
 11

An Agent-based Petr i Net Model with Application to Seller/Buyer

Design in Electronic Commerce

Haiping Xu and Sol M. Shatz
Department of Electrical Engineering and Computer Science

The University of Illi nois at Chicago
Chicago, IL 60607

Email : {hxu1, shatz}@eecs.uic.edu

Abstract

 Agents are becoming one of the most important topics
in distributed and autonomous decentralized systems
(ADS), and there are increasing attempts to use agent
technologies to develop software systems in electronic
commerce. Such systems are complex and there is a
pressing need for system modeling techniques to support
reliable, maintainable and extensible design. G-Nets are
a type of Petri net defined to support modeling of a system
as a set of independent and loosely-coupled modules. In
this paper, we first introduce an extension of G-Net,
agent-based G-Net, as a generic model for agent design.
Then new communication mechanisms are introduced to
support asynchronous message passing among agents. To
ill ustrate our formal modeling technique is effective for
agent modeling in electronic commerce, a price-
negotiation protocol example between buyers and sellers
is provided. Finally, by analyzing an ordinary Petri net
reduced from our agent-based G-Net models, we
conclude that our agent-based G-Net models are L3-live,
concurrent and effective for agent communications.

1. Introduction

 Agents are becoming one of the most important topics
in distributed and autonomous decentralized systems
(ADS). With the increasing importance of electronic
commerce across the Internet, the need for agents to
support both customers and suppliers in buying and
selli ng goods or services is growing rapidly. Most of the
technologies supporting today’s agent-based electronic
commerce systems stem from distributed artificial
intelli gence (DAI) research [1][2]. Applications
developed with multi -agent systems (MAS) in electronic
commerce are examples of such efforts. A multi -agent
system (MAS) is a concurrent system based on the notion
of autonomous, reactive, and internally-motivated agents
in a decentralized environment. The increasing interest in

MAS research is due to the significant advantages
inherent in such systems, including their abilit y to solve
problems that may be too large for a centralized single
agent, to provide enhanced speed and reliabilit y, and to
tolerate uncertain data and knowledge [2]. The notable
systems developed with MAS in electronic commerce are
Kasbah [3] and MAGMA [4]. Kasbah is meant to
represent a marketplace where Kasbah agents, acting on
behalf of their owners, can filter through ads and find
those that their users might be interested in. The agents
then proceed to negotiate to buy and sell it ems. MAGMA
moves the marketplace metaphor to an open marketplace
involving agents buying/selli ng physical goods,
investments and forming competitive/cooperative
alli ances. These agents negotiate with each other through
a global blackboard.
 Although there are many efforts on developing multi -
agent systems, there is a lack of research on formal
specification and design of such systems [5][6]. As the
multi -agent technology begins to emerge as a viable
solution for large-scale industrial and commercial
applications, there is an increasing need to ensure that the
systems being developed are robust, reliable and fit for
purpose. Previous work [7] on formal modeling agent
systems includes: (1) using formal languages, such as Z,
to provide a framework for describing a system at
different levels of abstractions; (2) using temporal modal
logic to allow the dynamic aspects of agents; and (3)
designing formal languages, such as DESIRE, for multi -
agent specification.
 In this paper1, we extend a formal model, called a G-
Net (a form of Petri net [9]), to support modeling of
agents in multi -agent systems. The advantage of our
formal mechanism is that it provides a clean interface
between agents with both asynchronous and synchronous
communication abiliti es and supports formal reasoning

1 This material is based upon work supported by the U.S. Army
Research Off ice under grant number DAAD19-99-1-0350, and the U.S.
National Science Foundation under grant number CCR-9988168.

0-7695-1065-5/01 $10.00 2001 IEEE

 12

for our agent design. Furthermore, our formal mechanism
is based on Petri net formalism that is a mature formal
model with existing theory and tool support. The rest of
this paper is organized as follows. Section 2 briefly
introduces the standard G-Net model, and discusses the
general structure of the proposed agent-based G-Net
model. Section 3 provides a seller/buyer example in
electronic commerce. We show how a seller and buyer
agent can be designed by using our agent-based G-Net
model. Section 4 first reduces our seller and buyer agent-
based G-Net models to an ordinary Petri net. Then our net
model is proven to be L3-live and unbounded. In addition,
we show by examples that agent communication
protocols can be correctly traced in our net model.
Section 5 provides a brief conclusion and a summary of
our future work.

2. Agent-based G-Net Model

2.1 The Standard G-Net Model

 A widely accepted software engineering principle is
that a system should be composed of a set of independent
modules, where each module hides the internal details of
its processing activities and modules communicate
through well -defined interfaces. The G-Net model
provides strong support for this principle [10]. G-Nets are
an object-based extension of Petri nets. We assume that
the reader has a basic understanding of Petri nets [9], so
we begin with some introduction to the G-Net model. A
G-Net system is composed of a number of G-Nets, each
of them representing a self-contained module or object. A
G-Net is composed of two parts: a special place called
Generic Switch Place (GSP) and an Internal Structure
(IS). The GSP provides the abstraction of the module, and
serves as the only interface between the G-Net and other
modules. The IS, a modified Petri net, represents the
detailed design of the module. An example of G-Nets is
shown in Figure 1. Here the G-Net models represent two
objects – the Buyer and the Seller. The generic switch
places are represented by GSP(Buyer) and GSP(Seller)
enclosed by elli pses, and the internal structures of these
models are represented by round-cornered rectangles that
contain the detailed design of four methods: buyGoods(),
askPrice(), returnPrice() and sellGoods(). The
functionality of these methods are defined as follows:
buyGoods() invokes the method sellGoods() defined in G-
Net Seller to buy some goods; askPrice() invokes the
method returnPrice() defined in G-Net Seller to get the
price of some goods; returnPrice() is defined in G-Net
Seller to calculate the latest price for some goods; and
sellGoods() is defined in G-Net Seller to handle things
like waiting for the payment, shipping the goods and
generating the invoice. A GSP of a G-Net G contains a set

of methods G.MS specifying the services or interfaces
provided by the module, and a set of attributes G.AS as
attributes or state variables (we do not show both of them
in Figure 1). In G.IS, Petri net places represent
primitives, while transitions, together with arcs, represent
connections or relations among those primitives. These
primitives may be actions or method calls, represented by
special places called Instantiated Switch Places (ISP). A
primitive becomes enabled if it receives a token, and an
enabled primitive can be executed. Given a G-Net G, an
ISP of G is a 2-tuple (G’ .Nid, mtd), where G’ could be the
same G-Net G or some other G-Net, Nid is a unique
identifier of G-Net G’ , and mtd ∈ G’.MS. Each
ISP(G’ .Nid, mtd) denotes a method call mtd() to G-Net
G’ . An example ISP (denoted as an elli psis in Figure 1) is
shown in the method askPrice() defined in G-Net Buyer,
where the method askPrice() makes a method call
returnPrice() to the G-Net Seller to query about the price
for some goods (we have omitted all parameters for
simplicity).

 From the above description, we can see that a G-Net
model essentially represents a module or an object rather
than an abstraction of a set of similar objects. In a recent
paper [11], we have extended the G-Net model to support
class modeling. The idea of this extension is to generate a
unique object identifier G.Oid and initialize the state
variables in G.AS when a G-Net object is instantiated
from a G-Net G. An ISP method invocation is no longer
represented as the 2-tuple (G’ .Nid, mtd), instead it is the
2-tuple (G’ .Oid, mtd), where different object identifiers
could be associated with the same G-Net class model.
 The token movement in a G-Net object is similar to
that of original G-Nets [10]. A token tkn is a triple (seq,
sc, msg), where seq is the propagation sequence of the
token, sc ∈ { before, after} is the status color of the token
and msg is a triple (mtd_name, para_list, result). For
ordinary places, tokens are removed from input places
and deposited into output places by firing transitions.
However, for the special place ISP, whenever a method

GSP(Buyer)

ISP(Seller,
sellGoods())

 buyGoods()

Figure 1 G-Net Model of Buyer and Seller Objects

askPrice()

t1

t2

ISP(Seller,
returnPrice())

t3

t4

returnPrice()

calculate_
price

sell_
goods

sellGoods()

GSP(Seller)

t8

t7

t6

t5

 13

call i s made to a G-Net object, the token in the ISP place
is processed (by attaching information for the method
call) and removed, and an identical token is deposited into
the GSP place of the called G-Net object. Through the
GSP of the called G-Net object, the token is then
dispatched into an entry place of the appropriate called
method. After the method call , the token will reach a
return place (denoted by double circles) with the result
attached to the token. As soon as this happens, the token
will return to the ISP place of the caller and the
information related to this completed method call will be
detached.
 We call a G-Net model that supports class modeling as
a standard G-Net model. Notice that the example we
provide in Figure 1 follows the Client-Server paradigm, in
which a Seller object works as a server and a Buyer object
is a client. Although the standard G-Net model works
well i n object-based design, it is not suff icient in agent-
based design for the following reasons. First, agents in
multi -agent systems are usually developed by different
vendors independently, and those agents will be widely
distributed across large-scale networks such as the
Internet. To make it possible for those agents to
communicate with each other, it is essential for them to
have a common communication language and to follow
common protocols. However the standard G-Net model
does not directly support protocol-based language
communication between agents. Second, the underlying
agent communication model is usually asynchronous, and
an agent may decide whether to perform actions requested
by some other agents. The standard G-Net model does not
directly support asynchronous message passing and
decision-making, but only supports synchronous method
invocations in the form of ISP places. Third, agents are
commonly designed to determine their behavior based on
individual goals and their knowledge. They may
autonomously and spontaneously initiate internal or
external behavior at any time. Standard G-Net models can
only directly support a predefined flow of control.

2.2 Extending G-Nets for Agent Modeling

 To support agent-based design, we need to extend a G-
Net to support modeling an agent class2. The idea is
similar to extending a G-Net to support class modeling
[11]. When we instantiate an agent-based G-Net (an agent
class model), an agent identifier is generated and the
mental state of the resulting agent object (an active object
[7]) is initialized. In addition, at the class level, three
special modules are introduced to make an agent
autonomous and internally-motivated, namely the Goal

2 We view the abstract of a set of similar agents as an agent class, and
we call an instance of an agent class an agent or an agent object.

module, the Knowledge-base module and the Planner
module. The outline of an agent-based G-Net model is
shown in Figure 2. A Goal module is an abstraction of a
goal model [8], which describes the goals that an agent
may possibly adopt. A Knowledge-base module is an
abstraction of a belief model [8], which describes the
information about the environment and internal state that
an agent of that class may hold. A Planner module can be
viewed as the heart of an agent that makes a plan to
achieve some committed goals. For instance, in the
Planner module, an agent may decide to ignore an
incoming message, start a new conversation, or continue
with a conversation, which may be initiated by some
other agent or the agent itself.
 The internal structure (IS) of an agent-based G-Net
consists of four sections, namely the incoming messages,
outgoing messages, public services and private utiliti es.
Message Processing Units (MPU) defined in the
incoming/outgoing messages section are used to process
incoming/outgoing messages, and it may use ISP function
calls to methods defined in its private utiliti es section.
The public services section makes an agent able to work
as a server. Other agents may use the ISP function call
mechanism to invoke these services synchronously. We
keep this synchronous communication mechanism for
agents because we view an agent as an active object with
further characteristics like being autonomous, reactive
and internally-motivated. The private utiliti es section is
similar to the public services section but with the
difference that private utilit y functions can only be called
by the agent itself.

 Although both objects (passive object) and agents use
message-passing to communicate with each other,
message-passing for objects is a unique form of method
invocation, while agents distinguish different types of
messages and model these messages frequently as speech-
acts and use complex protocols to negotiate. In addition,

GSP(G)

mesg_pr-
ocessing

incoming messages

Figure 2 A General Agent-based G-Net Model

Goal

public services

serv-
ice_k

 outgoing messages

action_1 action_m

t4

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.aid) MSP(G’.aid)

action_1 action_n service_1 service_k

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

serv-
ice_1

 return return return return

private utili ties

utility_1 utility_p

…

…

…

…

…

…

…

…

utili-
ty_1

utili-
ty_p

Notes: G’ .aid = mTkn.body.receiver as defined later in this section

 14

agents analyze these messages and can decide whether to
execute the requested action [7]. As we stated before,
most of the agent communications are asynchronous
message passing. Since asynchronous message passing is
more fundamental than synchronous message passing, it
is useful for us to introduce a new mechanism, called
Message-passing Switch Place (MSP), to support
asynchronous message passing directly. When a token
reaches an MSP place (we represent it as an elli psis in
Figure 2), the token is removed and deposited into the
GSP place of the called agent. Unlike the ISP mechanism,
the calli ng agent does not wait for the token to return
before it can continue to execute its next step. Note that
we have extended G-Nets to allow the use of the keyword
self to refer to the agent object itself.

 A template of the Planner module is shown in Figure
3. The modules Goal and Knowledge-base are
represented as two special places, each of which contains
a token that represents a set of goals or a set of beliefs.
The Planner module is goal-driven because the transition
start_a_con-versation may fire whenever an attempt is
made to achieve a committed goal. In addition, the
Planner module is also message-triggered because certain
actions may initiate whenever a message arrives (either
from some other agent or the agent itself). If the message
comes from some other agent, it will be dispatched to a
MPU defined in the incoming messages section of the
agent-based G-Net’s internal structure. After the message
is processed, the MPU will t ransfer the processed
message as a token to the GSP place of the agent itself.
This is done by sending a message MSP(self) to the agent
itself. Upon arrival of this internal message, the transition
internal may fire, and the next action will be determined
based on the agent’s current mental state. Alternatively,
the next action could be to ignore the message or to
continue with the current conversation. In either case, a
token will be deposited in place update_goal/kb, and the
transition update may fire. As a consequence, the agent’s

mental state may change. If the next action is to continue
the conversation, the tag of the token will be changed
from internal to external, and the token will be deposited
in place dispatch_outgoing_message. In this case, the
corresponding MPU will be called before the message is
sent to some other agent by using the MSP mechanism. In
addition, an agent may also work as a server by providing
a set of public services and allowing other agents to make
synchronous method calls to it. Whenever there is a
service request, the token deposited in the GSP place will
be dispatched to a method in the public services section.
 As a result of this extension, the structure of tokens in
the agent-based G-Net model should be redefined.
Essentially there are three types of tokens, namely the
message token mTkn, the goal token gTkn and the
knowledge token kTkn. One way to construct the gTkn
and kTkn is to make them linked lists. In other words, a
gTkn represents a list of goals and a kTkn represents a list
of facts. Since these two tokens confine themselves in
places in their corresponding modules of our agent-based
G-Net model, we do not describe them further in this
paper.
 An mTkn is a 2-tuple (tag, body), where tag ∈
{ internal, external, public, pr ivate} and body is a
variant, which is determined by the tag. According to the
tag, the token deposited in a GSP place will be dispatched
into an entry place of a MPU or a method defined in the
internal structure of the agent-based G-Net. Then the body
of the token mTkn will be interpreted differently. More
specifically, we define the mTkn body as follows:

if (mTkn.tag ∈ (internal, external))
then mTkn.body = struct {

 int sender; // message sender identifier

 int receiver; // message receiver identifier

 string protocol_type; // protocol type

 string message_name; // message name

 string content; // message content

} // mTkn.body is as defined in Section 2.1

else mTkn.body = (seq, sc, msg);

 We now provide a few key definitions for our agent-
based G-Net models.

Definition 2.1 Agent-based G-Net
An agent-based G-Net is a 5-tuple AG = (GSP, GL, KB,
PL, IS), where GSP is a Generic Switch Place providing
an abstract for the agent-based G-Net, GL is a Goal
module, KB is a Knowledge-base module, PL is a Planner
module and IS is an internal structure of AG.

Definition 2.2 Planner Module
A Planner module of an agent-based G-Net AG is a
colored sub-net defined as a 5-tuple (IGS, IGO, IKB, IIS,

GSP(G)

Figure 3 A Template of Planner Module

Goal Knowledge Base

ignore

start_a_
conversation

…

… …

…

…

…

continue
public_
services

external
internal

update

to place “ goal”

to place “ knowledge base”

from
transition
“ update”

update_
goal/kb

next_
action

dispatch_
services

dispatch_
outgoing_
message

dispatch_
incoming_
message

…

…

dispatch_
utili ties

private_
utili ties

incoming messages

outgoing messages public services private utilities

 15

DMU), where IGS, IGO, IKB and IIS are interfaces with
GSP place, Goal module, Knowledge-base module and
internal structure of AG, respectively. DMU is a decision-
making unit with the functionality of dispatching
messages, determining the next action, starting a new
conversation and updating the Goal and Knowledge-base
module of AG.

Definition 2.3 Internal Structure (IS)
An internal structure (IS) of an agent-based G-Net AG is
a 4-tuple (IM, OM, PS, PU), where IM/OM is the
incoming/outgoing messages section, which defines a set
of Message Processing Units (MPUs); PS/PU is the
public services/private utiliti es section, which defines a
set of Methods.

Definition 2.4 Message Processing Unit (MPU)
A message processing unit (MPU) is a triple (P, T, A),
where P is a set of places with three special places called
entry place, ISP place and MSP place. Each MPU can
have only one entry place and one MSP place, but it may
contain multiple ISP places. T is a set of transitions, and
each transition can be associated with a set of guards. A is
a set of arcs defined as: ((P-{ MSP}) x T) ∪ ((T x (P-
{ entry}).

Definition 2.5 Method
A method is a triple (P, T, A), where P is a set of places
with three special places called entry place, ISP place and
return place. Each method can have only one entry place
and one return place, but it may contain multiple ISP
places. T is a set of transitions, and each transition can be
associated with a set of guards. A is a set of arcs defined
as: ((P-{ return}) x T) ∪ ((T x (P-{ entry}).

3. Seller and Buyer Design

 To ill ustrate how to design a seller/buyer agent by
using our agent-based G-Net model, we use an example
derived from [12]. Figure 4 (a) is a modified example of
an FIPA contract net protocol adapted from [12], which
depicts a template of protocol expressed as a UML
sequence diagram for a price-negotiation protocol
between a buyer and a seller. To correctly draw the
sequence diagram for this template, we need to introduce
two new notations, i.e., the end of protocol operation “•”
and the iteration of communicative acts operation “ * ” .
Examples of using these two notations are as follows. In
Figure 4 (a), we put a mark of “•” in front of the message
name “refuse” to indicate that this message ends the
protocol. In the same figure, a mark “ * ” is put on the right
corner of the narrow rectangle for the message “propose”
to indicate that the communicative actions in this section
can be repeated zero or more times.

 When a conversation based on this contract net
protocol begins, the buyer agent sends a request for price
to a seller agent. The seller agent can then choose to
response to the buyer agent by refusing to provide price
or submitting a proposal. Here the “x” in the decision
diamond indicates an exclusive-or decision. If a proposal
is offered, the buyer agent has a choice of either accepting
or rejecting the proposal. If a seller agent receives a
reject-proposal message, it may send the buyer agent a
new proposal or replies the buyer agent with a
confirmation message. If the seller agent receives an
accept-proposal message, it will simply send a
confirmation message to the buyer agent. Whenever a
confirmation message is sent, the protocol ends. Figure 4
(b) and 4 (c) shows two actual cases of this protocol
template. In Figure 4 (b), the seller agent’s proposal is
accepted by the buyer agent in one round; while Figure 4
(c) shows the case that the proposal is accepted by the
buyer agent in the second round.

 Based on the communicative acts (e.g., request-price,
propose etc.) needed for this contract net protocol, we
may design the buyer agent as in Figure 5. In Figure 5,
the Goal and Knowledge-base modules remain as abstract
units and can be refined in further detailed design. The

Buyer Buyer Buyer Seller Seller Seller

request-price

x

• refuse

propose

x

accept-proposal

reject-proposal

• confirm

request-price

propose

accept-proposal

• confirm

request-price

propose

reject-proposal

propose

accept-proposal

• confirm

(a) (b) (c)

Figure 4 A Contract Net Protocol between Buyer and Seller Agents

propose

x

accept-proposal

reject-proposal

*

GSP(G)

mesg_pr-
ocessing

incoming messages

Figure 5 An Agent-based G-Net Model for Buyer Agent

Goal

 outgoing messages

propose refuse

t4

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(self) MSP(G’.aid)

confirm request-price accept-proposal reject-proposal

mesg_pr-
ocessing

mesg_pr-
ocessing

mesg_pr-
ocessing

 return return

private utilities

utilit y_1 utilit y_p

…

…

utili -
ty_1

utili -
ty_p

mesg_pr-
ocessing

MSP(G’.aid) MSP(G’.aid)

mesg_pr-
ocessing

G’ .aid = mTkn.body.receiver

 16

Planner module may use Figure 3 as a template, with the
transition start_a_conversation and the place next_action
left to be refined in further detailed design too. Since the
buyer agent will never work as a server, the public
services section could be empty, while in the private
utiliti es section, we may define some necessary functions
that can be called by the buyer agent itself. Examples of
such private utilit y functions could be: compare_price,
update_knowledge_base etc. The design of the seller
agent is similar. We define MPUs of request-price,
accept-proposal and reject-propose in the incoming
messages section of the seller agent, and define MPUs of
propose, refuse and confirm in the outgoing messages
section of the seller agent.

4. Verifying Agent-based G-Net models

 One of the advantages of building a formal model for
agents in agent-based design is to ensure a correct design
that meets certain specifications. A correct design of
agents at least has the following properties:

• L3-live: any communicative act can be performed as

many times as needed.
• Concurrent: a number of conversations among agents

can happen at the same time.
• Effective: an agent communication protocol can be

correctly traced in the agent models.

 To verify the correctness of agent-based G-Net models
for seller/buyer agents with respect to the above
properties, we first reduce our agent-based G-Net models
to an ordinary Petri net as follows: (1) simpli fy the Goal
module and Knowledge-base module as ordinary places
with ordinary tokens; (2) omit the public services and
private utiliti es sections; (3) simpli fy mTkn tokens as
ordinary tokens; (4) use net reduction to simpli fy the Petri
net corresponding to an MPU/Method as a single place;

and (5) use the close world assumption and make our
system only contains two agents, i.e., a buyer agent and a
seller agent.
 The resulting ordinary Petri net is ill ustrated in Figure
6. To verify the correctness of our agent-based G-Net
model for agent communication, we utili ze some key
definitions and theorems as adapted from [9].

Definition 4.1 Incidence Matrix
For a Petri net N with n transitions and m places, the
incidence matrix A = [aij] is an n x m matrix of integers
and its typical entry is given by

aij = aij+ - aij -
where aij+ = w(i,j) is the weight of the arc from transition
i to output place j and aij - = w(j,i) is the weight of the arc
from input place j to transition i.

Definition 4.2 Firing Count Vector
For some sequence of transition firings in a Petri net N, a
firing count vector x is defined as an n-vector of
nonnegative integers, where the ith entry of x denotes the
number of times that transition i must fire in that firing
sequence.

Definition 4.3 T-invariant
For a Petri net N, an n-vector x of integers (x ≠ 0) is called
a T-invariant if x is an integer solution of homogeneous
equation A

T

x = 0, where A is the incidence matrix of Petri
net N.

Definition 4.4 Support and minimal-support T-invariant
The set of transitions corresponding to non-zero entries in
a T-invariant x ≥ 0 is called the support of a T-invariant
and is denoted as ||x||. A support is said to be minimal if
no proper non-empty subset of the support is also a
support. Given a minimal support of a T-invariant, there
is a unique minimal T-invariant corresponding to the
minimal support. Such a T-invariant is called the
minimal-support T-invariant.

Definition 4.5 L3-live Petri net
A Petri net N with initial marking M0, denoted as (N,
M0), is said to be L3-live if for every transition t in the
net, t appears infinitely often in some firing sequence L(N,
M0), where L(N, M0) is the set of all possible firing
sequences from M0 in the net (N, M0).

Theorem 4.1 An n-vector x is a T-invariant of a Petri net
N iff there exists a marking M0 and a firing sequence σ
that reproduces the marking M0, and x defines the firing
count vector for σ.

Theorem 4.2 A Petri net N with initial marking M0 is L3-
live if there exists a set of minimal-support T-invariants

 GSP(G)

Figure 6 A Transformed Model of Buyer and Seller Agents

(goal)
(kb)

(ignore) (continue)

(external) (internal)

(next_
action)

GSP(G)

Buyer Seller

(dispatch_
incoming_
message)

(dispatch_
incoming_
message)

(dispatch_
outgoing_
message)

(dispatch_
outgoing_
message)

(next_
action)

(external) (internal)

(start_a_
conversation)

(start_a_
conversation)

(kb)

(goal)

(continue) (ignore)

a1 b1 c1 a2 b2 c2

d1 d2 e1 e2

f1 g1 h1 f2 g2 h2
i1 i2

j1 j2

k1 l1 m1 k2 l2 m2

t1 t2

t4 t5 t6 t7 t8

t9 t10 t11
t12 t13 t14 t15

t16 t17 t18

t19 t20
t21 t3

t22 t23 t24 t25 t26

t27 t28 t29
t30 t31

t34

t32

t35

t33

t36

(update) (update)

(propose, refuse, confirm)

(request_price, accept_proposal,
reject_proposal)

(request_price, accept_proposal,
reject_proposal)

(propose, refuse, confirm)

 17

that covers all the transitions in the net, and for each
minimal-support T-invariant there exists a firing sequence
that reproduces the initial marking M0.
Proof: Let T be the set of transitions in Petri net (N, M0),
Γ be the set of minimal-support T-invariants that covers
all the transitions in T. From the given condition, we
know that for ∀t ∈ T, ∃χ ∈ Γ, which covers transition t.
Since for the minimal-support T-invariant χ, there exists a
finite firing sequence ρ that reproduces the initial marking
M0, t appears in ρ. Let the infinite firing sequence σ = ρ •
ρ • ρ • ρ …, where “•” is the concatenation operator
between finite sequences, t appears in σ infinitely often.
By definition 4.5, Petri net (N, M0) is L3-live. ◊
 The incidence matrix A of the Petri net in Figure 6 is
listed in Table 1. By using Definition 4.1 and 4.4, we can
calculate a set of minimal-support T-invariants as follows:

x1=[1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0]

x2=[0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0]

x3=[1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 0]

x4=[1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1]

x5=[1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 1 0]

 From Theorem 4.1, for each minimal-support T-
invariant xi in our example, there exists a marking M0
and a firing sequence σi, which reproduces the marking
M0, and xi defines the firing count vector for σi.
Obviously, the following firing sequences σ1, σ2, … σ5
reproduce the initial marking M0 = [0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0], and x1, x2, … x5 define the
firing count vectors for σ1, σ2, … σ5 respectively:

σ1=<t21, t31, t34, t1, t4, t9, t2, t7, t12>

σ2=<t3, t13, t16, t19, t22, t27, t20, t25, t30>

σ3=<t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4,t9,t2,t7,t12>

σ4=<t3, t14, t17, t19, t23, t28, t20, t26, t30, t33, t36,t1,t6,t11,t2,t7,t12>

σ5=<t21, t32, t35, t1, t5, t10, t2, t8, t12,t15,t18,t19,t24,t29,t20,t25,t30>

 Since the above minimal-support T-invariants cover all
the transitions in the net, and for each minimal-support T-
invariant, there exists a firing sequence that reproduces
the initial marking M0, from Theorem 4.2, we conclude
that our Petri net model with initial marking M0 is L3-
live, i.e., for any transition t in our net model, we can find
an infinite firing sequence that t appears infinitely often.
Consequently, any communicative act can be performed
as many times as needed3.
 In Figure 6, it is obvious to see that our net model is
unbounded. This is because transitions t3 and t21 can fire
as many times as needed. This behavior shows that both
the buyer and seller agent may initiate conversations
autonomously and concurrently (as we stated before, the
initiation of a new conversation is goal driven). There can
be as many conversations as necessary between the buyer
agent and the seller agent. As an example, a buyer agent
may request prices of several goods from a seller agent at
the same time, and several buyer agents may request price
of the same goods from a seller agent concurrently.
 In addition, we may trace an agent communication
protocol p in our net model with a firing sequence σ. For
a protocol p, a corresponding firing sequence σ in our net
model has more semantics than the protocol itself because
when we actually execute a protocol in our net, we need
to do additional work, such as updating the goal or
knowledge base after each communicative act. Since a
marking M that is reachable from M0, but M ≠ M0,
represents that there are still some ongoing conversations
in the net, to correctly trace a protocol p in our net model,
it is essential for us to find a firing sequence σ that
reproduces the initial marking M0. In other words, we
need to make sure that there will be no residual tokens for
a conversation left in the net after that conversation
completes. In this case, we say that the protocol p can be
effectively traced as a firing sequence σ in our net model.
To show that a protocol p can be effectively traced, we
use the contract net protocol examples in Figure 4 (b) and
Figure 4 (c). These two protocols can be traced in our net
model as follows:

σb=<t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8,t12,

 t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2, t7, t12>

σc=<t3, t13, t16, t19, t22, t27, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12,

 t15, t18, t19, t24, t29, t20, t26, t30, t31, t34, t1, t4, t9, t2, t8, t12,

 t14, t17, t19, t23, t28, t20, t26, t30, t33, t36, t1, t6, t11, t2, t7, t12>

 By Definition 4.2, we calculate their corresponding
firing count vectors xb and xc as follows:

3 One of the limitations for invariant approach is that it is not suff icient
to prove a Petri net is L4-li ve or li ve, i.e., it is possible to ultimately fire
any transition of the net from any marking M that is reachable from M0.

 a
1

b
1

c
1

d
1

e
1

f
1

g
1

h
1

i
1

j
1

k
1

l
1

m
1

a
2

b
2

c
2

d
2

e
2

f
2

g
2

h
2

i
2

j
2

k
2

l
2

m
2

t1 -1 0 0 1 0
t2 -1 0 0 0 1 0
t3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t4 0 0 0 -1 0 1 0
t5 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t6 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t7 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t8 0 0 0 0 -1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t9 1 0 0 0 0 -1 0
t10 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t11 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t12 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t13 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t14 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t15 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
t16 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
t17 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
t18 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0
t19 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0
t20 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0
t21 0 1 0 0 0
t22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0
t23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0
t24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0
t25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0
t26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 1 0 0 0
t27 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0
t28 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0
t29 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0
t30 -1 0 0 0 0
t31 0 -1 1 0 0
t32 0 -1 0 1 0
t33 0 -1 0 0 1
t34 1 0 -1 0 0
t35 1 0 -1 0
t36 1 0 -1

 Table 1 Incidence Matrix A of the Petri Net in Figure 6

 18

xb=[2 2 1 1 0 1 1 1 1 0 1 2 1 1 0 1 1 0 2 2 0 1 1 0 0 2 1 1 0 2 1 0 1 1 0 1]

xc=[3 3 1 2 0 1 1 2 2 0 1 3 1 1 1 1 1 1 3 3 0 1 1 1 0 3 1 1 1 3 2 0 1 2 0 1]

 By Definition 4.3, it is easy to verify that both xb and
xc are T-invariants because both of the equations ATxb =
0 and ATxc = 0 are satisfied. This shows that both firing
sequences σb and σc can reproduce the initial marking
M0. In other words, we prove that both protocols in
Figure 4(b) and 4(c) can be effectively traced in our
agent-based model.

5. Conclusion and Future Work

 One of the most rapidly growing areas of interest for
Internet technology is that of electronic commerce.
Consumers are looking for suppliers selli ng products and
services on the Internet, while suppliers are looking for
buyers to increase their market share. For convenience
and eff iciency, we believe that ADS in a form of multi -
agent systems (MAS) is an effective way to automate the
time consuming process of looking for buyers or seller
and negotiate in order to obtain the best deal. Although
there are several implementations of agent-based
electronic marketplaces available [4][5], formal frame
works for such systems are few. It is an increasing need to
provide formal methods in multi -agent systems
specification and design to ensure robust and reliable
products.
 In this paper, we introduced an agent-based G-Net
model for buyer and seller agent modeling in electronic
commerce. Using this model, sellers and buyers can be
modeled as agents with the characteristics of autonomous,
reactive and internally-motivated. Agent-based G-Net
models also provide a clean interface between agents, and
agents may communicate with each other by using
contract net protocols. Furthermore, these models are
based on the Petri net formalism, which is a mature
formal model in terms of both existing theory and tool
support. An example of price-negotiation protocol
between buyers and sells is used to ill ustrate our basic
idea, and we prove that the agent communication
mechanism in our net model meets the requirements of
L3-live, concurrent and effective properties.
 For our future work, we will t ry to refine the Goal,
Knowledge-base modules, and the decision-making
mechanisms in Planner module, and try to use this formal
model to prove the correctness of contract net protocols.
Furthermore, to capture more semantics of our agent-
based G-net models, and to obtain performance metrics of
multi -agent systems, we will t ranslate our net models into
colored Petri nets, and use existing Petri net tools, such as
Design/CPN, to do the analysis. We will also look into
issue like deadlock avoidance and state exploration
problems in the agent design and verification processes.

6. References

[1] R. Guttman, A. Moukas, and P. Maes, “Agent-mediated
Electronic Commerce: A Survey,” Knowledge Engineering
Review, June 1998.

[2] S. Green, L. Hurst, B. Nangle, P. Cunningham, F. Somers,
R. Evans, “Software Agents: A Review,” Technical report
TCD-CS-1997-06, Trinity College Dublin, May 1997.

[3] Anthony Chavez, Pattie Maes, “Kasbah: An Agent
Marketplace for Buying and Selli ng Goods,” Proceedings
of the First International Conference on the Practical
Application of Intelli gent Agents and Multi -Agent
Technology, London, UK, April 1996.

[4] M. Tsvetovatyy, M. Gini, B. Mobasher, Z. Wieckowski,
“MAGMA: An Agent-Based Virtual Market for Electronic
Commerce,” Applied Artifi cial Intelli gence, special issue
on Intelli gent Agents, No. 6, September 1997.

[5] T. J. Rogers, Robert Ross, V. S. Subrahmanian, “ IMPACT:
A System for Building Agent Applications,” Journal of
Intelli gent Information Systems, 14(2-3): 95-113, 2000.

[6] Brazier, F.M.T., Dunin Keplicz, B., Jennings, N., and
Treur, J., “DESIRE: Modeling Multi -Agent Systems in a
Compositional Formal Framework,” Int’ l Journal of
Cooperative Information Systems, vol. 6, Special Issue on
Formal Methods in Cooperative Information Systems:
Multi -Agent Systems, 1997, pp. 67-94.

[7] C. Iglesias, M. Garrijo, and J. Centeno-González, “A
Survey of Agent-Oriented Methodologies,” Proceedings of
the Fifth Int’ l Workshop on Agent Theories, Architectures,
and Language (ATAL-98), 1998, pp. 317-330.

[8] D. Kinny, M. Georgeff , and A. Rao, “A Methodology and
Modeling Technique for Systems of BDI Agents,” Tech.
Rep. 58, Australian Artificial Intelli gence Institute,
Melbourne, Australia, Jan. 1996.

[9] T. Murata, “Petri Nets: Properties, Analysis and
Applications,” Proceedings of the IEEE, 77(4): 541-580,
April 1989.

[10] A. Perkusich and J. de Figueiredo, “G-Nets: A Petri Net
Based Approach for Logical and Timing Analysis of
Complex Software Systems,” Journal of Systems and
Software, 39(1): 39–59, 1997.

[11] Haiping Xu and Sol M. Shatz, “Extending G-Nets to
Support Inheritance Modeling in Concurrent Object-
Oriented Design,” Proceedings of the IEEE Int’ l Conf. on
Systems, Man, and Cybernetics (SMC 2000), October 2000,
Nashvill e, Tennessee, USA, pp. 3128-3133.

[12] J. Odell , H. Parunak, B. Bauer, “Representing Agent
Interaction Protocols in UML,” ICSE 2000 Workshop on
Agent-Oriented Software Engineering (AOSE-2000), June
10, 2000, Limerick, Ireland.

