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Abstract

G-Nets are a type of Petri net defined to support modeling
of system as a set of independent and loosely-coupled
modules. The modular features of G-Nets provide support
for incremental design and successive modification,
however the G-Net formalism is not fully object-oriented
due to a lack of support for inheritance. In this paper, we
introduce extensions to G-Nets to support explicit modeling
of inheritance. Bounded buffer examples are used, which
we define as subclasses of an unbounded buffer, to illustrate
the expressive power of the extended G-Net models.
Various forms of inheritance are formalized and discussed
in the context of concurrent object-oriented design. In
addition, the inheritance anomaly problem is examined and
discussed.

1 Introduction

A widely accepted software engineering principle is that a
system should be composed of a set of independent
modules, where each module hides the internal details of its
processing activities and modules communicate through
well-defined interfaces. The G-Net model (a form of Petri
net) provides strong support for this principle [1][2]. A G-
Net system is composed of a number of G-Nets, each of
them representing a self-contained module or object. A G-
Net is composed of two parts: a special place called Generic
Switch Place (GSP) and an Internal Structure (IS). The
GSP provides the abstraction of the module, and serves as
the only interface between the G-Net and other modules.
The IS, a modified Petri net, represents the detailed design
of the module. An example of G-Net is shown in Figure 1.
Here the G-Net model represents an unbounded buffer. The
generic switch place is represented by GSP(UB) enclosed
by an ellipsis, and the internal structure of this model is
represented by a rounded box which contains the detailed
design of four methods: isEmpty(), put(e), get() and who().
The functionality of these methods are defined as follows:
isEmpty() checks if the buffer is empty and return a boolean
value, put(e) stores an item e into the buffer, get() removes
an item from the buffer and returns that item, and who()
prints the object identification of the unbounded buffer UB.

A GSP of a G-Net G contains a set of methods G.MS (listed
in the rectangle beside the GSP place) specifying the
services or interfaces provided by the module, and a set of
attributes G.AS as attributes/state variables (we do not show
them in Figure 1).  In G.IS, Petri net places represent
primitives; while transitions, together with arcs, represent
connections or relations among those primitives. These
primitives may be actions or method calls, represented by
special places called Instantiated Switch Place (ISP). A
primitive becomes enabled if it receives a token, and an
enabled primitive can be executed. Given a G-Net G, an ISP
of G is a 2-tuple (G’.Nid, mtd), where G’ could be the same
G-Net G or some other G-Net, Nid is a unique identification
of G-Net G’, and mtd ∈ G’.MS. Each ISP(G’.Nid, mtd)
denotes a method call mtd() to G-Net G’. An example of
ISP is shown in the method get() (denoted as an ellipsis),
where the method get() makes a method call isEmpty() to
the G-Net module/object itself to check if the buffer is
empty. Note that we have extended G-nets to allow the use
of the keyword self to refer to the module/object itself.
From the above description, we can see that a G-Net model
essentially represents a module or an object rather than an
abstraction of a set of similar objects. To introduce
inheritance, it is required that the concept of class can be
modeled and a new way for instantiation of G-Nets needs to
be defined. As a result, we redefine the semantic of ISP to
represent a call to an object (i.e., an instantiation of a G-
Net) rather than a G-Net1. Furthermore, we discuss
extensions to support inheritance modeling and inheritance
anomaly issues.

2 Extending G-Nets for Class Modeling

To support inheritance, we use G-Nets to model classes
rather than objects. The instantiation of a G-Net G generates
a unique object identification G.Oid and initializes the state
variables in G.AS. We call the instantiated G-Net G as G-
Net object G_obj. An ISP method invocation is no longer
represented  as  the  2-tuple

                                                          
1 In the rest of this paper, we follow the convention that a G-Net refers to a
G-Net class model and a G-Net object refers to an instance of a G-Net
class.
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(G’.Nid, mtd), instead it is the 2-tuple (G’.Oid, mtd),  where
different object identifications could be associated with the
same G-Net class model.
The token movement in a G-Net object is similar to that of
original G-Nets [1]. The only difference is that we allow
two types of tokens, namely sTkn tokens and gTkn tokens.
An sTkn token is a colored or colorless token used in
synchronization modules, which we will introduce shortly.
A gTkn token is a triple (seq, sc, msg), where seq is the
propagation sequence of the token, sc ∈ (before, after) is
the status color of the token and msg is a triple (mtd_name,
para_list, result). For ordinary places, tokens are removed
from input places and deposited into output places by firing
transitions. However, for the special place ISP, whenever a
method call is made to a G-Net object, the token in the ISP
place is processed (by attaching information for the method
call) and removed, and an identical token is deposited into
the GSP place of the called G-Net object. Through the GSP
of the called G-Net object, the token is then dispatched into
an entry place of the appropriate called method. After the
method call, the token will reach a goal place (denoted by
double circles) with the result attached to the token. As soon
as this happens, the token will return to the ISP place of the
caller and the information related to this completed method
call will be detached.
More specifically, when a G-Net object G_obj with G.Oid
makes a method call ISP(G’.Oid, mtd(para_list)) in its
thread/process with G.Pid, the procedure for updating the
gTkn token is as follows:

1. Call_before: gTkn.seq ← gTkn.seq + <G.Oid, G.Pid,
mtd>; gTkn.msg ← (mtd, para_list, NULL); gTkn.sc ←
before.

2. Transfer the gTkn token to the GSP place of the called
G-Net object with G’.Oid.

3. Wait for the result to be stored in gTkn.msg.result, and
the gTkn token to be returned.

4. Call_after:  gTkn.seq ← gTkn.seq – LAST(gTkn.seq);
gTkn.sc ← after.

Notice that in the unbounded buffer class model we
introduced a synchronization module syn to synchronize the
methods get() and put(e). This mechanism is necessary
because these methods need to access the same unbounded
buffer and they should be mutually exclusive. Generally, to
design the synchronization module, we can either fulfill all
synchronization requirements in one synchronization
module or distribute them in several synchronization
modules. To simplify our model, we follow the second
option. Therefore, each class model may contain as many
synchronization modules as necessary, and each
synchronization module can be used to synchronize among
a group of methods. As we will see, the synchronization
module can not only be used to synchronize methods
defined in a class model, but also can be used to
synchronize methods defined in a subclass model and
methods defined in its superclass (ancestor) model.
We now provide a few key definitions for our extended G-
Net class models.

Definition 2.1 Internal Structure (IS)
The internal structure of G-Net G (representing a class) is a
2-tuple (M, S), where M is a set of methods and S is a set of
synchronization modules. The arcs connecting M and S
belong to S.

Definition 2.2 Method
A method is a triple (P, T, A), where P is a set of places
with three special places called entry place, ISP place and
goal place. Each method can have only one entry place and
one goal place, but it may contain multiple ISP places.
T is a set of transitions, and each transition can be
associated with a set of guards. A is a set of arcs defined as:
((P-{goal place}) x T) ∪ ((T x (P-{entry place}).
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Definition 2.3 Synchronization Module
A synchronization module is 4-tuples (P, A, I, O), where P
is a single place used to hold an sTkn token, and A is a set
of arcs defined as: (P x IS.M.T) ∪ (IS.M.T x P). I is a set of
arc inscriptions on place incoming arcs, and O is a set of arc
inscriptions on place outgoing arcs.

3 Extending G-Nets to Support Inheritance

3.1 Introducing Inheritance into G-Nets

With inheritance, when we instantiate a G-Net Sub_G (a
subclass), it is not enough to just associate an Oid with
Sub_G and initialize the state variables defined in Sub_G
class. We must associate the same Oid with all of Sub_G’s
superclasses (ancestors) and initialize all state variables
defined in those classes. The initialized part corresponding
to the subclass and each of the superclasses (ancestors) is
called primary subobject and subobject respectively [4][3].
When a method call is made to the object Sub_G_obj (i.e.,
an instantiation of class Sub_G), it is always the case that
only the GSP place of the primary subobject is marked. The
subobjects corresponding to the superclasses (ancestors) of
Sub_G are not activated unless the method call to
Sub_G_obj is not defined in the subclass model Sub_G.
When a method call is not found in a subclass model, we
need to resolve the problem by searching the methods
defined in the superclass models. To do this, we define a
new mechanism called a default place. A default place is a
default entry place defined in the internal structure of a
subclass model and is drawn as a dash-lined circle, as
shown in Figure 2. When a method is dispatched in a
subclass model, the methods defined in the subclass model
are searched first. If there is a match, one of the entry places

of those methods is marked; otherwise, the default place is
marked instead. After the dispatching, necessary
synchronization constraints are established by the
synchronization modules. If the default place is marked, the
method call is then forwarded to a named superclass model.
At first, it may seem that we can use the ISP method
invocation mechanism to forward an existing method call.
However this is not quite proper. Note that the initial
method call will attach information associated with the call
to the gTkn token. Now the subsequent call to the superclass
would again attach the same information to the token, and
the method call will actually be invoked more than once. To
solve this problem, we introduce a new mechanism called a
Superclass Switch Place (SSP).
An SSP (denoted as an ellipsis in Figure 2) is similar to an
ISP, but with the difference that the SSP is used to forward
an existing method call to a subobject (corresponding to a
superclass model) of the object itself rather than to make a
new method call. Essentially, an SSP does not update the
gTkn token because all the information for the method call
has already been attached by the original ISP method call.
In the context of multiple inheritance, we represent an SSP
mechanism in subclass Sub_G as SSP(G’), where G’ is one
of the superclasses of Sub_G. Note that the object identifier
is not necessary, as in the case of ISP method invocation,
because the method call will be forwarded to the object
itself (i.e., its subobject). When the method call is
forwarded to the subobject corresponding to the superclass
model G’, the GSP place of the superclass model G’ is
marked, and the methods defined in the superclass model
are searched. If a method defined in the superclass model is
matched, as in the case of ISP method invocation, the
matched method is executed, and the result is stored in
gTkn.msg.result and the gTkn token returns to the SSP
place. Otherwise, the default place (if any) in the superclass
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Figure 2 G-Net Model of Bounded Buffer BB
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is marked, and the methods defined in the grandparent class
model are searched. This procedure can be repeated until
the called method is found. If the method searching ends up
in a class with no methods matched and no default place
defined, a “method undefined” exception should be raised.
This situation can be avoided by static type checking.
Now consider a bounded buffer example as shown in Figure
2. We define a bounded buffer class BB as a subclass of an
unbounded buffer class UB. Since the buffer has a limited
size of MAX_SIZE, when there is a put (e) method call, the
size of the buffer needs to be checked to make sure that the
buffer capacity is not exceeded. In this case, the method put
(e) defined in the class model UB is no longer correct, and it
needs to be redefined in the subclass model BB. A simple
way to redefine the method put (e) in subclass BB is to first
make an ISP method call isFull() to the bounded buffer
object itself. The method isFull() is used to check if the
bounded buffer is full and it is added to the BB class model
as shown in Figure 2. If it returns true, i.e., the bounded
buffer has already been full, an error or exception will be
generated; otherwise, the method call put(e) will be
forwarded to its superclass UB by using an SSP mechanism.
Here we use an SSP to allow reuse of the original method
put(e) defined in class UB. As we will explain later, we call
this situation refinement inheritance. Note that if we use
ISP(self, put(e)) in this situation, a dead loop will occur.
This is because the methods defined in the subclass will
always be searched first; and consequently, the method
put(e) defined in subclass BB will be called recursively.
Again we see the value of introducing the SSP mechanism.
It is also important to notice that a synchronization module
can be used to synchronize methods defined in a subclass
model and methods defined in the superclass model.
However, in this case, all methods defined in superclass
(ancestor) models must be synchronized as a whole. For
instance, in Figure 2, the refined method put(e) defined in
subclass BB is synchronized with all methods defined in the
superclass UB, yet the synchronization between the method
put(e) and the inherited method isEmpty() is unnecessary.
To formally define extended G-Nets with inheritance, we
need to redefine the internal structure and define the
concept of Abstract Superclass Module.

Definition 3.1 Internal Structure
The internal structure of G-Net is a triple (M, S, A), where
M is a set of methods, S is a set of synchronization modules,
and A is an optional Abstract Superclass Module. The arcs
connecting M and S, or connecting S and A belong to S.
There are no direct arcs between M and A.

Definition 3.2 Abstract Superclass Module
An Abstract Superclass Module is a triple (P, T, A), where
P is a set of places includes three special places: default
place, goal place and Superclass Switch Place (SSP). T is a

set of transitions with optional guards. A is a set of arcs
defined as: ((P – {goal place}) x T) ∪ (T x (P – {default
place})).

3.2 Modeling Different Forms of Inheritance

3.2.1  Augment Inheritance

Augment inheritance is straightforward - new protocols,
which are not defined in the superclass model, are added to
a subclass model. For instance, consider the design of the
subclass BB as shown in Figure 2. We require a service to
check if the buffer is already full. This can be done by
adding a new method isFull() to the subclass BB. Since the
method isFull () does not override any methods in class UB,
we have used augment inheritance.

3.2.2  Restrictive Inheritance

In some cases, we regard a class as a specialization of
another class, with some superclass methods absent from
the protocol of the subclass. This type of inheritance
actually runs counter to the semantics and intentions of
inheritance, because the “IS-A” relationship between
superclass and subclass is broken. However, restrictive
inheritance may be necessary when using an existing class
hierarchy that can not be modified. Usually, restrictive
inheritance is implemented in the subclass by overriding the
disallowed superclass methods to produce error messages or
signal exceptions [3]. Here we use a trivial example to
illustrate how to model restrictive inheritance. Suppose we
need to disallow the inherited method who() in our subclass
BB. This can be simply done by redefining method who() in
class BB; the redefined method who() does nothing but
prints an error message to indicate that the method call for
who() is disallowed in subclass model BB.

3.2.3  Replacement Inheritance

A subclass can completely redefine the behavior of its
superclass for a particular method defined in the superclass.
With this form of method overriding, we say that the
method in the subclass replaces the method defined in the
superclass. Replacing a superclass method generally occurs
when the subclass can define a more efficient method or
needs to define a method in a different way [3]. An example
of replacement inheritance would be possible in the
bounded buffer example, if we redesign the method get() in
subclass BB  to make the “remove” action more efficient.

3.2.4  Refinement Inheritance

More frequently, the semantics of a subclass demand that
the subclass respond to a method call by a method that
includes  the  behavior  of  its  superclass,  but extends it in
the same way. In this case, we say that the  subclass  method
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refines the superclass method. Practically, method refine-
ment is more common than method replacement because it
provides a semantic consistence with specialization. When
implementing method refinement, we may simply refine the
method by copying the relevant superclass method into the
subclass model. However, we would like our extended G-
Net formalism to provide a mechanism that supports
automatic sharing of the superclass method. This capability
is supported by the SSP mechanism and it has been
illustrated by the method refinement of put(e) in bounded
buffer BB as shown in Figure 2.

3.3 Modeling Inheritance Anomaly Problem

Inheritance anomaly refers to the phenomenon that
synchronization code can not be effectively inherited
without non-trivial re-definitions of some inherited methods
[5][6].  As a consequence, some well-known proposals for
concurrent object-based languages, such as families of
Actor languages, POOL/T, Procol and ABCL/1, chose to
not support inheritance as a fundamental language feature
[5]. Also some languages like Concurrent Smalltalk or
Orient84/K do provide inheritance but do not support intra-
object concurrency - that is there is only a single thread of
control within an object [7].
There have been previous efforts to solve the inheritance
anomaly problem [5][6], but most of the proposals are
based on quasi concurrency, where only one thread at a time
is allowed to execute. As stated in [7], this type of
inheritance anomaly seems to be almost solved. “True”
concurrency refers to cases that more than one thread can be
executed in an object at the same time. Reference [7] talked
about solutions in this context. The inheritance anomaly
problem has usually been approached in terms of analyzing
the causes. The causes have been classified as partitioning
of acceptable states, history-only sensitiveness of acceptable
states, and modification of acceptable states [5]. Here, we

analyze the inheritance anomaly problem based on
clarifying the terminology of “synchronization constraints”,
and we always view a concurrent system as a “true” one.
As we will see, synchronization constraints among methods
can be specified explicitly or implicitly. An explicit
synchronization constraint refers to the concurrent/mutual
exclusive execution between two methods in an object. For
instance, in the unbounded buffer example, method get()
and method who() can be executed concurrently, however
the execution of method get() and method put(e) must be
mutually exclusive. This type of synchronization constraint
creates the inheritance anomaly problem when a method m1
defined in a subclass module needs to be mutually exclusive
with a particular inherited method m2 that is defined in its
superclass (ancestor) module. A simple way to deal with
this situation is to refine the method m2 (e.g., to use the SSP
mechanism in our extended G-Net model) and to establish
mutual exclusion between m1 and m2 in the subclass
module. In this case the method defined in the superclass
(ancestor) module can be reused by a refinement
inheritance.
An implicit synchronization constraint refers to cases where
acceptance of a method in an object is based on that
object’s state. The state of an object can be changed by
executing a method in that object. For instance, when a
buffer is in a state of “empty”, the method get() is not
allowed to execute; however, after  executing the method
put(e), the state of the buffer is changed from “empty” to
“partial,” and at this time, the method call of get() becomes
acceptable. Since the methods get() and put(e) are indirectly
synchronized through  the state of the buffer, we called this
type of synchronization constraint an implicit
synchronization constraint. The implicit constraints can be
further classified in terms of two different views of an
object’s state, namely internal view and external view.
Under an internal view, the state of an object can be
captured by the evaluation of state variables of the object
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Figure 3 G-Net Model of Bounded Buffer BB1
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[5]. For example, the state “empty” of a buffer can be
captured by checking if the state variable of buffer_size
evaluates to “0”. This type of synchronization  can always
be added to a subclass module without redefining inherited
methods because it can be easily maintained by checking
state variables before allowing the execution of a method.
Another view is the external view, where the state is
captured indirectly by the externally observable behavior of
the object [5]. For example, a state under external view
could be the state of a buffer object when the last executed
method is put(e). When synchronization constraints with
respect to the external view of an object’s state are added to
a subclass module, some methods defined in a superclass
(ancestor) module must be redefined. Fortunately, in most
cases, as long as no deadlocks are introduced, we can again
use refinement inheritance to reuse the original method
defined in the superclass (ancestor) module. We use the
classic example of gget() to illustrate this situation.
Consider a new bounded buffer BB1, defined as a subclass
of bounded buffer BB, and add a new method called gget().
The behavior of gget() is almost identical to that of get(),
with the sole exception that it can not be executed
immediately after the invocation of put(e) [5]. The design of
the new bounded buffer BB1 is illustrated in Figure 3. To
establish the synchronization between methods gget() and
put(e), the method put(e) must be redefined in the subclass
module BB1. Suppose we have an object bb1, an instance
of class BB1. Initially, the token in the synchronization
module syn is “0”. Whenever there is a method call other
than put(e) to object bb1, the token will be removed and
deposited back to the synchronization module with the same
value of “0”. However, if there is a method call for put(e),
the token in the synchronization module syn will be
removed first, and then the method call put(e) will be
forwarded to its superclass BB by using the SSP(BB)
mechanism. After the method call of put(e), a token with
value “1” will be deposited into the synchronization module
syn. At this time, if there is a method call for gget(), the call
must wait because a token with value “0” is necessary to
enable the transition t1. Thus the synchronization between
methods gget() and put(e) is correctly established. Note that
we cannot reuse the method get() when designing the
method gget() by using the SSP(BB) mechanism. This is
inapplicable because gget() and get() are two different
methods. In addition, we need to redefine the methods
isEmpty() and isFull() to avoid deadlocks.

4 Conclusion and Future Works

Inheritance has been introduced into several object-oriented
net models, such as LOOPN++ [8] and CO-OPN/2 [9].
However, those methods do not use net-based extensions to
capture   inheritance   properties.   Our  approach   explicitly

models inheritance at the net level to maintain an underlying
Petri net model that can be exploited during design
simulation or analysis. In future work, we will explore an
algorithmic basis for synthesis of subclass models as well as
investigate how to analyze extended G-Nets at an abstract
level, with consideration for the state explosion problem.
Issues like design consistency and deadlock avoidance will
be of primary concern.
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