by M.

Wooldridge [Wooldridge et al. 2000].

There are three main strands of work to which our research is related, i.e., work on formal

modeling of agent systems, work on building practical agent-based systems or developing tool kits for

rapid development of agent systems, and work on narrowing the gap between agent formal models and

implementation of agent-based systems.

Previous work on formal modeling of agent systems has been based on formalisms, such as Z

[Davies and Woodcock 1996], temporal logic [Manna and Pnueli 1992], and Petri nets [Murata 1989], to

specify agent systems or agent behaviors. Luck and d’Inverno tried to use the formal language Z to provide

a framework for describing the agent architecture at different levels of abstraction. They proposed a four-

tiered hierarchy comprising entities, objects, agents and autonomous agents [Luck and d’Inverno 1995].

The basic idea for this is that all components of the world are entities with attributes. Of these entities,

objects are entities with capabilities of actions, agents are objects with goals, and autonomous agents are

agents with motivations. Fisher used temporal logic to represent dynamic agent behavior [Fisher 1995].

Such a temporal logic is more powerful than the corresponding classic logic and is useful for the

description of dynamic behavior in reactive systems. Fisher took the view that a multi-agent system is

simply a system consisting of concurrently executing objects. Xu and his colleagues used

Predicate/Transition (Pr/T) nets, which is a high-level formalism of Petri net, to model and verify multi-

agent behaviors [Xu et al. 2002]. Based on the Pr/T model, certain properties, such as parallel execution of

multi-plans and guarantee for the achievement of a goal, can be verified by analyzing the dependency

relations among the transitions. More recently, Pr/T nets were used to model logical agent mobility [Xu et

8

al. 2003]. The proposed model for logical agent mobility specifies a mobile agent system that consists of a

set of components and a set of (external) connectors. Pr/T nets were used because in a Pr/T net a token

may carry structured data – the mobility modeling was based on the idea of “agent nets” being able to be

routed, as tokens, within “system nets.” Other efforts on formal modeling of agents focus on the design of

modeling languages for conceptual design and specification of multi-agent systems. For instance, the

modeling language DESIRE (framework for Design and Specification of Interacting Reasoning

component) is based on the philosophy of viewing a complex software system as a series of interacting

components; therefore it is suited to the specification of multi-agent systems [Brazier et al. 1997].

Similarly, SLABS (formal Specification Language for Agent-Based Systems) provides a way of specifying

agent behaviors to enable software engineers to analyze agent-based systems before they are implemented

[Zhu 2001].

In summary, formal methods are typically used for specification of agent systems and agent

behaviors. The primary purpose of the resulting formal agent models is to define what properties are to be

realized by the agent system, e.g., behavioral properties. In contrast, the formal agent model that we present

in Chapter 4 provides a high-level design of multi-agent software systems [Xu and Shatz 2003] – it not

only provides a conceptual framework for agent development, but it also aids a software engineer in

understanding how to structure and implement an agent system. This is accomplished by explicitly

identifying the major components and mechanisms in the design and showing how to derive a detailed

design and corresponding implementation. A direct benefit of this approach is that it brings formal methods

into the design phase, providing opportunities for formal verification of correctness of an agent design. We

also show ways of using analysis techniques, including model checking, to verify the correctness and key

properties of the formal agent model in Chapter 5 [Xu and Shatz 2003]. Ideally, formal methods can be

applied in each phase of a software development life cycle; however, to bring formal methods into the later

phases (e.g., design and implementation) of a software development life cycle is not an easy task. For

instance, Rao and Georgeff presented an algorithm for model checking BDI systems [Rao and Georgeff

1993]; however, since there is no clear relationship between the BDI logic and the concrete computational

models used to implement agents, it is not clear how such a model can be derived [Wooldridge and

9

Ciancarini 2001]. Thanks to Petri nets’ graphical modeling approach and its similarity with the UML

modeling technique [Saldhana et al. 2001], we argue that Petri nets provide a reasonable way of bringing

formal methods into the design phase. With refinement of our original agent-oriented G-net models in

further detailed design [Yan 2002], our approach supports formal design of agent-oriented software.

A second strand of related work is the development of practical agent-based systems or tools for

rapid development of agent systems. During recent years, many agent architectures have been proposed.

For instance, JAM (Java Agent Model) is a hybrid intelligent agent architecture that draws upon the

theories and ideas of the Procedural Reasoning System (PRS), Structured Circuit Semantics (SCS), and Act

plan interlingua [Huber 1999]. Based on the BDI theories [Kinny et al. 1996], which models the concepts

of beliefs, goals (desires), and intentions of an agent, JAM provides strong goal-achievement syntax and

semantics, with support for homeostatic goals and a much richer, more expressive set of procedural

constructs. The JACK (Java Agent Kernel) intelligent agent framework proposed by the Agent Oriented

Software Group brings the concept of intelligent agents into the mainstream of commercial software

engineering and Java technology [Howden et al. 2001]. It is designed as a set of lightweight components

with high performance and strong data typing. Paradima has been implemented to support the development

of agent-based systems [Ashri and Luck 2000]. It relies on a formal agent framework, i.e., Luck and

d’Inverno’s formal agent framework [Luck and d’Inverno 1995], and is implemented by using recent

advances in Java technology. Although the above agent architectures use formal agent models as

conceptual guidelines, the formal methods serve as agent specifications rather than formal designs.

Some other efforts had tried to provide a rapid prototyping development environment for the

construction and deployment of agent-oriented applications. A typical example is the Zeus MAS (Multi-

Agent System) framework developed by British Telecom labs [Nwana et al. 1999]. The MAS development

environment based on Zeus MAS framework consists of an API (Application Programming Interface),

code generator, agent and society monitoring tools, and programming documentation. A complete Zeus

agent has a coordination engineer enabling functional behavior organized around conversation protocols, a

planner that schedules sub-goal resolution, an engine for rule-based behavior, and databases to manage

10

resources, abilities, relationships between agents, tasks, and protocols. More recently, many agent

frameworks have been proposed for developing agent applications in compliance with the FIPA

(Foundation for Intelligent Physical Agents) specifications [FIPA 2000] for interoperable intelligent agents

in multi-agent systems. Examples of such efforts are JADE (Java Agent Development Framework)

[Bellifemine et al. 1999], FIPA-OS (FIPA Open Source) agent platform [Poslad et al. 2000], and the

current Zeus platform [Nwana et al. 1999]. The major difference between the above work and our approach

is that most of the existing agent architectures attempt to provide a comprehensive set of agent-wide

services that can be utilized by application programmers; however, these services are usually made

available through an ad-hoc architecture that is highly coupled. Application programmers must face a steep

learning curve for such systems due to a lack of explicit control flow and modularization. In contrast, our

approach provides programmers a set of loosely coupled modules, an explicit control flow, and a clean

interface among agents. We believe that our approach can significantly flatten a programmer’s learning

curve, and ease the workload for developing application-specific agents. Another difference between the

above works and our approach is that most of the agent architectures originated from industry aim to

provide practical platforms or toolkits for agent development; therefore, unlike our approach there is not

the direct motivation for an agent design that supports formal analysis and verification. Meanwhile, most of

the existing systems use object-oriented languages, such as Java, but without considering how to use

object-oriented mechanisms effectively in developing agent-oriented software. In contrast, our approach

carefully considers the role of inheritance in agent-oriented development, and discusses which components

of an agent could be reused in a subclass agent. This treatment of inheritance in agent-oriented software

engineering is based on previous work [Crnogorac et al. 1997], but our approach emphasizes on reuse of

functional components rather than mental states. Finally, to demonstrate the feasibility of our approach, we

developed the toolkit called ADK (Agent Development Kit) that supports rapid development of intelligent

agents for multi-agent systems. Although our current version of ADK does not strictly follow the FIPA

specifications, we have designed our agent model with standardization in mind. Further work on this

prototype has shown that it is fairly straightforward to extend our agent design and development kit to a

level of detail that is compliant with the FIPA specifications [Yan 2002].

11

Previous efforts on narrowing the sizable gap between agent formal models and agent-based

practical systems can be summarized as follows. Some researchers aimed at constructing directly

executable formal agent models. For instance, Fisher’s work on Concurrent METATEM has attempted to

use temporal logic to represent individual agent behaviors where the representations can be executed

directly, verified with respect to logical requirements, or transformed into some refined representation

[Fisher 1995]. Vasconcelos and his colleagues have tried to provide a design pattern for skeleton-based

agent development [Vasconcelos et al. 2002], which can be automatically extracted from a given electronic

institution. The electronic institutions have been proposed as a formalism with which one can specify open

agent organizations [Rodriguez-Aguilar et al. 1999]. These types of work seem to be an ideal way for

seaming the gap between theories and implemented systems; however, an implementation automatically

derived from a formal model tends to be not practical. This is because a formal model is an abstraction of a

real system, and thus an executable formal model ignores most of the components and behaviors of a

specific agent. Therefore, as stated in a survey paper [D’Inverno et al. 1997], executable models based on

formalisms, such as temporal logic, are quite distant from agents that have actually been implemented.

Other efforts have attempted to start with specific deployed systems and provide formal analyses of them.

For instance, d’Inverno and Luck tried to move backwards to link the system specification based on a

simplified version of dMARS (distributed Multi-Agent Reasoning System) to the conceptual formal agent

framework in Z, and also to provide a means of comparing and evaluating implemented and deployed agent

systems [D’Inverno and Luck 2001].

In contrast to the above approaches, we have tried to bring formal methods directly into the design

phase, and to let the formal agent model serve as a high-level design for agent implementation. In

particular, we use the agent-oriented G-net model to define the agent structure, agent behavior, and agent

functionality for intelligent agents. A key concept in our work is that the agent-oriented G-net model itself

serves as a design model for an agent implementation. We will see that our architectural design of

intelligent agents closely follows the agent-oriented G-net model. By supporting design reuse, our approach

also follows the basic philosophy of Model Driven Architecture (MDA) [Siegel et al. 2001] that is gaining

popularity in many communities, for example UML.

12

1.3 Contributions of Our Work

The work reported in this thesis is aimed at proposing a technique for modeling and analyzing

object-oriented and agent-oriented software systems, and attempting to bridge the gap between formal

agent models and agent implementation. The concepts of agent-orientation are based on the concepts of

object-orientation, but need to be extended with additional features, such as mechanisms for decision-

making and asynchronous message passing. The major contributions of our work can be listed as follows:

1. Extended the original G-net model to support class modeling and inheritance modeling, and proposed a

formal model – extended G-nets, for concurrent object-oriented design (Chapter 2).

2. Proposed an agent-based G-net model, and proved the properties of L3-liveness, concurrency and

effectiveness for agent communication (Chapter 3).

3. Proposed an agent-oriented G-net model by introducing an inheritance mechanism into the agent-based

G-net model. Used an example of agent family in electronic commerce to show how agent-oriented

software systems can be designed (Chapter 4).

4. Performed experiments with an existing Petri net tool to detect design errors, and used model checking

techniques to verify some key properties of agent-oriented models (Chapter 5).

5. Adapted the agent-oriented G-net model to support basic mobility concepts, and presented design

models for intelligent mobile agents (Chapter 6).

6. Derived an agent design architecture and a detailed design needed for agent implmentation from the

agent-oriented G-net model. Developed an agent dvelopment kit (ADK) that facilitates development of

application-specfic agents in multi-agent systems (Chapter 7).

2. A FORMAL MODEL FOR CONCURRENT OBJECT-ORIENTED DESIGN

2.1 Introduction

One of the key issues in object-oriented (OO) approaches is inheritance. The inheritance

mechanism allows users to specify a subclass that inherits features from some other class, i.e., its

superclass. A subclass has the similar structure and behavior as the superclass, but in addition it may have

some other features. As an essential concept of the OO approach, inheritance is both a cognitive tool to

ease the understanding of complex systems and a technical support for software reuse and change. With the

emergence of formalisms integrating the OO approach with the Petri net (PN) theory, the question arises

how inheritance may be supported by such formalisms, in order that they benefit from the advantages of

this concept and existing Petri net tools. Inheritance has been originally introduced within the framework of

data processing and sequential languages, while PNs are mainly concerned with the behavior of concurrent

processes. Moreover, it has been pointed out that inheritance within concurrent OO languages, e.g.,

Concurrent Smalltalk, entails the occurrence of many difficult problems such as the inheritance anomaly

problem [Matsuoka and Yonezawa 1993]. Thus, to incorporate inheritance mechanism into Object Petri

Net (OPN) has been viewed as a challenging task.

The concepts of inheritance define both the static features and dynamic behavior of a subclass

object. The static feature specifies the structure of a subclass object, i.e., its methods and attributes; while

the dynamic behavior of a subclass object refers to its state and its dynamic features such as overriding,

dynamic binding and polymorphism [Drake 1998]. Most of the existing object-oriented Petri nets (OOPN)

formalism, such as CLOWN, LOOPN++ and CO-OPN/2, fail to provide a uniform framework for class

modeling and inheritance modeling in terms of these two features, and they usually use text-based

formalism to incorporate inheritance into Petri nets. The problems of these approaches are that they do not

take full advantage of the Petri net formalism, and therefore, to directly use existing Petri net tools to verify

behavioral properties of a subclass object is not supported. Little work has been done so far to model

inheritance of dynamic behavior. Examples of such work are the concept of life-cycle inheritance proposed

 13

14

by van der Aalst and Basten [Aalst and Basten 1997][Basten and Aalst 2000] and the SBOPN formalism

with additional inheritance features suggested by Xie [Xie 2000]. However, these formalisms are either too

theoretical to be used in practical software design, or too preliminary to cover all forms of inheritance

including refinement inheritance.

In this chapter, we propose a Petri net formalism, called extended G-nets, to model inheritance in

concurrent object-oriented design. Based on the original G-net formalism [Deng et al. 1993][Perkusich and

de Figueiredo 1997], we first extend G-nets into a so-called standard G-nets for class modeling; then we

introduce new mechanisms to incorporate inheritance into standard G-net models. These new mechanisms

are net-based; therefore it would be possible for us to translate our net models into other forms of Petri nets,

such as Pr/T net, and use existing Petri net tools for behavioral property analysis, e.g., to analyze the

inheritance anomaly problem.

2.2 G-Net Model Background

A widely accepted software engineering principle is that a system should be composed of a set of

independent modules, where each module hides the internal details of its processing activities and modules

communicate through well-defined interfaces. The G-net model provides strong support for this principle

[Deng et al. 1993][Perkusich and de Figueiredo 1997]. G-nets are an object-based extension of Petri nets,

which is a graphically defined model for concurrent systems. Petri nets have the strength of being visually

appealing, while also being theoretically mature and supported by robust tools. We assume that the reader

has a basic understanding of Petri nets [Murata 1989]. But, as a general reminder, we note that Petri nets

include three basic entities: place nodes (represented graphically by circles), transition nodes (represented

graphically by solid bars), and directed arcs that can connect places to transitions or transitions to places.

Furthermore, places can contain markers, called tokens, and tokens may move between place nodes by the

“firing” of the associated transitions. The state of a Petri net refers to the distribution of tokens to place

nodes at any particular point in time (this is sometimes called the marking of the net). We now proceed to

discuss the basics of the original G-net models.

15

 GSP(Buyer)

ISP(Seller,
sellGoods())

 buyGoods() askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

Figure 1. G-net model of buyer and seller objects

A G-net system is composed of a number of G-nets, each of them representing a self-contained

module or object. A G-net is composed of two parts: a special place called GSP (Generic Switch Place) and

an IS (Internal Structure). The GSP provides the abstraction of the module, and serves as the only interface

between the G-net and other modules. The IS, a modified Petri net, represents a design of the module. An

example of G-nets is shown in Figure 1. Here the G-net models represent two objects – a Buyer and a

Seller. The generic switch places are represented by GSP(Buyer) and GSP(Seller) enclosed by ellipses, and

the internal structures of these models are represented by round-cornered rectangles that contain four

methods: buyGoods(), askPrice(), returnPrice() and sellGoods(). The functionality of these methods is

defined as follows: buyGoods() invokes the method sellGoods() defined in G-net Seller to buy some goods;

askPrice() invokes the method returnPrice() defined in G-net Seller to get the price of some goods;

returnPrice() is defined in G-net Seller to calculate the latest price for some goods; and sellGoods() is

defined in G-net Seller to wait for the payment, ship the goods and generate the invoice. A GSP of a G-net

G contains a set of methods G.MS specifying the services or interfaces provided by the module, and a set of

attributes G.AS that defines the state variables. In G.IS, the internal structure of G-net G, Petri net places

represent primitives, while transitions, together with arcs, represent connections or relations among those

primitives. The primitives may define local actions or method calls. Method calls are represented by special

16

places called ISP (Instantiated Switch Place). A primitive becomes enabled if it receives a token, and an

enabled primitive can be executed. Given a G-net G, an ISP of G is a 2-tuple (G’.Nid, mtd), where G’ could

be the same G-net G or some other G-net, Nid is a unique identifier of G-net G’, and mtd ∈ G’.MS. Each

ISP(G’.Nid, mtd) denotes a method call mtd() to G-net G’. An example ISP (denoted as an ellipsis in Figure

1) is shown in the method askPrice() defined in G-net Buyer, where the method askPrice() makes a method

call returnPrice() to the G-net Seller to query about the price for some goods. Note that we have

highlighted this call in Figure 1 by the dashed-arc, but such an arc is not actually a part of the static

structure of G-net models. In addition, we have omitted all function parameters and variable declarations

for simplicity.

2.3 Extending G-Nets for Class Modeling

From the above description, we can see that a G-net model essentially represents a module or an

object rather than an abstraction of a set of similar objects. To support modeling object-oriented software,

we first need to extend the G-net model to support class modeling [Xu and Shatz 2000]. The idea of this

extension is to generate a unique object identifier, G.Oid, and initialize the state variables defined in G.AS

when a G-net object is instantiated from a G-net G. An ISP method invocation is no longer represented as

the 2-tuple (G’.Nid, mtd), instead it is the 2-tuple (G’.Oid, mtd), where different object identifiers could be

associated with the same G-net class model.

The token movement in a G-net object is similar to that of original G-nets [Deng et al.

1993][Perkusich and de Figueiredo 1997]. The only difference is that we allow two types of tokens, namely

sTkn tokens and mTkn tokens. An sTkn token is a colored or colorless token used in synchronous modules,

which we will introduce shortly. An mTkn token is a message token deifned as a triple (seq, sc, mtd), where

seq is the propagation sequence of the token, sc ∈ {before, after} is the status color of the token and mtd is

a triple (mtd_name, para_list, result). For ordinary places, tokens are removed from input places and

deposited into output places by firing transitions. However, for the special ISP places, the output transitions

do not fire in the usual way. Recall that marking an ISP place corresponds to making a method call. So,

17

whenever a method call is made to a G-net object, the token deposited in the ISP has the status of before.

This prevents the enabling of associated output transitions. Instead the token is “processed” (by attaching

information for the method call), and then removed from the ISP. Then an identical token is deposited into

the GSP of the called G-net object. So, for example, in Figure 1, when the Buyer object calls the

returnPrice() method of the Seller object, the token in place ISP(Seller, returnPrice()) is removed and a

token is deposited into the GSP place GSP(Seller). Through the GSP of the called G-net object, the token is

then dispatched into an entry place of the appropriate called method, for the token contains the information

to identify the called method. During “execution” of the method, the token will reach a return place

(denoted by double circles) with the result attached to the token. As soon as this happens, the token will

return to the ISP of the caller, and have the status changed from before to after. The information related to

this completed method call is then detached. At this time, output transitions (e.g., t4 in Figure 1) can

become enabled and fire.

More specifically, when a G-net object G_obj with G.Oid makes a method call ISP(G’.Oid,

m1(para_list)) in its thread/process with process id of G.Pid to a G-net object G’_obj with G’.Oid, the

procedure for updating an message token mTkn is as follows:

1. Call_before: mTkn.seq ← mTkn.seq + <G.Oid, G.Pid, m1>; mTkn.mtd ← (m1, para_list, NULL);

mTkn.sc ← before.

2. Transfer the mTkn token to the GSP place of the called G-net object G’_obj with G’.Oid.

3. Wait for the result to be stored in mTkn.mtd.result, and the mTkn token to be returned.

4. Call_after: mTkn.seq ← mTkn.seq – LAST(mTkn.seq); mTkn.sc ← after.

We call a G-net model that supports class modeling a standard G-net model. We now provide a

few key definitions for our standard G-net models.

Definition 2.1 G-net system

A G-net system (GNS) is a triple GNS = (INS, GC, GO), where INS is a set of initialization statements used

to instantiate G-nets into G-net objects; GC is a set of G-nets which are used to define classes; and GO is a

set of G-net objects which are instances of G-nets.

18

Definition 2.2 G-net

A G-net is a 2-tuple G = (GSP, IS), where GSP is a Generic Switch Place providing an abstraction for the

G-net; and IS is the Internal Structure, which is a set of modified Pr/T nets. A G-net is an abstract of a set

of similarly G-net objects, and it can be used to model a class.

Definition 2.3 G-net object

A G-net object is an instantiated G-net with a unique object identifier. It can be represented as (G, OID,

ST), where G is a G-net, OID is the unique object identifier, and ST is the state of the object.

Definition 2.4 Generic Switching Place (GSP)

A Generic Switch Place (GSP) is a triple of (NID, MS, AS), where NID is a unique identifier (class

identifier) of a G-net G; MS is a set of methods defined as the interface of G; and AS is a set of attributes

defined as a set of instance variables.

Definition 2.5 Internal Structure (IS)

The Internal Structure of G-net G (representing a class), G.IS, is a net structure, i.e., a modified Pr/T net.

G.IS consists of a set of methods.

Definition 2.6 Method

A method is a triple (P, T, A), where P is a set of places with three special places called entry place (EP),

instantiated switch place (ISP) and return place (RP). Each method can have only one EP and one RP, but

it may contain multiple ISP places. T is a set of transitions, and each transition can be associated with a set

of guards. A is a set of arcs defined as: ((P-{RP}) x T) ∪ ((T x (P-{EP}).

2.4 Extending G-Nets to Support Inheritance

Figure 2 shows an example of G-net model that represents an unbounded buffer class. The generic

switch place is represented by GSP(UB) enclosed by an ellipsis, and the internal structure of this model is

19

represented by a rounded box, which contains the design of four methods: isEmpty(), put(e), get() and

who(). The functionalities of these methods are defined as follows: isEmpty() checks if the buffer is empty

and returns a boolean value; put(e) stores an item e into the buffer; get() removes an item from the buffer

and returns that item; and who() prints the object identifier of the unbounded buffer. For clarity, in Figure 2,

we put the signatures of these four methods in a rectangle on the right side of the GSP place as the interface

of G-net UB. An example of ISP is shown in the method get() (denoted as an ellipsis), where the method

get() makes a method call isEmpty() to the G-net module/object itself to check if the buffer is empty. Note

that we have extended G-nets to allow the use of the keyword self to refer to the module/object itself.

GSP(UB)

check
_empty

isEmpty()

bool isEmpty();
void put(e);
Item get();
int who();

who()

print_Oid

ISP (self,
isEmpty())

 get()

t1

t2

syn

put(e)

return
_false

return
_true

remove

print
_error

store

t3

t4

t5

t6 t7

t8 t9

t10

t11

Figure 2. G-net model of unbounded buffer class (UB)

To deal with the concurrency issue in our G-net models, we extended our model by introducing a

synchronization module to synchronize methods defined in the internal structure of the G-net. For instance,

in the unbounded buffer class model we introduced a synchronization module syn to synchronize the

methods get() and put(e). This mechanism is necessary because these methods need to access the same

unbounded buffer and they should be mutually exclusive. Generally, to design the synchronization module,

we can either fulfill all synchronization requirements in one synchronization module or distribute them in

several synchronization modules. To simplify our model, we follow the second option. Therefore, each

20

class model may contain as many synchronization modules as necessary, and each synchronization module

can be used to synchronize among a group of methods. As we will see, the synchronization module can not

only be used to synchronize methods defined in a class model, but also can be used to synchronize methods

defined in a subclass model and methods defined in its superclass (ancestor) model.

With inheritance, when we instantiate a G-net Sub_G (a subclass), it is not enough to just associate

an Oid with Sub_G and initialize the state variables defined in Sub_G class. We must associate the same

Oid with all of Sub_G’s superclasses (ancestors) and initialize all state variables defined in those classes.

The initialized part corresponding to the subclass and each of the superclasses (ancestors) is called primary

subobject and subobject respectively [Rossie et al. 1996][Drake 1998]. When a method call is made to the

object Sub_G_obj (i.e., an instantiation of class Sub_G), it is always the case that only the GSP place of the

primary subobject is marked. The subobjects corresponding to the superclasses (ancestors) of Sub_G are

not activated unless the method call to Sub_G_obj is not defined in the subclass model Sub_G.

When a method call is not found in a subclass model, we need to resolve the problem by searching

the methods defined in the superclass models. To do this, we define a new mechanism called a default

place (DP). A default place is a default entry place defined in the internal structure of a subclass model

and is drawn as a dash-lined circle, as shown in Figure 3. When a method is dispatched in a subclass model,

the methods defined in the subclass model are searched first. If there is a match, one of the entry places of

those methods is marked; otherwise, the default place is marked instead. After the dispatching, necessary

synchronization constraints are established by the synchronization modules. If the default place is marked,

the method call is then forwarded to a named superclass model. At first, it may seem that we can use the

ISP method invocation mechanism to forward an existing method call. However this is not quite proper.

Note that the initial method call will attach information associated with the call to the mTkn token. Now the

subsequent call to the superclass would again attach the same information to the token, and the method call

will actually be invoked more than once. To solve this problem, we introduce a new mechanism called a

Superclass Switch Place (SSP).

21

GSP(BB)

print
_error

 who()

BB extends UB
int who(); // restricted
void put(e); // redefined
bool isFull();

default

SSP(UB)

ISP (self,
isFull())

isFull()

t1

t2

syn

put(e)

SSP(UB)

check
_full

print
_error

return
_true

return
_false

t5

t6 t7

t8 t9

t3

t4

t10

t11

Figure 3. G-net model of bounded buffer class (BB)

An SSP (denoted as an ellipsis in Figure 3) is similar to an ISP, but with the difference that the

SSP is used to forward an existing method call to a subobject (corresponding to a superclass model) of the

object itself rather than to make a new method call. Essentially, an SSP does not update the mTkn token

because all the information for the method call has already been attached by the original ISP method call.

In the context of multiple inheritance, we represent an SSP mechanism in subclass Sub_G as SSP(G’),

where G’ is one of the superclasses of Sub_G. Note that the object identifier is not necessary, as in the case

of ISP method invocation, because the method call will be forwarded to the object itself (i.e., its subobject).

When the method call is forwarded to the subobject corresponding to the superclass model G’, the GSP

place of the superclass model G’ is marked, and the methods defined in the superclass model are searched.

If a method defined in the superclass model is matched, as in the case of ISP method invocation, the

matched method is executed, and the result is stored in mTkn.msg.result and the mTkn token returns to the

SSP place. Otherwise, the default place (if any) in the superclass is marked, and the methods defined in the

grandparent class model are searched. This procedure can be repeated until the called method is found. If

the method searching ends up in a class with no methods matched and no default place defined, a “method

undefined” exception should be raised. This situation can be avoided by static type checking.

22

Now consider a bounded buffer class example as shown in Figure 3. We define a bounded buffer

class BB as a subclass of an unbounded buffer class UB. Since the buffer has a limited size of MAX_SIZE,

when there is a put (e) method call, the size of the buffer needs to be checked to make sure that the buffer

capacity is not exceeded. In this case, the method put (e) defined in the class model UB is no longer correct,

and it needs to be redefined in the subclass model BB. A simple way to redefine the method put (e) in

subclass BB is to first make an ISP method call isFull() to the bounded buffer object itself. The method

isFull() is used to check if the bounded buffer is full and it is added to the BB class model as shown in

Figure 3. If it returns true, i.e., the bounded buffer has already been full, an error or exception will be

generated; otherwise, the method call put(e) will be forwarded to its superclass UB by using an SSP

mechanism. Here we use an SSP to allow reuse of the original method put(e) defined in class UB. As we

will explain later, we call this situation refinement inheritance. Note that if we use ISP(self, put(e)) in this

situation, a dead loop will occur. This is because the methods defined in the subclass will always be

searched first; and consequently, the method put(e) defined in subclass BB will be called recursively. Again

we see the value of introducing the SSP mechanism.

It is also important to notice that a synchronization module can be used to synchronize methods

defined in a subclass model and methods defined in the superclass model. However, in this case, all

methods defined in superclass (ancestor) models must be synchronized as a whole. For instance, in Figure

3, the refined method put(e) defined in subclass BB is synchronized with all methods defined in the

superclass UB, yet the synchronization between the method put(e) and the inherited method isEmpty() is

unnecessary.

To formally define extended G-nets with inheritance, we need to redefine the internal structure

and define the concept of Synchronization Module (SM) and Abstract Superclass Module (ASM). Based on

the formal definitions of standard G-net model (Section 2.3), we now provide a few key definitions for our

extended G-net models with inheritance features.

23

Definition 2.7 Internal Structure (IS) // to replace definition 2.5

The Internal Structure of G-net G is a triple (M, S, A), where M is a set of methods, S is a set of

synchronization modules, and A is an optional abstract superclass module. The arcs connecting M and S,

or connecting S and A belong to S. There are no direct arcs between M and A.

Definition 2.8 Synchronization Module (SM)

A Synchronization Module (SM) is 4-tuples (P, A, I, O), where P is a set only containing a single place that

is used to hold an sTkn token - a colored or colorless token, and A is a set of arcs defined as: (P x IS.M.T)

∪ (IS.M.T x P); I is a set of arc inscriptions on place incoming arcs, and O is a set of arc inscriptions on

place outgoing arcs.

Definition 2.9 Abstract Superclass Module (ASM)

An Abstract Superclass Module (ASM) is a triple (P, T, A), where P is a set of places includes three special

places: default place (DP), return place (RP) and Superclass Switch Place (SSP). T is a set of transitions

with optional guards. A is a set of arcs defined as: ((P – {RP}) x T) ∪ (T x (P – {DP})).

2.5 Modeling Different Forms of Inheritance

Typically, to create a subclass model, we specialize a superclass by adding new protocols. We call

this augment inheritance [Drake 1998]. Alternatively, we can restrict or refine a superclass by overriding

one or more of its methods. This happens in three cases: method restriction, method replacement and

method refinement. We call each of them restrictive inheritance, replacement inheritance and refinement

inheritance [Drake 1998].

Augment inheritance is straightforward - new protocols, which are not defined in the superclass

model, are added to a subclass model. For instance, consider the design of the subclass BB as shown in

Figure 3. We require a service to check if the buffer is already full. This can be done by adding a new

24

method isFull() to the subclass BB. Since the method isFull() does not override any methods in class UB,

we have used augment inheritance.

In some cases, we regard a class as a specialization of another class, with some superclass

methods absent from the protocol of the subclass. We call this type of inheritance restrictive inheritance.

Restrictive inheritance actually runs counter to the semantics and intentions of inheritance, because the “IS-

A” relationship between superclass and subclass is broken. However, restrictive inheritance may be

necessary when using an existing class hierarchy that cannot be modified. Usually, restrictive inheritance is

implemented in the subclass by overriding the disallowed superclass methods to produce error messages or

signal exceptions. Here we use a trivial example to illustrate how to model restrictive inheritance. Suppose

we need to disallow the inherited method who() in our subclass BB. This can be simply done by redefining

method who() in class BB; the redefined method who() does nothing but prints an error message to indicate

that the method call for who() is disallowed in subclass model BB.

A subclass can completely redefine the behavior of its superclass for a particular method defined

in the superclass. Inheritance in this case is called replacement inheritance. With this form of method

overriding, we say that the method in the subclass replaces the method defined in the superclass. Replacing

a superclass method generally occurs when the subclass can define a more efficient method or needs to

define a method in a different way. An example of replacement inheritance would be possible in the

bounded buffer example, if we redesign the method get() in subclass BB to make the “remove” action

more efficient.

More frequently, the semantics of a subclass demand that the subclass respond to a method call by

a method that includes the behavior of its superclass, but extends it in some way. In this case, we say that

the subclass method refines the superclass method, i.e., there is a refinement inheritance. Practically,

method refinement is more common than method replacement because it provides a semantic consistence

with specialization. When implementing method refinement, we may simply refine the method by copying

the relevant superclass method into the subclass model. However, we would like our extended G-net

25

formalism to provide a mechanism that supports automatic sharing of the superclass method. This

capability is supported by the SSP mechanism and it has been illustrated by the method refinement of put(e)

in bounded buffer BB as shown in Figure 3.

2.6 Modeling Inheritance Anomaly Problem

Inheritance anomaly refers to the phenomenon that synchronization code cannot be effectively

inherited without non-trivial re-definitions of some inherited methods [Matsuoka and Yonezawa

1993][Thomas 1994]. As a consequence, some well-known proposals for concurrent object-based

languages, such as families of Actor languages, POOL/T, PROCOL and ABCL/1, chose to not support

inheritance as a fundamental language feature [Matsuoka and Yonezawa 1993]. Also some languages like

Concurrent Smalltalk or Orient84/K do provide inheritance, but they do not support intra-object

concurrency - that is there is only a single thread of control within an object [Thomas 1994].

There have been previous efforts to solve the inheritance anomaly problem [Mitchell and Wellings

1996], but most of the proposals are based on quasi concurrency, where only one thread at a time is allowed

to execute. As stated in [Thomas 1994], this type of inheritance anomaly seems to be almost solved. “True”

concurrency refers to cases that more than one thread can be executed in an object at the same time.

Reference [Thomas 1994] talked about solutions in this context. The inheritance anomaly problem has

usually been approached in terms of analyzing the causes. The causes have been classified as partitioning

of acceptable states, history-only sensitiveness of acceptable states, and modification of acceptable states

[Matsuoka and Yonezawa 1993]. Here, we analyze the inheritance anomaly problem based on clarifying

the terminology of “synchronization constraints”, and we always view a concurrent system as a “true” one.

As we will see, synchronization constraints among methods can be specified explicitly or

implicitly. An explicit synchronization constraint refers to the concurrent/mutual exclusive execution

between two methods in an object. For instance, in the unbounded buffer example, method get() and

method who() can be executed concurrently, however the execution of method get() and method put(e)

26

must be mutually exclusive. This type of synchronization constraint creates the inheritance anomaly

problem when a method m1 defined in a subclass module needs to be mutually exclusive with a particular

inherited method m2 that is defined in its superclass (ancestor) module. A simple way to deal with this

situation is to refine the method m2 (e.g., to use the SSP mechanism in our extended G-net model) and to

establish mutual exclusion between m1 and m2 in the subclass module. In this case the method defined in

the superclass (ancestor) module can be reused by a refinement inheritance.

GSP(BB1)

print
_error

BB1 extends BB
bool isEmpty(); // redefined
bool isFull(); // redefined
void put(e); // redefined
Item gget();

isFull()

SSP(BB) SSP(BB)

 put(e)

t1

t4

syn

gget()

0

<0>

<0>

<n>

<0>

<n>

<1>

return
_false

return
_true

ISP(self,
isEmpty())

remove
<0>

isEmpty()

SSP(BB)
t2 t3

t5

t6

t7

t8

t9

t10

t11 t13

t12

default

SSP(BB)

Figure 4. G-net model of bounded buffer class (BB1)

An implicit synchronization constraint refers to cases where acceptance of a method in an object is

based on that object’s state. The state of an object can be changed by executing a method in that object. For

instance, when a buffer is in a state of “empty”, the method get() is not allowed to execute; however, after

executing the method put(e), the state of the buffer is changed from “empty” to “partial,” and at this time,

the method call of get() becomes acceptable. Since the methods get() and put(e) are indirectly synchronized

through the state of the buffer, we called this type of synchronization constraint an implicit

synchronization constraint. The implicit constraints can be further classified in terms of two different views

of an object’s state, namely internal view and external view. Under an internal view, the state of an object

27

can be captured by the evaluation of state variables of the object [Matsuoka and Yonezawa 1993]. For

example, the state “empty” of a buffer can be captured by checking if the state variable of buffer_size

evaluates to “0”. This type of synchronization can always be added to a subclass module without redefining

inherited methods because it can be easily maintained by checking state variables before allowing the

execution of a method.

Another view is the external view, where the state is captured indirectly by the externally

observable behavior of the object [Matsuoka and Yonezawa 1993]. For example, a state under external

view could be the state of a buffer object when the last executed method is put(e). When synchronization

constraints with respect to the external view of an object’s state are added to a subclass module, some

methods defined in a superclass (ancestor) module must be redefined. Fortunately, in most cases, as long as

no deadlocks are introduced, we can again use refinement inheritance to reuse the original method defined

in the superclass (ancestor) module. We use the classic example of gget() to illustrate this situation.

Consider a new bounded buffer class BB1, defined as a subclass of bounded buffer class BB, and add a

new method called gget(). The behavior of gget() is almost identical to that of get(), with the sole exception

that it cannot be executed immediately after the invocation of put(e) [Matsuoka and Yonezawa 1993]. The

design of the new bounded buffer BB1 is illustrated in Figure 4. To establish the synchronization between

methods gget() and put(e), the method put(e) must be redefined in the subclass module BB1. Suppose we

have an object bb1, an instance of class BB1. Initially, the token in the synchronization module syn is “0”.

Whenever there is a method call other than put(e) to object bb1, the token will be removed and deposited

back to the synchronization module with the same value of “0”. However, if there is a method call for

put(e), the token in the synchronization module syn will be removed first, and then the method call put(e)

will be forwarded to its superclass BB by using the SSP(BB) mechanism. After the method call of put(e), a

token with value “1” will be deposited into the synchronization module syn. At this time, if there is a

method call for gget(), the call must wait because a token with value “0” is necessary to enable the

transition t1. Thus the synchronization between methods gget() and put(e) is correctly established. Note

that we cannot reuse the method get() when designing the method gget() by using the SSP(BB) mechanism.

28

This is inapplicable because gget() and get() are two different methods. In addition, we need to redefine the

methods isEmpty() and isFull() to avoid deadlocks.

2.7 Summary

Inheritance has been introduced into several object-oriented net models, such as LOOPN++

[Lakos and Keen 1994] and CO-OPN/2 [Biberstein et al. 1997]. However, those methods do not use net-

based extensions to capture inheritance properties. In contrast, our approach explicitly models inheritance

at the net level to maintain an underlying Petri net model that can be exploited during design simulation or

analysis. In this chapter, we presented a formal model, called extended G-net model, that can be used to

model different forms of inheritance for concurrent object-oriented design. The formal model is derived

from the standard G-net model by introducing an inheritance mechanism. As an example of net-based

analysis, we investigated the inheritance anomaly problem in concurrent object-oriented design. In Chapter

3, we will introduce a new concept – multi-agent systems (MAS), and by incorporating additional modules

into the standard G-nets, we derive an agent-based G-net model that supports agent modeling.

3. FROM OBJECT TO AGENT: AN AGENT-BASED G-NET MODEL

3.1 Introduction

The term “agent” comes from the Greek word “agein”, which means to drive or to lead. Today,

the term “agent” is used to describe something that can produce an effect, e.g., a “drying agent” or a

“shipping agent”. In computer science, an “agent” denotes a computer system that is situated in some

environment and is capable of autonomous actions, e.g., a software agent that can search and buy air tickets

over the Internet. In this thesis, we always use the word “agent” to refer to “software agent”.

Agents are becoming one of the most important topics in distributed and autonomous

decentralized systems (ADS) [Mendes et al. 1997][Arai et al. 1999]. With the increasing importance of

electronic commerce across the Internet, the need for agents to support both customers and suppliers in

buying and selling goods or services is growing rapidly. Most of the technologies supporting today’s agent-

based electronic commerce systems stem from distributed artificial intelligence (DAI) research [Guttman et

al. 1998][Green et al. 1997]. Applications developed with multi-agent systems (MAS) in electronic

commerce are examples of such efforts. A multi-agent system is a concurrent system based on the notion of

autonomous, reactive, and internally-motivated agents in a decentralized environment. The increasing

interest in MAS research is due to the significant advantages inherent in such systems, including their

ability to solve problems that may be too large for a centralized single agent, to provide enhanced speed

and reliability, and to tolerate uncertain data and knowledge [Green et al. 1997]. The notable systems

developed with MAS in electronic commerce are Kasbah [Chavez and Maes 1996] and MAGMA

[Tsvetovatyy et al. 1997]. Kasbah is meant to represent a marketplace where Kasbah agents, acting on

behalf of their owners, can filter through ads and find those that their users might be interested in. The

agents then proceed to negotiate to buy and sell items. MAGMA moves the marketplace metaphor to an

open marketplace involving agents buying/selling physical goods, investments and forming

competitive/cooperative alliances, and these agents negotiate with each other through a global blackboard.

 29

30

Notice that the example we provide in Figure 1 (Chapter 2) follows the Client-Server paradigm, in

which a Seller object works as a server and a Buyer object is a client. Although the standard G-net model

works well in object-based design, it is not sufficient in agent-based design for the following reasons:

1. Agents that form a multi-agent system may be developed by different vendors independently, and

those agents may be widely distributed across large-scale networks such as the Internet. To make it

possible for those agents to communicate with each other, it is desirable for them to have a common

communication language and to follow common protocols. However the standard G-net model does

not directly support protocol-based language communication between agents.

2. The underlying agent communication model is usually asynchronous, and an agent may decide

whether to perform actions requested by some other agents. The standard G-net model does not

directly support asynchronous message passing and decision-making, but only supports synchronous

method invocations in the form of ISP places.

3. Agents are commonly designed to determine their behavior based on individual goals, their knowledge

and the environment. They may autonomously and spontaneously initiate internal or external behavior

at any time. Standard G-net models can only directly support a predefined flow of control.

3.2 Agent-Based G-Net Model

To support agent-based design, we first need to extend a G-net to support modeling an agent

class1. The basic idea is similar to extending a G-net to support class modeling for object-based design as

discussed in Chapter 2. When we instantiate an agent-based G-net (an agent class model) G, an agent

identifier G.Aid is generated and the mental state of the resulting agent object (an active object [Shoham

1993]) is initialized. In addition, at the class level, five special modules are introduced to make an agent

autonomous and internally-motivated. They are the Goal module, the Plan module, the Knowledge-base

module, the Environment module and the Planner module. The template for an agent-based G-net model is

1 We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class
an agent or an agent object.

31

shown in Figure 5. We describe each of the additional modules as follows. A Goal module is an abstraction

of a goal model [Kinny et al. 1996], which describes the goals that an agent may possibly adopt, and the

events to which it can respond. It consists of a goal set which specifies the goal domain and one or more

goal states. A Plan module is an abstraction of a plan model [Kinny et al. 1996] that consists of a set of

plans, known as a plan set. Each plan is associated with a goal or a subgoal; however a goal/subgoal may

associated with one or more than one plans, and the most suitable one will be selected to achieve that

goal/subgoal. A Knowledge-base module is an abstraction of a belief model [Kinny et al. 1996], which

describes the information about the environment and internal state that an agent of that class may hold. The

possible beliefs of an agent are described by a belief set. An Environment module is an abstract model of

the environment, i.e., the model of the outside world of an agent. The Environment module only models

elements in the outside world that are of interest to the agent and that can be sensed by the agent.

GSP(G)

message_
processing

incoming message

Goal

 outgoing message
action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

 utility method
utility_1 utility_p

…

…

…

…

…

…

utility_1 utility_p

Plan Environment

Notes: G’.Aid = mTkn.body.msg.receiver as defined later in this section

Figure 5. A generic agent-based G-net model

In the Planner module, committed goals or subgoals can be achieved, and the Goal, Plan and

Knowledge-base modules of an agent are updated after each communicative act [Finin et al. 1997][Odell

2000] or if the environment changes. Thus, the Planner module can be viewed as the heart of an agent that

32

may decide to ignore an incoming message, to start a new conversation, or to continue with the current

conversation based on the agent’s mental state.

The IS (Internal Structure) of an agent-based G-net consists of three sections: incoming message,

outgoing message, and utility method. The incoming/outgoing message section defines a set of message

processing units (MPU), which correspond to a subset of communicative acts. Each MPU, labeled as

action_i in Figure 5, is used to process incoming/outgoing messages, and may use ISP-type modeling for

calls to methods defined in its utility method section. Unlike with the methods defined in a standard G-net

model, the methods defined in the utility method section can only be called by the agent itself.

Although both objects (passive objects) and agents use message-passing to communicate with

each other, message-passing for objects is a unique form of method invocation, while agents distinguish

different types of messages and model these messages frequently as speech-acts and use complex protocols

to negotiate [Iglesias et al. 1998]. In particular, these messages must satisfy standardized communicative

(speech) acts, which define the type and the content of the message (e.g., the FIPA agent communication

language, or KQML) [FIPA 2000][Finin et al. 1997]. Note that in Figure 5, each named MPU action_i

refers to a communicative act, thus our agent-based model supports an agent communication interface. In

addition, agents analyze these messages and can decide whether to execute the requested action. As we

stated before, agent communications are typically based on asynchronous message passing. Since

asynchronous message passing is more fundamental than synchronous message passing, it is useful for us

to introduce a new mechanism, called Message Switch Place (MSP), to directly support asynchronous

message passing. When a token reaches an MSP (we represent it as an ellipsis in Figure 5), the token is

removed and deposited into the GSP of the called agent. But, unlike with the standard G-net ISP

mechanism, the calling agent does not wait for the token to return before it can continue to execute its next

step. Since we usually do not think of agents as invoking methods of one-another, but rather as requesting

actions to be performed [Jennings et al. 1998], in our agent-based model, we restrict the usage of ISP

mechanisms, so they are only used to refer to an agent itself. Thus, in our models, one agent may not

33

directly invoke a method defined in another agent. All communications between agents must be carried out

through asynchronous message passing as provided by the MSP mechanism.

A template of the Planner module is shown in Figure 6. Since the modules Goal, Plan and

Knowledge-base have the same interface with the Planner module, for brevity, we represent them as a

single special place (denoted by double ellipses in Figure 6), which contains a token Goal/Plan/KB that

represents a set of goals, a set of plans and a set of beliefs. The Environment module is also represented as a

special place that contains a token Environment as a model of the outside world of the agent.

GSP(G) Goal/Plan/KB Environment

ignore

start_a_
conversation

…

…

…

…

…

continue

external internal

update

to place “goal”

to place “knowledge base”

from
transition
“update”

update_
goalplan/kb

next_
action

dispatch_
utilities

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

utility
methods

incoming messages

outgoing messages utility methods

Figure 6. A template of the Planner module

The Planner module represents the heart of an agent. It is goal-driven because the transition

start_a_conversation may fire whenever an attempt is made to achieve a committed goal. In addition, the

Planner module is also message-triggered because certain actions may initiate whenever a message arrives

(either from some other agent or the agent itself). If the message comes from some other agent, it will be

dispatched to a MPU defined in the incoming messages section of the agent-based G-net’s internal

34

structure. After the message is processed, the MPU will transfer the processed message as a token to the

GSP place of the agent itself. This is done by sending a message MSP(self) to the agent itself. Upon arrival

of this internal message, the transition internal may fire, and the next action will be determined based on

the agent’s current mental state. Alternatively, the next action could be to ignore the message or to continue

with the current conversation. In either case, a token will be deposited in place update_goal/plan/kb, and

the transition update may fire. As a consequence, the agent’s mental state may change. If the next action is

to continue the conversation, the tag of the token will be changed from internal to external, and the token

will be deposited in place dispatch_outgoing_message. In this case, the corresponding MPU will be called

before the message is sent to some other agent by using the MSP mechanism. In addition, an agent may

provide a set of utility methods for itself and allow other functional units to make synchronous method calls

to it. Whenever there is a method call, the token deposited in the GSP place will be moved to place

dispatch_utilities and then will be dispatched to a method defined in the utility method section.

As a result of this extension to G-nets, the structure of tokens in the agent-based G-net model

should be redefined. In addition to the colored or colorless token sTkn defined in optional synchronization

modules, there are five types of colored tokens, namely the message token mTkn, the goal token gTkn, the

plan token pTkn, the knowledge token kTkn and the environment token eTkn. One way to construct the

gTkn, pTkn, kTkn and eTkn tokens is to make them linked lists. In other words, a gTkn represents a list of

goals, pTkn represents a list of plans, a kTkn represents a list of facts, and an eTkn represents a list of events

that are of the agent’s interests. Since these four types of tokens confine themselves to those special places

of their corresponding modules, we do not describe them further in this chapter.

An mTkn token (originally deifned in Section 2.3) is redefined as a 2-tuple (tag, body), where tag

∈ {internal, external, method} and body is a variant, which is determined by the tag. According to the

tag, the token deposited in a GSP will finally be dispatched into a MPU or a method defined in the internal

structure of the agent-based G-net. Then the body of the token mTkn will be interpreted differently. More

specifically, we define the mTkn body as follows:

35

struct Message{

 int sender; // the identifier of the message sender

 int receiver; // the identifier of the message receiver

 string protocol_type; // the type of contract net protocol

 string name; // the name of incoming/outgoing messages

 string content; // the content of this message

};

enum Tag {internal, external, method};

struct MtdInvocation {

 Triple (seq, sc, mtd); // as defined in Section 2.3

}

if (mTkn.tag ∈ {internal, external})

then mTkn.body = struct {

 Message msg; // message body

}

else mTkn.body = struct {

 Message msg; // message body

 Tag old_tag; // to record the old tag: internal/external

 MtdInvocation miv; // to trace method invocations

}

When mTkn.tag ∈ {internal, external}, and an ISP method call occurs, the following steps will

take place:

1. Two variables of old_tag and miv are attached to the mTkn to define mTkn.body.old_tag and

mTkn.body.miv, respectively. Then, mTkn.tag (the current tag, one of internal or external) is recorded

into mTkn.body.old_tag, and mTkn.tag is set to method.

2. Further method calls are traced by the variable mTkn.body.miv, which is a triple of (seq, sc, mtd). The

tracing algorithm is defined as in the original G-net definitions [Deng et al. 1993] [Perkusich and de

Figueiredo 1997].

3. After all the ISP method calls are finished and the mTkn token returns to the original ISP, the mTkn.tag

is set back as mTkn.body.old_tag, and both the variables old_tag and miv are detached.

36

The MSP(id) mechanism defined in an agent AO is responsible for asynchronously transferring a

message token mTkn to the agent itself or some other agent, and for changing the tag of the message token,

mTkn.tag, before mTkn is “sent out.” The steps for handling the message token are as follows:

1. If id equals to self (in this case mTkn.tag must be external), set mTkn.tag to internal, and transfer the

message token mTkn to the GSP place of agent AO.

2. Else-If id equals to G’.Aid, where G’.Aid does not represent the agent AO (in this case mTkn.tag must

be internal), set mTkn.tag to external, and transfer the message token mTkn to the GSP place of the

agent represented by G’.Aid.

We now provide a few key definitions giving the formal structure of our agent-based G-net

models.

Definition 3.1 Agent-Based G-Net

An agent-Based G-Net is a 7-tuple AG = (GSP, GL, PL, KB, EN, PN, IS), where GSP is a Generic Switch

Place providing an abstract for the agent-based G-net, GL is a Goal module, PL is a Plan module, KB is a

Knowledge-base module, EN is an Environment module, PN is a Planner module, and IS is an Internal

Structure of AG.

Definition 3.2 Planner Module (PM)

A Planner Module (PM) of an agent-based G-net AG is a colored sub-net defined as a 7-tuple (IGS, IGO,

IPL, IKB, IEN, IIS, DMU), where IGS, IGO, IPL, IKB, IEN and IIS are interfaces with GSP, Goal module,

Plan module, Knowledge-base module, Environment module and Internal Structure of AG, respectively.

DMU is a set of decision-making unit, and it contains three abstract transitions: make_decision, sensor and

update.

Definition 3.3 Internal Structure (IS)

An Internal Structure (IS) of an agent-based G-net AG is a triple (IM, OM, PU), where IM/OM is the

incoming/outgoing message section, which defines a set of Message Processing Units (MPU); and PU is

the utility method section, which defines a set of methods.

37

Definition 3.4 Message Processing Unit (MPU)

A Message Processing Unit (MPU) is a triple (P, T, A), where P is a set of places consisting of three

special places: entry place (EP), instantiated switch place (ISP) and message switch place (MSP). Each

MPU has only one EP and one MSP, but it may contain multiple ISPs. T is a set of transitions, and each

transition can be associated with a set of guards. A is a set of arcs defined as: ((P-{MSP}) x T) ∪ ((T x (P-

{EP}).

Definition 3.5 Utility Method (U-Method)

A Utility Method (U-Method) or a Method is a triple (P, T, A), where P is a set of places with three special

places: entry place (EP), instantiated switch place (ISP) and return place (RP). Each method has only one

EP and one RP, but it may contain multiple ISPs. T is a set of transitions, and each transition can be

associated with a set of guards. A is a set of arcs defined as: ((P-{RP}) x T) ∪ ((T x (P-{EP}).

3.3 Selling and Buying Agent Design

To illustrate how to design a selling/buying agent by using our agent-based G-net model, we use

an example derived from reference [Odell 2000]. Figure 7 (a) is a modified example of an FIPA contract

net protocol, which depicts a protocol template expressed as a UML sequence diagram for a price-

negotiation protocol between a buying agent and a selling agent. To correctly draw the sequence diagram

for this template, we need to introduce two new notations, i.e., the end of protocol operation “•” and the

iteration of communicative acts operation “*”. Examples of using these two notations are as follows. In

Figure 7 (a), we put a mark of “•” in front of the message name “refuse” to indicate that this message ends

the protocol. In the same figure, a mark “*” is put on the right corner of the narrow rectangle for the

message “propose” to indicate that the communicative actions in this section can be repeated zero or more

times.

When a conversation based on this contract net protocol begins, the buying agent sends a request

for price to a selling agent. The selling agent can then choose to response to the buying agent by refusing to

38

provide price or submitting a proposal. Here the “x” in the decision diamond indicates an exclusive-or

decision. If a proposal is offered, the buying agent has a choice of either accepting or rejecting the proposal.

If a selling agent receives a reject-proposal message, it may send the buying agent a new proposal or

replies the buying agent with a confirmation message. If the selling agent receives an accept-proposal

message, it will simply send a confirmation message to the buying agent. Whenever a confirmation

message is sent, the protocol ends. Figure 7 (b) and 7 (c) shows two actual cases of this protocol template.

In Figure 7 (b), the selling agent’s proposal is accepted by the buying agent in one round; while Figure 7 (c)

shows the case that the proposal is accepted by the buying agent in the second round.

Buyer Buyer Buyer Seller Seller Seller

request-price

x

• refuse

propose

x

accept-proposal

reject-proposal

• confirm

request-price

propose

accept-proposal

• confirm

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(a) (b) (c)

propose

x

accept-proposal

reject-proposal

*

Figure 7. A contract net protocol between buying and selling agent

Based on the communicative acts (e.g., request-price, propose etc.) needed for this contract net

protocol, we may design the buying agent as in Figure 8. In Figure 8, the Goal, Plan and Knowledge-base

modules remain as abstract units and can be refined in further detailed design. The Planner module may

use Figure 6 as a template, with the transition start_a_conversation and the place next_action left to be

refined in further detailed design too. In the utility method section, we may define some necessary functions

that can be called by the buying agent itself. Examples of such utility methods could be: compare_price,

39

update_knowledge_base etc. The design of the selling agent is similar. We define MPUs of request-price,

accept-proposal and reject-propose in the incoming messages section of the selling agent, and define

MPUs of propose, refuse and confirm in the outgoing messages section of the selling agent.

 GSP(G)

mesg_pr-
ocessing

incoming messages

Plan

 outgoing messages

propose refuse

t4

Environment

 Planner

MSP(self) MSP(self) MSP(self) MSP(G’.Aid)

confirm request-price accept-proposal reject-proposal

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private utilities

utility_1 utility_p

…

…

utili-
ty_1

utili-
ty_p

mesg_pr-
ocessing

MSP(G’.Aid) MSP(G’.Aid)

mesg_pr-
ocessing

Notes: G’.Aid = mTkn.body.msg.receiver as defined later in this section

Goal Knowledge-base

 Figure 8. An Agent-based G-net model for buying agent class

3.4 Verifying Agent-Based G-Net Models

One of the advantages of building a formal model for agents in agent-based design is to ensure a

correct design that meets certain specifications. A correct design of agents at least has the following

properties:

• L3-live: any communicative act can be performed as many times as needed.

• Concurrent: a number of conversations among agents can happen at the same time.

• Effective: an agent communication protocol can be correctly traced in the agent models.

40

To verify the correctness of agent-based G-net models for selling/buying agents with respect to the

above properties, we first reduce our agent-based G-net models to an ordinary Petri net as follows: (1)

simplify the Goal module, Plan module and Knowledge-base module as ordinary places with ordinary

tokens; (2) omit utility method sections; (3) simplify mTkn tokens as ordinary tokens; (4) use net reduction

to simplify the Petri net corresponding to an MPU/Method as a single place; and (5) use the close world

assumption and make our system only contains two agents, i.e., a buying agent and a selling agent.

The resulting ordinary Petri net is illustrated in Figure 9. Table I and Table II provide a legend that

identifies the meaning associated with each place and transition in Figure 9. To verify the correctness of

our agent-based G-net model for agent communication, we utilize some key definitions and theorems as

adapted from [Murata 1989].

Definition 3.6 Incidence Matrix

For a Petri net N with n transitions and m places, the incidence matrix A = [aij] is an n x m matrix of

integers and its typical entry is given by

aij = aij+ - aij-

where aij+ = w(i,j) is the weight of the arc from transition i to output place j and aij- = w(j,i) is the weight

of the arc from input place j to transition i.

Definition 3.7 Firing Count Vector

For some sequence of transition firings in a Petri net N, a firing count vector x is defined as an n-vector of

nonnegative integers, where the ith entry of x denotes the number of times that transition i must fire in that

firing sequence.

Definition 3.8 T-invariant

For a Petri net N, an n-vector x of integers (x ≠ 0) is called a T-invariant if x is an integer solution of

homogeneous equation ATx = 0, where A is the incidence matrix of Petri net N.

41

Definition 3.9 Support and minimal-support T-invariant

The set of transitions corresponding to non-zero entries in a T-invariant x ≥ 0 is called the support of a T-

invariant and is denoted as ||x||. A support is said to be minimal if no proper non-empty subset of the

support is also a support. Given a minimal support of a T-invariant, there is a unique minimal T-invariant

corresponding to the minimal support. Such a T-invariant is called the minimal-support T-invariant.

Definition 3.10 L3-live Petri net

A Petri net N with initial marking M0, denoted as (N, M0), is said to be L3-live if for every transition t in

the net, t appears infinitely often in some firing sequence L(N, M0), where L(N, M0) is the set of all

possible firing sequences from M0 in the net (N, M0).

Theorem 3.1 An n-vector x is a T-invariant of a Petri net N iff there exists a marking M0 and a firing

sequence σ that reproduces the marking M0, and x defines the firing count vector for σ.

 GSP(G)

(goa/plan/kb) (env)

(ignore) (continue)

(external) (internal)

(next_
action)

GSP(G)

Buyer Seller

(dispatch_
incoming_
message)

(dispatch_
incoming_
message)

(dispatch_
outgoing_
message)

(dispatch_
outgoing_
message)

(next_
action)

(external) (internal)

(start_a_
conversation)

(start_a_
conversation)

(env)

(continue) (ignore)

a1 b1 c1 a2 b2 c2

d1 d2 e1 e2

f1 g1 h1 f2 g2 h2
i1 i2

j1 j2

k1 l1 m1 k2 l2 m2

t1 t2

t4 t5 t6 t7 t8

t9 t10 t11
t12 t13 t14 t15

t16 t17 t18

t19 t20
t21 t3

t22 t23 t24 t25 t26

t27 t28 t29
t30 t31

t34

t32

t35

t33

t36

(update) (update)

(propose, refuse, confirm)

(request_price, accept_proposal,
reject_proposal)

(request_price, accept_proposal,
reject_proposal)

(propose, refuse, confirm)

(goa/plan/kb)

Figure 9. A transformed model of buying and selling agents

42

Table I

LEGEND FOR FIGURE 9 (DESCRIPTION OF PLACES)
Place Description
a1 / a2 The GSP place of the buying / selling agent.
b1 / b2 The merged place for the Goal, Plan and Knowledge-base module of the buying / selling

agent.
c1 / c2 The place for the Environment module of the buying / selling agent.
d1 / d2 The place for dispatching incoming messages.
e1 / e2 The place for choosing the next action: to ignore or to continue with the current

conversation.
f1 / g1 / h1 The place for the message processing unit (MPU) of propose / refuse / confirm.
i1 / i2 The place for updating the agent mental state.
j1 / j2 The place for dispatching outgoing messages.
k1 / l1 / m1 The place for the message processing unit (MPU) of request-price / accept-proposal /

reject-proposal.
f2 / g2 / h2 The place for the message processing unit (MPU) of request-price / accept-proposal /

reject-proposal.
k2 / l2 /m2 The place for the message processing unit (MPU) of propose / refuse / confirm.

Table II

LEGEND FOR FIGURE 9 (DESCRIPTION OF TRANSITIONS)
Transition Description
t1 / t19 The transition external, which fires when the token from the GSP has a tag of external.
t2 / t20 The transition internal, which fires when the token from the GSP has a tag of internal.
t3 / t21 The transition start_a_conversation that starts a new conversation.
t4, t9 Transitions related to the message processing unit (MPU) of propose.
t5, t10 Transitions related to the message processing unit (MPU) of refuse.
t6, t11 Transitions related to the message processing unit (MPU) of confirm.
t7 / t25 The transition ignore that ignores the current conversation.
t8 / t26 The transition continue that continues with the current conversation.
t12 / t30 The transition update_goal/plan/kb, which updates the agent’s mental state.
t13, t16 Transitions related to the message processing unit (MPU) of request-price.
t14 / t17 Transitions related to the message processing unit (MPU) of accept-proposal.
t15 / t18 Transitions related to the message processing unit (MPU) of reject-proposal.
t22 / t27 Transitions related to the message processing unit (MPU) of request-price.
t23 / t28 Transitions related to the message processing unit (MPU) of accept-proposal.
t24, t29 Transitions related to the message processing unit (MPU) of reject-proposal.
t31, t34 Transitions related to the message processing unit (MPU) of propose.
t32, t35 Transitions related to the message processing unit (MPU) of refuse.
t33, t36 Transitions related to the message processing unit (MPU) of confirm.

Theorem 3.2 A Petri net N with initial marking M0 is L3-live if there exists a set of minimal-support T-

invariants that covers all the transitions in the net, and for each minimal-support T-invariant there exists a

firing sequence that reproduces the initial marking M0.

43

Proof: Let T be the set of transitions in Petri net (N, M0), Γ be the set of minimal-support T-invariants that

covers all the transitions in T. From the given condition, we know that for ∀t ∈ T, ∃χ ∈ Γ, which covers

transition t. Since for the minimal-support T-invariant χ, there exists a finite firing sequence ρ that

reproduces the initial marking M0, t appears in ρ. Let the infinite firing sequence σ = ρ • ρ • ρ • ρ …,

where “•” is the concatenation operator between finite sequences, t appears in σ infinitely often. By

definition 3.10, Petri net (N, M0) is L3-live. ◊

 Table III
 THE INCIDENCE MATRIX A OF THE PETRI NET IN FIGURE 9

a
1

b
1

c
1

d
1

e
1

f
1

g
1

h
1

i
1

j
1

k
1

l
1

m
1

a
2

b
2

c
2

d
2

e
2

f
2

G
2

h
2

i
2

j
2

k
2

l
2

m
2

t1 -1 0 0 1 0
t2 -1 0 0 0 1 0
t3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t4 0 0 0 -1 0 1 0
t5 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t6 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t7 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t8 0 0 0 0 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t9 1 0 0 0 0 -1 0
t10 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t11 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t12 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t13 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t14 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t15 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
t16 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
t17 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
t18 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0
t19 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0
t20 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0
t21 0 1 0 0 0
t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0
t23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0
t24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0
t25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0
t26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 1 0 0 0
t27 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0
t28 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0
t29 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0
t30 -1 0 0 0 0
t31 0 -1 1 0 0
t32 0 -1 0 1 0
t33 0 -1 0 0 1
t34 1 0 -1 0 0
t35 1 0 -1 0
t36 1 0 -1

The incidence matrix A of the Petri net in Figure 9 is listed in Table III. By using Definition 3.6

and 3.9, we can calculate a set of minimal-support T-invariants as follows:

x1 = [1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0]

x2 = [0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0]

44

x3 = [1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0]

x4 = [1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1]

x5 = [1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0]

From Theorem 3.1, for each minimal-support T-invariant xi in our example, there exists a marking

M0 and a firing sequence σi, which reproduces the marking M0, and xi defines the firing count vector for

σi. Obviously, the following firing sequences σ1, σ2, … σ5 reproduce the initial marking M0 = [0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0], and x1, x2, … x5 define the firing count vectors for σ1, σ2, … σ5,

respectively:

σ1 = <t21, t31, t34, t1, t4, t9, t2, t7, t12>

σ2 = <t3, t13, t16, t19, t22, t27, t20, t25, t30>

σ3 = <t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t7, t12>

σ4 = <t3, t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2, t7, t12>

σ5 = <t21, t32, t35, t1, t5, t10, t2, t8, t12, t15, t18, t19, t24, t29, t20, t25, t30>

Since the above minimal-support T-invariants cover all the transitions in the net, and for each

minimal-support T-invariant, there exists a firing sequence that reproduces the initial marking M0, from

Theorem 3.2, we conclude that our Petri net model with initial marking M0 is L3-live, i.e., for any

transition t in our net model, we can find an infinite firing sequence that t appears infinitely often.

Consequently, any communicative act can be performed as many times as needed2.

In Figure 9, it is obvious to see that our net model is unbounded. This is because transitions t3 and

t21 can fire as many times as needed. This behavior shows that both the buying and selling agent may

initiate conversations autonomously and concurrently (as we stated before, the initiation of a new

2 One of the limitations for invariant approach is that it is not sufficient to prove a Petri net is L4-live or
live, i.e., from any marking M that is reachable from M0, it is possible to ultimately fire any transition of
the net.

45

conversation is goal driven). There can be as many conversations as necessary between the buying agent

and the selling agent. As an example, a buying agent may request prices of several goods from a selling

agent at the same time, and several buying agents may request price of the same goods from a selling agent

concurrently.

In addition, we may trace an agent communication protocol p in our net model with a firing

sequence σ. For a protocol p, a corresponding firing sequence σ in our net model has more semantics than

the protocol itself because when we actually execute a protocol in our net, we need to do additional work,

such as updating the goal or knowledge base after each communicative act. Since a marking M that is

reachable from M0, but M ≠ M0, represents that there are still some ongoing conversations in the net, to

correctly trace a protocol p in our net model, it is essential for us to find a firing sequence σ that reproduces

the initial marking M0. In other words, we need to make sure that there will be no residual tokens for a

conversation left in the net after that conversation completes. In this case, we say that the protocol p can be

effectively traced as a firing sequence σ in our net model. To show that a protocol p can be effectively

traced, we use the contract net protocol examples in Figure 7 (b) and Figure 7 (c). These two protocols can

be traced in our net model as follows:

σb = <t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12, t14, t17, t19, t23, t28, t20, t26,

 t30, t33, t36, t1, t6, t11, t2, t7, t12>

σc = <t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12, t15, t18, t19, t24, t29, t20, t26,

 t30, t31, t34, t1, t4, t9, t2, t8, t12, t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2, t7, t12>

By Definition 3.7, we calculate their corresponding firing count vectors xb and xc as follows:

xb = [2 2 1 1 0 1 1 1 1 0 1 2 1 1 0 1 1 0 2 2 0 1 1 0 0 2 1 1 0 2 1 0 1 1 0 1]

xc = [3 3 1 2 0 1 1 2 2 0 1 3 1 1 1 1 1 1 3 3 0 1 1 1 0 3 1 1 1 3 2 0 1 2 0 1]

46

By Definition 3.8, it is easy to verify that both xb and xc are T-invariants because both of the

equations ATxb = 0 and ATxc = 0 are satisfied. This shows that both firing sequences σb and σc can

reproduce the initial marking M0. In other words, we prove that both protocols in Figure 7 (b) and 7 (c) can

be effectively traced in our agent-based model.

3.5 Summary

One of the most rapidly growing areas of interest for Internet technology is that of electronic

commerce. Consumers are looking for suppliers selling products and services on the Internet, while

suppliers are looking for buyers to increase their market share. For convenience and efficiency, we believe

that multi-agent system (MAS) is an effective way to automate the time consuming process of looking for

buyers or sellers and negotiate in order to obtain the best deal. Although there are several implementations

of agent-based electronic marketplaces available [Chavez and Maes 1996][Tsvetovatyy et al. 1997], formal

framework for such systems are few. This observation motivated our work on modeling agent-based

systems. In this chapter, we proposed an agent-based G-net model to support agent modeling. We used an

example of price-negotiation protocol to show how agents in an electronic marketplace can be formally

designed. By using some analysis technique – calculating the minimal support T-invariants of a

transformed model of a buying agent and a selling agent, we further proved that our net model meets the

requirements of L3-live, concurrent and effective properties.

In addition to a useful role in electrical commerce applications, MAS technology has also been

applied in a wide range of realistic application domains, including human-computer interface,

telecommunications, transportation systems and concurrent engineering [Jennings et al. 1998]. With more

and more practical agent systems being built, it becomes an increasing need to provide formal methods in

MAS specification and design to ensure robust and reliable products. In Chapter 4, we show how to

introduce an inheritance mechanism into our agent-based G-net model and derive an agent-oriented G-net

model for agent-oriented software design.

4. A FRAMEWORK FOR MODELING AGENT-ORIENTED SOFTWARE

4.1 Introduction

To avoid building a methodology from scratch, researchers on agent-oriented methodologies have

followed the approach of extending existing methodologies to include the relevant aspects of agents. These

extensions have been carried out mainly in two areas: objected-oriented (OO) methodologies and

knowledge engineering (KE) methodologies [Iglesias et al. 1998]. Now we give a brief introduction to

these two ways of extensions.

To extend object-oriented methodologies for agent modeling is a natural way for most of the

software engineers. This is because there are similarities between the object-oriented paradigm and the

agent-oriented (AO) paradigm [Kinny et al. 1996]. Since the early times of distributed artificial intelligence

(DAI), the close relationship between DAI and Object-Based Concurrent Programming (OBCP) was

established [Gasser and Briot 1992]. As stated by Shoham, the agents can be considered as active objects,

i.e., objects with a mental state [Shoham 1993]. Both paradigms use message passing for communication

and can use inheritance and aggregation for defining its architecture. The main difference is the constrained

type of messages in the AO paradigm and the definition of a state of an agent in terms of its beliefs, desires

and intentions [Iglesias et al. 1998].

The popularity of object-oriented methodologies is another potential advantage for this approach.

Many object-oriented methodologies are being used in the industry with success. Examples of such

methodologies are Object Modeling Technique (OMT) [Rumbaugh et al. 1991], Object-Oriented Software

Engineering (OOSE) [Jacobson et al. 1992], Object-Oriented Design [Booch 1994] and Unified Modeling

Language (UML) [Rational 1997]. This experience can be a key to facilitate the integration of agent

technology into OO methodologies. This is because, on the one hand, the software engineers can be

reluctant to use and learn a complete new methodology, and on the other hand, the managers would prefer

to follow methodologies that have been successfully tested.

 47

48

Previous work based on this approach includes: agent modeling technique for systems of BDI

agents [Kinny et al. 1996], agent-oriented analysis and design [Burmeister 1996] and agent unified

modeling language (AUML) [Odell 2000].

For the second approach, knowledge engineering methodologies can provide a good basis for

multi-agent systems modeling since they deal with the development of knowledge based systems. Since the

agents have cognitive characteristics, these methodologies are quite helpful to modeling agent knowledge.

The extension of current knowledge engineering methodologies can take advantage of the acquired

experience in these methodologies. In addition, both the existing tools and the developed problem solving

method libraries can be reused. An example of this approach is the Gaia methodology for agent-oriented

analysis and design suggested by Wooldridge and his colleagues [Wooldridge et al. 2000].

In this dissertation, we adopt the first approach; however unlike previous work, our approach uses

the principle of “separation of concerns” in agent-oriented design. We separate the traditional object-

oriented features and reasoning mechanisms in our agent-oriented software models as much as possible,

and we discuss how reuse can be achieved in terms of functional units, such as message processing units

(MPUs) and utility methods (U-Methods), in agent-oriented design. While some people advocated that

inheritance has limited value in conceptual models of agent behavior [Jennings 2000][Wooldridge et al.

2000], we illustrate a useful role for inheritance in agent-oriented desugn.

4.2 An Agent-Oriented Model

4.2.1 An Architecture for Agent-Oriented Modeling

To reuse the design of agent-based G-net model shown in Figure 5 (Chapter 3), we keep our

agent-oriented G-net model to have the same structure as an agent-based G-net model. However, to deal

with inheritance, we must revise our Planner module. In our new Planner module, we introduce new

49

mechanisms such as Asynchronous Superclass switch Place (ASP), and decision-making units, e.g.,

abstract transitions.

GSP(G) Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “Goal”
to place “Plan”
to place “Knowledge base”

from transition
“update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
method

method

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

utility methods

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

Figure 10. A template for the Planner module (initial design)

The template of the Planner module is shown as in Figure 103. Similarly as before, the modules

Goal, Plan, Knowledge-base and Environment are represented as four special places (denoted by double

ellipses in Figure 10), each of which contains a token that represents a set of goals, a set of plans, a set of

beliefs and a model of the environment, respectively. These four modules connect with the Planner module

through abstract transitions, denoted by shaded rectangles in Figure 10 (e.g., the abstract transition

make_decision). Abstract transitions represent abstract units of decision-making or mental-state-updating.

At a more detailed level of design, abstract transitions can be refined into correct sub-nets that capture

action sequences specific to those activities; however how to make decisions and how to update an agent’s

mental state is beyond the scope of this dissertation, and will be considered in our future work. As a side

3 Actually, this module purposely contains a somewhat subtle design error that is used to demonstrate the
value of automated verification in Chapter 5.

50

note, such work will provide a bridge to other work concerned with modeling agent mental states [Deng

and Chang 1990][Murata et al. 1991a][Murata et al. 1991b].

There is also a newly defined unit in the Planner module called autonomous unit that makes an

agent autonomous and internally-motivated. An autonomous unit contains a sensor (represented as an

abstract transition), which may fire whenever the pre-conditions of some committed goals are satisfied or

when new events are captured from the environment. If the abstract transition sensor fires, based on an

agent’s current mental state (goal, plan and knowledge-base), the autonomous unit will then decide whether

to start a conversation or simply update its mental state. This is done by firing either the transition

start_a_conversation or the transition automatic_update after executing any necessary actions associated

with place new_action.

Note that the Planner module is both goal-driven and event-driven because the transition sensor

may fire when any committed goal is ready to be achieved or any new event happens. In addition, the

Planner module is also message-triggered because certain actions may initiate whenever a message arrives

(either from some other agent or from the agent itself). A message is represented as a message token with a

tag of internal/external/method. A message token with a tag of internal represents a message forwarded

by an agent to itself with the MSP mechanism, or a newly generated outgoing message before sending to

some other agent; while a message token with a tag of external is an incoming message which comes from

some other agent. In either case, the message token with the tag of internal/external should not be

involved in an invocation of a method call. In contrast, a message token with a tag of method indicates that

the token is currently involved in an invocation of some method call. When an incoming message/method

arrives, with a tag of external/method in its corresponding token, it will be dispatched to the appropriate

MPU/method defined in the internal structure of the agent. If it is a method invocation, the method defined

in the utility method section of the internal structure will be executed, and after the execution, the token will

return to the calling unit, i.e., an ISP of the calling agent. However, if it is an incoming message, the

message will be first processed by an MPU defined in the incoming message section in the internal

structure of the agent. Then the tag of the token will be changed from external to internal before it is

51

transferred back to the GSP of the receiver agent by using MSP(self). Note that we have extended G-nets to

allow the use of the keyword self to refer to the agent object itself. Upon the arrival of a token tagged as

internal in a GSP, the transition internal may fire, followed by the firing of the abstract transition

make_decision. Note that at this point of time, there would exist tokens in those special places Goal, Plan

and Knowledge-base, so the transition bypass is disabled (due to the “inhibitor arc”4) and may not fire (the

purpose of the transition bypass is for inheritance modeling, which will be addressed in Section 4.2.2). Any

necessary actions may be executed in place next_action before the conversation is either ignored or

continued. If the current conversation is ignored, the transition ignore fires; otherwise, the transition

continue fires. If the transition continue fires, a newly constructed outgoing message, in the form of a token

with a tag of internal, will be dispatched into the appropriate MPU in the outgoing message section of the

internal structure of the agent. After the message is processed by the MPU, the message will be sent to a

receiver agent by using the MSP(Receiver) mechanism, and the tag of the message token will be changed

from internal to external, accordingly. In either case, a token will be deposited into place

update_goal/plan/kb, allowing the abstract transition update to fire. As a consequence, the Goal, Plan and

Knowledge-base modules are updated if needed, and the agent’s mental state may change.

To ensure that all decisions are made upon the latest mental state of the agent, i.e., the latest values

in the Goal, Plan, and Knowledge-base modules, and similarly to ensure that the sensor always captures the

latest mental state of the agent, we introduce a synchronization unit syn, modeled as a place marked with an

ordinary token (black token). The token in place syn will be removed when the abstract transition

make_decision or sensor fires, thus delaying further firing of these two abstract transitions until completion

of actions that update the values in the Goal, Plan and Knowledge-base modules. This mechanism is

intended to guarantee the mutual exclusive execution of decision-making, capturing the latest mental state

and events, and updating the mental state. Note that we have used the label <e> on each of the arcs

connecting with the place syn to indicate that only ordinary tokens may be removed from or deposited into

the place syn.

4 An inhibitor arc connects a place to a transition and defines the property that the transition associated with
the inhibitor arc is enabled only when there are no tokens in the input place.

52

4.2.2 Inheritance Modeling in Agent-Oriented Design

Although there are different views with respect to the concept of agent-oriented design [Iglesias et

al. 1998] [Jennings 2000], we consider an agent as an extension of an object, and we believe that agent-

oriented design should keep most of the key features in object-oriented design. Thus, to progress from an

agent-based model to an agent-oriented model, we need to incorporate some inheritance modeling

capabilities. But inheritance in agent-oriented design is more complicated than in object-oriented design.

Unlike an object (passive object), an agent object has mental states and reasoning mechanisms. Therefore,

inheritance in agent-oriented design invokes two issues: an agent subclass may inherit an agent superclass’s

knowledge, goals, plans, the model of its environment and its reasoning mechanisms; on the other hand, as

in the case of object-oriented design, an agent subclass may inherit all the services that an agent superclass

may provide, such as utility methods. There is existing work on agent inheritance with respect to

knowledge, goals and plans [Kinny and Georgeff 1997][Crnogorac et al. 1997]. However, we argue that

since inheritance happens at the class level, an agent subclass may be initialized with an agent superclass’s

initial mental state, but new knowledge acquired, new plans made, and new goals generated in a individual

agent object (as an instance of an agent superclass), can not be inherited by an agent object when creating

an instance of an agent subclass. A superclass’s reasoning mechanism can be inherited as a default

reasoning mechanism, however this type of modeling is beyond the scope of this chapter. For simplicity,

we assume that an instance of an agent subclass (i.e., an subclass agent) always uses its own reasoning

mechanisms, and thus the reasoning mechanisms in the agent superclass should be disabled in some way.

This is necessary because different reasoning mechanisms may deduce different results for an agent, and to

resolve this type of conflict may be time-consuming and make an agent’s reasoning mechanism inefficient.

Therefore, in this chapter we only consider how to initialize a subclass agent’s mental state while an agent

subclass is instantiated; meanwhile, we focus on inheritance of services that are provided by an agent

superclass, i.e., the MPUs and methods defined in the internal structure of an agent class. Before presenting

our inheritance scheme, we need the following definition:

53

Definition 4.1 Subagent and Primary Subagent

When an agent subclass A is instantiated as an agent object AO, a unique agent identifier is generated, and

all superclasses and ancestor classes of the agent subclass A, in addition to the agent subclass A itself, are

initialized. Each of those initialized classes then becomes a part of the resulting agent object AO. We call

an initialized superclass or ancestor class of agent subclass A a subagent, and the initialized agent subclass

A the primary subagent.

The result of initializing an agent class is to take the agent class as a template and create a concrete

structure of the agent class and initialize its state variables. Since we represent an agent class as an agent-

oriented G-net, an initialized agent class is modeled by an agent-oriented G-net with initialized state

variables. In particular, the four tokens in the special places of an agent-oriented G-net, i.e., gTkn, pTkn,

kTkn and eTkn, are set to their initial states. Since different subagents of AO may have goals, plans,

knowledge and environment models that conflict with those of the primary subagent of AO, it is desirable

to resolve them in an early stage. In our case, we deal with those conflicts in the instantiation stage in the

following way. All the tokens gTkn, pTkn, kTkn and eTkn in each subagent of AO are removed from their

associated special places, and the tokens are combined with the gTkn, pTkn, kTkn and eTkn in the primary

subagent of AO.5 The resulting tokens gTkn, pTkn, kTkn and eTkn (newly generated by unifying those

tokens for each type), are put back into the special places of the primary subagent of AO. Consequently, all

subagents of AO lose their abilities for reasoning, and only the primary subagent of AO can make necessary

decisions for the whole agent object. More specifically, in the Planner module (as shown in Figure 10) that

belongs to a subagent, the abstract transitions make_decision, sensor and update can never be enabled

because there are no tokens in the following special places: Goal, Plan and Knowledge-base. If a message

tagged as internal arrives, the transition bypass may fire and a message token can directly go to a MPU

defined in the internal structure of the subagent if it is defined there. This is made possible by connecting

the transition bypass with inhibitor arcs (denoted by dashed lines terminated with a small circle in Figure

10) from the special places Goal, Plan and Knowledge-base. So the transition bypass can only be enabled

5 The process of generating the new token values would involve actions such as conflict resolution among
goals, plans or knowledge-bases, which is a topic outside the scope of our model and this dissertation.

54

when there are no tokens in these places. In contrast to this behavior, in the Planner module of a primary

subagent, tokens do exist in the special places Goal, Plan and Knowledge-base. Thus, the transition bypass

will never be enabled. Instead, the transition make_decision must fire before an outgoing message is

dispatched.

To reuse the services (i.e., MPUs and methods) defined in a subagent, we need to introduce a new

mechanism called Asynchronous Superclass switch Place (ASP). An ASP (denoted by an ellipsis in Figure

10) is similar to a MSP, but with the difference that an ASP is used to forward a message or a method call

to a subagent rather than to send a message to an agent object. For the MSP mechanism, the receiver could

be some other agent object or the agent object itself. In the case of MSP(self), a message token is always

sent to the GSP of the primary subagent. However, for ASP(super), a message token is forwarded to the

GSP of a subagent that is referred to by the reference of super. In the case of single inheritance, super

refers to a unique superclass G-net, however with multiple inheritance, the reference of super must be

resolved by searching the class hierarchy diagram.

When a message/method is not defined in an agent subclass model, the dispatching mechanism

will deposit the message token into a corresponding ASP(super). Consequently, the message token will be

forwarded to the GSP of a subagent, and it will be again dispatched. This process can be repeated until the

root subagent is reached. In this case, if the message is still not defined at the root, an exception occurs. In

this dissertation, we do not provide exception handling for our agent-oriented G-net models, and we assume

that all incoming messages have been correctly defined in the primary subagent or some other subagents.

4.3 Examples of Agent-Oriented Design

4.3.1 A Hierarchy of Agents in an Electronic Marketplace

Consider an agent family in an electronic marketplace domain. Figure 11 shows the agents in a

UML class hierarchy notation. A shopping agent class is defined as an abstract agent class that has the

ability to register in a marketplace through a facilitator, which serves as a well-known agent in the

55

marketplace. A shopping agent class cannot be instantiated as an agent object, however, the functionality of

a shopping agent class can be inherited by an agent subclass, such as a buying agent class or a selling agent

class. Both the buying agent and selling agent may reuse the functionality of a shopping agent class by

registering themselves as a buying agent or a selling agent through a facilitator. Furthermore, a retailer

agent is an agent that can sell goods to a customer, but it also needs to buy goods from some selling agents.

Thus a retailer agent class is designed as a subclass of both the buying agent class and the selling agent

class. In addition, a customer agent class may be defined as a subclass of a buying agent class, and an

auctioneer agent class may be defined as a subclass of a selling agent class. In this chapter, we only

consider four types of agent class, i.e., the shopping agent class, the buying agent class, the selling agent

class and the retailer agent class. The modeling of the customer agent class and auctioneer agent class can

be done in a similar way.

 Shopping agent

Customer agent

Buying agent Selling agent

Retailer agent Auctioneer agent

Figure 11. The class hierarchy diagram of agents in an electronic marketplace

4.3.2 Modeling Agents in an Electronic Marketplace

As in Chapter 3, to design an agent, we first need to define the necessary communicative acts of

that agent. The communicative acts for a shopping agent, facilitator agent, buying agent and selling agent

are shown as agent UML (AUML) sequence diagram in Figure 12. Figure 12 (a) depicts a template of a

contract net protocol for a registration-negotiation protocol between a shopping agent and a facilitator

agent. Figure 12 (b) is the same example of a contract net protocol as in Figure 7 (a), which describes a

56

template of a price-negotiation protocol between a buying agent and a selling agent. Figure 12 (c) shows an

example of price-negotiation contract net protocol that is instantiated from the protocol template in Figure

12 (b).

shopping agent facilitator agent

request-registration

• refuse

request-info
x

• confirm

(a) (b)

supply-info

x
accept-info *

buying agent selling agent

request-price

• refuse

x

accept-proposal

reject-proposal x

propose

propose

accept-proposal

reject-proposal
x

• confirm

• refuse

buying agent selling agent

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(c)

Figure 12. Contract net protocols (a) A template for the registration protocol (b) A template for the price-

negotiation protocol (c) An example of the price-negotiation protocol

Consider Figure 12 (a). When a conversation based on a contract net protocol begins, the shopping

agent sends a request for registration to a facilitator agent. The facilitator agent can then choose to respond

to the shopping agent by refusing its registration or requesting agent information. Here the “x” in the

decision diamond indicates an exclusive-or decision. If the facilitator refuses the registration based on the

marketplace’s size, the protocol ends; otherwise, the facilitator agent waits for agent information to be

supplied. If the agent information is correctly provided, the facilitator agent then still has a choice of either

accepting or rejecting the registration based on the shopping agent’s reputation and the marketplace’s

functionality. Again, if the facilitator agent refuses the registration, the protocol ends; otherwise, a

confirmation message will be provided afterwards. The description of the price-negotiation protocol

between a buying agent and a selling agent in Figure 12 (b) and (c) can refer to Section 3.3.

57

 GSP(SC)

mesg_pr-
ocessing

incoming messages

Goal

 outgoing messages

request-info refuse

t4

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(self)

accept_info confirm request-registration supply-info

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private utilities

utility_1 utility_p

…

…

utili-
ty_1

utili-
ty_p

mesg_pr-
ocessing

MSP(G’.Aid) MSP(G’.Aid)

mesg_pr-
ocessing

Plan Environment

Figure 13. An agent-oriented G-net model for shopping agent class (SC)

 GSP(BC)
BC extends SC

message_
processing

incoming messages

Goal

 outgoing messages
propose request-price

Knowledge-base

 Planner

MSP(self) MSP(G’.Aid) MSP(G’.Aid) MSP(G’.Aid)

accept-proposal reject-proposal

message_
processing

message_
processing

message_
processing

 return return

private utilities
utility_1 utility_p

…

…

utility_1 utility_p

Plan Environment

Figure 14. An agent-oriented G-net model for buying agent class (BC)

Based on the communicative acts (e.g., request-registration, refuse, etc.) needed for the contract

net protocol in Figure 12 (a), we may design the shopping agent class as in Figure 13. The Goal, Plan,

58

Knowledge-base and Environment modules remain as abstract units and can be refined in a more detailed

design stage. The Planner module may reuse the template shown in Figure 10. The design of the facilitator

agent class is similar, however it may support more protocols and should define more MPUs and methods

in its internal structure.

With inheritance, a buying agent class, as a subclass of a shopping agent class, may reuse

MPUs/methods defined in a shopping agent class’s internal structure. Similarly, based on the

communicative acts (e.g., request-price, refuse, etc.) needed for the contract net protocol in Figure 12 (b),

we may design the buying agent class as in Figure 14. Note that we do not define the MPUs of refuse and

confirm in the internal structure of the buying agent class, for they can be inherited from the shopping agent

class. A selling agent class or a retailer agent class can be designed in the same way. In addition to their

own MPU/methods, a selling agent class inherits all MPU/methods of the shopping agent class, and a

retailer agent class inherits all MPU/methods of both the buying agent class and the selling agent class.

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying

agent object BO, which receives a message of request-info from a facilitator agent object FO. A mTkn

token will be deposited in the GSP of the primary subagent of BO, i.e., the GSP of the corresponding

buying agent class (BC). The transition external in BC’s Planner module may fire, and the mTkn will be

moved to the place dispatch_incoming_message. Since there is no MPU for request-info defined in the

internal structure of BC, the mTkn will be moved to the ASP(super) place. Since super here refers to a

unique superclass – the shopping agent class (SC) – the mTkn will be transferred to the GSP of SC. Now the

mTkn can be correctly dispatched to the MPU for request-info. After the message is processed, MSP(self)

changes the tag of the mTkn from external to internal, and sends the processed mTkn token back into the

GSP of BC. Note that MSP(self) always sends a mTkn back to the GSP of the primary subagent. Upon the

arrival of this message token, the transition internal in the Planner module of BC may fire, and the mTkn

token will be moved to the place check_primary. Since BC corresponds to the primary subagent of BO,

there are tokens in the special places Goal, Plan, Knowledge-base and Environment. Therefore the abstract

transition make_decision may fire, and any necessary actions are executed in place next_action. Then the

59

current conversation is either ignored or continued based on the decision made in the abstract transition

make_decision. If the current conversation is ignored, the goals, plans and knowledge-base are updated as

needed; otherwise, in addition to the updating of goals, plans and knowledge-base, a newly constructed

mTkn with a tag of external is deposited into place dispatch_outgoing_message. The new mTkn token has

the message name supply-info, following the protocol defined in Figure 12 (a). Again, there is no MPU for

supply-info defined in BC, so the new mTkn token will be dispatched into the GSP of SC. Upon the arrival

of the mTkn in the GSP of SC, the transition external in the Planner module of SC may fire. However at

this time, SC does not correspond to the primary subagent of BO, so all the tokens in the special places of

Goal, Plan, and Knowledge-base have been removed. Therefore, the transition bypass is enabled. When the

transition bypass fires, the mTkn token will be directly deposited into the place

dispatch_outgoing_message, and now the mTkn token can be correctly dispatched into the MPU for supply-

info defined in SC. After the message is processed, the mTkn token will be transferred to the GSP of the

receiver mTkn.body.msg.receiver, and in this case, it is a facilitator agent object.

For the reuse of utility methods defined in a superclass, the situation is the same as in the case of

object-oriented design. In addition, there are four different forms of inheritance that are commonly used,

namely augment inheritance, restrictive inheritance, replacement inheritance and refinement inheritance.

The usage of these four forms of inheritance in agent-oriented design is also similar to that in object-

oriented design. Examples concerning reuse of utility methods and different forms of inheritance can be

found in Section 2.5 [Xu and Shatz 2000].

4.4 Handling Multiple Inheritance in Agent-Oriented Models

With single inheritance, the super in ASP(super) in an agent object AO, as an instance of an agent

class A, refers to the subagent of AO, which corresponds to the unique superclass of A. However, with

multiple inheritance, super may refer to any one of the subagents, which corresponds to a superclass or an

ancestor classes of A. The reference of super then needs to be resolved. In this section, we propose a

modified breadth-first-search algorithm to find the appropriate reference of super. The algorithm is based

60

on the hierarchy of inheritance diagram and the MPU/Methods defined in each agent-oriented G-net.

Before presenting our algorithm, we need the following definitions:

Definition 4.2 Parent Set P(s)

Let s be an agent-oriented G-net, the parent set, P(s), is a set of agent-oriented G-nets, where each of the

elements is a superclass of s.

Definition 4.3 Interface Set Interface(s)

Let s be an agent-oriented G-net, the interface set, Interface(s), is a set of MPU/methods defined in G-net s.

Definition 4.4 Class Hierarchy Graph G

A class hierarchy graph G=(V, E) is a formal description of the hierarchy of inheritance diagram. The class

hierarchy graph G is a directed acyclic graph G=(V, E), where V is a set of nodes of agent-oriented G-nets,

and E is a set of arcs denotes the inheritance relationship.

Table IV
ALGORITHM FOR RESOLVING THE Super REFERENCE

1. for each vertex u ∈ V – {s}
2. do color[u] ← WHITE
3. color[s] ← GRAY
4. Q ← {s}
5. while Q ≠ φ
6. do u ← head[Q]
7. for each v ∈ P(u)
8. do if color[v] = WHITE
9. then if mTkn.body.msg.name ∈ Interface(v)
10. then super ← v; return true
11. else color[v] ← GRAY; ENQUEUE(Q,v)
12. DEQUEUE(Q)
13. color[u] ← BLACK
14. return false

The breadth-first-search algorithm is so named because it discovers all the vertices at distance k

from s before processing any vertices at distance k+1. To keep track of progress, the breadth-first-search

61

algorithm colors each vertex white, gray, or black. All vertices start out white and may later become gray

and then black. A vertex is processed the first time it is encountered during the search, at which time it

becomes nonwhite. Gray and black vertices, therefore, have been processed, but breadth-first search

distinguishes between them to ensure that the search proceeds in a breadth-first manner. In addition, we

assume that we have the following data structures: the color of each vertex u ∈ V is stored in the variable

color[u], and a first-in, first-out queue Q is used to manage the set of gray vertices. The algorithm is

presented in Table IV.

If a true value returns, an MPU/Method is discovered, and the mTkn can be directly deposited into

the GSP of super; otherwise, the MPU/Method cannot be found and an exception occurs. As stated before,

we do not consider such exceptions in this chapter. Note that this algorithm works correctly for both single

and multi-level inheritance, and it has the advantage that the message token can be deposited directly to the

appropriate GSP of a subagent without going through possible intermediate subagents.

Since a class can have more than one superclass (with multiple inheritance), the inheritance

hierarchy has the structure of a directed acyclic graph rather than a tree or forest. In this case, ambiguous or

conflicting inheritance can occur. The three issues that must be dealt with are as follows:

• Name conflict: two or more ancestors of a class might have messages with the same name, or state

variables with the same name and type.

• Repeated inheritance: When a class A inherits from two superclasses that share a common

ancestor, there are two copies of the same ancestor class. In class A, the usage of state variables

and MPUs/methods defined in the common ancestor class is ambiguous.

• Dominance problem: When a class A inherits from two superclasses that share a common

ancestor, and if a MPU/method defined in the common ancestor class is redefined by one of its

superclasses, the reference of this MPU/method in the subclass A is ambiguous.

62

For the name conflict problem, we usually use a qualified name to solve the problem. For instance,

if both a selling agent class SAC and a buying agent class BAC defines MPU/method m_1, the intended

message/method called in a retailer agent class RAC must be referred to as SAC::m_1 or BAC::m_1, unless

m_1 is redefined in RAC. For the repeated inheritance problem, we assume that only one copy of the

common ancestor class is maintained. Therefore, if a state variable or MPU/method defined in a common

ancestor of superclasses of class A is referenced, it is always meant to the unique one. Finally, for the

dominance problem, we assume that a redefined MPU/method has dominance over the original one.

Obviously, our modified breadth-first-search algorithm correctly enforces this rule of dominance.

4.5 Summary

Multi-agent systems (MAS) have become one of the most rapidly growing areas of interest for

distributed computing. Although there are several implementations of MAS available, formal frameworks

for such systems are few [Brazier et al. 1998][Rogers et al. 2000]. In this chapter, we introduced an agent-

oriented model rooted in the Petri net formalism, which provides a foundation that is mature in terms of

both existing theory and tool support. An example of an agent family in electronic commerce was used to

illustrate the modeling approach. Models for a shopping agent, selling agent and buying agent were

presented, with emphasis on the characteristics of being autonomous, reactive and internally-motivated.

Our agent-oriented models also provide a clean interface between agents, and agents may communicate

with each other by using contract net protocols. By the example of registration-negotiation protocol

between shopping agents and facilitator agents, and the example of a price-negotiation protocol between

buying agents and selling agents, we illustrated how to create agent models and how to reuse functional

units defined in an agent superclass.

In Chapter 5, we will show how an existing Petri net tool can be used to detect design errors, and

how model checking techniques can support the verification of some key behavioral properties of our

agent-oriented G-net model.

5. ANALYSIS OF AGENT-ORIENTED MODELS

5.1 Introduction

One of the advantages of building a formal model for agents in agent-oriented design is to help

ensure a correct design that meets certain specifications. A correct design of agent should meet certain key

requirements, such as liveness, deadlock freeness and concurrency. Also certain properties of special

mechanisms, such as the inheritance mechanism, need to be verified to ensure its correct functionality. Petri

nets offer a promising, tool-supported technique for checking the logic correctness of a design. In Section

3.4, we have shown some analysis technique to prove some properties of our agent model by calculating

minimal-support T-invariants. In this chapter, we use a Petri tool, called INA (Integrated Net Analyzer)

[Roch and Starke 1999], to automatically analyze and verify our agent models. We use an example of a

simplified Petri net model for the interaction between a single buying agent and two selling agents.

The INA tool is an interactive analysis tool that incorporates a large number of powerful methods

for analysis of Place/Transition (P/T) nets [Roch and Starke 1999]. These methods include analysis of: (1)

structural properties, such as structural boundedness, T- and P-invariant analysis; (2) behavioral properties,

such as boundedness, safeness, liveness, deadlock-freeness; and (3) model checking, such as checking

Computation Tree Logic (CTL) formulas. These analyses employ various techniques, such as linear-

algebraic methods (for invariants), reachability and coverability graph traversals. Here we focus on

behavioral properties verification and model checking.

5.2 A Simplified Petri Net Model for a Buying Agent and Two Selling Agents

The interaction between a buying agent and two selling agents can be modeled as a net as in

Figure 15. Table V and Table VI provide a legend that identifies the meaning associated with each place

and transition in Figure 15. To derive this net model, we use a GSP place to represent each selling agent.

 63

64

This is feasible because an agent-oriented G-net model can be abstracted as a single GSP place, and agent

models can only interact with each other through GSP places. Meanwhile, for the buying agent, whose

class is a subclass of a shopping agent class, we simplify it as follows:

1. Since the special places of Goal, Plan and Knowledge-base have the same interfaces with the planner

module in an agent class, we fuse them into one single place goal/plan/kb. Furthermore, we simplify

this fused place goal/plan/kb and the place of environment as ordinary places with ordinary tokens.

2. We omit the utility method sections in both the shopping subagent model and the buying primary

subagent model. Thus, to obtain our simplified model, we do not need to translate the ISP mechanism,

although such a translation to a Petri net form can be found in [Deng et al. 1993].

3. We simplify mTkn tokens as ordinary tokens. Although this simplification will cause the reachability

graph of our transformed Petri net to become larger, this simplifies the message tokens, allowing us to

ignore message details, which is appropriate for the purpose in this chapter (we will explain it further

in Section 5.4).

4. We use net reduction (i.e., net transformation rules [Shatz et al. 1996]) to simplify the Petri net

corresponding to an MPU/Method as a single place. For instance, the MPU identified as propose in

Figure 14 is represented as place P25 in Figure 15.

5. We use the closed-world assumption and consider a system that only contains three agents, i.e., a

buying agent and two selling agents. A system contains more than three agents can be verified in the

same way.

Note that the simplified net model preserves most of the behavioral properties of the agent-

oriented G-net model, e.g., the property of concurrency. In Section 5.3, we use an existing Petri net tool –

INA, to detect a deadlock error in this net model. The presence of the deadlock in Figure 15 is due to a

design error in our initial design of the agent-oriented G-net model.

65

GSP(Shopping)

GSP(Selling_2)

outgoing messages

incoming messages

GSP(Selling_1)

GSP(Buying)

Shopping: Shopping Subagent
Buying: Buying Primary Subagent
(Buying Agent Class extends
Shopping agent Class)
Selling_1: Selling Agent_1
Selling_2: Selling Agent_2

List of message processing units
=======================

P8: request_info
P9: refuse
P10: accept_info
P11: confirm
P16: request-registration
P17: supply_info
P25: propose
P31: request-price
P32: accept-proposal
P33: reject-proposal

outgoing messages

incoming messages

to superclass

to superclass

P1 P2
P3 P4

P5 P6

P8 P9 P10 P11

P12 P13

P14

P15

P16 P17

P18 P19
P20 P21

P22
P23

P25 P26

P27
P28

P29

P30

P31 P33P32
P34

P36

P35

t1 t2

t3 t4 t5 t6
t7

t8
t9

t10
t16

t12 t13
t14 t15

t11
t17

t18 t19

t20

t21
t22

t23 t24

t25 t26 t27
t28

t29

t30
t31 t32

t33 t34
t35

t36
t37 t38

t40

t41 t42 t43 t44

t46

t45

P7

P24

t39

(external)

(external)

(internal)

(internal)

(bypass)

(bypass)

(dispatch_
message)

(dispatch_
message)

(dispatch_
message)

(dispatch_
message)

(inhib_arc)

(inhib_arc)

(syn)

(syn)

(ASP)

(ASP)

Figure 15. A transformed model of one buying agent and two selling agents

66

Table V

LEGEND FOR FIGURE 15 (DESCRIPTION OF PLACES)

Place Description
P1 / P18 The GSP place of the shopping subagent / buying primary subagent.
P2 / P19 The merged place for the Goal, Plan and Knowledge-base module of the shopping

subagent / buying primary subagent.
P3 / P20 The complementary place of P2 / P19 introduced to remove the inhibitor arcs.
P4 / P21 The place for the Environment module of the shopping subagent / buying primary

subagent.
P5 / P22 The place for dispatching incoming messages.
P6 / P23 The place for checking if the current subagent is a primary subagent
P7 / P24 Synchronization place for making decision, updating mental state and capturing

internal/external events.
P8 / P9 / P10 /
P11

The place for the message processing unit (MPU) of request-info / refuse / accept-info /
confirm.

P12 / P27 The place for choosing the next action: to ignore or to continue with the current
conversation.

P13 / P28 The place for dispatching outgoing messages.
P14 / P29 The place for choosing a new action: to start a conversation or to automatically update the

agent mental state.
P15 / P30 The place for updating the agent mental state.
P16 / P17 The place for the message processing unit (MPU) of request-registration / supply-info.
P25 The place for the message processing unit (MPU) of propose.
P26 Asynchronous superclass switch place (ASP)
P31 / P32 /
P33

The Place for the message processing unit (MPU) of request-price / accept-proposal /
reject-proposal.

P34 Asynchronous superclass switch place (ASP)
P35 The GSP place of selling agent_1 (we use the GSP place to represent the whole agent).
P36 The GSP place of selling agent_2 (we use the GSP place to represent the whole agent).

Table VI

LEGEND FOR FIGURE 15 (DESCRIPTION OF TRANSITIONS)

Transition Description
t1 / t23 The transition external, which fires when the token from the GSP has a tag of external.
t2 / t24 The transition internal, which fires when the token from the GSP has a tag of internal.
t3, t10 Transitions related to the message processing unit (MPU) of request-info.
t4, t11 Transitions related to the message processing unit (MPU) of refuse.
t5, t12 Transitions related to the message processing unit (MPU) of accept-info.
t6, t13 Transitions related to the message processing unit (MPU) of confirm.
t7 / t27 The abstract transition make_decision, which determines the next action to perform.
t8 / t28 The transition bypass, which is disabled when there are tokens in place P2 / P19, i.e., there

is no token in place P3 / P20. Notice that P3 / P20 is a complementary place of P2 / P19.
t9 / t29 The abstract transition sensor, which captures internal and external events.
t14 / t32 The transition ignore that ignores the current conversation.
t15 / t33 The transition continue that continues with the current conversation.
t16 / t34 The transition start_a_conversation that starts a new conversation.
t17 / t35 The transition automatic_update that automatically updates the agent’s mental state.
t18, t21 Transitions related to the message processing unit (MPU) of request-registration.
t19, t22 Transitions related to the message processing unit (MPU) of supply-info.
t20 / t40 The abstract transition update_goal/plan/kb, which updates the agent’s mental state.
t25, t30 Transitions related to the message processing unit (MPU) of propose.
t26, t31 Transitions related to the asynchronous superclass switch place (ASP) .
t36, t41 Transitions related to the message processing unit (MPU) of request-price.
t37, t42 Transitions related to the message processing unit (MPU) of accept-proposal.
t38, t43 Transitions related to the message processing unit (MPU) of reject-proposal.
t39, t44 Transitions related to the asynchronous superclass switch place (ASP) .
t45 / t46 The transition related to the GSP of Selling Agent_1 / Selling Agent_2.

67

5.3 Deadlock Detection and Redesign of Agent-Oriented Models

Now we use the INA tool to analyze the simplified agent model illustrated in Figure 15. To reduce

the state space, we further reduce the net by fusing the MPUs in the same incoming/outgoing message

section. For instance, in Figure 15, we fuse the places P8, P9, P10 and P11 into one single places.

Obviously, this type of net reduction [Shatz et al. 1996] does not affect the properties of liveness, deadlock-

freeness and the correctness of inheritance mechanism. In addition, we set the capacity of each place in our

net model as 1, which means at any time, some processing units, such as MPUs, can only process one

message. However, the property of concurrency is still preserved because different transitions can be

simultaneously enabled (and not in conflict); providing the standard Petri net notion of concurrency based

on the interleaved semantics. For example, transitions t25 and t27 can be simultaneously enabled,

representing that message processing for a conversation and decision-making for another conversation can

happen at the same time.

To verify the correctness of our agent model, we utilize some key definitions for Petri net behavior

properties as adapted from [Murata 1989].

Definition 5.1 Reachability

In a Petri net N with initial marking M0, denoted as (N, M0), a marking Mn is said to be reachable from a

marking M0 if there exists a sequence of firings that transforms M0 to Mn. A firing or occurrence sequence

is denoted by σ = M0 t1 M1 t2 M2 … tn Mn or simply σ = t1 t2 … tn. In this case, Mn is reachable from M0

by σ and we write M0 [σ > Mn.

Definition 5.2 Boundedness

A Petri net (N, M0), is said to be k-bounded or simply bounded if the number of tokens in each place does

not exceed a finite number k for any marking reachable from M0. A Petri net (N, M0) is said to be safe if it

is 1-bounded.

68

Definition 5.3 Liveness

A Petri net (N, M0), is said to be live if for any marking M that is reachable from M0, it is possible to

ultimately fire any transition of the net by progressing some further firing sequence.

Definition 5.4 Reversibility

A Petri net (N, M0) is said to be reversible if, for each marking M that is reachable from the initial marking

M0, M0 is reachable from M.

With our net model in Figure 15 as input, the INA tool produces the following results:

Computation of the reachability graph

States generated: 8193

Arcs generated: 29701

Dead states:

 484, 485,8189

Number of dead states found: 3

The net has dead reachable states.

The net is not live.

The net is not reversible (resetable).

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

 7, 9, 14, 15, 16, 17, 20, 27, 28, 32, 33

The net has dead transitions at the initial marking.

The analysis shows that our net model is not live, and the dead reachable states indicate a

deadlock. By tracing the firing sequence for those dead reachable states, we find that when there is a token

in place P29, both the transitions t34 and t35 are enabled. At this time, if the transition t35 fires, a token

will be deposited into place P30. After firing transition t40, the token removed from place P24, by firing

transition t29, will return to place P24, and this makes it possible to fire either transition t27 or t29 in a

69

future state. However if the transition t34 fires, instead of firing transition t35, there will be no tokens

returned to place P24. So, transition t27 and t29 will be disabled forever, and a deadlock situation occurs.

To correct this error, we need to modify the design of the Planner module in Figure 10. The model

modification is to add a new arc from transition start_a_conversation to place syn, and the correct version

of our Planner module design is shown as in Figure 16. Correspondingly, we add two new arcs in Figure

15: an arc from transition t16 to place P7, and another arc from transition t34 to place P24. After this

correction, we can again evaluate the revised net model by using the INA tool. Now we obtain the

following results:

Computation of the reachability graph

States generated: 262143

Arcs generated: 1540095

The net has no dead reachable states.

The net is bounded.

The net is safe.

The following transitions are dead at the initial marking:

 7, 9, 14, 15, 16, 17, 20, 28

The net has dead transitions at the initial marking.

Liveness test:

Warning: Liveness analysis refers to the net where all dead transitions

are ignored.

The net is live, if dead transitions are ignored.

The computed graph is strongly connected.

The net is reversible (resetable).

This automated analysis shows that our modified net model is live, ignoring, of course, any

transitions that are dead in the initial marking. Thus, for any marking M that is reachable from M0, it is

possible to ultimately fire any transition (except those dead transitions) of the net. Since the initial marking

M0 represents that there is no ongoing (active) conversations in the net, a marking M that is reachable from

70

M0, but where M ≠ M0, implies that there must be some conversations active in the net. By showing that

our net model is live, we prove that under all circumstances (no matter if there are, or are not, any active

conversations), it is possible to eventually perform any needed future communicative act. Consider the

dead transitions t7, t9, t14, t15, t16, t17 and t20. These imply that the decision-making units in the shopping

subagent are disabled. The remaining dead transition, t28, implies that the primary subagent always makes

decisions for the whole buying agent.

GSP(G) Goal Knowledge-base

make_
decision

start_a_
conver_
sation

…

…

…

…

…

continue

external internal

to place “Goal”
to place “Plan”
to place “Knowledge base”

from transition
“update”

update_
goal/plan/kb

check_
primary

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

dispatch_
private_
utility

private

Plan

bypass

ASP(super)

ignore

next_
action

sensor

automatic_
update

new_
action

ASP(super)

ASP(super)

update

outgoing messages

private utilities

incoming messages

autonomous unit

Environment

syn
<e>

<e>

<e>

Figure 16. A template for the Planner module (revised design)

Our net model is safe because we have set the capacity of each place in our model to 1. A net

model with capacity k (k > 1) for each place can be proved to be k-bounded in the same way. However, the

state space may increase dramatically.

71

In addition, the analysis tells us that our net model is reversible, indicating that the initial marking

M0 can be reproduced (recall definition 5.4, given earlier). Since the initial marking M0 represents that

there are no ongoing (active) conversations in the net, the reversible property proves that every

conversation in the net can be eventually completed.

5.4 Property Verification by Using Model Checking

To further prove additional behavioral properties of our revised net model, we use some model

checking capabilities provided by the INA tool. Model checking is a technique in which the verification of

a system is carried out by using a finite representation of its state space. Basic properties, such as an

absence of deadlock or satisfaction of a state invariant (e.g., mutual exclusion), can be verified by checking

individual states. More subtle properties, such as guarantee of progress, require checking for specific cycles

in a graph representing the states and possible transitions between them. Properties to be checked are

typically described by formulae in a branching time or linear time temporal logic [Clarke et al. 1986]

[Clark and Wing 1996].

The INA tool allows us to state properties in the form of CTL (Computation Tree Logic) formulae

[Roch and Starke 1999][Clarke et al. 1986]. The syntax of CTL formulae is defined as follows:

<FORMULA> ::= 'T' | 'P'<NUMBER> | '-'<FORMULA> |

 '('<FORMULA>'&'<FORMULA>')' | '('<FORMULA>'V'<FORMULA>')' |

 'E''X'<FORMULA> | 'E''F'<FORMULA> | 'E''G'<FORMULA> |

 'A''X'<FORMULA> | 'A''F'<FORMULA> | 'A''G'<FORMULA> |

 'E''['<FORMULA>'U'<FORMULA>']' | 'A''['<FORMULA>'U'<FORMULA>']'

 'E''['<FORMULA>'B'<FORMULA>']' | 'A''['<FORMULA>'B'<FORMULA>']'

<NUMBER> ::= <NONEMPTY SEQUENCE OF DIGITS FOLLOWED BY A BLANK>

T stands for the truth value “true”, predicates are referred to with P<number>, in the atomic

mode P<number> denotes the criterion whether the place with the internal number <number> is marked

or not, - stands for the logical “not”, & and V stand for the logical connectors “and” and “or”, respectively,

72

and EX, EF, EG, AX, AF, AG, EU, EB, AU, and AB stand for the corresponding temporal-logical quantors as

shown in Table VII.

Table VII

DESCRIPTION OF TEMPORAL-LOGICAL QUANTORS

Quantor Description
EX f There exists an immediate post-state in which f is satisfied.
A [f1 U f2] Along all paths, f1 is satisfied until a state is reached which satisfies f2.
E [f1 U f2] There exists a path, along which f1 is satisfied until a state is reached which satisfies f2.
A [f1 B f2] On all paths, f1 is satisfied at least once, before a state is reached, which satisfies f2.
E [f1 B f2] There exists a path along which f1 is satisfied at least once, before a state is reached

which satisfies f2.
AX [f] f is satisfied in all post-states.
AF [f] f is satisfied on every path in the future.
EF [f] There exists a path which leads to a state in which f is satisfied.
AG [f] f is satisfied in every state on all paths.
EG [f] There exists a path where f is satisfied in every state.

 Using this notation, we can specify and verify some key properties of our revised net model, such

as concurrency, mutual exclusion, and proper inheritance behavior:

Concurrency

The following formula says that, in the reachability graph of our revised net model, there exists a path that

leads to a state in which all the places P5, P13, P22 and P28 are marked.

 EF(P5 &(P13 &(P22 &P28))) Result: The formula is TRUE

Result explanation: A TRUE result indicates that all the places P5, P13, P22 and P28 can be marked at the

same time. From Figure 15, we see that incoming/outgoing messages are dispatched in these places. So the

result implies that different messages can be dispatched in our net model concurrently.

Mutual Exclusion

The following formula says that, in the reachability graph of our revised net model, there exists a path that

leads to a state in which both places P27 and P30 (or both places P29 and P30) are marked.

73

 EF(P27 &P30) V (P29 &P30)) Result: The formula is FALSE

Result explanation: A FALSE result indicates that it is impossible to mark both places P27 and P30 (or

both places P29 and P30) at the same time. From Figure 15, we see that place P27 represents any actions

executed after decision-making, and place P30 is used for updating the plan, goal and knowledge-base.

Thus, this result guarantees that decisions can only be made upon the latest mental state, i.e., the latest

values in plan, goal and knowledge-base modules. Similarly, the fact that P29 and P30 cannot be marked at

the same time guarantees the requirement that the sensor can always capture the latest mental state.

Inheritance Mechanism (decision-making in subagent)

The following formula says that, in the reachability graph of our revised net model, P12, P14 and P15 are

not marked in any state on all paths.

 AG(-P12 &(-P14 &-P15)) Result: The formula is TRUE

Result explanation: A TRUE result indicates that places P12, P14 and P15 are not marked under any

circumstance. From Figure 15, we see that P12, P14 and P15 belong to decision-making units in the

shopping subagent. As we stated earlier, all decision-making mechanisms in subagents should be disabled,

with all decision-makings for an agent being achieved by the primary subagent. So, the result implies a

desirable feature of the inheritance mechanism in our net model.

Inheritance Mechanism (ASP message forwarding I)

The following formula says that, in the reachability graph of our revised net model, P26 or P34 are always

marked before P5 or P6 is marked.

 A[(P26 VP34)B(P5 VP6)] Result: The formula is TRUE

74

Result explanation: A TRUE result indicates that neither place P5 nor P6 can become marked before the

place P26 or P34 is marked. From Figure 15, we see that place P26 and P34 represent ASP places, and P5

and P6 represent the message dispatching units. The result implies that messages will never be dispatched

in a shopping subagent unless a MPU is not found in the primary buying subagent, in which case, either the

ASP place P26 or P34 will be marked.

Inheritance Mechanism (ASP message forwarding II)

The following formula says that, in the reachability graph of our revised net model, P26 (P34) is always

marked before P5 (P6) is marked.

 A[P26 BP5]VA[P34 BP6] Result: The formula is FALSE

Result explanation: We expect that for every incoming (outgoing) message, if it is not found in the primary

buying subagent, it will be forwarded to the shopping agent, and dispatched into a MPU of the incoming

(outgoing) message section. However, the FALSE result indicates that our net model does not work as we

have expected. By looking into the generic agent model, we can observe that when we created the net

model in Figure 15, we simplified all message tokens as ordinary tokens, i.e., black tokens. This

simplification makes it possible for an incoming (outgoing) message to be dispatched into an outgoing

(incoming) message section. Therefore, a message might be processed by a MPU that is not the desired

one. To solve this problem, we may use colored tokens, instead of ordinary tokens, to represent message

tokens, and attach guards to transitions. However, in this chapter, by using ordinary place/transition net (not

a colored net), we obtain a simplified model that is sufficient to illustrate our key concepts.

5.5 Summary

In this chapter, we discussed how to verify liveness properties of our net model by using an

existing Petri net tool, the INA tool. The value of such an automated analysis capability was demonstrated

by detection of a deadlock situation due to a design error. The revised model was then proved to be both

75

live and reversible. Furthermore, model checking techniques were used to prove some key behavioral

properties for our agent model, such as concurrency, mutual exclusion, and correctness of the inheritance

mechanism. In addition to proving key behavioral properties of our agent model, our formal method

approach is also of value in creating a clear understanding of the structure of an agent, which can increase

confidence in the correctness of a particular multi-agent system design. Also, in producing a more detailed

design, where the abstract transitions in the planner module are refined, we may again use Petri net tools to

capture further design errors.

In Chapter 6, we discuss another research direction of software agents, i.e., mobile agents. We

adapt the agent-oriented G-net model proposed in Chapter 4 to support some basic mobility concepts, and

present a design model of intelligent mobile agents in the framework for agent-oriented software.

6. EXTENDING AGENT-ORIENTED G-NETS TO SUPPORT MOBILITY

6.1 Introduction

There are two main streams of research on software agents, namely the multi-agent systems

(MAS) and mobile agents (MA). Research on multi-agent systems (MAS) is rooted in distributed artificial

intelligence (DAI), and dates back to the fifties. In a multi-agent system, agents are autonomous, reactive,

proactive and sociable. Agents in a MAS are usually distributed but static, and they are typical organized to

execute a given task or achieve their own goals by collaborating and cooperating in an intelligent manner

[Kinny and Georgeff 1997] [Jennings et al. 1998]. On the other hand, research on mobile agents usually

emphasizes agent mobility and agent coordination, and mobile agents are usually assumed to only have

very limited or even no intelligence [Roman et al. 1997][Mascolo 1999][Cabri et al. 2001]. The

development scheme in the later case for mobile agents is sometimes called weak agent approach, which

contrasts with the strong agent approach that involves artifical intelligence techniques [Silva et al. 2001].

For mobile agents, the concern is with software agents that can migrate over computer networks.

The concept of location has been one of the key features to characterize mobility in most theoretical models

of mobile agents, such as the distributed join-calculus [Fournet et al. 1996], which is an extension of the π-

calculus that introduces the explicit notions of named localities and distribution failure. Additional typical

formalisms for agent mobility modeling are summarized as follows. Mobile UNITY [Roman et al. 1997]

provides a programming notation that captures the notion of mobility and transient interactions among

mobile nodes. Inspired by Mobile UNITY, the concept of connectors [Wermelinger and Fiadeiro 1998] is

explicitly identified to describe different kinds of transient interactions, and facilitate the separation of

coordination from computation in mobile computing. The connectors are written in COMMUNITY, a

UNITY-like program design language whose semantics is given in a categorical framework. MobiS

[Mascolo 1999], as an extended version of PoliS, is a specification language based on multiple tuple

spaces. It can be used to specify agent coordination and architectures containing mobile components. More

 76

77

recently, LIME [Murphy et al. 2001], also based on tuple spaces, has been proposed as a middleware that

supports the development of applications that exhibit both physical and logical mobility. A formal

architecture model for logical agent mobility has been proposed by using Pr/T nets [Xu et al. 2003].

Although the above efforts succeeded in formal modeling mobile agents in terms of their mobility,

they are not built upon a framework that explicitly supports the intelligence feature of agents. In other

words, they belong to the domain of weak agent approaches. Such models are typically reactive rather than

pro-active, i.e., they simply act in response to their environment, but they are not able to exhibit goal-

directed behaviors. Other efforts, such as the MARS project [Cabri et al. 2001], have attempted to

introduce context-dependent coordination into agent models; however in these cases, the communication

mechanisms between mobile agents are usually not explicitly suggested. There are also some research

efforts concerned with mobile agent communication mechanisms, but without formal definitions [Baumann

et al. 1997][Finin et al. 1998].

From the above review, we find that current work on mobile agents mostly emphasizes some

particular features of the mobile agents, e.g., agent mobility. With the continuing improvement of agent

technology, and the rapid growth of software system complexity, especially for Internet applications, there

is a pressing need for a more general model of mobile agents, in which agents are not only mobile and

cooperative, but also intelligent. There are a few previous efforts that discuss intelligent mobile agents [Ku

et al. 1997][Finin et al. 1998], however they lack a formal framework for intelligent mobile agent design.

In this chapter, we propose an intelligent mobile agent model by adapting basic mobility concepts into our

previously discussed framework for agent-oriented software (Chapter 4). This framework, i.e., the agent-

oriented G-net model, has been designed to model intelligent software agents for multi-agent systems, and

it supports asynchronous message passing as well as design reuse of functional units. Therefore, our

proposed formal model for intelligent mobile agents inherits these features. In addition, since our proposed

model is based on the agent-oriented G-net formalism [Xu and Shatz 2003], it can be translated into more

“standard” forms of a Petri net for design analysis, including model checking.

78

The rest of this chapter is organized as follows. Section 6.2 describes the mobile agent

background. Section 6.3 proposes the architecture for a mobile agent system, and illustrates how to design

the principle agent system components: the intelligent mobile agents (IMA) and the intelligent facilitator

agents (IFA). Section 6.4 uses an electronic marketplace example to show how to incrementally design

application-specific intelligent mobile agents using the discussed architecture. Finally, in Section 6.5, we

summarize our work.

6.2 Mobile Agent Background

Traditionally, distributed applications have relied on the client-server paradigm in which client

and server processes communicate either through message-passing or Remote Procedure Call (RPC). This

communication model is usually synchronous, i.e., the client suspends itself after sending a request to the

server, waiting for the results to come back [Karnik and Tripathi 1998]. Obviously, a prerequisite for an

RPC to work correctly is that the called procedure is available on the corresponding remote node. This

requirement, however limits the usability of the RPC concept in large open distributed systems [Rothermel

and Schwehm 1999]. In many cases, it is desirable to send a procedure to a remote node and execute it

there. This level of flexibility is introduced by the concept of Remote Evaluation (REV) [Stamos and

Gifford 1990a][Stamos and Gifford 1990b] in which the client, instead of invoking a remote procedure,

sends its own procedure code with parameters to a server, and requests the server to execute it and return

the results. Common Gateway Interface (CGI) and Java Servlets are typical examples of this technique. The

concept of REV can be generalized in the sense that not only the client may send the code to a server but

also vice versa. With the scheme of Code on Demand (COD), a client initiates the transfer of the program

code, and programs stored on server machines are downloaded to the client on demand. The currently most

popular technologies supporting this type of mobility are ActiveX Controls and Java Applets.

The mobile agent paradigm has evolved from these antecedents. Figure 17 illustrates how it differs

from RPC and REV/COD. In RPC, only parameters (data) are transmitted from the client to the server, and

the results (data) are returned after the execution of the procedures stored on the server machines. In REV,

79

both procedures (code) and parameters (data) are sent from the client to the server, and the results (data) are

returned after the procedures coming from the client are executed on the server machine. In COD, only

procedures (code) are downloaded from the server, and they are executed on the client machine. Obviously,

both REV and COD support “code mobility” rather than “agent mobility”, as both schemes transfer their

procedures before their activation. In contrast, mobile agents are defined as objects that have behavior, state

and location. Mobile agents are autonomous because once they are invoked they will autonomously decide

which locations they will visit and what instructions they will perform. A mobile agent is a program

(encapsulating code, data and state) sent by a client to a server. Unlike a procedure call, it does not have to

return its results to the client. It could migrate to other servers, transmit information back to its original, or

migrate back to the client if needed. It thus has more autonomy than a simple procedure call.

results (data)
RPC Server Client

 Client
procedure (code + data)

results (data)
REV Server

2. agent migration

4. agent migration

3. agent migration 1. agent dispatch agent (code +
data + state)

Agent Migration Server-1 Server-2

 Client Server-3

 Client
procedure (code)

COD Server

parameters (data)

Figure 17. Evolution of the mobile agent paradigm

Previous work on building mobile agent systems can be summarized as follows. Telescript [White

1995], developed by General Magic, was the first commercial product to provide a technology for

distributed application development based on mobile agents. AgentTcl is a mobile agent system developed

at the Dartmouth College [Gray 1995], which is an extension of the Tool Command Language (Tcl) to

write mobile agents. TACOMA (Tromso And Cornell Moving Agents) system runs on several UNIX

80

platforms, and applications of mobile agents may be written in Tcl/Tk, C, Scheme, Perl or Python

[Johansen et al. 1995]. Mole is one of the first Java-implementations of mobile agent systems and was

developed at the University of Stuttgart [Straßer et al. 1997]. It uses Java as the agent programming

language as well as the implementation language. Mole is thus a pure Java application and can be started at

every computer platform for which a Java Development Kit (JDK) is available. Java aglet has been

developed at the IBM Tokyo Research Laboratory, which is a lightweight mobile agent for the Java

programming environment [Lange et al. 1997]. An aglet is a mobile Java object that can be launched by a

visual agent manager called Tahiti. For more prominent mobile agent systems, refer to paper [Rothermel

and Schwehm 1999][Silva et al. 2001]. Note that the above examples of mobile agent systems are neither

built upon formal agent models, nor illustrate any agent intelligence. These missing features make the

above efforts differ from our research, in which we aim to build intelligent mobile agent systems based on a

formal agent model.

6.3 Modeling the Agent World for Mobile Agents

Today’s users demand ubiquitous network access independent of their physical location. This style

of computation, often referred to as mobile computing, is enabled by rapid advances in wireless

communication technology [Murphy et al. 2001]. The networking scenarios enabled by mobile computing

range roughly between two extremes. At one end, the availability of a fixed network is assumed, and its

facilities are exploited by the mobile infrastructure. We call this form of mobility logical mobility. At the

other end, the fixed network is absent and all network facilities (e.g., routing) must be implemented by

relying only on the available mobile hosts, namely ad hoc networks. This form of mobility is called

physical mobility. Mobile agent technology is a new networking technology that deals with both forms of

mobility. It offers a new computing paradigm in which a program, in the form of an intelligent software

agent, can suspend its execution on a host computer, transfer itself to another agent-enabled host on the

network, and resume execution on the new host. Here, as we will see in the next section, we define a host

as either a static host or a mobile host, which is situated in an ad hoc network.

81

6.3.1 Agent World Architecture

First, we introduce the concepts of agent virtual machine (AVM) and agent world (AW), which

serve to define a framework for a mobile agent system. Figure 18 shows a generic mobile agent system,

and an example of agent migration. In the figure, Host-A and Host-B are two machines connected by a

network. To make mobile agent platform independent, a mobile agent runs on an agent virtual machine

(AVM), which provides a protected agent execution environment. Each host may have a number of AVMs,

however, to make it simple, we only illustrate one AVM for each host in Figure 18. Each AVM is

responsible for hosting and executing any agents created on that AVM or those arrive over the network,

and for providing API for agent programmers.

We now provide a few key definitions for the mobile agent system. Note that our definitions for

mobile agents apply for both logical and physical mobility.

(4)

Host-A

computer network

AVM: ΘA AVM: ΘB

Host-B

(1)

(2)

(3)

(1) move-request (2) grant (3) notify (4) move

… …

FA: θA MA: β MA: α MA: α MA: γ FA: θB

Figure 18. Agent world architecture and an example of agent migration

82

Definition 6.1 Agent World (AW)

An agent world (AW) is a 3-tuple (WKHOST, SHOST, HCOM), where WKHOST is a well-known static

host, which is responsible for recording the most recent IP address of all other hosts. SHOST is a set of

hosts that can provide agent virtual machines, where members of this set could be either static or mobile.

Note that, in a special case, WKHOST is a member of SHOST. HCOM is the communication protocol

among hosts in SHOST, an example of such protocols is TCP/IP.

Definition 6.2 Static Host (SH) and Mobile Host (MH)

A host is 4-tuple (SAVM, ACOM, HOMEIP, CURIP), where SAVM is a set of agent virtual machines

(AVM). ACOM is the communication protocol among AVMs in SAVM, and examples of such protocols are

IPC and TCP/IP. HOMEIP is the original IP address of the host, and CURIP is the current IP address of the

host. If at any time, CURIP = HOMEIP, we call the host a static host (SH); otherwise, we call it a mobile

host (MH).

Definition 6.3 Agent Virtual Machine (AVM)

An agent virtual machine (AVM) is a 5-tuple (FA, SMA, MCOM, HOSTIP, ID), where FA is a facilitator

agent for AVM, which is responsible for recording information of mobile agents running on that AVM, and

also for providing services for mobile agents running on other AVMs. Note that FA is a static agent, i.e., it

does not migrate. SMA is a set of mobile agents. MCOM is the communication protocols for both static

and mobile agents. HOSTIP is the current IP address of the host where the AVM runs on, and ID is a

unique identifier for that AVM.

Definition 6.4 Static Agent (SA) and Mobile Agent (MA)

An agent A is 3-tuple (HOMEIP, CURIP, AO), where HOMEIP is the IP address of the host, on which

agent A is created. CURIP is the IP address of the host where agent A currently runs on. AO is the agent

object with the general structure as we described in Section 4.2. If at ant time, CURIP = HOMEIP, we refer

to agent A as a static agent (SA); otherwise, we refer to agent A as a mobile agent (MA).

83

Since in this chapter we view mobile agents and facilitator agents (an example of static agent) as

intelligent software agents, for the rest of this chapter a mobile/facilitator agent always refers to an

intelligent mobile agent (IMA) or an intelligent facilitator agent (IFA). As shown in Figure 18, when a

mobile agent α on AVM ΘA wants to migrate to another AVM ΘB, it needs to contact with the remote

facilitator agent θB first, which resides on AVM ΘB (step 1). In fact, the mobile agent α needs to know the

address of the remote facilitator agent θB before the communication can begin. This could be done by

querying this information from its local facilitator agent θA, which resides on AVM ΘA. If the local

facilitator agent θA knows the address of the remote facilitator agent θB, it will provide this information to

the mobile agent α; otherwise, it will contact with the well-known static host Π (we do not show it in

Figure 18) for this information and forward the results to the mobile agent α thereafter. For simplicity, this

procedure is omitted in Figure 18. Based on security and resource criteria, the remote facilitator agent θB

decides if the migration request is granted. If the migration request is granted (step 2), the mobile agent α

notifies its local facilitator agent θA about its leaving (step 3), and it finally moves to the remote AVM ΘB

(step 4). In the following section, we will see that, in our approach, step 1 and step 2 are modeled by

asynchronous message passing; while step 3 and step 4 are modeled by method invocations.

The situation above is an example of logical mobility. For physical mobility, a host may at some

time change its IP address or lose its IP address temporarily (detached from the network). In this case, the

well-known static host Π is critical for recording this information. To successfully send a message to an

agent on which the AVM has changed its HOSTIP address, the knowledge of the sender agent’s local

facilitator agent needs to be consistent with the latest network information. Further discussion about this

issue is beyond the scope of this chapter, which concentrates on logical mobility.

6.3.2 Intelligent Mobile Agent and Intelligent Facilitator Agent

To illustrate the processes for design of intelligent mobile agents (IMA) and intelligent facilitator

agents (IFA) by extending our proposed agent-oriented G-net model (Chapter 4), we use the following

84

examples. Since we view a facilitator agent as an IFA, in addition to provide public services to a mobile

agent or some other IFA, an IFA also has the capability of making decisions. This feature is vitally

important for an IFA to cater for the needs of service allocation in a dynamic network environment, such as

resource management and security verifications. Figure 19 (a) depicts a template of a contract net protocol

[Flores and Kremer 2001] expressed as an agent UML (AUML) sequence diagram [Odell 2001] for a

migration-request protocol between a mobile agent (MA) and a remote facilitator agent (FA). Figure 19 (b)

depicts a template of a contract net protocol expressed as an AUML sequence diagram for a price-

negotiation protocol between a buying mobile agent (BMA) and a selling mobile agent (SMA).

IMA remote IFA

move-request

• refuse-move

ask-authCode
x

• confirm-move

(a) (b)

return-authCode

x
grant-move *

BMA SMA

request-price

• refuse-price

x

accept-proposal

reject-proposal
x

propose

propose

accept-proposal

reject-proposal
x

• confirm-price

• refuse-move

IMA: intelligent mobile agent, IFA: intelligent facilitator agent, BMA: buying mobile agent, SMA: selling mobile agent

Figure 19. Contract net protocols (a) a temple for the migration-request protocol (b) a template for the
price-negotiation protocol

Consider Figure 19 (a). When a conversation based on a contract net protocol begins, the

intelligent mobile agent (IMA) sends a request for migration to a remote intelligent facilitator agent (IFA)

on a different AVM. The remote IFA can then choose to respond to the IMA by refusing its migration or

asking the IMA’s authorization code, which is used to verify that the IMA is on a trustable AVM. Here the

“x” in the decision diamond indicates an exclusive-or decision. If the remote IFA refuses the migration

based on resource limitation or some other reasons, the protocol ends; otherwise, the remote IFA waits for

85

the IMA’s authorization code to be supplied. If the IMA’s authorization code is correctly provided, the

remote IFA may grant the IMA for migration if it is trustable, or refuse the migration otherwise. Again, if

the remote IFA refuses IMA's migration, the protocol ends; otherwise, a confirmation message will be

provided afterwards. Similarly, the price-negotiation protocol between a buying mobile agent (BMA) and a

selling mobile agent (SMA), which are subclasses of IMA, can be illustrated in Figure 19 (b).

Based on the communicative acts (e.g., move-request, refuse-move, etc.) needed for the contract

net protocol in Figure 19 (a), we may adopt the agent design template shown in Figure 5, and design the

intelligent mobile agent class (IMA) as in Figure 20. The Goal, Plan, Knowledge-base and Environment

modules remain as abstract units and can be refined in further design stages. The Planner module may

reuse the template shown in Figure 16. The design of the remote facilitator agent, i.e., intelligent facilitator

agent class (IFA), is similar; however, since an IFA works as a server, and it may provide public services to

other agents, we must extend the IS in Figure 5 with a public service section. The resulting design for IFA

is illustrated in Figure 21.

 GSP(IMA)

incoming message

Goal

 outgoing message

ask-authCode refuse-move

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(self)

grant-move confirm-move move-request return-authCode

 return return

utility method

notify move

…

…

ISP(FA,
inform)

utility

MSP(G’.Aid) MSP(G’.Aid)

Plan Environment

action action action action action action

Figure 20. An agent-oriented G-net model for intelligent mobile agent class (IMA)

86

 GSP(IFA)

incoming message

Goal

 outgoing message

move-request return-authCode

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

ask-authCode refuse-move grant-move confirm-move

 return return

public service

register inform

…

…

utility utility

MSP(G’.Aid) MSP(G’.Aid)

Plan Environmen

action action action action action action

t

Figure 21. An agent-oriented G-net model for intelligent facilitator agent class (IFA)

To show how our agent models work correctly in an agent conversation, we now discuss an

example. Consider a mobile agent object MAO, which receives a message of ask-authCode from a remote

facilitator agent object FAO. A mTkn token with a tag of external will be deposited in the GSP of the

primary subagent of MAO, i.e., the GSP of the corresponding intelligent mobile agent class (IMA). The

transition external in MA’s Planner module may fire, and the mTkn will be moved to the place

dispatch_incoming_message. Since there is an MPU for ask-authCode defined in the internal structure of

MA, the mTkn will be dispatched to the entry place of that MPU. After the message is processed, MSP(self)

changes the tag of the mTkn from external to internal, and sends the processed mTkn token back into the

GSP of IMA. Upon the arrival of this message token, the transition internal in the Planner module of MA

may fire, and the mTkn token will be moved to the place check_primary. Since IMA corresponds to the

primary subagent of MAO, there are tokens in the special places Goal, Plan, Knowledge-base and

Environment. Therefore the abstract transition make_decision may fire, and any necessary actions are

executed in place next_action. Then the current conversation is either ignored or continued based on the

decision made in the abstract transition make_decision. If the current conversation is ignored, the goals,

plans and knowledge-base are updated as needed; otherwise, in addition to the updating of goals, plans and

87

knowledge-base, a newly constructed mTkn with a tag of internal is deposited into place

dispatch_outgoing_message. The new mTkn token has the message name return-authCode, following the

protocol defined in Figure 19 (a). Again, there is an MPU for return-authCode defined in IMA, so the new

mTkn token will be dispatched into the entry place of that MPU. After the message is processed, the

MSP(G’.Aid) mechanism changes the tag of the mTkn token from internal to external, and transfers the

mTkn token to the GSP of the receiver agent, in this case, the remote facilitator agent object FAO.

ISP(FA,
inform(FAILURE)) ISP(rFA, register)

return

start_move

succeed fail

retry change_CurIP

(a) (b)

ISP(self, notify)

ISP(self, move)

message_processing

entry place

MSP(G’, Aid)

entry place

move() confirm-move

[retry ≤ MAX_TRIAL]

else

migration

begin_process

after_process

begin_migration

after_migration
end

retry

Figure 22. Refinement of functional units (a) Refinement of method move()
(b) Refinement of MPU confirm-move

To further illustrate how to refine the MPU/method in a mobile agent's internal structure, we use

the examples of the MPU confirm-move defined in the incoming message section and the method move

defined in the utility method section. The refinement of another method notify() is straightforward; as

shown in Figure 20, the notify() method makes a method invocation inform() to its local facilitator agent.

This is done to notify the facilitator agent that the calling agent is leaving. The refinement of method

move() and MPU confirm-move are shown in Figure 22 (a) and Figure 22 (b), respectively. In Figure 22 (a),

when there is a token deposited in the entry place, the transition start_move fires, and deposit a token into

88

place migration. The migration might be successful or failed, due to the network condition. If the migration

fails, the transition fail fires, and deposits a token into place retry. The mobile agent will then count the

number of retrials. If it has retried less than MAX_TRIAL times, the mobile agent will try to migrate again;

otherwise, the transition else fires, and a method call inform(FAILURE) will be made to its local facilitator

agent (FA) to notify the local FA that its migration is failed. This is modeled by the ISP(rFA,

inform(FAILURE)) mechanism. After that, the method call move() returns. If the migration succeeds, the

transition succeed fires, and the mobile agent’s current IP address CURIP will be changed to the new one.

Then a method call ISP(rFA, register) is made to the remote facilitator agent (FA), which is actually the

mobile agent’s local FA now. After registering with the FA, the method call move() returns.

In Figure 22 (b), the refinement of MPU confirm-move is straightforward. When there is a token

deposited into the entry place of the MPU confirm-move, the transition begin_process fires. After

processing the message token, it makes a method call ISP(self, notify) to the agent itself, which further

makes a method call to the mobile agent’s local facilitator agent -- to inform the facilitator agent that the

mobile agent is leaving. After that, the migration starts by invoking the method move(). Finally, after

finishing the migration, either failed or succeeded, it transfers the message token to the agent itself, and

ends the conversation.

6.4 Design of Intelligent Mobile Agents in an Electronic Marketplace

Consider a mobile agent family in an electronic marketplace domain, which is a global stock

market tracking and trading system. Figure 23 shows the agents in a UML class hierarchy notation. An

intelligent mobile agent class (IMA) is defined as a superclass that is capable of communicating with an

intelligent facilitator agent class (IFA), and migrating among AVMs. The functionality of an intelligent

mobile agent class (IMA) can be inherited by an agent subclass, such as a buying mobile agent class (BMA)

or a selling mobile agent class (SMA). Both the BMA and SMA may reuse the functionality of IMA for

communication with IFA and migration among AVMs. Furthermore, a broker mobile agent class is

89

designed as a subclass of both the BMA and SMA, and a stock-buyer/stock-seller mobile agent class may be

defined as a subclass of a BMA/SMA.

Based on the communicative acts (e.g., request-price, refuse-price, etc.) needed for the contract

net protocol between the buying mobile agent (BMA) and the selling mobile agent (SMA), we may design

the BMA as shown in Figure 24. The SMA can be designed in the same way.

 Intelligent Mobile Agent (IMA)

Stock Buyer Mobile Agent

Buying Mobile Agent (BMA) Selling Mobile Agent (SMA)

Broker Mobile Agent Stock Seller Mobile Agent

Figure 23. The class hierarchy diagram of mobile agents in an electronic marketplace

 GSP(BMA)
BMA extends MA

incoming message

Goal

 outgoing message

refuse-price propose

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(G’Aid)

confirm-price request-price accept-proposal reject-proposal

 return return

private utility

utility_1 utility_p

…

…

utility utility

MSP(G’.Aid) MSP(G’.Aid)

Plan Environment

action action action action action action

Figure 24. An agent-oriented G-net model for buying mobile agent class (BMA)

90

With inheritance, a buying mobile agent class (BMA), as a subclass of a mobile agent class (MA),

may reuse MPUs/methods defined in MA’s internal structure. Similarly, a selling mobile agent class (SMA)

inherits all MPU/methods of MA, and a retailer mobile agent class inherits all MPU/methods of both the

BMA and the SMA.

Now we discuss an example to show how the reuse of MPU/methods works. Consider a buying

mobile agent object BMO, which receives a message of ask-authCode from a remote facilitator agent object

FAO. A mTkn token will be deposited in the GSP of the primary subagent of BMO, i.e., the GSP of the

corresponding buying mobile agent class (BMA). The transition external in BMA’s Planner module may

fire, and the mTkn will be moved to the place dispatch_incoming_message. Since there is no MPU for ask-

authCode defined in the internal structure of BMA, the mTkn will be moved to the ASP(super) place. Since

super here refers to a unique superclass – the mobile agent class (MA) – the mTkn will be transferred to the

GSP of MA. Now the mTkn can be correctly dispatched to the MPU for ask-authCode. After the message is

processed, MSP(self) changes the tag of the mTkn from external to internal, and sends the processed mTkn

token back into the GSP of BMA. Note that MSP(self) always sends a mTkn back to the GSP of the primary

subagent. Upon the arrival of this message token, the transition internal in the Planner module of BMA

may fire, and the mTkn token will be moved to the place check_primary. Since BMA corresponds to the

primary subagent of BMO, there are tokens in the special places Goal, Plan, Knowledge-base and

Environment. Therefore the abstract transition make_decision may fire, and any necessary actions are

executed in place next_action. Then the current conversation is either ignored or continued based on the

decision made in the abstract transition make_decision. If the current conversation is ignored, the goals,

plans and knowledge-base are updated as needed; otherwise, in addition to the updating of goals, plans and

knowledge-base, a newly constructed mTkn with a tag of internal is deposited into place

dispatch_outgoing_message. The new mTkn token has the message name return-authCode, following the

protocol defined in Figure 19 (a). Again, there is no MPU for return-authCode defined in BMA, so the new

mTkn token will be dispatched into the GSP of MA. Upon the arrival of the mTkn in the GSP of MA, the

transition internal in the Planner module of MA may fire. However at this time, MA does not correspond to

91

the primary subagent of BMO, so all the tokens in the special places of Goal, Plan, and Knowledge-base

have been removed. Therefore, the transition bypass is enabled. When the transition bypass fires, the mTkn

token will be directly deposited into the place dispatch_outgoing_message, and now the mTkn token can be

correctly dispatched into the MPU for return-authCode defined in MA. After the message is processed, the

MSP(G’.Aid) mechanism changes the tag of the mTkn token from internal to external, and transfers the

mTkn token to the GSP of the receiver agent, in this case, the remote facilitator agent FAO.

For the reuse of public services and utility methods defined in a superclass, the situation is the

same as in the case of object-oriented design. In addition, there are three different forms of inheritance that

are commonly used, namely augment inheritance, restrictive inheritance and refinement inheritance. The

usage of these three forms of inheritance in agent-oriented design is also similar to that in object-oriented

design. Examples concerning reuse of public services and utility methods and different forms of inheritance

can be found in earlier work [Xu and Shatz 2000].

6.5 Summary

Agent-oriented software provides a new software engineering paradigm and the opportunities for

development of new domain-specific software models. With the continuing improvement of agent

technology, and the rapid growth of software system complexity, especially for Internet applications, there

is a pressing need for general models of mobile agents. Such models can allow a structured approach for

design of agent software systems and facilitate the application of formal methods techniques for design

analysis and implementation synthesis.

We presented the design models of intelligent mobile agents in a framework for agent-oriented

software. Unlike previous work, which only models a particular feature of mobile agents, our mobile agent

models can be served as a general agent model that has the capabilities of mobility, corporative behavior,

and intelligence. With the example of electronic marketplace, we show that application-specific mobile

agents can be design incrementally as subclasses of the mobile agent base class, i.e, the IMA class.

92

Furthermore, our intelligent mobile agent models are based on the agent-oriented G-net formalism, which

can be translated into a standard form of Petri net (Predicate/Transition net, Pr/T net) [Murata 1989][Deng

et al. 1993]. Because the Petri net formalism is theoretically mature and supported by robust tools, our

approach supports formal analysis, such as model checking. In addition, since we embed agent movement,

and any other possible actions, in the context of agent conversations, we believe that our approach leaves

adequate room for security modeling.

In Chapter 7, we will return to the topic of multi-agent systems (MAS). We will discuss about an

agent development kit (ADK) that is based on the agent-oriented G-net model (Chapter 4), which provides

a framework and a full class library for development of multi-agent software systems.

7. AN AGENT DEVELOPMENT KIT BASED ON AGNET-ORIENTED

G-NET MODEL

7.1 Introduction

The development of agent-based systems offers a new and exciting paradigm for production of

sophisticated programs in dynamic and open environments, particularly in distributed domains such as

web-based systems and electronic commerce. An intelligent agent is defined as an agent that at least has the

following characteristics: autonomy, reactivity, proactiveness, and sociability. Agent autonomy is akin to

human free-will and enables an agent to choose its own actions, while agent proactiveness requires an agent

to behave in a goal-directed fashion. Agent proactiveness is usually considered in relation to planning, and

is strengthened with agent autonomy. We call an autonomous and proactive agent a goal-driven agent. A

reactive agent is defined as an agent that has the ability to perceive and to response to a changing

environment. We call a reactive agent an event-driven agent, and an event could be any environment

change that may influence an agent’s execution. The sociability of an agent refers to the ability of an agent

to converse with other agents. The conversations, normally conducted by sending and receiving messages,

provide opportunities for agents to coordinate their activities and cooperate with each other, if needed. An

agent is different from an object in that agents usually do not use method invocations to communicate with

each other. In contrast, agents distinguish different types of messages and use complex protocols, such as

contract net protocols [Smith 1980][Flores and Kremer 2001], to negotiate. In addition, agents analyze

these messages and can decide whether to execute the requested action [Wooldridge et al. 2000]. To meet

this requirement, the design of agents needs to support asynchronous message passing. We call an agent

that supports asynchronous message passing a message-triggered agent.

Though there have been significant commercial and industrial research and development efforts

underway for some time, developments based on formal agent frameworks are rare. In this chapter, we

present a development approach, including design and implementation, for intelligent agents in multi-agent

 93

94

systems (MAS). The approach is based on our proposed formal agent model, i.e., the agent-oriented G-net

model, discussed in Chapter 4. To bridge the gap between formal agent modeling and agent

implementation, we integrate our formal model into the design phase of the agent development life cycle.

Unlike most current research on formal modeling of agent systems or agent behavior [Wooldridge and

Ciancarini 2001], our agent model specifically serves as a high-level design for agent implementation,

rather than just as a specification for agent behaviors. In other words, the formal model guides a software

engineer by prescribing “how,” rather than “what,” to develop in terms of intelligent agents. Our formal

agent model supports design modularization and inheritance. To show the feasibility of our approach, we

highlight a system that provides a full class-library for the domain of intelligent agents for multi-agent

systems. We call the development system ADK (Agent Development Kit).

The rest of this chapter is organized as follows. In Section 7.2, we discuss the role of ADK in

serving as a bridge between the formal agent model and the agent implementation platform. In Section 7.3,

we describe the architectural design and detailed design of intelligent agents, and discuss the role of

inheritance in agent development. We also summarize the procedures to design and implement intelligent

agents for multi-agent systems. In Section 7.4, we use an air ticket trading example to illustrate the

derivation of an application using the ADK approach. The generality of the example supports the notion

that our model-based approach is feasible and effective. In Section 7.5, we summarize our work.

7.2 From Formal Agent Model to Agent Implementation

We now turn to the fundamental contributions in this chapter – the principles and practice of a

proposed Agent Development Kit (ADK). ADK is intended to provide the necessary facilities for agent

implementation based on the formal agent model described previously. Thus, the development of ADK is

not ad hoc, but results from a model-based development process. The agent-oriented G-net model, as an

operational model, provides the high-level design for intelligent agents. Specifically, the key components

or mechanisms defined in the agent-oriented model serve as building blocks of our agent development kit.

95

Modularization
GSP (interface)
Goal, Plan, Knowledge-base,
Planner, Internal Structure
Environment

Message Passing Mechanism
Asynchronous: MSP
Synchronous: ISP

Functional Units (Inheritable)
DMU* (decision-making unit)
MPU (message processing unit)
U-Method (utility method)

Formal Agent Model Implementation Platform

Middleware
Jini/JavaSpaces/RMI

Java Virtual Machine
Java: OO Language
JVM: Thread, Java
Swing etc.

Network
Communication
TCP/IP, UDP

Modularization
Interface Definition: GSP
Class Definition: Goal, Plan,
Knowledge, Agent (Planner,
Internal Structure)
Jini Community: Environment

Message Passing Mechanism
MSP: new thread
ISP: method invocation

Functional Units (Inheritable)
DMU: protected method
MPU: protected method
U-Method: protected method

ADK Agent Architecture

* DMUs are not inheritable in agent-oriented G-net model

Figure 25. The role of ADK between formal agent model and implementation platform

As Figure 25 shows, the role of ADK agent architecture is to serve as a bridge between the formal

agent model and the agent implementation platform. Between the formal agent model and the ADK agent

design architecture, there is a clear mapping of agent components and mechanisms. For instance, the GSP

place defined in the formal agent model can be mapped to the GSP interface definition in the ADK agent

architecture. Thus we claim that the formal agent model can be interpreted as an agent design model, and

the model reveals to the software engineers not only the agent properties and behaviors, but more

importantly, the agent architecture.

The key components and mechanisms defined in the formal agent model and their mappings to the

components and implementation strategies in the ADK agent architecture are listed as follows: First, the

modularization of the agent design provides the formal agent architecture that makes an agent autonomous,

reactive, proactive and sociable. The GSP place in the formal model is defined as the only interface for

agent communication, and this is carried forward in the ADK agent design architecture. The Goal, Plan,

and Knowledge-base modules are based on the BDI agent model [Kinny et al. 1996] that is a conceptual

model for intelligent agents. These modules are mapped to the class definitions of Goal, Plan and

96

Knowledge in the ADK agent architecture. The Planner module is used for decision-making, message

dispatching and event capturing. And the Internal Structure is a container for methods and MPUs, where

methods are defined for method invocation, and MPUs support asynchronous message passing. These two

modules are defined as two sections in the definition of the Agent class. Finally, the Environment module in

the formal agent model will be implemented as the Jini community in ADK.

Second, the message passing mechanisms are defined in two cases: synchronous message passing

and asynchronous message passing. Synchronous message passing is usually used for method invocation,

and it is realized through the ISP mechanism; while asynchronous message passing is vital for agent

communication, and it is achieved by the MSP mechanism [Xu and Shatz 2001a]. Recall that in the case of

asynchronous message passing, when a MSP is called, the agent does not need to wait for the result to come

back, and it may proceed to execute other functionality. Straightforwardly, the ISP mechanism maps to

method invocation in ADK, and MSP maps to a new thread on platforms such as JVM.

Third, the formal agent model defines the functional units as inheritable components. As methods

are defined as inherited units in object-oriented design, all U-Methods (Utility Methods) and MPUs

(Message Processing Units) could be inherited from an agent superclass to an agent subclass. In ADK, the

functional units, including DMUs (Decision-Making Units), which are defined in a superclass, are

implemented as protected methods that can be reused by their subclasses.

As shown on the right hand side of Figure 25, the implementation platform provides the standard

computer technologies, such as the Jini middleware [Edwards 1999][Arnold et al. 1999] and the Java

Virtual Machine (JVM), for agent implementation. We choose Java as our programming language because

applications developed on JVM are platform independent, and they are suitable for web-based applications

such as electronic commerce. In addition, we use the Jini middleware to simplify our development process

for agent communication. In this case, we do not need to take care of the low-level communication

protocols, such as the TCP/IP and UDP protocols, which can be automatically handled by the Jini

middleware, and therefore, we can concentrate on high-level communication protocols, such as price-

97

negotiation protocol. In summary, ADK represents the design and implementation of intelligent agents for

multi-agent systems, and it refines the formal agent model and derives the detailed design as will be

discussed in Section 7.3.

7.3 Design of Intelligent Agents

7.3.1 Middleware Support for Agent Communication

As we mentioned before, the Jini middleware can be used to simplify the development process for

agent communication. The Jini architecture is intended to resolve the problem of network administration by

providing an interface where different components of the network can join or leave the network at any time

[Edwards 1999][Arnold et al. 1999]. Such a collection of services is called a Jini community, and the

services within the Jini community represent service providers or service consumers. The heart of the Jini

system is a trio of protocols called discovery, join, and lookup. Discovery occurs when a service is looking

for a lookup service with which to register. Join occurs when a service has located a lookup service and

wishes to join it. And lookup occurs when a client or user needs to locate and invoke a service described by

its interface type and possibly, other attributes.

Table VIII
SCHEMA FOR AN AGENT INTERFACE

1 public interface GSP extends Remote {
2 public void asynMessagePassing(Message message) throws RemoteException;
3 }
4
5 public class MiddlewareSupport implements GSP {
6 // agent interface
7 public void asynMessagePassing(Message message) {
8 System.err.println("This method should be overridden by an agent "
9 + "class!");
10 }
11
12 // find lookup services and join the Jini community
13 public void setup(String[] groupsToJoin) {…}
14 …
15 }

98

In designing the ADK, we use Jini as a middleware for agents to find each other and to

communicate with each other. Each agent is designed as both a service provider and a service consumer.

Since agents only interact with each other through asynchronous message passing, the service provided by

an agent through Jini is designed as an interface to let other agents send asynchronous messages to that

agent, and the agent who sends out the messages becomes the service consumer. This approach is

consistent with the agent-oriented G-net model, in which the GSP (Generic Switch Place) is defined as the

only interface among agents [Xu and Shatz 2003]. Thus, we design the schema for an agent interface as in

Table VIII.

The class MiddlewareSupport implements the GSP interface, where an abstract method

asynMessagePassing() is defined. However, in class MiddlewareSupport, the implementation of this

method is again deferred to subclasses of the MiddlewareSupport class because we want that the class

MiddlewareSupport only defines the functionality to deal with the Jini community, such as discovering

lookup service on the network, registering with the Jini community, and searching for other agents in the

Jini community. Here the method setup() is defined to let the GSP find a lookup service and joins the Jini

community. As we will see in Section 7.3.2, the Agent class, which is defined as a subclass of the

MiddlewareSupport class, actually implements the method asynMessagePassing(), and inherits all the

functionality defined in class MiddlewareSupport.

 Discovery Service Lookup Service Join Manager

Air Ticket
Seller

Air Ticket
Seller

Air Ticket
Buyer

Air Ticket
Buyer

Jini Community

 GSP
 GSP

 GSP GSP

…
 …

Figure 26. The Jini community with agents of AirTicketSeller and AirTicketBuyer

99

As an example, consider the design of an electronic marketplace in which seller agents and buyer

agents may find each other and communicate with each other asynchronously through the Jini community.

The design is illustrated in Figure 26, where both air ticket seller agents and air ticket buyer agents register

their GSP interfaces with the Jini community, and they may find each other by the agent attribute, for

instance, an agent name called “Seller”.

7.3.2 A Pattern for Intelligent Agents

Figure 27 shows the architectural design for intelligent agents. By comparing this figure to the

agent-oriented G-net model in Figure 5 (Chapter 3), one can observe how the agent model drives the agent

design. One obvious variation is that the GSP place of an agent model becomes a part of the environment

module, which is the Jini community, in the agent design architecture. In the design architecture, each

agent is composed of its GSP component, which serves as the agent’s interface element, and its action

component (consisting of the following major elements: Goal, Plan, Knowledge-base, Planner, Internal

Structure). Note that Figure 27 explicitly shows only the action component for one agent, agent B. The

environment module contains the interface element for agent B, as well as some other interface elements

(e.g., for agent A). The directed arcs shown in Figure 27 represent only a sample of the logical connections

between the various elements – for example we explicitly see the connection from agent B’s interface to its

planner module, and from agent B’s outgoing message processing unit to agent A’s interface (under the

assumption that agent B does send messages to agent A).

Currently, we use a simplified version of the environment module in ADK, in which case the only

external events of concern are those related to agents entering and/or leaving the Jini community. In future

design versions, we can extend the environment module to include other events, such as network topology

changes and user interventions. Similarly, data changes in Goal, Plan and Knowledge-base modules may

act as internal events and trigger the sensor in the Planner module. To simplify matters, in ADK the sensor

in the Planner module is implemented to only capture external events.

100

 Goal Plan Knowledge

message
from GSP

SellerGSP
 (agent B)

BuyerGSP
 (agent A)

BuyerGSP SellerGSP

…
 …

Action Component (agent B)

 Jini Community
 (Environment)

message
to GSP

internal
event

external
event

decision-
making units

message
dispatcher sensor

Planner

incoming message
(MPUs)

outgoing message
(MPUs)

utility method
(methods)

Internal Structure

Figure 27. The architectural design of intelligent agents

Referring again to Figure 27, we can observe that when agent A wants to converse with agent B, it

sends a message to the GSP of agent B in the Jini community (but, this connection is not explicitly shown

in Figure 27 since agent A’s action component is not shown). Then the message will be sent to the Planner

module of agent B. After the message is dispatched into a MPU in the incoming message section, the

message will be processed, e.g., decoded, and sent back to the Planner module. Now the message goes to

the decision-making units, where decisions may be made to ignore the message, or to continue with the

conversation. If the conversation is to be continued, a new outgoing message is generated, and dispatched

into a MPU defined in the outgoing message section. The outgoing message will be processed and certain

actions may be executed before the message is sent to the GSP of agent A.

101

In addition, the MPUs and the U-Methods (defined in the incoming/outgoing message section and

utility method section, respectively) can be inherited by agent subclasses, and can only be accessed or

called by the agent itself. Unlike the agent-oriented G-net model, methods defined in the planner module

can also be inherited optionally if a subclass agent chooses to reuse or refine the reasoning mechanisms

defined in its superclass. This treatment is practical if we need to derive a subclass agent with similar

behavior to its superclass – for instance, to derive a domestic air ticket seller agent class from a general air

ticket seller agent class.

The goal of the above architectural design is to derive an architectural rendering of a system,

which serves as a framework from which more detailed design activities are conducted. Based on the

architectural design illustrated in Figure 27, we now proceed to describe the detailed design of intelligent

agents for multi-agent systems. This design is expressed in the form of a pattern or class template.

Since the agent-oriented G-net model supports inheritance, we will follow this design schema and

present first the pattern for the Agent class, which is a superclass for application-specific agents. The design

schema for application-specific agents will be introduced in Sections 7.3.3 and 7.3.4. In an object-oriented

system, design patterns can be used with either inheritance or composition. Using inheritance, an existing

design pattern becomes a template for a new subclass, and the attributes and operations that exist in the

pattern become part of the subclass [Pressman 2001]. Similarly, in an agent-oriented system, a pattern of an

agent superclass can serve as a template for an agent subclass, and a specific agent subclass, such as an air

ticket seller agent class, can be derived from an agent superclass by augmenting the template to meet

system requirements.

The Agent class defined in ADK provides such a pattern for agent implementation. The pattern is

shown in Table IX in a form of Java pseudocode. As shown in Table IX, the Agent class is defined as a

subclass of MiddlewareSupport (defined in Section 7.3.1) to reuse the functionality of discovering a lookup

service, registering with the Jini community, and searching for other agents. More importantly, an agent

object may communicate with other agent objects asynchronously through the GSP interface. This

102

functionality makes an agent sociable. To simulate the asynchronous message passing, we have used the

thread technique to generate a new thread called messageProcessThread. Upon receiving an incoming

message, the messageProcessThread of the message receiver (the callee) dispatches the message to a MPU

and returns immediately. This ends up the messageProcessThread quickly, and therefore, the message

sender (the caller) does not need to wait for the message to be processed and may proceed to execute other

tasks.

Table IX

A PATTERN FOR INTELLIGENT AGENTS

1 public class Agent extends MiddlewareSupport {
2 private static final String PRODUCT = "Agent";
3 private static final String VERSION = "ADK 1.0";
4 …
5
6 /**************************
7 * Agent Interface -- GSP *
8 **************************/
9 public void asynMessagePassing(Message message) {
10 Thread messageProcessThread = new Thread(new Runnable() {
11 public void run() {
12 dispatchMessage(message); // -- message-triggered
13 }
14 });
15 messageProcessThread.start();
16 }
17
18 /**
19 * Class Variables for Knowledge, Goal and Plan *
20 /**/
21 Goal myGoals; // a list of committed goals
22 Plan myPlans; // a set of plans
23 Knowledge myKnowledge; // a knowledge-base
24 …
25
26 /***********
27 * Planner *
28 ***********/
29 private class Sensor extends Listener {
30 …
31 public void notify(RemoteEvent ev) {
32 if (!(ev instanceof ServiceEvent)) return;
33 updateServices();
34 invokePlan(ev); // -- event-driven
35 }
36 }
37 protected void dispatchMessage(Message message) {…}
38 protected Message makeDecision(Message message) {…}
39 protected void updateMentalState() {…)
40 …
41
42 /**********************
43 * Internal Structure *
44 **********************/

103

45 // incoming message section – a set of message processing units
46 protected void MPU_In_Hello(Message message) {…}
47 …
48 // outgoing message section – a set of message processing units
49 protected void MPU_Out_Hello(Message outgoingMessage) {…}
50 …
51 // utility method section – a set of private utility methods
52 initAgent(String[] args) {…}
53 protected void autonomousRun() {…}
54 protected void other_Method_1() {…}
55 …
56
57 public static void main(String[] args) {
58 initAgent(args);
59 autonomousRun(); // -- goal-driven
60 }
61 }

Corresponding to the three modules (Goal, Plan and Knowledge) in the architectural design of

intelligent agents (Figure 27), the Agent class defines a list of committed goals myGoals, a set of plans

myPlans, each of which is associated with a goal or a subgoal, and a knowledge-base myKnowledge. The

Goal, Plan and Knowledge class define the basic properties and behaviors for an intelligent agent, and may

be refined or redefined if an application-specific agent requires further functionality. Refer to Figure 30 for

the definitions of the Goal, Plan and Knowledge class. For brevity, other class variables, such as

theGoalSet – a set of goals from which the goal list myGoals is generated – are omitted in Table IX.

The reactivity of an agent can be designed through the Jini’s notification facility. In the Jini

community, whenever a new event occurs, an agent should be automatically notified by the system. For

instance, when a seller agent joins or leaves the Jini community, the buyer agents need to be notified; thus,

the buyer agents can always keep an up-to-date list of the seller agents that are currently in the community

(by keeping a list of interested agents locally, it can also decrease the network traffic). In Table IX, we can

see that the Sensor class is defined as a private inner class in the Agent class, and is derived as a subclass

from the Listener class, which is defined by the Jini. Thus, an application class, such as a seller agent class

or a buyer agent class, which will be defined as a subclass of the Agent class, can be notified by the Jini

community whenever an event occurs, as long as the corresponding agent object has instantiated a Sensor

object and has registered it with the Jini community.

104

Based on the architectural design of intelligent agents in Figure 27, the Planner module in the

Agent pattern defines a method called dispatchMessage(), which is used to dispatch messages to the

appropriate MPU defined in the incoming/outgoing message section. Examples of methods defined as

decision-making units in the Planner module are the methods makeDecision() and updateMentalState(). In

method makeDecision(), decisions are made to ignore an incoming message, to start a new conversation, or

to continue with the current conversation. In method updateMentalState(), the mental state of the agent, i.e.,

the goal, plan, and knowledge-base are updated whenever a decision is made or a new event occurs. The

Internal Structure module includes three sections, i.e., the incoming message section, outgoing message

section, and utility method section. Each section defines a set of MPUs or methods, which are depicted as

MPU_In_x(), MPU_Out_y() or Method_k() in Table IX. We only implemented the MPU_In_Hello() and

MPU_Out_Hello() in the Agent class, which allows instances of the Agent class or any of its subclasses to

greet with each other. Further protocol related MPUs shall be defined in agent subclasses. The autonomy

and proactiveness of an agent are related with the Goal, Plan, Knowledge-base, Planner and Internal

Structure modules of an agent. To connect them together, we define the control as the method

autonomousRun(), which includes a list of committed goals to be achieved based on the agent’s mental

state. Each goal is defined as a goal tree that is traversed in depth-first order, and selected plans associated

with each goal or subgoal are invoked accordingly. The method autonomousRun() is invoked in the method

main(), as shown in Table IX, and is executed after the agent is initialized with the method initAgent().

7.3.3 Inheritance in Agent-Oriented Development

Inheritance in agent-oriented programming has been studied in terms of reusing mental states such

as goal, plan and knowledge [Crnogorac et al. 1997]. We argue that since an agent maintains a dynamic list

of goals and plans, and acquires most of its knowledge during its lifetime, to inherit mental states is not

appropriate. Furthermore, agents are autonomous with different goal-directed behavior. For instance, in the

class hierarchy of Figure 28, an air ticket seller agent and a book seller agent shall have different goals and

plans, and more practically, they may have different negotiation strategies and reasoning mechanisms.

Thus, the class hierarchy in Figure 28 shall only imply the reuse of superclass’ functional mechanisms, for

105

instance, the communication mechanism. Since inheritance happens at the class level, new knowledge

acquired, new plans made, and new goals generated in an agent object (e.g., an air ticket seller), cannot be

inherited by a subclass agent object (e.g., a domestic air ticket seller). In contrast, most of the functional

mechanisms, for instance the function of comparing prices or selecting the ticket with shortest travel time,

can be reused. Optionally, the domestic air ticket seller may also reuse the negotiation strategies adopted by

an air ticket seller, but practically it may have its own specific strategies. As a result, we need to allow a

subclass agent to inherit any reasoning mechanisms defined in its superclass agent, but also allow such a

subclass agent to redefine or refine these mechanisms.

 Domestic
Air Ticket Seller

Agent

Book Seller Air Ticket Buyer Book Buyer Air Ticket Seller

 International
Air Ticket Seller

Textbook Buyer Literature Book Buyer … …

Figure 28. The class hierarchy diagram of agents in an electronic marketplace

Figure 29 shows the inheritance relationship between the classes defined in ADK and classes

derived from the Agent class. In this figure, all the classes above the dashed line are provided as an agent

framework or a class library – these classes define the ADK environment, which supports developing

intelligent agents for multi-agent systems. The classes below the dashed line are derived classes that

represent specific intelligent agents in a multi-agent system. This figure shows that both the air ticket seller

agent and the air ticket buyer agent may reuse the functional mechanisms and reasoning mechanisms

defined in the superclass Agent. Especially, air ticket seller agents and air ticket buyer agents may

communicate with each other through Jini. We do not need to deal with this issue again in the design of

these two classes, since all needed functionality for communication through Jini has been implemented in

the Agent class and can be reused by its subclasses. The event-driven feature is also inherited by the air

106

ticket seller agents and the air ticket buyer agents. In other words, a designer of subclasses of the Agent

class does not need to be concerned this feature, since subclasses automatically have this feature inherited

from their superclass, i.e., the Agent class. In addition, the air ticket seller agent and air ticket buyer agent

may reuse the default reasoning mechanisms defined in the Agent class. The default reasoning mechanism

is defined as a search through a goal tree that achieves each subgoal, with associated plans, in a depth-first

search order.

 MiddlewareSupport

Agent

Plan

Air Ticket Buyer

 GSP (interface)

Air Ticket Seller

Class Library (ADK)

Derived Classes

KnowledgeGoal
Message

Send / Receive

 *
 * * *

Protocol
 *

Figure 29. Classes defined in ADK and derived classes of the Agent class

Though most of the features defined in the Agent class can be reused, each subclass of the Agent

class shall associate with the Goal, Plan and Knowledge class directly. This implies that any goal, plan or

knowledge defined in a superclass cannot be inherited by its subclasses. This design is consistent with the

high-level design of agent-oriented G-net models, in which the Goal, Plan and Knowledge-base modules of

the superclass are disabled when the inheritance mechanism is invoked. The Goal, Plan, and Knowledge

classes define the basic (default) structure for their corresponding modules. Subclasses of the Agent class

may either reuse these structures or define their own. Obviously, if these classes are redefined, the

reasoning mechanisms shall also be redefined in the subclass agents.

This approach derives the template (pattern) for application-specific agent design, which is

defined as a subclass of the Agent class in ADK. The template is shown in Table X. In this template, we use

107

the definitions of the Goal, Plan, and Knowledge classes that are defined in ADK, but it is worth noting

that designers can define their own classes for these modules. Alternatively, they may refine these classes

(defined in ADK) by subclassing them and inheriting their default structures.

Table X
DESIGN OF APPLICATION-SPECFIC AGENTS

1 public class ApplicationSpecificAgent extends Agent {
2
3 /**
4 * Class Variables for Knowledge, Goal and Plan *
5 /**/
6 Goal myGoals; // committed goals, redefinition of Goal class is optional
7 Plan myPlans; // plans, redefinition of Plan class is optional
8 Knowledge myKnowledge; // knowledge-base, redefinition of Knowledge
9 // class is optional
10 …
11
12 /***********
13 * Planner *
14 ***********/
15 protected void dispatchMessage(Message message) {…} // refinement
16 // or redefinition
17 protected Message makeDecision(Message message) {…} // refinement
18 // or redefinition
19 protected void updateMentalState() {…) // refinement
20 // or redefinition
21 …
22
23 /**********************
24 * Internal Structure *
25 **********************/
26 // incoming message section – a set of message processing units
27 protected void MPU_In_1(Message message) {…} // new definition
28 …
29
30 // outgoing message section – a set of message processing units
31 protected void MPU_Out_1(Message outgoingMessage) {…}// new definition
32 …
33
34 // utility method section – a set of private utility methods
35 protected void initAgent(String[] args) {…} // refinement
36 // or redefinition
37 protected void autonomousRun() {…} // refinement
38 // or redefinition
39 protected void other_Inherited_Method_1() {…} // refinement
40 // or redefinition
41 …
42 protected void other_New_Method_1() {…} // new definition
43 …
44
45 public static void main(String[] args) {
46 initAgent(args);
47 autonomousRun();
48 }
49 }

108

In the Planner section of the ApplicationSpecificAgent class, all the decision-making units (e.g.,

makeDecision and updateMentalState) inherited from those defined in the Agent class can be refined or

redefined. In an extreme case, this section can be left blank, if the default reasoning mechanisms defined in

the Agent class are reused. In the Internal Structure section, sets of MPUs are defined corresponding to a

set of protocols. For instance, from a price-negotiation protocol, we can derive a set of MPUs, such as

request-price, propose, accept-proposal. A description of how to derive MPUs from interaction protocols

has been developed in Chapter 3 [Xu and Shatz 2003], but this level of detail is outside the scope of this

dissertation.

In the utility method section, methods (i.e., U-Methods) are defined as “protected” so that they can

be further inherited by their subclasses. In addition to refining or redefining the two outstanding methods,

initAgents() and autonomousRun(), we can refine or redefine any inherited methods defined in the utility

method section of the Agent class. Furthermore, new application-specific functions shall be added here.

One advantage of our model-based approach is its support for the principle of “separation of

concerns,” in particular the separation of agent mental states and agent communication capabilities.

Therefore, it is possible for us to choose some existing implementation schema of intelligent agents (agent

with or without communication capabilities) to design and implement intelligent agents for multi-agent

systems. For instance, we can choose the Task Representation Language (TRL) to support knowledge

representation and agent reasoning [Ioerger et al. 2000], or we can use Petri nets to model the mental state

of agents for multi-agent simulation [Yen et al. 2001]. Alternatively, we can, and do, use a more commonly

used intelligent agent model – the Belief-Desire-Intention (BDI) model [Kinny et al. 1996]. A BDI

architecture includes and uses an explicit representation for an agent's beliefs, desires and intentions. The

BDI implementations, such as The Procedural Reasoning System (PRS), the University of Michigan PRS,

and JAM, all define a new programming language and implement an interpreter for it [Vidal et al. 2001].

The advantage of this approach is that the interpreter can stop the program at any time, save state, and

execute some other plan, or intention, if it needs to. In this chapter, we use a simplified implementation of

109

the BDI agent model based on previous work, and show relationships between agent mental states and

communication related modules.

Agent Message

Goal Knowledge

Plan

Goal: myGoals
Plan: myPlans
Knowledge: myKnowledge

initAgent()
autonousmousRun()

ServiceID: senderID
ServiceID: receiverID
String: protocolName
String: content

String: goalName
Goal: subGoal
Plan: associatedPlans

String: planName
Int: priority
Boolean: conditions
String: associatedGoalName

AgentInfo: thisAgent
AgentInfo[]: remoteAgents
Protocol[]: protocols

achieveGoal()

send/receive

achieve

use/update

use/update

execute

initialize

 communication capabilities

mental states

initKnowledge()
update()

startPlan()
stopPlan()

toString()

Protocol

use/update

String: protocolName
DataStore: protocolSequence
Int: statusID

initProtocol()
callForProposal()

Figure 30. Relationship between classes defined for communication capabilities and mental states

The relationships between the key classes defined for communication capabilities and agent

mental states are illustrated in Figure 30. As shown in this figure, two key classes for communication

capabilities are the Agent class and the Message class, and an Agent object may send or receive Message

objects through its GSP interface. Meanwhile, the three key classes for an intelligent BDI agent are the

Goal, Plan and Knowledge class. A Goal object is defined as a goal tree, and a goal or a subgoal associates

with a set of plans. When a goal or a subgoal is to be achieved, the most appropriate plan, for instance the

plan with the highest priority, is selected and executed. As a result of the execution of a plan, a Knowledge

object may be updated. Both a Goal object or a Plan object may use the Knowledge object for its own

purpose, e.g., to select the appropriate plan to achieve a goal or a subgoal. Protocol instances are defined

inside the Knowledge class. Therefore, the Knowledge class may use/update protocols.

110

The Agent class defines a list of committed goals myGoals, a set of plans myPlans that associate

with a goal or a subgoal, and a knowledge-base myKnowledge. The list of committed goals and the set of

plans may be updated at run time. For instance, when a goal is achieved, it may be deleted from the goal

list, and new goals may be added into the goal list if needed. In addition, the myKnowledge object is

initialized by the Agent object, and may be updated at run time by a Goal or Plan object. The intelligent

agent is so-called goal-driven, because in the method automousRun(), goals defined in the goal list are

achieved one by one through a loop. When all the goals are achieved, the Agent object waits for new

committed goals to be added into the goal list.

7.3.4 An Agent Development Process

The purpose of the proposed agent design architecture and agent design patterns is to ease the

programmer’s effort to develop applications of intelligent agents for multi-agent systems. As we mentioned

before, a specific agent, such as an air ticket seller agent, could be defined as an agent subclass of the Agent

class. Since the Agent class shown in Table IX provides the basic functionality of intelligent agents as well

as the agent implementation framework, what we need to do for developing a application-specific

intelligent agent is to inherit the functional units and the behaviors of the Agent superclass and fill out

certain sections in the pattern for application-specific agent, as shown in Table X. In addition, we need to

redefine or define subclasses of the Goal, Plan, and Knowledge classes that are defined in ADK to meet

certain behavioral requirements of agent intelligence.

As a summary, we now briefly describe the generic procedure to develop a specific intelligent

agent for multi-agent systems. In Section 7.4, we cast the procedure into more specific terms by way of an

example. The 6-step procedure is defined as follows:

1. Define a set of goals Φ as the class variable theGoalSet, where each goal is defined as a goal tree Γ. A

goal tree could consist of just a root, which means a goal may or may not have a number of subgoals.

111

2. Define a goal list Ω as the class variable myGoals (Table X) and initialize the goal list Ω with any

committed goal gc ∈ Φ. The goal list Ω is dynamic, which means achieved goals may be deleted from

Ω and newly committed goals could be added into Ω at run time.

3. Define a set of plans P as the class variable myPlans (Table X). Each plan p ∈ P has a priority and a set

of conditions, and is associated with a particular goal or subgoal. The plan php ∈ P, which has the

highest priority and whose conditions are evaluated to true, will be executed to achieve the associated

goal or a subgoal.

4. Refine the Knowledge class, including the Protocol class, if the application-specific agent requires

additional types of knowledge beyond the basic properties and behaviors predefined in Figure 30, and

initialize the knowledge-base myKnowledge (Table X) for that agent.

5. An interaction protocol ρ serves as a template for agent conversation. Based on ρ, we define a set of

MPUs Ψ, where each MPU corresponds to a method MPU_In_i() or MPU_Out_j() as shown in Table

X. Refer to [Xu and Shatz 2001a][Xu and Shatz 2001b] for a detailed description for transforming

from ρ to ψ.

6. Refine the decision-making units defined in the ApplicationSpecificAgent class, if needed. Examples of

decision-making units include functions like makeDecision() and updateMentalState().

The decision-making units serve as the reasoning engine for the agent. The major functionality of

the decision-making units includes the following tasks:

• For each goal or subgoal, choose the most appropriate plan to execute.

• Create outgoing messages and send them out through MPUs.

• Upon receiving incoming messages, decide to ignore or continue with the conversations.

• Decide when to update the agent’s mental state.

• Upon capturing new events, update the goal list and invoke certain plans.

It should be mentioned that the above procedures could be automated, or partially automated by

providing a development environment, to ease the programmers’ work. This is also one of the major

112

motivations of our ADK project. An Agent Development Environment (ADE), which encompasses the

ADK, is envisioned as a future, and more ambitious research direction.

7.4 A Case Study: Air-Ticket Trading

We can now discuss an example that shows how to develop intelligent agents upon the ADK

platform. Suppose we wish to design and implement a multi-agent system for air ticket trading. The multi-

agent system will include two types of agents, air ticket seller agents and air ticket buyer agents. According

to the procedures described previously, a set of goals will be identified for both the air ticket sellers and the

air ticket buyers. For instance, the goal list for a simplified air ticket buyer may include the goal “buy air

ticket,” and the goal “buy air ticket” may have subgoals of “find seller,” “check price,” “buy ticket,” and

“wait for receipt,” as shown on the right hand side of Figure 31. The air ticket seller has a similar goal list

for the purpose of selling air tickets. For each goal or subgoal, we define a set of plans. For instance, for the

subgoal “find seller”, we have two plans, which are plan_FindSeller and plan_BeFoundBySeller. The plan

plan_FindSeller can be executed to search for air ticket sellers in the Jini community, while the plan

plan_BeFoundBySeller is executed to wait to be found by air ticket sellers. Which plan will be executed to

achieve the subgoal “find seller” is determined by actual situations. For instance, the buyer may want to

wait and be contacted by air ticket sellers initially. However, if the subgoal cannot be achieved in a period

of time, the buyer can change its mind to search for air ticket sellers by itself.

The protocols used for the above two plans are fairly simple. For the plan plan_FindSeller, the

buyer asks the sellers in the Jini community if they sell air tickets, then the sellers may reply with “Yes” or

“No”, or simply ignore the conversation. If a seller replies with “Yes,” the buyer may ask further questions

to check if the air ticket seller has enough certain types of air tickets. For instance, the buyer may ask if the

seller has tickets from “Dayton” to “Chicago.” If the seller has the type of air tickets that the buyer wants,

the subgoal may be achieved or partially achieved (if the seller has the type of tickets but not enough).

Then, in the next step, the seller continues to achieve the subgoal “check price.”

113

Figure 31. User Interface of the Knowledge-base, Goal and Plan module

The following pseudo-code gives some examples of how to “fill out” certain sections of the

implementation pattern provided by the ApplicationSpecificAgent class. Now we list a few MPUs that

correspond to the above two plans:

// incoming message section
//
// plan_FindSeller
protected void MPU_In_SellerYesOrNo(Message message) {}
…

// plan_BeFoundBySeller
protected void MPU_In_BeFoundBySeller(Message message) {}
…

// outgoing message section
//
// plan_FindSeller
protected void MPU_Out_FindSeller(Message outgoingMessage) {}
…

// plan_BeFoundBySeller
protected void MPU_Out_BuyerYesOrNo(Message outgoingMessage) {}
…

The Knowledge-base of a seller or buyer agent includes two parts, which provides information

about the agent itself and information about other agents. For instance, the Knowledge-base of the buyer

agent should include ticket information for the type of tickets that the buyer agent wants to buy (as shown

on the left hand side of Figure 31), and ticket information for the type of tickets that other seller agents may

hold. Other information, such as the protocols and agent states, may also be stored in the Knowledge-base

114

of that agent. We do not show these types of knowledge in our illustrated figures. Finally, for the decision-

making units for this air ticket trading application, we simply reuse those that are predefined in ADK.

Figure 32. User interface of the seller agent SA_16fb

The user interface of a seller agent is designed as a console window as shown in Figure 32. In the

agent console window, the content for the agent communication is displayed. Meanwhile, a list of agents,

including the agent itself and those agents with which that agent communicates, is displayed on the left

hand side of the window. The user interface will also provide a set of tools, such as to lookup existing

services, to test message sending/receiving, and to edit agent properties. Figure 32 shows an example of air

ticket trading process. In Figure 32, a buyer agent, with an agent ID of BA_3b19, first asks if the seller

agent SA_16fb sells air tickets. After the seller agent SA_16fb confirms with “Yes”, the buyer agent

BA_3b19 continues to ask if the seller agent SA_16fb has the type of air tickets it wants. After the seller

agent SA_16fb confirms with “Yes” again (although it does not have enough tickets), the buyer agent

BA_3b19 begins to bargain price with the seller. Finally, the conversation between agent SA_16fb and agent

BA_3b19 ends up with a confirmation message that the buyer agent BA_3b19 buys all the 5 tickets from the

115

seller agent SA_16fb with the price of $180.0 for each ticket. It is worth noting that although we have used

natural language in this example, agents do not talk with each other in natural language. The sentences in

natural language have been generated based on the values carried with messages and the semantic of their

corresponding interaction protocols.

In this example, the agent ID for the seller agent or the buyer agent is defined by a prefix of SA

(seller agent) or BA (buyer agent) with the last four digits of the service ID of that agent, where the service

ID is a 32 digits hexadecimal number provided by the Jini community when the agent is registered

[Edwards 1999][Arnold et al. 1999].

Figure 33. User interface of the buyer agent BA_3b19

In Figure 33, we show the user interface for the air ticket buyer agent. In this figure, we can see

that the buyer agent BA_3b19 concurrently communicates with two seller agents: SA_bf8f and SA_16fb, and

buys 5 tickets from the seller SA_16fb and 3 tickets from the seller SA_bf8f with the lowest fare criteria.

116

7.5 Summary

Although a number of agent-oriented systems have been built in the past few years, there is very

little work on bridging the gap between theory, systems, and application. The contribution of this chapter is

to use the agent-oriented G-net model, which is a formal agent model, as a high-level design for agent

development, thus we bring formal methods directly into the design phase of the agent development life

cycle. Also the role of inheritance in agent development has been carefully discussed. Based on the

architectural design and the detailed design of a generic intelligent agent, we developed the ADK as a class

library that supports designing and implementing applications of intelligent agents for multi-agent systems.

An air ticket trading example was presented to illustrate the derivation of a multi-agent application using

the ADK approach. The generality of the example supports the notion that our model-based approach is

feasible and effective. As a potential solution for automated software development, we summarized the

procedure to generate a model-based design for application-specific agents in multi-agent systems.

Therefore, an Agent Development Environment (ADE) to support the development process can be the vision

of our future project for automating the implementation process to reduce the programming-level tasks.

8. CONCLUSIONS AND FUTURE WORK

Formal methods can be used to precisely specify the behavior of a computer system and its

components, and facilitate the development of a correct implementation using automated reasoning

techniques. Examples of formal methods are Z, temporal logic, and Petri nets. Among them, Petri nets are

most suitable to describe and study information systems that are characterized as being concurrent,

asynchronous, distributed, parallel and non-deterministic. Petri nets are a graphical and mathematical tool

that allows one to build a model of a desired system, and analyze the model formally to study the behavior

of the system. Many researchers have suggested object-based formal methods using high-level Petri nets.

Formalisms such as LOOPN++, CO-OPN/2, and G-nets were proposed to extend the Petri net formalism

into object Petri net. Among them, G-nets have been proposed with the motivation of integrating Petri net

theory with the software engineering approach for system design. A notable benefit of using G-nets is its

modular and object-based approach for the specification and prototyping of complex software system. The

modular features of G-nets provide support for incremental design and successive modification, however

the G-net formalism is not fully object-oriented due to a lack of support for inheritance. In Chapter 2, we

defined an approach to extending the G-net model to support class modeling and inheritance modeling.

Unlike LOOPN++ and CO-OPN/2, we use net-based extensions to capture inheritance properties, and

explicitly models inheritance at the net level to maintain an underlying Petri net model that can be exploited

during design simulation or analysis.

The development of agent-based systems offers a new and exciting paradigm for production of

sophisticated programs in dynamic and open environments, particularly in distributed domains such as

web-based systems and electronic commerce. An intelligent agent is defined as an agent that at least has the

following characteristics: autonomy, reactivity, proactiveness, and sociability. Unlike most current research

on formal modeling of agent systems or agent behavior, the agent model we proposed in Chapter 4, called

agent-oriented G-net model, serves as a high-level design for agent implementation instead of a

specification for agent behavior. In other words, the agent-oriented G-net model gives a software engineer

by prescribing “how”, rather than “what”, to develop in terms of intelligent agents. Our formal agent model

 117

118

supports design modularization, asynchronous message passing and inheritance. Specifically, these major

aspects of our model can be described as follows:

Modularization: The GSP (Generic Switch Place) serves as the only interface among agents. Agents

communicate with each other by sending messages to the GSP of other agents. The Goal, Plan and

Knowledge-base modules are based on the concept of BDI (belief, desire and intention) intelligent agent

model. The Planner module represents the heart of an agent that may decide to ignore an incoming

message, to start a new conversation, or to continue with the current conversation. The Internal Structure of

an agent-oriented G-net contains message processing units (MPU), and utility methods (U-Method) that can

be invoked only by the agent itself.

Asynchronous Message Passing: Agent communications are typically based on asynchronous message

passing. Since asynchronous message passing is more fundamental than synchronous message passing, we

have introduced a new mechanism, called Message Switch Place (MSP), to directly support asynchronous

message passing.

Inheritance Modeling: In the agent-oriented G-net model, we defined the necessary facilities for inheriting

functional units, such as MPUs and U-Methods. We also defined mechanisms to avoid inheriting agents’

mental state, and thus, a subclass agent can be independent of its superclass agent.

Since our design model is based on the agent-oriented G-net formalism, our approach supports

formal analysis and verification. In Chapter 5, we have used an existing Petri net tool to detect a design

error in the original design of agents, and used model checking techniques to verify some key behavior

properties of our agent model. In contrast to the common usage of formal methods in agent modeling, we

use our agent-oriented G-net model as an agent design model rather than simply as a specification for agent

behaviors. Based on this formal design model, we derived the agent design architecture in Chapter 7, and

further implemented the ADK (Agent Development Kit) that provides a framework and a full class library

for agent development. The ADK supports asynchronous message passing among agents and hides low-

119

level communication details through middleware, e.g., Sun Jini. Application-specific agent classes can be

defined as subclasses of the Agent class that is provided in ADK, and specific functionalities can be filled in

through a template of the application-specific class. The procedure for building application-specific agents

may be automated within a development environment ADE (Agent Development Environment) that

envisions our future research work.

As our future research plans, we are particularly interested in the following two research areas –

Agent-Based Peer-to-Peer Computing and Ubiquitous Computing:

Agent-Based Peer-to-Peer Computing: Peer-to-peer (P2P) networks are emerging as a new distributed

computing paradigm for their potential to harness the computing power of the hosts composing the network

and make their under-utilized resources available to others [Milojicic et al. 2002]. In a P2P system, peer

and web services in the role of resources become shared and combined to enable new capabilities greater

than the sum of the parts. This means that services can be developed and treated as pools of methods that

can be composed dynamically. The decentralized nature of P2P computing makes it also ideal for economic

environments that foster knowledge sharing and collaboration as well as cooperative and non-cooperative

behaviors in sharing resources.

Meanwhile, in a multi-agent system, the interaction pattern between agents is peer-to-peer, and

agents are usually characterized as cooperative and communication oriented. This fact makes a perfect

match to combine agent-based computing and peer-to-peer networking. Agents can be used to embody the

description of the task environments, the decision-support capabilities, the collective behavior, and the

interaction protocols of each peer. My plan is to focus on the issue of how peer-to-peer computing may

allow computing networks to dynamically work together by using intelligent agents. Specifically, agents

reside on peer computers and communicate various kinds of information back and forth. Agents may also

initiate tasks on behalf of other peer systems. For instance, intelligent agents can be used to prioritize tasks

on a network, change traffic flow, search for files locally or determine anomalous behavior and stop it

before it affects the network.

120

Ubiquitous Computing: The next generation global computer network is becoming a ubiquitous medium

for communication, collaboration, and personal information management, allowing access to personalized

and collaborative computing services anywhere through a variety of desktop and mobile computing

devices. Such a vision can only be realized through further evolution of Internet and mobile computing

technologies that support scalable resource sharing and group communication for a large number of mobile

and nomadic users [Weiser 1993]. Deployment of a large-scale mobile and nomadic computing system

requires a uniform treatment of these distributed systems issues, as opposed to the ad-hoc treatment that

these issues receive today. Thus a uniform architecture for ubiquitous computing is necessary.

I am interested in proposing a high-level and architectural design for wide-area mobile networks

using mobile agent paradigm. The mobile agent paradigm is an extension of distributed objects, exhibiting

features such as active threading, run-time code mobility with autonomous navigation, and knowledge-

based inter-agent communication. These characteristics favor a uniform implementation of essential mobile

computing services such as multicast communication, intelligent fault-tolerant routing, proxy server/client

handling, pessimistic and optimistic data replication management, and multi-level security models. Such

services will enable the rapid construction and secure, scalable deployment of wide-area mobile and

nomadic computing applications.

CITED LITERATURE

[Aalst and Basten 1997] W.M.P. van der Aalst and T. Basten, “Life-cycle Inheritance: A Petri-net-based

approach,” In P. Azema and G. Balbo (eds.), Application and Theory of Petri Nets 1997, volume 1248

of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1997, pp. 62-81.

[Arai et al. 1999] S. Arai, K. Miyazaki, and S. Kobayashi, “Multi-agent Reinforcement Learning for Crane

Control Problem: Designing Rewards for Conflict Resolution,” In Proceedings of 4th International

Symposium on Autonomous Decentralized Systems (ISADS '99), Tokyo, Japan, March 20-23, 1999.

[Arnold et al. 1999] K. Arnold, B. O'Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath, The Jini

Specification, Addison-Wesley, 1999.

[Ashri and Luck 2000] R. Ashri and M. Luck, “Paradigma: Agent Implementation through Jini,” In

Proceedings of the Eleventh International Workshop on Database and Expert Systems Applications, A.

M. Tjoa and R. R. Wagner and A. Al-Zobaidie (eds.), IEEE Computer Society, 2000, pp. 453-457.

[Asperti and Busi 1996] Andrea Asperti and Nadi Busi, “Mobile Petri Nets,” Technical Report UBLCS-96-

10, University of Bologna, 1996.

[Bastide 1995] R. Bastide, “Approaches in Unifying Petri Nets and the Object-Oriented Approach,” In

Proceedings of the International Workshop on Object-Oriented Programming and Models of

Concurrency, Turin, Italy, June 1995.

[Basten and Aalst 2000] T. Basten and W.M.P. van der Aalst, “Inheritance of Dynamic Behavior:

Development of a Groupware Editor,” In G. Agha, F. De Cindo, and G. Rozenberg (eds.), Concurrent

Object-Oriented Programming and Petri Nets, Lecture Notes in Computer Science, Advances in Petri

Nets, Springer-Verlag, Berlin, 2000.

[Battiston et al. 1988] E. Battiston, F. De Cindio and G. Mauri, “OBJSA Nets: a Class of High Level Nets

Having Objects as Domains”, in Advances in Petri Nets 88, G. Rozenberg (ed.), LNCS 340, Springer

Verlag, 1988.

[Battiston et al. 1995] E. Battiston, A. Chizzoni and F. De Cindio, “Inheritance and Concurrency in

CLOWN,” In Proceedings of the 1st Workshop on Object-Oriented Programming and Models of

Concurrency, 16th International Conference on Application and Theory of Petri nets, Turin, Italy, June

1995.

[Battiston et al. 1996] E. Battiston, A.Chizzoni and F. De Cindio, “Modeling a Cooperative Development

Environment with CLOWN,” In Proceedings of the 2nd Workshop on Object-Oriented Programming

and Models of Concurrency, 17th International Conference on Application and Theory of Petri nets

Osaka, Japan, June 1996.

 121

122

[Baumann et al. 1997] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel and M. Strasser,

“Communication Concepts for Mobile Agent Systems,” In Proceedings of the 1st International

Workshop on Mobile Agents (MA’ 97), Springer Verlag, 1997, pp. 123-135.

[Bellifemine et al. 1999] F. Bellifemine, A. Poggi, G. Rimassa, “JADE - A FIPA-compliant Agent

Framework,” In Proceedings of. 4th International Conference on the Practical Application of

Intelligent Agent and Multi Agent Technology (PAAM99), London, U.K., 1999, pp. 97-108.

[Biberstein et al. 1996] O. Biberstein, D. Buchs and N. Guelfi, “Modeling of Cooperative Editors Using

CO-OPN/2,” In Proceedings of the 2nd Workshop on Object-Oriented Programming and Models of

Concurrency, 17th International Conference on Application and Theory of Petri nets, Osaka, Japan,

June 1996.

[Biberstein et al. 1997] O. Biberstein, D. Buchs and N. Guelfi, “CO-OPN/2: A Concurrent Object-Oriented

Formalism,” In Proceedings of the Second IFIP Conference on Formal Methods for Open Object-

Based Distributed Systems (FMOODS), Canterbury, UK, July 1997, pp. 57-72.

[Booch 1994]G. Booch, Object-Oriented Analysis and Design, with Applications (2nd ed.), Benjamin/

Cummings, San Mateo, CA, 1994.

[Brazier et al. 1997] F.M.T. Brazier, B. Dunin Keplicz, N. Jennings, and J. Treur, “DESIRE: Modeling

Multi-Agent Systems in a Compositional Formal Framework”, International Journal of Cooperative

Information Systems, Vol. 6, Special Issue on Formal Methods in Cooperative Information Systems:

Multi-Agent Systems, M. Huhns and M. Singh (eds.), 1997, pp. 67-94.

[Brazier et al. 1998] F. Brazier, F. Cornelissen, R. Gustavsson, C. Jonker, O. Lindeberg, B. Polak, and J.

Treur, “Agents Negotiating for Load Balancing of Electricity Use,” In: M.P. Papazoglou, M.

Takizawa, B. Krämer, S. Chanson (eds.), In Proceedings of the 18th International Conference on

Distributed Computing Systems (ICDCS ’98), IEEE Computer Society Press, 1998, pp. 622-629.

[Burmeister 1996] Birgit Burmeister, “Models and Methodology for Agent-Oriented Analysis and Design,”

In K. Fischer (ed.), Working Notes of the KI’96 Workshop on Agent-Oriented Programming and

Distributed Systems, DFKI Document D-96-06, 1996.

[Cabri et al. 2001] G. Cabri, L. Leonardi, F. Zambonelli, “Engineering Mobile-Agent Applications via

Context-dependent Coordination,” In Proceedings of the 23rd International Conference on Software

Engineering (ICSE 2001), Toronto, Canada, 2001, pp. 371-380.

[Chavez and Maes 1996] Anthony Chavez, Pattie Maes, “Kasbah: An Agent Marketplace for Buying and

Selling Goods,” In Proceedings of the First International Conference on the Practical Application of

Intelligent Agents and Multi-Agent Technology, London, UK, April 1996.

[Clark and Wing 1996] E. M. Clarke and J. M. Wing, “Formal Methods: State of the Art and Future

Directions,” ACM Computing Surveys, Vol. 28, No. 4, December 1996, pp. 626-643.

123

[Clarke et al. 1986] E. M. Clarke, E. A. Emerson and A. P. Sistla. “Automatic Verification of Finite-State

Concurrent Systems Using Temporal Logic Specifications,” ACM Transactions on Programming

Languages and Systems, Vol. 8, No. 2, 1986, pp. 244-263.

[Crnogorac et al. 1997] L. Crnogorac, A. S. Rao, K. Ramamohanarao, “Analysis of Inheritance

Mechanisms in Agent-Oriented Programming,” In Proceedings of the 15th International Joint

Conference Artificial Intelligence (IJCAI’97), 1997, pp. 647-652.

[Davies and Woodcock 1996] Jim Davies and Jim Woodcock, Using Z: Specification, Refinement and

Proof, Prentice Hall International Series in Computer Science, 1996.

[Deng et al. 1993] Y. Deng, S. K. Chang, A. Perkusich and J. de Figueredo, “Integrating Software

Engineering Methods and Petri Nets for the Specification and Analysis of Complex Information

Systems,” In Proceedings of the 14th International Conference on Application and Theory of Petri

Nets, Chicago, June 21-25, 1993, pp. 206-223.

[Deng and Chang 1990] Y. Deng and S. K. Chang, “A G-net Model for Knowledge Representation and

Reasoning,” IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. 3, September 1990,

pp. 295-310.

[D’Inverno et al. 1997] M. d’Inverno, M. Fisher, A. Lomuscio, M. Luck, M. de Rijke, M. Ryan, and M.

Wooldridge, “Formalisms for Multi-Agent Systems,” The Knowledge Engineering Review, Vol. 12,

No. 3, 1997.

[D’Inverno and Luck 2001] M. d’Inverno and M. Luck, “Formal Agent Development: Framework to

System,” Formal Approaches to Agent-Based Systems: First International Workshop, FAABS 2000,

Rash, J.L., Rouff, C.A., Truszkowski, W., Gordon, D., Hinchey, M.G. (eds.), Lecture Notes in

Artificial Intelligence, Vol. 1871, Berlin, Springer-Verlag, 2001, pp. 133-147.

[Drake 1998] C. Drake, Object-oriented programming with C++ and Smalltalk. Upper Saddle River, New

Jersey, Prentice Hall, 1998.

[Edwards 1999] W. K. Edwards, Core Jini, The Sun Microsystems Press, Prentice Hall PTR, Upper Saddle

River, NJ, 1999.

[Eliens 1995] A. Eliens, Principles of Object-Oriented Software Development, Addison-Wesley, 1995.

[Fan and Xu 2000] X. Fan and D. Xu, “SAFIN: An Open Framework for Mobile Agents,” In Proceedings

of the 2000 International Conference on Artificial Intelligence (IC-AI’2000), Las Vegas, June 2000.

[Finin et al. 1997] Tim Finin, Yannis Labrou, and James Mayfield, “KQML as an agent communication

language,” In Jeff Bradshaw (ed.), Software Agents, MIT Press, Cambridge, 1997.

[Finin et al. 1998] T. Finin, Y. Labrou and Y. Peng, “Mobile Agents can Benefit from Standards Efforts in

Inter-agent Communication,” IEEE Communications Magazine, Vol. 36, No. 7, July 1998, pp. 50-56.

124

[FIPA 2000] FIPA, FIPA ACL Message Structure Specification, Foundation for Intelligent Physical

Agents, Technical Report XC00061, 2000.

[Fisher 1995] M. Fisher, “Representing and Executing Agent-Based Systems,” in Wooldridge, M., and

Jennings, N. (eds.), Intelligent Agents – Proceedings of the International Workshop on Agent Theories,

Architectures, and Languages, Lecture Notes in Computer Science, Vol. 890, Springer-Verlag, 1995,

pp. 307-323.

[Fisher and Wooldridge 1997] M. Fisher and M. Wooldridge, “On the Formal Specification and

Verification of Multi-Agent Systems,” International Journal of Cooperative Information Systems, Vol.

1, No. 6, 1997, pp. 37-65.

[Flores and Kremer 2001] R.A. Flores and R.C. Kremer, “Formal Conversations for the Contract Net

Protocol,” In V. Marik, M. Luck & O. Stepankova (eds.), Multi-Agent Systems and Applications II,

Lecture Notes in Computer Science, Springer-Verlag, 2001.

[Ford 1994] Warwick Ford, Computer Communications Security – Principles, Standard Protocols and

Techniques, Prentice Hall, 1994.

[Fournet et al. 1996] C. Fournet, G. Gonthier, J. Lévy, L. Maranget, and D. Rémy, “A Calculus of Mobile

Agents,” In Proceedings of the 7th International Conference on Concurrency Theory (CONCUR’96),

Springer-Verlag, Lecture Notes in Computer Science, Vol. 1119, August 1996, pp. 406-421.

[Gasser and Briot 1992] Les Gasser and Jean-Pierre Briot, “Object-Based Concurrent Processing and

Distributed Artificial Intelligence,” In Nicholas M. Avouris and Les Gasser, editors, Distributed

Artificial Intelligence: Theory and Praxis, Kluwer Academic Publishers: Boston, MA, 1992, pp. 81-

108.

[Giese et al. 1998] H. Giese, J. Graf and G. Wirtz, “Modeling Distributed Software Systems with Object

Coordination Nets,” In Proceedings of the International Symposium on Software Engineering for

Parallel and Distributed Systems, Japan, April 1998, pp. 39-49.

[Gray 1995] Robert S. Gray, “Agent Tcl: A Transportable Agent System,” In Proceedings of the CIKM

Workshop on Intelligent Information Agents, Fourth International Conference on Information and

Knowledge Management (CIKM 95), Baltimore, Maryland, December 1995.

[Green et al. 1997] S. Green, L. Hurst, B. Nangle, P. Cunningham, F. Somers, R. Evans, “Software Agents:

A Review,” Technical report TCD-CS-1997-06, Trinity College Dublin, May 1997.

[Guttman et al. 1998] R. Guttman, A. Moukas, and P. Maes, “Agent-mediated Electronic Commerce: A

Survey,” Knowledge Engineering Review, June 1998.

[Harrison et al. 1995] Colin G. Harrison, David M. Chess and Aaron Kershenbaum, “Mobile Agents: Are

They a Good Idea?” Technical Report, IBM Research Division, T. J. Watson Research Center, March

1995.

125

[Howden et al. 2001] N. Howden, R. Rönnquist, A. Hodgson and A. Lucas, “JACK Intelligent Agents –

Summary of an Agent Infrastructure,” In Proceedings of the 5th International Conference on

Autonomous Agents, 2001.

[Huber 1999] M. Huber, “JAM: a BDI-theoretic Mobile Agent Architecture,” In Proceedings of

International Conference on Autonomous Agents, 1999, pp. 236-243.

[Iglesias et al. 1998] Carlos Argel Iglesias, Mercedes Garrijo, José Centeno-González, “A Survey of

Agent-Oriented Methodologies,” In Proceedings of the Fifth International Workshop on Agent

Theories, Architectures, and Language (ATAL-98), 1998, pp. 317-330.

[Ioerger et al. 2000] T. R. Ioerger, R. A. Volz, and J. Yen, “Modeling Cooperative, Reactive Behaviors on

the Battlefield Using Intelligent Agents,” In Proceedings of the Ninth Conference on Computer

Generated Forces (9th CGF), 2000, pp. 13-23.

[Jensen 1992] K. Jensen, Colored Petri Nets: Basic concepts, Analysis methods, and Practical use, Vol. 1,

No. 2, Springer-Verlag, 1992.

[Jacobson et al. 1992] I. Jacobson, et al., Object-Oriented Software Engineering: A Use Case Driven

Approach, Addison-Wesley Publishing Company, 1992.

[Jennings et al. 1998] N. R. Jennings, K. Sycara and M. Wooldridge, “A Roadmap of Agent Research and

Development,” International Journal of Autonomous Agents and Multi-Agent Systems, Vol. 1, No. 1,

1998, pp. 7-38.

[Jennings 2000] N. R. Jennings, “On Agent-Based Software Engineering,” Artificial Intelligence, Vol. 117,

2000, pp. 277-296.

[Johansen et al. 1995] Dag Johansen, Robbert van Renesse, and Fred B. Schneider, “Operating system

support for mobile agents,” In Proceedings of the 5 IEEE Workshop on Hot Topics in Operating

Systems

th

, Orcas Island, WA, USA, May 1995.

[Karnik and Tripathi 1998] Neeran Karnik and Anand Tripathi, “Design Issues in Mobile Agent

Programming Systems,” IEEE Concurrency, July-September 1998, pp. 52-61.

[Kendall 2000] Elizabeth A. Kendall, “Role Modeling for Agent System Analysis, Design, and

Implementation,” IEEE Concurrency, April-June 2000, pp. 34-41.

[Kinny and Georgeff 1997] David Kinny, Michael P. Georgeff, “Modeling and Design of Multi-Agent

Systems,” In Proceedings of the 4th International Workshop on Agent Theories, Architectures, and

Language (ATAL-97), 1997, pp. 1-20.

[Kinny et al. 1996] D. Kinny, M. Georgeff, and A. Rao, “A Methodology and Modeling Technique for

Systems of BDI Agents,” In W. Van de Velde and J. W. Perram (eds.), Agents Breaking Away:

Proceedings of the Seventh European Workshop on Modeling Autonomous Agents in a Multi-Agent

126

World, Lecture Notes in Artificial Intelligence, Vol. 1038, Springer-Verlag: Berlin, Germany, 1996,

pp. 56-71.

[Ku et al. 1997] H. Ku, G. W. Luderer and B. Subbiah, “An Intelligent Mobile Agent Framework for

Distributed Network Management,” In Proceedings of the IEEE Global Telecommunications

Conference (GLOBECOM'97), Phoenix, USA, November 1997.

[Lakos and Keen 1994] C. Lakos and C. Keen, “LOOPN++: A New Language for Object-Oriented Petri

Nets,” Technical Report R94-4, Networking Research Group, University of Tasmania, Australia, April

1994.

[Lakos 1995a] C. Lakos, “Pragmatic Inheritance Issues for Object Petri Nets”, In Proceedings of

Technology of Object-Oriented Languages and Systems (TOOLS) Pacific 1995, Melbourne, Australia,

Prentice-Hall, 1995.

[Lakos 1995b] C. Lakos, “The Object Orientation of Object Petri Nets,” In Proceedings of the

International Workshop on Object-Oriented and Models of Concurrency, Turin, Italy, June 1995.

[Lakos 1997] C. Lakos, “On the Abstraction of Coloured Petri Nets,” In Proceedings of Petri Net

Conference 97, Touloure, France, 1997.

[Lange et al. 1997] D. B. Lange, M. Oshima, G. Karjoth, and K. Kosaka, “Aglets: Programming Mobile

Agents in Java,” In Proceedings of Worldwide Computing and Its Applications (WWCA'97), Lecture

Notes in Computer Science, Vol. 1274, 1997.

[Lano 1995] K. Lano, Formal Object-Oriented Development, Springer-Verlag, 1995.

[Lee and Park 1993] Y. K. Lee and S. J. Park, “OPNets: An Object-Oriented High-Level Petri Net Model

for Real-Time System Modeling,” Journal of Systems and Software, Vol. 20, No. 1, 1993, pp. 69-86.

[Luck and d’Inverno 1995] M. Luck and M. d’Inverno, “A Formal Framework for Agency and Autonomy,”

In Proceedings of the First International Conference on Multi-Agent Systems, AAAI Press / MIT

Press, 1995, pp. 254-260.

[Luck et al. 1997] M. Luck, N. Griffiths and M. d’Inverno, “From Agent Theory to Agent Construction: A

Case Study,” In J. P. Muller, M.Wooldridge and N. R. Jennings (eds.), Intelligent Agents III, Lecture

Notes in Artificial Intelligence, Vol. 1193, Springer-Verlag: Heidelberg, Germany, 1997.

[Manna and Pnueli 1992] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent

Systems: Specification, Springer-Verlag, 1992.

[Mascolo 1999] C. Mascolo, “MobiS: A Specification Language for Mobile Systems,” In Proceedings of

the Third International Conference on Coordination Models and Languages, Amsterdam, The

Netherlands, April 1999, P. Ciancarini and A. Wolf (eds.), Lecture Notes in Computer Science, Vol.

1594, Springer-Verlag, pp. 37-52.

127

[Matsuoka and Yonezawa 1993] Satoshi Matsuoka and Akinori Yonezawa, “Analysis of inheritance

anomaly in object-oriented concurrent programming languages”. In Gul Agha et. al. (eds.), Research

Directions in Concurrent Object-Oriented Programming, MIT Press, 1993, pp. 107-150.

[Mendes et al. 1997] M. Mendes, O. Falsarella, I. Fontes, S. Krause, W. Loyolla, C. Mendez, P.S. Silva,

and C. Tobar, “Architectural Considerations about Open Distributed Agent Support Platforms,” In

Proceedings of 3rd International Symposium on Autonomous Decentralized Systems (ISADS ’97),

Berlin, Germany, April 1997.

[Milojicic et al. 2002] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja1, J. Pruyne, B. Richard, S.

Rollins, and Z. Xu, “Peer-to-Peer Computing,” Technical Report HPL-2002-57, HP Lab, 2002.

[Mitchell and Wellings 1996] S. Mitchell and A. Wellings, “Synchronization, Concurrent Object-Oriented

Programming and the Inheritance Anomaly”, Computer Languages, 1996, Vol. 22, No. 1, pp. 15 - 26.

[Murata 1989] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE,

Vol. 77, No. 4, April 1989, pp. 541-580.

[Murata et al. 1991a] T. Murata, V. S. Subrahmanian and T. Wakayama, “A Petri Net Model for Reasoning

in the Presence of Inconsistency”, IEEE Transactions on Knowledge and Data Engineering, Vol. 3,

No.3, September 1991, pp. 281-292.

[Murata et al. 1991b] T. Murata, P.C. Nelson, and J. Yim, “A Predicate-Transition Net Model for Multiple

Agent Planning,” Information Sciences, Vol. 57-58, 1991, pp. 361-384.

[Murphy et al. 2001] A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A Middleware for Physical

and Logical Mobility,” In Proceedings of the 21st International Conference on Distributed Computing

Systems (ICDCS-21), April 2001, Phoenix, Arizona, USA, pp. 524-533.

[Nwana et al. 1999] H. Nwana, D. Ndumu, L. Lee, and J. Collins, “ZEUS: A Toolkit for Building

Distributed Multi-Agent Systems,” Applied Artificial Intelligence Journal, Vol. 13, No. 1, 1999, pp.

129-186.

[Odell 2001] J. Odell, H. Van Dyke Parunak, and B. Bauer, “Representing Agent Interaction Protocols in

UML,” Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge (eds.),

Springer-Verlag, Berlin, 2001, pp. 121–140.

[Perkusich and de Figueiredo 1997] A. Perkusich and J. de Figueiredo, “G-Nets: A Petri Net Based

Approach for Logical and Timing Analysis of Complex Software Systems,” Journal of Systems and

Software, Vol. 39, No. 1, 1997, pp. 39-59.

[Picco et al. 1999] G. P. Picco, A. L. Murphy and G.-C. Roman, “Lime: Linda Meets Mobility,” In

Proceedings of the 21st International Conference on Software Engineering (ICSE’99), May 1999.

128

[Poslad et al. 2000] S. Poslad, P. Buckle, R. Hadingham, “The FIPA-OS Agent Platform: Open Source for

Open Standards,” In Proceedings of 5th International Conference on the Practical Application of

Intelligent Agent and Multi Agent Technology (PAAM2000), Manchester, UK, April 2000.

[Pressman 2001] R. S. Pressman, Software Engineering: A Practitioner's Approach, 5th Edition, McGraw-

Hill, 2001.

[Rao and Georgeff 1993] A. S. Rao and M. P. Georgeff, “A Model-Theoretic Approach to the Verification

of Situated Reasoning Systems,” In Proceedings of the Thirteenth International Joint Conference on

Artificial Intelligence (IJCAI-93), Chambery, France, 1993, pp. 318-324.

[Rational 1997] Rational Software Corporation, Unified Modeling Language (UML) version 1.0, Rational

Software Corporation, 1997.

[Roch and Starke 1999] S. Roch and P. H. Starke, INA: Integrated Net Analyzer, Version 2.2, Humboldt-

Universität zu Berlin, Institut für Informatik, April 1999.

[Rodriguez-Aguilar et al. 1999] J. A. Rodriguez-Aguilar, F. J. Martin, P. Garcia, P. Noriega and C. Sierra,

“Towards a Formal Specification of Complex Social Structures in Multi-agent Systems,” In J. Padget,

editor, Collaboration between Human and Artificial Societies, Lecture Notes in Artificial Intelligence,

Vol. 1624, Springer-Verlag, 1999, pp. 284-300.

[Rogers et al. 2000] T. J. Rogers, Robert Ross, V. S. Subrahmanian, “IMPACT: A System for Building

Agent Applications,” Journal of Intelligent Information Systems (JIIS), Vol. 14, No. 2-3, 2000, pp. 95-

113.

[Roman et al. 1997] G.-C. Roman, P. J. McCann and J. Y. Plun, “Mobile UNITY: Reasoning and

Specification in Mobile Computing,” ACM Transactions on Software Engineering and Methodology,

Vol. 6, No. 3, July 1997, pp. 250-282.

[Rossie et al. 1996] J. G. Rossie Jr., D. P. Friedman and M. Wand, “Modeling Subobject-Based

Inheritance”, In Proceedings of ECOOP’96, Lecture Notes in Computer Science, Vol. 1219, Springer-

Verlag, 1996, pp. 248-274.

[Rothermel and Schwehm 1999] K. Rothermel and M. Schwehm, “Mobile Agents,” In: A. Kent and J. G.

Williams (eds.): Encyclopedia for Computer Science and Technology, Volume 40 - Supplement 25,

New York: M. Dekker Inc., 1999, pp. 155-176.

[Rumbaugh et al. 1991] J. Rumbaugh, et al., Object-Oriented Modeling and Design, Prentice Hall, New

York, 1991.

[Saldhana et al. 2001] J. Saldhana, S. M. Shatz, and Z. Hu, “Formalization of Object Behavior and

Interactions from UML Models,” International Journal of Software Engineering and Knowledge

Engineering (IJSEKE), Vol. 11, No. 6, December 2001, pp. 643-673.

129

[Shatz et al. 1996] S. M. Shatz, S. Tu, T. Murata, and S. Duri, “An Application of Petri Net Reduction for

Ada Tasking Deadlock Analysis,” IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No.

12, December 1996, pp. 1307-1322.

[Shoham 1993] Yoav Shoham, “Agent-Oriented Programming,” Artificial Intelligence, Vol. 60, No. 1,

March 1993, pp. 51-92.

[Siegel et al. 2001] J. Siegel, and the OMG Staff Strategy Group, “Developing in OMG’s Model Driven

Architecture (MDA),” OMG White Paper, Object Management Group, November 2001.

[Silva et al. 2001] A. R. Silva, A. Romão, D. Deugo, and M. M. da Silva, “Towards a Reference Model for

Surveying Mobile Agent Systems,” Autonomous Agents and Multi-Agent Systems, Vol. 4, No. 3,

September 2001, pp.187-231.

[Smith 1980] R. G. Smith, “The contract net protocol: high-level communication and control in a

distributed problem solver,” IEEE Transactions on Computer, Vol. C-29, December 1980, pp. 1104-

1113.

[Sommerville 1995] Ian Sommerville, Software Engineering, Fifth Edition, Addison-Wesley, 1995.

[Stamos and Gifford 1990a] James W. Stamos and David K. Gifford, “Remote Evaluation,” ACM

Transactions on Programming Languages and Systems, Vol. 12, No. 4, 1990, pp. 537-565.

[Stamos and Gifford 1990b] James W. Stamos and David K. Gifford, “Implementing Remote Evaluation,”

IEEE Transactions on Software Engineering, Vol. 16, No. 7, 1990, pp.710-722.

[Stepney et al. 1992] Susan Stepney, Rosalind Barden, and David Cooper, editors, Object Orientation in Z,

Workshops in Computing, Springer-Verlag, 1992.

[Straßer et al. 1997] M. Straßer, J. Baumann, and F. Hohl, “Mole – A Java based Mobile Agent System,” In

M. Mühlhäuser (ed.), Special Issues in Object Oriented Programming, dpunkt Verlag, 1997, pp. 301-

308.

[Tay and Ananda 1990] B. H. Tay and A. L. Ananda, “A Survey of Remote Procedure Calls,” Operating

Systems Review, Vol. 24, No. 3, July 1990, pp. 68-79.

[Thomas 1994] Laurent Thomas, “Inheritance Anomaly in True Concurrent Object Oriented Languages: A

Proposal”, IEEE TENCON’94, August 1994, pp. 541-545.

[Tsvetovatyy et al. 1997] M. Tsvetovatyy, M. Gini, B. Mobasher, Z. Wieckowski, “MAGMA: An Agent-

Based Virtual Market for Electronic Commerce,” Applied Artificial Intelligence, special issue on

Intelligent Agents, No. 6, September 1997.

[Vasconcelos et al. 2002] W. Vasconcelos, J. Sabater, C. Sierra and J. Querol, “Skeleton-Based Agent

Development for Electronic Institutions,” In Proceedings of the First International Joint Conference

on Autonomous Agents and Multi-Agent Systems (AAMAS), Italy, July 2002.

130

[Vidal et al. 2001] J. M. Vidal, P. A. Buhler, and M. N. Huhns, “Inside an Agent,” IEEE Internet

Computing, Vol. 5, No. 1, January-February 2001.

[Weiser 1993] M. Weiser, “Some computer science issues in ubiquitous computing,” Communications of

the ACM (CACM), Vol. 36, No. 7, July 1993, pp. 74-83.

[Wermelinger and Fiadeiro 1998] M. Wermelinger, J. L. Fiadeiro, “Connectors for Mobile Programs,”

IEEE Transactions on Software Engineering, Vol. 24, No. 5, May 1998, pp. 331-341.

[Wooldridge 1998] Michael Wooldridge, “Agents and Software Engineering,” AI*IA Notizie XI, 3,

September 1998.

[Wooldridge et al. 2000] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia Methodology for

Agent-Oriented Analysis and Design,” International Journal of Autonomous Agents and Multi-Agent

Systems, Vol. 3, No. 3, 2000, pp. 285-312.

[Wooldridge and Ciancarini 2001] M. Wooldridge and P.Ciancarini, “Agent-Oriented Software

Engineering: The State of the Art,” In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented

Software Engineering, Lecture Notes in Artificial Intelligence, Vol. 1957, Springer-Verlag, January

2001.

[Wooldridge 2002] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley and Sons, Ltd.,

2002.

[White 1995] J. E. White, “Telescript Technology: An Introduction to the Language”, White Paper,

General Magic, Inc., Sunnyvale, CA, 1995.

[Xie 2000] X. Xie, Design Support for State-Based Distributed Object Software, Ph.D. Thesis, EECS

Department, University of Illinois at Chicago, December 2000.

[Xu and Shatz 2000] H. Xu and S. M. Shatz, “Extending G-Nets to Support Inheritance Modeling in

Concurrent Object-Oriented Design,” In Proceedings of the IEEE International Conference on

Systems, Man, and Cybernetics (SMC 2000), October 2000, Nashville, Tennessee, USA, pp. 3128-

3133.

[Xu and Shatz 2001a] H. Xu and S. M. Shatz, “An Agent-Based Petri Net Model with Application to

Seller/Buyer Design in Electronic Commerce,” In Proceedings of the Fifth International Symposium

on Autonomous Decentralized Systems (ISADS 2001), March 2001, Dallas, Texas, USA, pp. 11-18.

[Xu and Shatz 2001b] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” In

Proceedings of the 21st International Conference on Distributed Computing Systems (ICDCS-21),

April 2001, Phoenix, Arizona, USA, pp. 57-64.

131

[Xu and Shatz 2003] H. Xu and S. M. Shatz, “A Framework for Model-Based Design of Agent-Oriented

Software,” IEEE Transactions on Software Engineering (IEEE TSE), Vol. 29, No. 1, January 2003, pp.

15-30.

[Xu et al. 2002] D. Xu, R. A. Volz, T. R. Ioerger, and J. Yen, “Modeling and Verifying Multi-Agent

Behaviors Using Predicate/Transition Nets,” In Proceedings of the 14th International Conference on

Software Engineering and Knowledge Engineering (SEKE’02), Italy, July 2002, pp. 193-200.

[Xu et al. 2003] D. Xu, J. Yin, Y. Deng, and J. Ding, “A Formal Architectural Model for Logical Agent

Mobility,” IEEE Transactions on Software Engineering, Vol. 29, No.1, January 2003, pp. 31-45.

[Yan 2002] Y. Pan, Refinement of an Agent-Based Model to support Decision Making and Standard Agent

Communication Languages, Masters Thesis, University of Illinois at Chicago, November 2002.

[Yen et al. 2001] J. Yen, J. Yin, T.R. Ioerger, M. Miller, D. Xu, and R.A. Volz, “CAST: Collaborative

Agents for Simulating Teamwork,” In Proceedings of the Seventeenth International Joint Conference

on Artificial Intelligence (IJCAI-01), Seattle, WA, August 2001, pp. 1135-1142.

[Zhu 2001] H. Zhu, “SLABS: A Formal Specification Language for Agent-Based Systems,” International

Journal of Software Engineering and Knowledge Engineering, 2001, Vol. 11, No. 5, pp. 529-558.

VITA

NAME Haiping Xu

EDUCATION B.S., Electrical Engineering, Zhejiang University, Hangzhou, China, 1989

M.S., Electrical Engineering, Zhejiang University, Hangzhou, China, 1992

M.S., Computer Science, Wright State University, Dayton, Ohio, 1998

Ph.D., Computer Science, University of Illinois, Chicago, Illinois, 2003

WORK Concurrent Software Systems Laboratory,
EXPERIENCE University of Illinois at Chicago, Chicago, Illinois, 1998 – 2003

 Parallel Computing Laboratory,
 Wright State University, Dayton, Ohio, 1996 – 1998

 Intelligent Systems Laboratory,

Nanyang Technological University, Singapore, 1996

 Hewlett-Packard Company, Beijing, China, 1995 – 1996

 Shen-Yan Systems Technology, Inc., Beijing, China, 1992 – 1995

TEACHING Department of Computer Science
EXPERIENCE University of Illinois at Chicago, Chicago, Illinois, 1999 – 2003

HONORS University Fellowship, University of Illinois, Chicago, Illinois, 2001

 Dayton Area Graduate Studies Institute (DAGSI) Scholarship, Ohio, 1998

Excellent Graduate Student of Zhejiang University, China, 1992

Guang-Hua National Merit Scholarship, China, 1990

Graduate Scholarship of Zhejiang University, China, 1990

Zhejiang University Special Class for Gifted Young, China, 1985

PROFESSIONAL Member of IEEE, IEEE Computer Society, and IEEE SMC Society
MEMBERSHIP Member of Association for Computing Machinery (ACM)

REFEREE IEEE Transactions on Multimedia (IEEE TMM)

IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS)

International Journal of Software Engineering & Knowledge Engineering (IJSEKE)

International Conference on Distributed Computing Systems (ICDCS)

International Conference on Application and Theory of Petri Nets (ICATPN)

International Symposium on Software Engineering for Parallel and Distributed
Systems (PDSE)

 132

PUBLICATIONS OF THE AUTHOR

[1] H. Xu and S. M. Shatz, “ADK: An Agent Development Kit Based on a Formal Model for Multi-Agent

Systems,” Submitted to Automated Software Engineering, February 2003.

[2] H. Xu and S. M. Shatz, “A Framework for Model-Based Design of Agent-Oriented Software,” IEEE

Transactions on Software Engineering (IEEE TSE), Vol. 29, No. 1, January 2003, pp. 15-30.

[3] H. Xu and S. M. Shatz, “A Framework for Modeling Agent-Oriented Software,” In Proceedings of the

21st International Conference on Distributed Computing Systems (ICDCS-21), April 2001, Phoenix,

Arizona, USA, pp. 57-64.

[4] H. Xu and S. M. Shatz, “An Agent-Based Petri Net Model with Application to Seller/Buyer Design in

Electronic Commerce,” In Proceedings of the Fifth International Symposium on Autonomous

Decentralized Systems (ISADS 2001), March 2001, Dallas, Texas, USA, pp. 11-18.

[5] H. Xu and S. M. Shatz, “Extending G-Nets to Support Inheritance Modeling in Concurrent Object-

Oriented Design,” In Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics (SMC 2000), October 8-11, 2000, Nashville, Tennessee, USA, pp. 3128-3133.

[6] R. K. Gedela, S. M. Shatz and H. Xu, “Compositional Petri Net Models of Advanced Tasking in Ada-

95,” Computer Languages, Vol. 25, No. 2, July 1999, pp. 55-87.

[7] R. K. Gedela, S. M. Shatz and H. Xu, “Formal Modeling of Synchronization Methods for Concurrent

Objects in Ada 95,” In Proceedings of the ACM Annual International Conference on Ada (SIGAda'99),

October 17-21, 1999, Redondo Beach, CA, USA, pp. 211-220.

[8] K. Warendorf, H. Xu, and A. Verhoeven, “Case-Based Instructional Planning for Learning in a

Context,” In Proceedings of the Joint 1997 Pacific Asian Conference on Expert Systems / Singapore

International Conference on Intelligent Systems (PACES/SPICIS 97), February 24-27, 1997,

Singapore, pp. 354-360.

[9] H. Xu, The Basic Study and Partial Implementation of Intelligent Chinese Tutoring System, Masters

Thesis, Zhejiang University, Hangzhou, China, January 1992.

[10] H. Xu, X. Ruan, Z. Chen, S. Hu and H. Ren, “ICTS: Hypertext and Multi-Knowledge Source Based

Intelligent Chinese Tutoring System,” Journal of Chinese Information Processing, 1992, Vol. 6, No. 2,

pp. 8-16.

[11] Q. Hu, H. Xu, Y. Zhang and C. Zhou, “Software Design of an Expert Control System in Vacuum

Distillation,” Control and Instruments in Chemical Industry, 1992, Vol. 19, No. 4, pp. 25-29.

 133

134

[12] H. Xu, Z. Chen, and S. Hu, “Design and Implementation Techniques for an Intelligent Chinese

Tutoring System,” In Proceedings of the Second National Conference on Computer Application,

October 1991, Beijing, China, pp. 988-991.

[13] X. Ruan, S. Hu, Z. Chen, and H. Xu, “The Presentation and Inference of Chinese Language

Knowledge,” In Proceedings of the International Conference on Information & System, A.M.S.E.,

October 1991, Hangzhou, China.

[14] H. Xu, “Software Design of a Microcomputer-Based Nuclear Scaler,” Process Automation

Instrumentation, 1991, Vol. 12, No. 10, pp. 13-16.

[15] X. Ruan, H. Xu, and Z. Chen, “Intelligent CAI and Chinese Tutoring System,” Communications of

Computation and Information, June 1991, No. 7, pp. 6-14.

A MODEL-BASED APPROACH FOR DEVELOPMENT OF
MULTI-AGENT SOFTWARE SYSTEMS

Haiping Xu, Ph.D.

Department of Computer Science
University of Illinois at Chicago

Chicago, Illinois (2003)

 The advent of multi-agent systems has brought opportunities for the development of

complex software that will serve as the infrastructure for advanced distributed applications.

During the past decade, there have been many agent architectures proposed for implementing

agent-based systems, and also some efforts to formally specify agent behaviors. However,

research on narrowing the gap between agent formal models and agent implementation is rare. In

this thesis, we present a model-based approach to designing and implementing multi-agent

software systems. Instead of using formal methods only for the purpose of specifying agent

behavior, we bring formal methods into the design phase of the agent development life cycle. Our

approach is based on the G-net formalism, which is a type of high-level Petri net defined to

support modeling of a system as a set of independent and loosely-coupled modules.

 We first introduce how to extend G-nets to support class modeling and inheritance

modeling for concurrent object-oriented design. Then, by viewing an agent as an extension of an

object with mental states, we derive an agent-oriented G-net model from our extended G-nets that

support class modeling. The agent-oriented G-net model serves as a high-level design for

intelligent agents in multi-agent systems. To illustrate our formal modeling technique for agent-

oriented software, an example of an agent family in electronic commerce is provided. We show

how an existing Petri net tool can be used to detect design errors, and how model checking

techniques can support the verification of some key behavioral properties of our agent models. In

addition, we adapt the agent-oriented G-net model to support basic mobility concepts, and present

design models of intelligent mobile agents. Finally, based on the high-level design, we derive the

agent architecture and the detailed design needed for agent implementation. To demonstrate the

feasibility of our approach, we describe a toolkit called ADK (Agent Development Kit) that

supports rapid development of application-specific agents for multi-agent systems.

	1. INTRODUCTION
	Definition 2.8 Synchronization Module (SM)
	Table IV
	ALGORITHM FOR RESOLVING THE Super REFERENCE
	Table VIII
	SCHEMA FOR AN AGENT INTERFACE
	Table IX
	A PATTERN FOR INTELLIGENT AGENTS
	Table X

