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Abstract 
 
     Agents are becoming one of the most important topics 
in distributed and autonomous decentralized systems 
(ADS), and there are increasing attempts to use agent 
technologies to develop software systems in electronic 
commerce. Such systems are complex and there is a 
pressing need for system modeling techniques to support 
reliable, maintainable and extensible design. G-Nets are 
a type of Petri net defined to support modeling of a system 
as a set of independent and loosely-coupled modules. In 
this paper, we first introduce an extension of G-Net, 
agent-based G-Net, as a generic model for agent design. 
Then new communication mechanisms are introduced to 
support asynchronous message passing among agents. To 
ill ustrate our formal modeling technique is effective for 
agent modeling in electronic commerce, a price-
negotiation protocol example between buyers and sellers 
is provided. Finally, by analyzing an ordinary Petri net 
reduced from our agent-based G-Net models, we 
conclude that our agent-based G-Net models are L3-live, 
concurrent and effective for agent communications. 
 
 
1. Introduction 
 
     Agents are becoming one of the most important topics 
in distributed and autonomous decentralized systems 
(ADS). With the increasing importance of electronic 
commerce across the Internet, the need for agents to 
support both customers and suppliers in buying and 
selli ng goods or services is growing rapidly. Most of the 
technologies supporting today’s agent-based electronic 
commerce systems stem from distributed artificial 
intelli gence (DAI) research [1][2]. Applications 
developed with multi -agent systems (MAS) in electronic 
commerce are examples of such efforts. A multi -agent 
system (MAS) is a concurrent system based on the notion 
of autonomous, reactive, and internally-motivated agents 
in a decentralized environment. The increasing interest in 

MAS research is due to the significant advantages 
inherent in such systems, including their abilit y to solve 
problems that may be too large for a centralized single 
agent, to provide enhanced speed and reliabilit y, and to 
tolerate uncertain data and knowledge [2]. The notable 
systems developed with MAS in electronic commerce are 
Kasbah [3] and MAGMA [4]. Kasbah is meant to 
represent a marketplace where Kasbah agents, acting on 
behalf of their owners, can filter through ads and find 
those that their users might be interested in. The agents 
then proceed to negotiate to buy and sell it ems. MAGMA 
moves the marketplace metaphor to an open marketplace 
involving agents buying/selli ng physical goods, 
investments and forming competitive/cooperative 
alli ances. These agents negotiate with each other through 
a global blackboard.  
     Although there are many efforts on developing multi -
agent systems, there is a lack of research on formal 
specification and design of such systems [5][6]. As the 
multi -agent technology begins to emerge as a viable 
solution for large-scale industrial and commercial 
applications, there is an increasing need to ensure that the 
systems being developed are robust, reliable and fit for 
purpose. Previous work [7] on formal modeling agent 
systems includes: (1) using formal languages, such as Z, 
to provide a framework for describing a system at 
different levels of abstractions; (2) using temporal modal 
logic to allow the dynamic aspects of agents; and (3) 
designing formal languages, such as DESIRE, for multi -
agent specification. 
     In this paper1, we extend a formal model, called a G-
Net (a form of Petri net [9]), to support modeling of 
agents in multi -agent systems. The advantage of our 
formal mechanism is that it provides a clean interface 
between agents with both asynchronous and synchronous 
communication abiliti es and supports formal reasoning 

                                                           
1 This material is based upon work supported by the U.S. Army 
Research Off ice under grant number DAAD19-99-1-0350, and the U.S. 
National Science Foundation under grant number CCR-9988168. 
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for our agent design. Furthermore, our formal mechanism 
is based on Petri net formalism that is a mature formal 
model with existing theory and tool support. The rest of 
this paper is organized as follows. Section 2 briefly 
introduces the standard G-Net model, and discusses the 
general structure of the proposed agent-based G-Net 
model. Section 3 provides a seller/buyer example in 
electronic commerce. We show how a seller and buyer 
agent can be designed by using our agent-based G-Net 
model. Section 4 first reduces our seller and buyer agent-
based G-Net models to an ordinary Petri net. Then our net 
model is proven to be L3-live and unbounded. In addition, 
we show by examples that agent communication 
protocols can be correctly traced in our net model. 
Section 5 provides a brief conclusion and a summary of 
our future work. 
 
2. Agent-based G-Net Model 
 
2.1 The Standard G-Net Model 
 
     A widely accepted software engineering principle is 
that a system should be composed of a set of independent 
modules, where each module hides the internal details of 
its processing activities and modules communicate 
through well -defined interfaces. The G-Net model 
provides strong support for this principle [10]. G-Nets are 
an object-based extension of Petri nets. We assume that 
the reader has a basic understanding of Petri nets [9], so 
we begin with some introduction to the G-Net model. A 
G-Net system is composed of a number of G-Nets, each 
of them representing a self-contained module or object. A 
G-Net is composed of two parts: a special place called 
Generic Switch Place (GSP) and an Internal Structure 
(IS). The GSP provides the abstraction of the module, and 
serves as the only interface between the G-Net and other 
modules. The IS, a modified Petri net, represents the 
detailed design of the module. An example of G-Nets is 
shown in Figure 1. Here the G-Net models represent two 
objects – the Buyer and the Seller. The generic switch 
places are represented by GSP(Buyer) and GSP(Seller) 
enclosed by elli pses, and the internal structures of these 
models are represented by round-cornered rectangles that 
contain the detailed design of four methods: buyGoods(), 
askPrice(), returnPrice() and sellGoods(). The 
functionality of these methods are defined as follows: 
buyGoods() invokes the method sellGoods() defined in G-
Net Seller to buy some goods; askPrice() invokes the 
method returnPrice() defined in G-Net Seller to get the 
price of some goods; returnPrice() is defined in G-Net 
Seller to calculate the latest price for some goods; and 
sellGoods() is defined in G-Net Seller to handle things 
like waiting for the payment, shipping the goods and 
generating the invoice. A GSP of a G-Net G contains a set 

of methods G.MS specifying the services or interfaces 
provided by the module, and a set of attributes G.AS as 
attributes or state variables (we do not show both of them 
in Figure 1).  In G.IS, Petri net places represent 
primitives, while transitions, together with arcs, represent 
connections or relations among those primitives. These 
primitives may be actions or method calls, represented by 
special places called Instantiated Switch Places (ISP). A 
primitive becomes enabled if it receives a token, and an 
enabled primitive can be executed. Given a G-Net G, an 
ISP of G is a 2-tuple (G’ .Nid, mtd), where G’  could be the 
same G-Net G or some other G-Net, Nid is a unique 
identifier of G-Net G’ , and mtd ∈ G’.MS. Each 
ISP(G’ .Nid, mtd) denotes a method call mtd() to G-Net 
G’ . An example ISP (denoted as an elli psis in Figure 1) is 
shown in the method askPrice() defined in G-Net Buyer, 
where the method askPrice() makes a method call 
returnPrice() to the G-Net Seller to query about the price 
for some goods (we have omitted all parameters for 
simplicity).   

     From the above description, we can see that a G-Net 
model essentially represents a module or an object rather 
than an abstraction of a set of similar objects. In a recent 
paper [11], we have extended the G-Net model to support 
class modeling. The idea of this extension is to generate a 
unique object identifier G.Oid and initialize the state 
variables in G.AS when a G-Net object is instantiated 
from a G-Net G. An ISP method invocation is no longer 
represented as the 2-tuple (G’ .Nid, mtd), instead it is the 
2-tuple (G’ .Oid, mtd), where different object identifiers 
could be associated with the same G-Net class model. 
     The token movement in a G-Net object is similar to 
that of original G-Nets [10]. A token tkn is a triple (seq, 
sc, msg), where seq is the propagation sequence of the 
token, sc ∈ { before, after} is the status color of the token 
and msg is a triple (mtd_name, para_list, result). For 
ordinary places, tokens are removed from input places 
and deposited into output places by firing transitions. 
However, for the special place ISP, whenever a method 
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call i s made to a G-Net object, the token in the ISP place 
is processed (by attaching information for the method 
call ) and removed, and an identical token is deposited into 
the GSP place of the called G-Net object. Through the 
GSP of the called G-Net object, the token is then 
dispatched into an entry place of the appropriate called 
method. After the method call , the token will reach a 
return place (denoted by double circles) with the result 
attached to the token. As soon as this happens, the token 
will return to the ISP place of the caller and the 
information related to this completed method call will be 
detached. 
     We call a G-Net model that supports class modeling as 
a standard G-Net model. Notice that the example we 
provide in Figure 1 follows the Client-Server paradigm, in 
which a Seller object works as a server and a Buyer object 
is a client. Although the standard G-Net model works 
well i n object-based design, it is not suff icient in agent-
based design for the following reasons. First, agents in 
multi -agent systems are usually developed by different 
vendors independently, and those agents will be widely 
distributed across large-scale networks such as the 
Internet. To make it possible for those agents to 
communicate with each other, it is essential for them to 
have a common communication language and to follow 
common protocols. However the standard G-Net model 
does not directly support protocol-based language 
communication between agents. Second, the underlying 
agent communication model is usually asynchronous, and 
an agent may decide whether to perform actions requested 
by some other agents. The standard G-Net model does not 
directly support asynchronous message passing and 
decision-making, but only supports synchronous method 
invocations in the form of ISP places. Third, agents are 
commonly designed to determine their behavior based on 
individual goals and their knowledge. They may 
autonomously and spontaneously initiate internal or 
external behavior at any time. Standard G-Net models can 
only directly support a predefined flow of control. 
 
2.2 Extending G-Nets for Agent Modeling 
 
     To support agent-based design, we need to extend a G-
Net to support modeling an agent class2. The idea is 
similar to extending a G-Net to support class modeling 
[11]. When we instantiate an agent-based G-Net (an agent 
class model), an agent identifier is generated and the 
mental state of the resulting agent object (an active object 
[7]) is initialized. In addition, at the class level, three 
special modules are introduced to make an agent 
autonomous and internally-motivated, namely the Goal 

                                                           
2 We view the abstract of a set of similar agents as an agent class, and 
we call an instance of an agent class an agent or an agent object. 

module, the Knowledge-base module and the Planner 
module. The outline of an agent-based G-Net model is 
shown in Figure 2. A Goal module is an abstraction of a 
goal model [8], which describes the goals that an agent 
may possibly adopt. A Knowledge-base module is an 
abstraction of a belief model [8], which describes the 
information about the environment and internal state that 
an agent of that class may hold. A Planner module can be 
viewed as the heart of an agent that makes a plan to 
achieve some committed goals. For instance, in the 
Planner module, an agent may decide to ignore an 
incoming message, start a new conversation, or continue 
with a conversation, which may be initiated by some 
other agent or the agent itself. 
     The internal structure (IS) of an agent-based G-Net 
consists of four sections, namely the incoming messages, 
outgoing messages, public services and private utiliti es. 
Message Processing Units (MPU) defined in the 
incoming/outgoing messages section are used to process 
incoming/outgoing messages, and it may use ISP function 
calls to methods defined in its private utiliti es section. 
The public services section makes an agent able to work 
as a server.  Other agents may use the ISP function call 
mechanism to invoke these services synchronously. We 
keep this synchronous communication mechanism for 
agents because we view an agent as an active object with 
further characteristics like being autonomous, reactive 
and internally-motivated. The private utiliti es section is 
similar to the public services section but with the 
difference that private utilit y functions can only be called 
by the agent itself.  

     Although both objects (passive object) and agents use 
message-passing to communicate with each other, 
message-passing for objects is a unique form of method 
invocation, while agents distinguish different types of 
messages and model these messages frequently as speech-
acts and use complex protocols to negotiate. In addition, 
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agents analyze these messages and can decide whether to 
execute the requested action [7]. As we stated before, 
most of the agent communications are asynchronous 
message passing. Since asynchronous message passing is 
more fundamental than synchronous message passing, it 
is useful for us to introduce a new mechanism, called 
Message-passing Switch Place (MSP), to support 
asynchronous message passing directly. When a token 
reaches an MSP place (we represent it as an elli psis in 
Figure 2), the token is removed and deposited into the 
GSP place of the called agent. Unlike the ISP mechanism, 
the calli ng agent does not wait for the token to return 
before it can continue to execute its next step. Note that 
we have extended G-Nets to allow the use of the keyword 
self to refer to the agent object itself.  

     A template of the Planner module is shown in Figure 
3. The modules Goal and Knowledge-base are 
represented as two special places, each of which contains 
a token that represents a set of goals or a set of beliefs. 
The Planner module is goal-driven because the transition 
start_a_con-versation may fire whenever an attempt is 
made to achieve a committed goal. In addition, the 
Planner module is also message-triggered because certain 
actions may initiate whenever a message arrives (either 
from some other agent or the agent itself). If the message 
comes from some other agent, it will be dispatched to a 
MPU defined in the incoming messages section of the 
agent-based G-Net’s internal structure. After the message 
is processed, the MPU will t ransfer the processed 
message as a token to the GSP place of the agent itself. 
This is done by sending a message MSP(self) to the agent 
itself. Upon arrival of this internal message, the transition 
internal may fire, and the next action will be determined 
based on the agent’s current mental state. Alternatively, 
the next action could be to ignore the message or to 
continue with the current conversation. In either case, a 
token will be deposited in place update_goal/kb, and the 
transition update may fire. As a consequence, the agent’s 

mental state may change. If the next action is to continue 
the conversation, the tag of the token will be changed 
from internal to external, and the token will be deposited 
in place dispatch_outgoing_message.  In this case, the 
corresponding MPU will be called before the message is 
sent to some other agent by using the MSP mechanism. In 
addition, an agent may also work as a server by providing 
a set of public services and allowing other agents to make 
synchronous method calls to it. Whenever there is a 
service request, the token deposited in the GSP place will 
be dispatched to a method in the public services section. 
     As a result of this extension, the structure of tokens in 
the agent-based G-Net model should be redefined. 
Essentially there are three types of tokens, namely the 
message token mTkn, the goal token gTkn and the 
knowledge token kTkn. One way to construct the gTkn 
and kTkn is to make them linked lists. In other words, a 
gTkn represents a list of goals and a kTkn represents a list 
of facts. Since these two tokens confine themselves in 
places in their corresponding modules of our agent-based 
G-Net model, we do not describe them further in this 
paper. 
     An mTkn is a 2-tuple (tag, body), where tag ∈ 
{ internal, external, public, pr ivate} and body is a 
variant, which is determined by the tag. According to the 
tag, the token deposited in a GSP place will be dispatched 
into an entry place of a MPU or a method defined in the 
internal structure of the agent-based G-Net. Then the body 
of the token mTkn will be interpreted differently. More 
specifically, we define the mTkn body as follows:  
 
if (mTkn.tag ∈ (internal, external))  
then mTkn.body = struct {  

  int sender;     // message sender identifier 

  int receiver;   // message receiver identifier                          

  string protocol_type;   // protocol type 

  string message_name;    // message name 

  string content;         // message content 

}     // mTkn.body is as defined in Section 2.1 

else mTkn.body = (seq, sc, msg); 

                             
     We now provide a few key definitions for our agent-
based G-Net models. 
 
Definition 2.1 Agent-based G-Net 
An agent-based G-Net is a 5-tuple AG = (GSP, GL, KB, 
PL, IS), where GSP is a Generic Switch Place providing 
an abstract for the agent-based G-Net, GL is a Goal 
module, KB is a Knowledge-base module, PL is a Planner 
module and IS is an internal structure of AG.  
 
Definition 2.2 Planner Module 
A Planner module of an agent-based G-Net AG is a 
colored sub-net defined as a 5-tuple (IGS, IGO, IKB, IIS, 
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DMU), where IGS, IGO, IKB and IIS are interfaces with 
GSP place, Goal module, Knowledge-base module and 
internal structure of AG, respectively. DMU is a decision-
making unit with the functionality of dispatching 
messages, determining the next action, starting a new 
conversation and updating the Goal and Knowledge-base 
module of AG. 
 
Definition 2.3 Internal Structure (IS) 
An internal structure (IS) of an agent-based G-Net AG is 
a 4-tuple (IM, OM, PS, PU), where IM/OM is the 
incoming/outgoing messages section, which defines a set 
of Message Processing Units (MPUs); PS/PU is the 
public services/private utiliti es section, which defines a 
set of Methods. 
 
Definition 2.4 Message Processing Unit (MPU) 
A message processing unit (MPU) is a triple (P, T, A), 
where P is a set of places with three special places called 
entry place, ISP place and MSP place. Each MPU can 
have only one entry place and one MSP place, but it may 
contain multiple ISP places. T is a set of transitions, and 
each transition can be associated with a set of guards. A is 
a set of arcs defined as: ((P-{ MSP} ) x T) ∪ ((T x (P-
{ entry} ).  
 
Definition 2.5 Method 
A method is a triple (P, T, A), where P is a set of places 
with three special places called entry place, ISP place and 
return place. Each method can have only one entry place 
and one return place, but it may contain multiple ISP 
places. T is a set of transitions, and each transition can be 
associated with a set of guards. A is a set of arcs defined 
as: ((P-{ return} ) x T) ∪ ((T x (P-{ entry} ).  
 
3. Seller and Buyer Design 
 
    To ill ustrate how to design a seller/buyer agent by 
using our agent-based G-Net model, we use an example 
derived from [12]. Figure 4 (a) is a modified example of 
an FIPA contract net protocol adapted from [12], which 
depicts a template of protocol expressed as a UML 
sequence diagram for a price-negotiation protocol 
between a buyer and a seller. To correctly draw the 
sequence diagram for this template, we need to introduce 
two new notations, i.e., the end of protocol operation “•” 
and the iteration of communicative acts operation “ * ” .  
Examples of using these two notations are as follows. In 
Figure 4 (a), we put a mark of “•” in front of the message 
name “refuse” to indicate that this message ends the 
protocol. In the same figure, a mark “ * ” is put on the right 
corner of the narrow rectangle for the message “propose” 
to indicate that the communicative actions in this section 
can be repeated zero or more times.  

     When a conversation based on this contract net 
protocol begins, the buyer agent sends a request for price 
to a seller agent. The seller agent can then choose to 
response to the buyer agent by refusing to provide price 
or submitting a proposal. Here the “x” in the decision 
diamond indicates an exclusive-or decision. If a proposal 
is offered, the buyer agent has a choice of either accepting 
or rejecting the proposal. If a seller agent receives a 
reject-proposal message, it may send the buyer agent a 
new proposal or replies the buyer agent with a 
confirmation message. If the seller agent receives an 
accept-proposal message, it will simply send a 
confirmation message to the buyer agent. Whenever a 
confirmation message is sent, the protocol ends. Figure 4 
(b) and 4 (c) shows two actual cases of this protocol 
template. In Figure 4 (b), the seller agent’s proposal is 
accepted by the buyer agent in one round; while Figure 4 
(c) shows the case that the proposal is accepted by the 
buyer agent in the second round. 

     Based on the communicative acts (e.g., request-price, 
propose etc.) needed for this contract net protocol, we 
may design the buyer agent as in Figure 5. In Figure 5, 
the Goal and Knowledge-base modules remain as abstract 
units and can be refined in further detailed design. The 
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Planner module may use Figure 3 as a template, with the 
transition start_a_conversation and the place next_action 
left to be refined in further detailed design too. Since the 
buyer agent will never work as a server, the public 
services section could be empty, while in the private 
utiliti es section, we may define some necessary functions 
that can be called by the buyer agent itself. Examples of 
such private utilit y functions could be: compare_price, 
update_knowledge_base etc. The design of the seller 
agent is similar. We define MPUs of request-price, 
accept-proposal and reject-propose in the incoming 
messages section of the seller agent, and define MPUs of 
propose, refuse and confirm in the outgoing messages 
section of the seller agent. 
 
4. Verifying Agent-based G-Net models 
 
     One of the advantages of building a formal model for 
agents in agent-based design is to ensure a correct design 
that meets certain specifications.  A correct design of 
agents at least has the following properties:  
 
• L3-live: any communicative act can be performed as 

many times as needed. 
• Concurrent: a number of conversations among agents 

can happen at the same time. 
• Effective: an agent communication protocol can be 

correctly traced in the agent models. 

     To verify the correctness of agent-based G-Net models 
for seller/buyer agents with respect to the above 
properties, we first reduce our agent-based G-Net models 
to an ordinary Petri net as follows: (1) simpli fy the Goal 
module and Knowledge-base module as ordinary places 
with ordinary tokens; (2) omit the public services and 
private utiliti es sections; (3) simpli fy mTkn tokens as 
ordinary tokens; (4) use net reduction to simpli fy the Petri 
net corresponding to an MPU/Method as a single place; 

and (5) use the close world assumption and make our 
system only contains two agents, i.e., a buyer agent and a 
seller agent.  
     The resulting ordinary Petri net is ill ustrated in Figure 
6. To verify the correctness of our agent-based G-Net 
model for agent communication, we utili ze some key 
definitions and theorems as adapted from [9]. 
 
Definition 4.1 Incidence Matrix 
For a Petri net N with n transitions and m places, the 
incidence matrix A = [aij ] is an n x m matrix of integers 
and its typical entry is given by 

aij  = aij+ - aij - 
where aij+ = w(i,j) is the weight of the arc from transition 
i to output place j and aij - = w(j,i) is the weight of the arc 
from input place j to transition i. 
 
Definition 4.2 Firing Count Vector 
For some sequence of transition firings in a Petri net N, a 
firing count vector x is defined as an n-vector of 
nonnegative integers, where the ith entry of x denotes the 
number of times that transition i must fire in that firing 
sequence. 
 
Definition 4.3 T-invariant 
For a Petri net N, an n-vector x of integers (x ≠ 0) is called 
a T-invariant if x is an integer solution of homogeneous 
equation A

T

x = 0, where A is the incidence matrix of Petri 
net N. 
 
Definition 4.4 Support and minimal-support T-invariant 
The set of transitions corresponding to non-zero entries in 
a T-invariant x ≥ 0 is called the support of a T-invariant 
and is denoted as ||x||. A support is said to be minimal if 
no proper non-empty subset of the support is also a 
support. Given a minimal support of a T-invariant, there 
is a unique minimal T-invariant corresponding to the 
minimal support. Such a T-invariant is called the 
minimal-support T-invariant.  
 
Definition 4.5 L3-live Petri net 
A Petri net N with initial marking M0, denoted as (N, 
M0), is said to be L3-live if for every transition t in the 
net, t appears infinitely often in some firing sequence L(N, 
M0), where L(N, M0) is the set of all possible firing 
sequences from M0 in the net (N, M0). 
 
Theorem 4.1 An n-vector x is a T-invariant of a Petri net 
N iff there exists a marking M0 and a firing sequence σ 
that reproduces the marking M0, and x defines the firing 
count vector for σ. 
 
Theorem 4.2 A Petri net N with initial marking M0 is L3-
live if there exists a set of minimal-support T-invariants 
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that covers all the transitions in the net, and for each 
minimal-support T-invariant there exists a firing sequence 
that reproduces the initial marking M0. 
Proof:  Let T be the set of transitions in Petri net (N, M0), 
Γ be the set of minimal-support T-invariants that covers 
all the transitions in T. From the given condition, we 
know that for ∀t ∈ T, ∃χ ∈ Γ, which covers transition t. 
Since for the minimal-support T-invariant χ, there exists a 
finite firing sequence ρ that reproduces the initial marking 
M0, t appears in ρ. Let the infinite firing sequence σ = ρ • 
ρ • ρ • ρ …, where “•” is the concatenation operator 
between finite sequences, t appears in σ infinitely often. 
By definition 4.5, Petri net (N, M0) is L3-live.                 ◊ 
     The incidence matrix A of the Petri net in Figure 6 is 
listed in Table 1. By using Definition 4.1 and 4.4, we can 
calculate a set of minimal-support T-invariants as follows: 
 

x1=[1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0]     

x2=[0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0] 

x3=[1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0]     

x4=[1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1]     

x5=[1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0] 

     From Theorem 4.1, for each minimal-support T-
invariant xi in our example, there exists a marking M0 
and a firing sequence σi, which reproduces the marking 
M0, and xi defines the firing count vector for σi. 
Obviously, the following firing sequences σ1, σ2, … σ5  
reproduce the initial marking M0 = [0 1 1 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0], and x1, x2, … x5 define the 
firing count vectors for σ1, σ2, … σ5 respectively: 
 

σ1=<t21, t31, t34, t1, t4, t9, t2, t7, t12> 

σ2=<t3, t13, t16, t19, t22, t27, t20, t25, t30> 

σ3=<t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4,t9,t2,t7,t12> 

σ4=<t3, t14, t17, t19, t23, t28, t20, t26, t30, t33, t36,t1,t6,t11,t2,t7,t12> 

σ5=<t21, t32, t35, t1, t5, t10, t2, t8, t12,t15,t18,t19,t24,t29,t20,t25,t30> 

 

     Since the above minimal-support T-invariants cover all 
the transitions in the net, and for each minimal-support T-
invariant, there exists a firing sequence that reproduces 
the initial marking M0, from Theorem 4.2, we conclude 
that our Petri net model with initial marking M0 is L3-
live, i.e., for any transition t in our net model, we can find 
an infinite firing sequence that t appears infinitely often. 
Consequently, any communicative act can be performed 
as many times as needed3.  
     In Figure 6, it is obvious to see that our net model is 
unbounded. This is because transitions t3 and t21 can fire 
as many times as needed. This behavior shows that both 
the buyer and seller agent may initiate conversations 
autonomously and concurrently (as we stated before, the 
initiation of a new conversation is goal driven). There can 
be as many conversations as necessary between the buyer 
agent and the seller agent. As an example, a buyer agent 
may request prices of several goods from a seller agent at 
the same time, and several buyer agents may request price 
of the same goods from a seller agent concurrently. 
     In addition, we may trace an agent communication 
protocol p in our net model with a firing sequence σ. For 
a protocol p, a corresponding firing sequence σ in our net 
model has more semantics than the protocol itself because 
when we actually execute a protocol in our net, we need 
to do additional work, such as updating the goal or 
knowledge base after each communicative act. Since a 
marking M that is reachable from M0, but M ≠ M0, 
represents that there are still some ongoing conversations 
in the net, to correctly trace a protocol p in our net model, 
it is essential for us to find a firing sequence σ that 
reproduces the initial marking M0. In other words, we 
need to make sure that there will be no residual tokens for 
a conversation left in the net after that conversation 
completes. In this case, we say that the protocol p can be 
effectively traced as a firing sequence σ in our net model. 
To show that a protocol p can be effectively traced, we 
use the contract net protocol examples in Figure 4 (b) and 
Figure 4 (c). These two protocols can be traced in our net 
model as follows: 
 
σb=<t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8,t12,  

         t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2, t7, t12> 

σc=<t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12, 

         t15, t18, t19, t24, t29, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12,  

         t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2, t7, t12> 

 
     By Definition 4.2, we calculate their corresponding 
firing count vectors xb and xc as follows:  

                                                           
3 One of the limitations for invariant approach is that it is not suff icient 
to prove a Petri net is L4-li ve or li ve, i.e., it is possible to ultimately fire 
any transition of the net from any marking M that is reachable from M0. 
 

 a
1 

b
1 

c
1 

d
1 

e
1 

f 
1 

g
1 

h
1 

i 
1 

j 
1 

k
1 

l 
1 

m
1 

a
2 

b
2 

c
2 

d
2 

e
2 

f 
2 

g
2 

h
2 

i 
2 

j 
2 

k
2 

l 
2 

m
2 

t1 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t2 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t4 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t5 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t6 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t7 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t8 0 0 0 0 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t9 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t10 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t11 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t12 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t13 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t14 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
t15 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
t16 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
t17 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
t18 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 
t19 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 
t20 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 
t21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 
t23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 
t24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 
t25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 
t26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 1 0 0 0 
t27 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 
t28 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 
t29 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 
t30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 
t31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 
t32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 
t33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 
t34 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 
t35 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 
t36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 
 
 
 Table 1 Incidence Matrix A of the Petri Net in Figure 6 
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xb=[2 2 1 1 0 1 1 1 1 0 1 2 1 1 0 1 1 0 2 2 0 1 1 0 0 2 1 1 0 2 1 0 1 1 0 1] 

xc=[3 3 1 2 0 1 1 2 2 0 1 3 1 1 1 1 1 1 3 3 0 1 1 1 0 3 1 1 1 3 2 0 1 2 0 1] 

 
     By Definition 4.3, it is easy to verify that both xb and 
xc are T-invariants because both of the equations ATxb = 
0 and ATxc = 0 are satisfied. This shows that both firing 
sequences σb and σc can reproduce the initial marking 
M0. In other words, we prove that both protocols in 
Figure 4(b) and 4(c) can be effectively traced in our 
agent-based model. 
 
5. Conclusion and Future Work 
 
     One of the most rapidly growing areas of interest for 
Internet technology is that of electronic commerce. 
Consumers are looking for suppliers selli ng products and 
services on the Internet, while suppliers are looking for 
buyers to increase their market share. For convenience 
and eff iciency, we believe that ADS in a form of multi -
agent systems (MAS) is an effective way to automate the 
time consuming process of looking for buyers or seller 
and negotiate in order to obtain the best deal. Although 
there are several implementations of agent-based 
electronic marketplaces available [4][5], formal frame 
works for such systems are few. It is an increasing need to 
provide formal methods in multi -agent systems 
specification and design to ensure robust and reliable 
products.  
     In this paper, we introduced an agent-based G-Net 
model for buyer and seller agent modeling in electronic 
commerce. Using this model, sellers and buyers can be 
modeled as agents with the characteristics of autonomous, 
reactive and internally-motivated. Agent-based G-Net 
models also provide a clean interface between agents, and 
agents may communicate with each other by using 
contract net protocols. Furthermore, these models are 
based on the Petri net formalism, which is a mature 
formal model in terms of both existing theory and tool 
support. An example of price-negotiation protocol 
between buyers and sells is used to ill ustrate our basic 
idea, and we prove that the agent communication 
mechanism in our net model meets the requirements of 
L3-live, concurrent and effective properties. 
     For our future work, we will t ry to refine the Goal, 
Knowledge-base modules, and the decision-making 
mechanisms in Planner module, and try to use this formal 
model to prove the correctness of contract net protocols. 
Furthermore, to capture more semantics of our agent-
based G-net models, and to obtain performance metrics of 
multi -agent systems, we will t ranslate our net models into 
colored Petri nets, and use existing Petri net tools, such as 
Design/CPN, to do the analysis. We will also look into 
issue like deadlock avoidance and state exploration 
problems in the agent design and verification processes. 

6. References 
 

[1] R. Guttman, A. Moukas, and P. Maes, “Agent-mediated 
Electronic Commerce: A Survey,” Knowledge Engineering 
Review, June 1998. 

[2] S. Green, L. Hurst, B. Nangle, P. Cunningham, F. Somers, 
R. Evans, “Software Agents: A Review,” Technical report 
TCD-CS-1997-06, Trinity College Dublin, May 1997. 

[3] Anthony Chavez, Pattie Maes, “Kasbah: An Agent 
Marketplace for Buying and Selli ng Goods,” Proceedings 
of the First International Conference on the Practical 
Application of Intelli gent Agents and Multi -Agent 
Technology, London, UK, April 1996. 

[4] M. Tsvetovatyy, M. Gini, B. Mobasher, Z. Wieckowski, 
“MAGMA: An Agent-Based Virtual Market for Electronic 
Commerce,” Applied Artifi cial Intelli gence, special issue 
on Intelli gent Agents, No. 6, September 1997. 

[5] T. J. Rogers, Robert Ross, V. S. Subrahmanian, “ IMPACT: 
A System for Building Agent Applications,” Journal of 
Intelli gent Information Systems, 14(2-3): 95-113, 2000. 

[6] Brazier, F.M.T., Dunin Keplicz, B., Jennings, N., and 
Treur, J., “DESIRE: Modeling Multi -Agent Systems in a 
Compositional Formal Framework,” Int’ l Journal of 
Cooperative Information Systems, vol. 6, Special Issue on 
Formal Methods in Cooperative Information Systems: 
Multi -Agent Systems, 1997, pp. 67-94. 

[7] C. Iglesias, M. Garrijo, and J. Centeno-González, “A 
Survey of Agent-Oriented Methodologies,” Proceedings of 
the Fifth Int’ l Workshop on Agent Theories, Architectures, 
and Language (ATAL-98), 1998, pp. 317-330. 

[8] D. Kinny, M. Georgeff , and A. Rao, “A Methodology and 
Modeling Technique for Systems of BDI Agents,” Tech. 
Rep. 58, Australian Artificial Intelli gence Institute, 
Melbourne, Australia, Jan. 1996. 

[9] T. Murata, “Petri Nets: Properties, Analysis and 
Applications,” Proceedings of the IEEE, 77(4): 541-580, 
April 1989. 

[10] A. Perkusich and J. de Figueiredo, “G-Nets: A Petri Net 
Based Approach for Logical and Timing Analysis of 
Complex Software Systems,” Journal of Systems and 
Software, 39(1): 39–59, 1997. 

[11] Haiping Xu and Sol M. Shatz, “Extending G-Nets to 
Support Inheritance Modeling in Concurrent Object-
Oriented Design,” Proceedings of the IEEE Int’ l Conf. on 
Systems, Man, and Cybernetics (SMC 2000), October 2000, 
Nashvill e, Tennessee, USA, pp. 3128-3133. 

[12] J. Odell , H. Parunak, B. Bauer, “Representing Agent 
Interaction Protocols in UML,” ICSE 2000 Workshop on 
Agent-Oriented Software Engineering (AOSE-2000), June 
10, 2000, Limerick, Ireland. 


