
Compositional Petri Net Models ofCompositional Petri Net Models of

Advanced Tasking in Ada-95Advanced Tasking in Ada-95
11

Ravi K. Gedela, Sol M. Shatz and Haiping Xu

Concurrent Software Systems Lab

The University of Illinois at Chicago

 Chicago, IL 60607 USA

AbstractAbstract

The Ada language has been designed to support development of concurrent and distributed software. While the Ada-

83 standard defined the basic mechanisms of rendezvous-based tasking, the Ada-95 standard significantly extended

this capability with the introduction of several advanced tasking constructs. We present and discuss formal models of

these key tasking constructs using the Petri net model. We also provide some formal evaluation of the models using

one particular net-based method, invariant analysis. The constructs considered are the asynchronous transfer of

control, the protected object, and the requeue statement. By modeling these advanced Ada tasking constructs with

Petri nets, we obtain compositional models of the constructs that are complementary to earlier work in net-based

modeling of Ada tasking, both in terms of defining precise behavior for tasking semantics, and also in terms of

providing support for automated analysis of concurrent software.

Keywords:Keywords: Ada-95, Compositional Models, Concurrency, Petri Nets, Tasking

1.1. IntroductionIntroduction

As concurrent and distributed systems become more and more common, the development of such systems is creating

new challenges in the development of software and for software engineering in general [1]. Designing languages that

support concurrency is one such challenge. The Ada language has been designed to support development of

concurrent and distributed software, especially for embedded, real-time systems. This support is provided by Ada's

many constructs for multitasking. Unfortunately, the multitasking features can be difficult to understand, especially in

terms of how various features interact. This is due in part to the fact that the semantics of Ada are "officially" defined

in the Ada reference manual [2] in informal English; there is a lack of documented formal specifications for those

tasking semantics. One direction for helping this situation is to use a structured and formal semantic model that

explicitly provides precise and unambiguous definitions of behavior. One method for constructing real-time models of

1 This work was supported in part by the U. S. National Science Foundation under Grant CCR-9321743 and by the
U.S. Army Research Office under grant number DAAG55-98-1-0470.

2

Ada programs that support timing analysis was presented by Corbett [3]. That work used a hybrid automaton model to

capture the execution times of tasks and common sources of run-time overhead. Since the focus of that work is on

real-time modeling, it relies on various implementation-dependent features. In this paper, we consider

implementation-independent “concurrency models” for the key tasking constructs of Ada-95. We use the Petri net

model [4,5] since Petri nets not only provide a formal, mathematical-based semantic, but also provide the advantage of

being quickly understood due to their simple construction and graphical depiction. In addition, Petri nets have a

strong base of existing (and evolving) theory and development tools.

Petri nets can be effectively used to model tasking behavior since the net model explicitly supports features like

concurrency, non-determinism, synchronization, and mutual exclusion. By modeling individual Ada tasking

constructs with Petri nets, we can obtain compositional models of the constructs. These models define precise behavior

and have the potential to support analysis of concurrent Ada programs. This is because Petri nets have well-known

characteristics that allow one to identify properties of the model such as absence of deadlock, mutual exclusion

violation, etc. Soon after Ada's first standard was adopted (the so-called Ada-83 standard [6]), Mandrioli, et al. [7]

published Petri net models to define key Ada-83 tasking constructs. This work modeled the basic tasking constructs

using timed Petri nets, and stressed the value of formal modeling of the semantics of the tasking constructs in Ada-83.

Shatz et al. [8] also described Petri net models for Ada tasking constructs; but, the focus of that early modeling work

was to provide a formal foundation for automated generation of general net models for tasking programs for the

purpose of supporting net-based analysis of a program's tasking behavior [9,10]. This research showed significant

promise toward automated analysis of non-trivial Ada tasking programs, especially for deadlock properties. It resulted

in the development of a set of support tools and a comprehensive set of experimental results [9]. Some of this analysis

work applied so-called net reduction to Petri net models in order to decrease the complexity of state-space analysis.

With the recent standardization of Ada-95 [2], we feel that it is valuable to now provide new Petri net models of the

language primitives associated with Ada-95 tasking. The primitives considered are the asynchronous transfer of

control, the protected object, and the requeue statement. These primitives have been shown to be valuable for

implementing atomic actions to support software fault tolerance [11]. While net reductions similar to those mentioned

before can also be applied to these new models, we do not automatically apply reductions in this paper because such

reduced models would provide less semantic detail on the constructs being considered. Our first priority here is to

demonstrate a set of compositional models that properly capture the intended tasking semantics; optimization of such

models is a separate issue, but it can be addressed by reductions on the models we provide. In an earlier paper [12], we

presented some Petri net models for Ada-95 tasking constructs. But the models in that work were not compositional,

meaning that they were not constructed to support modular construction of systems that use the various tasking

constructs. Furthermore, that earlier work did not present any formal evaluation of the models. In this paper, we

present compositional models with formal evaluations based on invariant analysis.

The rest of the paper is organized as follows. Section 2 is a background section that briefly summarizes basic Ada

tasking features and provides an overview of Petri nets. Readers who are already familiar with Ada tasking features

and Petri net theory may skip this section. Section 3 first describes a traditional model for entry call and its evolved

3

version, which supports modeling advanced tasking constructs, it then discusses the construction and evaluation of

Petri net models for the three tasking constructs that are newly defined in Ada-95: asynchronous transfer of control,

protected object, and requeue statement. Section 4 provides a brief conclusion and summary of this work.

2. Background2. Background

2.1 2.1 Ada TaskingAda Tasking

Ada has been specifically designed to support concurrent and real time programming. The language has many

constructs that facilitate concurrency, where concurrent activities are described by means of tasks. A task represents a

separate thread of control that proceeds independently and concurrently between the points where it interacts with

other tasks. A task unit is the basic unit for defining a task whose sequence of actions may be executed concurrently

with those of other tasks. Such tasks may be implemented on multicomputers, multiprocessors, or with interleaved

execution on a single processor. Ada also provides a delay statement, which can be used to suspend, or delay, the

execution of a task for a specific amount of time.

The interaction among tasks can be done in two fundamental ways [13]: by direct message communication and by

indirect communication. Direct message communication is accomplished through a mechanism called rendezvous. In

indirect communication, tasks interact through protected object. This feature was not supported in Ada-83; it provides

exclusive write-only or concurrent read-only access to shared data. More detailed discussion of this feature is included

in Section 3.2.2.

2.2 Overview of Petri Nets2.2 Overview of Petri Nets

Petri nets are a graphical and mathematical modeling tool. This model has shown value in describing and studying

information systems that are characterized as being concurrent, asynchronous, distributed, parallel, non-deterministic,

and/or stochastic [4]. Petri nets allow one to build a model of a desired system, and analyze the model formally to

study the behavior of the system. In this section we briefly present some background information about Petri nets. We

also describe one type of extended Petri net that we use in our later models. The definitions and theorems are derived

from some standard Petri net literature [4,5].

Definition 1: A Petri net is a bipartite directed graph that can be represented as a 5-tuple PN = (P, T, F, W, M0),

where:

P = {p1, p2,...,pm} is a finite set of nodes that represents Petri net places. Place nodes model various conditions or

states that relate to the level of abstraction of interest for the system being considered. A place can contain

markers, called tokens. When a place does contain tokens, we say the place is marked. An unmarked place

contains zero tokens.

4

T = {t1, t2,...,tn} is a finite set of nodes that represent transitions. Transitions model various events that relate to the

system being modeled.

F ⊆ (PxT) ∪ (TxP) is a flow control function which represents the edges in the graph. The directed edges in F

connect places to transitions and transitions to places (but never places to places or transitions to transitions).

W : F -> {1, 2, 3,...} is the weight function with W(a)=0 for a ∉ F, which specifies the number of tokens that move

through the directed edge (explained below).

M0 : P -> {0, 1, 2,...} is the initial marking, or initial distribution of tokens to places, of the graph. This represents

the initial state of the system modeled by the Petri net graph.

The dynamic evolution of a marked Petri net is dictated by the firing of transitions. A transition t can fire only when it

is enabled, which means that each of t’s input places has a “sufficient” number of tokens. The sufficient number

depends on the weight function for the arc from place p to transition t. When a transition t fires, tokens are removed

from all of t’s input places and tokens are deposited in each of t’s output places. The number of tokens that are

removed and deposited is based on the weight function associated with the edge connecting the transition t and the

input and output places. The graphical convention for Petri net models calls for the use of circles to represent places,

bars for transitions, and dots for tokens. All the arcs are directed showing their source and destination (place to

transition or transition to place).

Definition 2: The set of reachable markings from M0 in a Petri net (N, M0) is denoted by R(N, M0) or simply R(M0).

Definition 3: An n-vector of positive integers is defined as a firing count vector, whose ith element denotes the

number of firings of the ith transition.

Definition 4: For a Petri net with n transitions and m places, the incidence matrix A = [aij] is an n x m matrix of

integers and its typical entry is given by

aij = aij+ - aij-

where aij+ = w(i,j) is the weight of the arc from transition i to its output place j and aij- = w(j,i) is the weight of

the arc to the transition i from its input place j.

Definition 5: An m-vector y, (n-vector, x) of integers is called an S-invariant (T-invariant) if Ay = 0 (ATx = 0).

Intuitively, the invariants mean the following. The i-th entry of the S-invariant y is a weight y(i) associated with the i-

th place such that the weighted sum of tokens remains the same for all the markings reachable from an initial

marking. Given a T-invariant x, there exist a marking M0 and a transition firing sequence, such that the i-th entry of

x is the number of times that the i-th transition fires in the firing sequence.

Theorem 1: An m-vector y is an S-invariant iff MTy = M0Ty for any fixed initial marking M0 and any reachable

marking M in R(M0).

5

Theorem 2: An n-vector x is a T-invariant iff there exist a marking M0 and a firing sequence σ from M0 back to M0,

and x defines the firing count vector for σ.

Definition 6: The set of places (transitions) corresponding to non-zero entries in an S-invariant y ≥ 0 (T-invariant x ≥

0) is called the support of an invariant and is denoted by ||y|| (||x||).

Definition 7: An invariant is said to be minimal if no proper non-empty subset of the support is also a support. Given

a minimal support of an invariant, there is a unique minimal invariant corresponding to the minimal support.

Such an invariant is called the minimal-support invariant.

Theorem 3: The upper bound on the number of tokens that can ever exist in a place p is Min [M0Tyi / yi(p)], where

the minimum is taken over all non-negative minimal-support S-invariants yi, and yi(p) denotes the weight

associated with place p in S-invariant yi.

Timed Petri nets are Petri nets with the additional feature of time associated with the transitions. There are many

variations of Timed Petri nets [4, 7, 14, 15]. We are using Merlin's timed Petri nets [15] because there is a natural

mapping for the definition of Merlin's timed Petri nets to the timing features of Ada semantics that we will consider.

A timed Petri net (based on Merlin's definition) is a Petri net where each transition t is associated with a time interval

[tmin, tmax]. Assuming that transition t becomes enabled at time t0 then its firing is allowed to take place only

sometime between (t0+tmin) and (t0+tmax). In other words, an enabled transition cannot fire until a minimal time,

tmin, has elapsed, and also it cannot fire after a maximal time, tmax. So the enabled transition can fire only between

the time interval tmin and tmax.

Untimed Petri nets can be viewed as timed nets where the time intervals associated with all the transitions are tmin =

0 and tmax = infinity. In this paper we consider all sink transitions, which are transitions that have no output places,

to have the associated timing tuple [tmin = 0, tmax = 0]. This ensures that a sink transition fires as soon as it becomes

enabled -- this is used in some of the net models to discard “useless” tokens. For all other transitions in our models, if

the transition does not have a timing tuple explicitly specified, the timing tuple is assumed to be [tmin = 0, tmax = T]

by default, where T is some arbitrary maximum time for all basic operations.

Another form of extension to Petri nets is the use of inhibitor arcs [4]. An inhibitor arc connects a place to a transition

and defines the property that the transition associated with the inhibitor arc is enabled only when there are no tokens

in the input place. This kind of place testing is known as a "zero testing capability." No tokens are moved through an

inhibitor arc when a transition fires. By standard convention, an inhibitor arc is graphically represented by the use of a

small circle in place of the arrow head pointing to a transition node. In this paper, we will represent an inhibitor arc as

a dotted arc (to make them show up more clearly) with a small circle. Use of the inhibitor arcs allows us to produce

less complicated models than would otherwise be possible.

6

3. 3. Ada Tasking ModelsAda Tasking Models

3.1 Entry Call Model for Advanced Tasking Constructs3.1 Entry Call Model for Advanced Tasking Constructs

In Ada, the program units used to support concurrent programming are called tasks. A task can act as a client or a

server, or even both of them. As stated in Section 2.1, communications between tasks can be accomplished through

two mechanisms, which are rendezvous and protected object. Using rendezvous, two tasks can communicate with each

other directly by entry calls, while using protected object, two tasks can only communicate with each other indirectly

through a protected object as shared data. The protected object construct is a new feature added to Ada-95, and it

operates as a server. In addition to providing remote procedures and functions for clients, a protected object can also

provide entries, which means a task can make an entry call to a protected object. This mechanism makes it possible

for two tasks to communicate with each other indirectly by both having rendezvous with the same protected object at

different times.

A regular entry call can be modeled by the Petri net shown in Figure 1 (a). A task (client) making an entry call blocks

and waits for the called task (server) to accept and finish servicing the call. After the rendezvous, both tasks can

continue their executions in parallel.

Although this regular entry call model properly captures the behavior of a client-server interaction, it is not sufficient

for the advanced tasking constructs of interest in this paper.2 For instance, a task using the asynchronous transfer of

control construct needs to know if the rendezvous can be started immediately. This status checking for rendezvous is

not necessary in our regular entry call model. To make this checking possible, we evolve our entry call model by

adding a checking step before initiating the rendezvous. The new entry call model is shown in Figure 1 (b). In this

new model, the client first sends an entry call request to the server; this action is represented by putting a token in

place entry_call_request. If the rendezvous is available immediately (i.e., there is a token in place start_server), the

transition accept_entry_call is enabled. The firing of this transition puts a token in place accept. Now, both places

entry_call and accept have a token, so the transition start_rendezvous1 is enabled. When the transition

start_rendezvous1 fires, it puts a token in place entry_call_ready, and initializes the rendezvous on the server side.

After the accepted entry call finishes its execution, the transition end_rendezvous2 fires and deposits a token into

place entry_call_return. Then the transition end_rendezvous1 is enabled, and it’s firing puts a token in place

entry_call_complete. Finally, the transition end_entry_call fires and finishes the whole entry call process.

By using this new entry call model, modeling advanced tasking constructs, such as asynchronous transfer of control,

becomes possible. Furthermore, this form of model provides for a consistent interface between various client and

server instances. This consistency of the entry call interface make it possible for us to design compositional models,

and it will be seen in the following sections.

2 For simplicity, we assume interactions involving only one client at a time; multiple calls can be modeled by using
colored Petri nets like those used for the protected object model in Section 3.2.2.

7

Usually, a client becomes queued when it is waiting for service at a particular entry. However the queuing order, such

as FIFO or priority queuing, depends on the Ada implementation and whether or not the Ada-95 real-time annex is

being used [17]. To create implementation independent models, and to preserve simple interfaces needed to ensure

compositionality, we do not explicitly model entry queues. This means that our models assume that any potential entry

call could end up as the first call in the queue. This is quite reasonable for behavior modeling since factors that would

determine the queuing order are nondeterministic at this stage of interest.

3.2 Advanced Tasking Constructs and Models3.2 Advanced Tasking Constructs and Models

We can now discuss the various models that we developed for the tasking constructs in Ada-95 that are extensions to

the Ada-83 standard. These changes in the Ada definition are elaborated in [16,17]. All of the models developed here

are subjected to some correctness evaluation using Petri net invariant calculations. We will show how these

evaluations help ensure confidence that the models correctly capture the intended behaviors.

3.2.1 Asynchronous Transfer of Control3.2.1 Asynchronous Transfer of Control

The asynchronous transfer of control (ATC) allows an activity to be abandoned when a condition arises and an

alternative path is to be taken. The syntax is as follows:

select

triggering_alternative;

then abort

abortable_part;

end select;

The triggering alternative can be an entry call statement followed by an optional sequence of statements, or a delay

statement followed by an optional sequence of statements. The abortable part is an arbitrary sequence of statements.

We first discuss the case when the triggering alternative is a delay statement. Consider the following example:

...

select

delay d;

Put_Line (“Delay expired”); --seq1

then abort

Calculation; --seq2

end select;

Put_Line(“End of ATC with Delay”); --seq3

...

8

When the program hits the select statement the delay and the calculation are started. Whenever one completes, the

other is aborted. This behavior is modeled in Figure 2. Since the abortable part (seq2) may contain any statements

except an accept statement [17], the abortable part may not be able to be aborted immediately. For instance, when the

abortable part is executing an entry call, the abortion must wait until the abortable part finishes its execution of the

entry call. For this reason, we divide the code segment seq2 into n atomic sub-sequences seq2_i, where 1 ≤ i ≤ n. Each

atomic sub-sequence seq2_i is indivisible, therefore it cannot be aborted when it is executing. The abortion succeeds

only when the currently running sub-sequence seq2_i finishes its execution.

Now, let’s return to our net model. When the asynchronous select statement is reached, a token is put in ATC_select

place. The transition start_delay_and_abortable_part fires and puts tokens in places delay_in_progress and seq2_1.

The transition delay_expires is enabled but it can fire only when the delay time, d, expires. When the transition

delay_expires fires, it starts the execution of code segment seq1, which follows the delay statement immediately, and

sends a signal “abandon seq2” to the abortable part. This signal places a token in the place seq2_abandon. Now, the

transition abandon_seq2 is enabled. When it fires, it puts a token into each place seq2_i_abandon associated with each

atomic sub-sequence seq2_i, where 1 ≤ i ≤ n. If seq2_i is currently being executed, i.e., there is a token in place

seq2_i, both transitions ignore_abandon and abandon_seq2_i are disabled. When seq2_i finishes its execution, the

transition end_seq2_i fires and puts a token in place seq2_i_complete. Then the transition abandon_seq2_i becomes

enabled; in the mean time, the transition start_next has been disabled because there has already been a token in place

seq2_i_abandon. The immediate firing of transition abandon_seq2_i indicates that seq2_i is abandoned, which then

abandons the whole abortable part (seq2). Note that for those sub-sequences seq2_j that are not currently executing,

the transition ignore_abandon is enabled because neither place seq2_j nor place seq2_j_complete has a token, but

there is a token in place seq2_j_abandon. In this case, the token in place seq2_j_abandon is discarded immediately by

firing the transition ignore_abandon.

In a different situation, the execution of code segment seq2 may finish before the delay expires, in which case the

abortable part sends a signal “complete seq2” to the triggering part and puts a token in place seq2_complete. This

enables the transition seq2_complete_before_delay, and its firing removes the token from place delay_in_progress. In

this case, the transition delay_expires is disabled and the code segment seq1 can never be executed. This models the

behavior of the delay statement that is abandoned when the abortable part finishes before the delay expires. In the

special case that the delay expires at the same time that the abortable part finishes, the signal “abandon seq2” is still

sent to the abortable part and is ignored by all sub-sequences seq2_i, where 1 ≤ i ≤ n. Since there is a token in place

seq1 at this time, the code segment seq1 is being executed. In either case, one of the transitions,

seq2_complete_before_delay or end_seq1, fires. A token is put in place ATC_complete , which enables the transition

end_ATC_select . This transition fires and code segment seq3 will be executed next. We see that the semantics of the

ATC with a triggering statement that is a delay statement is properly modeled.

If the triggering statement is an entry call, then the abortable part has to be aborted if the entry call is accepted and

returned. The ATC in this case starts with the issue of an entry call, and the entry call is evaluated first without being

9

executed. If the call is accepted immediately then the abortable part is never started. But if the call can not be made

immediately, either because the server has not reached the accept statement or it is currently servicing the entry call

for another client, then the abortable part is executed. If the abortable part completes before the completion of the

entry call, an attempt is made to cancel the call. If the attempt to cancel the call succeeds, the ATC is complete. If the

abortable part is started but not yet completed and the entry call completes other than due to cancellation, then the

abortable part is aborted. If the entry call completes normally, then the optional sequence of statements of the

triggering alternative must be executed.

Now consider the following example involving ATC with entry call (as a part of the triggering alternative). The task

Client initiates an ATC, issuing an entry call ATC_Event which if accepted by the task Server would result in

execution of the Remote_Control at the Server end. If the Server accepts the entry call immediately, then the task

Client does not even begin the Normal_Operation (seq2). If the entry call is not accepted immediately, then the Client

starts execution of the Normal_Operation. If the execution of Remote_Control finishes before the Normal_Operation,

then the Normal_Operation is aborted; if not, an attempt is made to cancel the entry call ATC_Event.

task body Server is

begin

...

accept ATC_Event do

Remote_Control;

end ATC_Event;

...

end Server;

task body Client is

begin

...

select

Server.ATC_Event;

Put_Line(“Remote Control done”); --seq1

then abort

Normal_Operation; --seq2

end select;

Put_Line(“End of ATC with Entry call”); --seq3

...

end Client;

The behavior of the above example can be interpreted in terms of the following four cases:

10

Case 1: the rendezvous is available immediately:

Server.ATC_Event is issued,

Remote_Control is executed,

Put_Line(“Remote Control done”) is executed, --seq1

Put_Line(“End of ATC with entry call”) is executed. --seq3

Case 2: no rendezvous starts before seq2 finishes:

Server.ATC_Event is issued,

Normal_Operation is executed, --seq2

Server.ATC_Event is canceled,

Put_Line(“End of ATC with entry call”) is executed. --seq3

Case 3: the rendezvous finishes before seq2 finishes:

Server.ATC_Event is issued,

partial execution of Normal_Operation occurs concurrently with Remote_Control,

Normal_Operation is aborted and finalized,

Put_Line(“Remote Control done”) is executed, --seq1

Put_Line(“End of ATC with entry call”) is executed. --seq3

Case 4: the rendezvous finishes after seq2 finishes:

Server.ATC_Event is issued,

Normal_Operation is executed concurrently with partial execution of Remote_Control,

Server.ATC_Event cancellation is attempted and fails,

Remote_Control execution completes,

Put_Line(“Remote Control done”) is executed, --seq1

Put_Line(“End of ATC with entry call”) is executed. --seq3

The model for the above example is shown in Figure 3, in which the modeling of the abortable part is exactly the same

as in Figure 2 and the modeling of task Server is ignored because it is the same as in Figure 1 (b). When the

asynchronous select statement is reached, a token is put in ATC_select place. The transition make_entry_call fires

and puts a token in both places abortable_part_ready and entry_call_ready; meanwhile it sends a signal to the server

to see if the rendezvous is available immediately. If the rendezvous is available immediately, then a token will be put

back in accept place, enabling the transition start_rendezvous, which when fires starts the rendezvous, modeling the

execution of Remote_Control. When the transition start_rendezvous fires, the token in place entry_call_ready is

removed, which enables the transition ignore_abortable_part. When the transition ignore_abortable_part fires, the

token in place abortable_part_ready is removed immediately, and the abortable part can never be started. After the

entry call returns, the transition end_rendezvous fires, and the execution of code segment seq1 starts; meanwhile a

signal “abandon seq2” is sent to the abortable part. This signal is ignored by the abortable part because at this time,

there are no tokens in any of the places seq2_i or seq2_i_complete, where 1 ≤ i ≤ n. Finally, the transition end_seq1

11

fires, puts a token in place ATC_complete , and enables the transition end_ATC_select . The transition

end_ATC_select fires and the code segment seq3 is executed next. This sequence of firings models Case 1 of the

program interpretation.

Note that we have associated a time delay d with the transition start_abortable_part for our modeling convenience. If

during the time delay d, the transition start_rendezvous does not fire, therefore the token in place entry_call_ready is

not removed, we assume that the rendezvous is not available immediately. In this case, the transition

start_abortable_part fires and the code segment seq2 is executed; on the other hand, if the transition start_rendezvous

fires during the time delay d and the token in place entry_call_ready is removed, the token in place

abortable_part_ready can be removed immediately by firing the enabled transition ignore_abortable_part. Thus, the

transition start_abortable_part is disabled, and can never be fired, as in Case 1.

If the rendezvous is not readily available (i.e., the transition start_rendezvous does not fire during the time delay d),

the transition start_abortable_part fires. The firing of this transition puts a token in place seq2_1, modeling the

execution of Normal_Operation (seq2). When the Normal_Operation finishes its execution, a signal of “complete

seq2” is sent from the abortable part and a token is put in place seq2_complete. At this time, if the entry call is still

not accepted, the transition complete_before_rendezvous is enabled and ready to fire. Its firing takes away the token

in entry_call_ready, which models successful cancellation of the entry call, also it puts a token in place

ATC_complete . At some time later, a token will be put back in place accept by the task Server when the rendezvous

becomes available. However at that time, there is no token in place entry_call_ready, so the transition ignore_accept is

enabled. When it fires, the transition in place accept is discarded immediately. Finally the transition end_ATC_select

fires and the code segment seq3 is executed next. This sequence of firings corresponds to Case 2 of the program

interpretation.

Now consider the situation where the rendezvous completes successfully but the Normal_Operation is still executing.

This is modeled when the transition end_rendezvous fires, there is a token still in one of the places seq2_i or

seq2_i_complete, where 1 ≤ i ≤ n. In this case, the execution of code segment seq1 starts and a signal “abandon seq2”

is sent to the abortable part at the same time. In the abortable part, let seq2_i be the atomic sub-sequence in seq2

which is currently being executed (i.e., there is a token in place seq2_i), then after the firing of the transition

end_seq2_i, the token in place seq2_i is moved to place seq2_i_complete. This enables the transition abandon_seq2_i,

and both tokens in place seq2_i_complete and seq2_i_abandon are removed immediately when it fires. This models

the successful cancellation of the abortable part. Finally, the execution of code segment seq1 completes, and the code

segment seq3 is executed next. This sequence of firings defines Case 3 of the program interpretation.

The last sequence of firings will model Case 4 of the program interpretation. If the execution of code segment seq2

completes but the call has not returned yet, then an attempt to cancel the call is made. The attempt to cancel the call is

modeled as the possibility of firing complete_before_rendezvous . But this transition cannot fire because the call has

been already accepted and Remote_Control is being executed, therefore there is no token in place entry_call_ready. At

the same time, the transition complete_during_rendezvous is enabled, because there is no token in place

12

entry_call_ready and there is a token in place seq2_complete. The immediate firing of this transition models the

completion of the execution of Normal_Operation. Then, later when the entry call returns, code segment seq1 will be

executed and completes. Finally, the transition end_ATC_select fires and the code segment seq3 is executed next.

As compared to the model of ATC with delay, this model is more complex. The reason is that in ATC with entry call,

the number of alternative behaviors provides more unique execution paths than can be encountered by any execution

of an ATC with delay statement.

We now apply some Petri net analysis techniques to the model to establish some correctness properties. To support the

evaluation, we consider a closed system involving the ATC. By closed system we mean that the model has an iteration

characteristic, i.e., rather than executing the next statement sequence following the ATC select statement, control is

returned to the beginning of the ATC select statement by looping back to the initial state.

First, consider the ATC with delay statement model. Assume we have only one atomic sub-sequence seq2_1 in code

segment seq2. The model in Figure 2 is now extended to that shown in Figure 4 (a closed system). Since the places

being tested by inhibitor arcs are bounded, we can transform the inhibitor arc net into a net without inhibitor arcs

using the standard complementary place technique [1]. The initial marking M0 is [0 1 0 1 1 0 0 0 1 1 0 0 0] and the

incidence matrix of this net is as follows:

a b c d e f g h i j k l m

t1 -1 0 1 0 -1 0 0 0 0 0 0 0 0

t2 0 0 -1 0 1 0 0 0 0 0 0 0 0

t3 0 0 -1 1 1 0 -1 0 0 0 0 0 0

t4 0 1 0 -1 0 -1 1 0 0 0 0 0 0

t5 0 0 0 1 0 0 -1 1 0 0 0 0 0

t6 0 0 0 0 0 0 0 -1 0 1 1 -1 0

t7 0 -1 0 0 0 1 0 0 -1 -1 0 1 0

t8 0 0 0 0 0 0 0 -1 0 0 0 0 0

t9 0 0 0 0 0 0 0 0 1 0 -1 0 0

t10 1 0 0 0 0 0 0 0 0 1 0 -1 1

t11 0 0 0 0 0 0 0 0 0 0 1 0 -1

Using the definitions and theorems from Section 2.2, we can find that the minimal-support S-invariants are:

 a b c d e f g h i j k l m

y1 = [0 1 0 0 0 1 0 0 0 0 0 0 0]

y2 = [0 0 0 1 0 0 1 0 0 0 0 0 0]

y3 = [0 0 1 0 1 0 0 0 0 0 0 0 0]

13

y4 = [0 0 0 0 0 0 0 0 0 1 0 1 0]

y5 = [0 0 0 0 0 0 0 0 1 0 1 1 1]

and the minimal-support T-invariants are:

 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

x1 = [1 0 1 1 0 0 1 0 1 1 1]

x2 = [0 0 0 1 1 1 1 0 1 0 0]

x3 = [1 1 0 1 1 0 1 1 1 1 1]

From the definition of an S-invariant, given in Section 2.2, the invariant y1 can be interpreted to indicate that in any

reachable state from M0, the weighted sum of tokens in places b and f is a constant. Similarly, the invariant y2

indicates that the weighted sum of tokens in places d and g is a constant, and so on. From the initial marking M0 = [0

1 0 1 1 0 0 0 1 1 0 0 0], we can directly observe that the weighted sum of all five invariants is 1. Obviously, the S-

invariant y1 results from the complementary place b introduced in the transformation to remove the inhibitor arc, and

whatever transition fires, the weighted sum of tokens in the complementary place b and its original place f is always

equal to 1. Similarly, S-invariant y2, y3 and y4 result from the complementary place d, e and j respectively. The S-

invariant y5 tells us that only one of the places i, l, m and k can have a token at any time. This is true because only

one process can be in the triggering part of ATC_select statement, and the state of this process can be one of the

following: ATC_select, delay_in_process, seq1 and ATC_complete . Note that if the delay statement is abandoned due

to the completion of code segment seq2, the ATC_complete state is reached directly without execution of code

segment seq1. There is no corresponding S-invariant for the abortable part. The reason for this is that the abortable

part can be abandoned when the code segment seq1 in the triggering part is still running (i.e., ATC has not completed

yet), and we may possibly lose tokens in the abortable part due to the cancellation.

The above minimal-support T-invariants cover all the transitions in the net, and it implies that our net model is live.

For each minimal-support T-invariant in our example, there exists a corresponding firing sequence by which the

initial marking M0 = [0 1 0 1 1 0 0 0 1 1 0 0 0] can be reproduced. The firing sequences and their physical

explanations are as follows:

Firing sequence 1:

<start_delay_and_abortable_part (t7), delay_expires (t10), abandon_seq2 (t1), end_seq2_1 (t4), abandon_seq2_1 (t3),

end_seq1 (t11), end_ATC_select (t9)>

This is the case when delay expires before seq2 finishes, thus the abortable part (seq2) is abandoned.

Firing sequence 2:

<start_delay-and_abortable_part (t7), end_seq2_1 (t4), start_next (t5), seq2_complete_before_delay (t6),

end_ATC_select (t9)>

14

This is the case when the abortable part finishes before the delay expires, thus the delay is abandoned and code

segment seq1 is not executed.

Firing sequence 3:

<start_delay_and_abortable_part (t7), end_seq2_1 (t4), delay_expires (t10), start_next (t5), ignore_complete (t8),

abandon_seq2 (t1), ignore_abandon (t2), end_seq1 (t11), end_ATC_select (t9)>

This is the special case, where the delay expires at the same time as seq2 finishes. In this case, seq1 is executed, and

an “abandon seq2” signal is sent to the abortable part seq2, which is then ignored by the abortable part.

Let us now consider the model of ATC with entry call. We derive the net shown in Figure 5 from that of Figure 3 by

closing the system and also eliminating inhibitor arcs. We also assume that there is only one atomic sub-sequence

seq2_1 in code segment seq2. The initial marking M0 is [0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0] and the incidence

matrix of the net shown in Figure 5 is as follows:

a b c d e f g h i j k l m n o p q r

t1 -1 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

t2 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

t3 0 0 -1 1 1 0 -1 0 0 0 0 0 0 0 0 0 0 0

t4 0 1 0 -1 0 -1 1 0 0 0 0 0 0 0 0 0 0 0

t5 0 0 0 1 0 0 -1 0 1 0 0 0 0 0 0 0 0 0

t6 0 -1 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0

t7 0 0 0 0 0 0 0 0 -1 1 0 1 1 -1 1 0 0 0

t8 0 0 0 0 0 0 0 1 0 0 -1 -1 -1 1 -1 1 0 0

t9 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

t10 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0

t11 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

t12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

t13 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 1 -1 1 0

t14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1

t15 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1

From the definition in Section 2.2, the following minimal-support S-invariants can be computed:

 a b c d e f g h i j k l m n o p q r

y1 = [0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

y2 = [0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

y3 = [0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

y4 = [0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0]

y5 = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0]

15

y6 = [0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0]

y7 = [0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1]

Again from the definition in Section 2.2, the following minimal-support T-invariants can be computed:

 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

x1 = [1 1 0 0 0 0 0 1 1 1 0 0 1 1 1]

x2 = [0 0 0 1 1 1 1 1 0 1 0 1 0 0 0]

x3 = [1 0 1 1 0 1 0 1 0 1 0 0 1 1 1]

x4 = [1 1 0 1 1 1 0 1 0 1 1 0 1 1 1]

The S-invariants y1-y6 result from the complementary places b, d, e, l, m, and o introduced in the transformation to

remove inhibitor arcs. For example, y1 tells us that the weighted sum of tokens in places b and f is a constant. From

the initial marking, M0 = [0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0], we can directly see that the weighted sum of tokens

for all six S-invariants y1-y6 is 1.

S-invariant y7 signifies that in any state, the weighted sum of tokens in places k, n, q, r and j is a constant. As noted

before, the initial marking let us reason that the weighted sum of tokens in these places must be 1. Thus, there can be

a token in only one of these places at any time. This means that there are five states associated with the triggering part

and these states are mutually exclusive. The five states are as follows:

1) the ATC_select is ready to be initiated,

2) the task has issued the ATC and the entry call is ready,

3) the task has issued the ATC and the rendezvous has begun to execute,

4) the task has issued the ATC, the rendezvous has finished and seq1 is being executed,

5) the task has issued the ATC and the ATC completes with the rendezvous and seq1 either being executed or not.

Note that state (5) can be reached from state (2) directly if the entry call is canceled. Similarly as before, there is no

corresponding S-invariant for the abortable part. The reason is the same, i.e., the abortable part can be abandoned

when the code segment seq1 in the triggering part is still running, and we may possibly lose tokens in the abortable

part due to the cancellation.

The above minimal-support T-invariants cover all the transitions in the net, and it implies that our net model is live.

As before, for each minimal-support T-invariant in our example, we have a corresponding firing sequence, by which

the initial marking M0 = [0 1 0 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0] can be reproduced. The firing sequences and their

physical explanations are as follows:

Firing sequence 1:

16

<make_entry_call (t8), start_rendezvous (t13), ignore_abortable_part (t9), end_rendezvous (t14), abandon_seq2 (t1),

ignore_abandon (t2), end_seq1 (t15), end_ATC_select (t10)>

This is the case when the rendezvous is available immediately .

Firing sequence 2:

<make_entry_call (t8), start_abortable_part (t6), end_seq2_1 (t4), start_next (t5), complete_before_rendezvous (t7),

ignore_accept (t12), end_ATC_select (t10)>

This is the case when no rendezvous starts before seq2 finishes.

Firing sequence 3:

< make_entry_call (t8), start_abortable_part (t6), start_rendezvous (t13), end_rendezvous (t14), abandon_seq2 (t1),

end_seq2_1 (t4), abandon_seq2_1 (t3), end_seq1 (t15), end_ATC_select (t10)>

This is the case when the rendezvous finishes before seq2 finishes.

Firing sequence 4:

<make_entry_call (t8), start_abortable_part (t6), start_rendezvous (t13), end_seq2_1 (t4), start_next (t5),

complete_during_rendezvous (t11), end_rendezvous (t14), abandon_seq2 (t1), ignore_abandon (t2), end_seq1 (t15),

end_ATC_select (t10)>

This is the case when the rendezvous finishes after seq2 finishes.

The four T-invariants correspond to the four cases that can arise during an ATC with an entry call, and they are the

same as those identified earlier and discussed in detail. In the special case that the rendezvous and the execution of

seq2 end at the same time, the firing sequence is similar to Firing sequence 4 and corresponds to the same minimal-

support T-invariant x4.

3.2.2 Protected Object3.2.2 Protected Object

A protected object provides coordinated access to shared data through calls on its visible operations, which can be

protected subprograms or protected entries [2]. It gives exclusive read-write or concurrent read-only access to the

shared data. If access is requested by more than one task for a protected entry or a procedure, only one of the

requesting tasks gets write-only access to the called entry or procedure. But, if the access requested by more than one

task is for a protected function, all of the calling tasks can obtain read-only access to the function.

Depending on the type of call, the level of access is determined. The entry calls and procedure calls attempt to gain

exclusive read-write access while function calls attempt read-only access. A new protected action cannot be started on

a protected object while another protected action is underway, unless both actions are the result of a call on a protected

function. Starting a protected action corresponds to acquiring the execution resource associated with the protected

object, either for concurrent read-only access, if the protected action is for a call on a protected function, or for

17

exclusive read-write access, otherwise. Completing the protected action corresponds to releasing the associated

execution resource.

Consider an example in which we have a protected object that contains an entry, a procedure and a function.

protected x is

entry entry_x;

procedure procedure_x;

function function_x return a_variable;

private

p,q : integer;

end x;

protected x body is

entry entry_x when a_barrier is

begin

...

end entry_x;

procedure procedure_x is

begin

...

end procedure_x;

function function_x return a_variable is

begin

...

end function_x;

end x;

This example can be modeled as shown in Figure 6. The places write_control and read_control provide appropriate

access to the protected entry_x, procedure_x and function_x in protected object x. In the initial marking, write_control

has a token, but read_control does not. Both the transitions accept_entry_call and start_procedure_call have an

inhibitor arc from the read_control place. Thus, these transitions are enabled only when there is a token in the

write_control place and there are no tokens in the read_control place. This reflects the semantics that a protected entry

or a protected procedure can be accessed only when there is no other protected action being carried out. Ada semantics

allow simultaneous access of protected functions. Whenever a function call is made, then there is a token in the place

function_call_ready. The transition start_function_call is enabled only when there are tokens in the write_control

place and function_call_ready place. When transition start_function_call fires it takes away the token from the

write_control place and puts a token in the read_control place. Also a token is put back in the write_control place, so

as to provide simultaneous access to other tasks that request the protected function. So, when the function is being

18

executed there is a token in read_control, thus disabling the firing of accept_entry_call and start_procedure_call

transitions. When the function's execution is completed, the end_function_call transition fires. The firing of this

transition removes the token from the read_control place, thus releasing the resource.

Entry calls are given exclusive read-write access. But, for this to occur, there must be no other protected action in

execution. The modeling is done as follows. Whenever there is a protected entry call, there is a token in

entry_call_request place. The barrier is then evaluated, if the barrier condition is true, a token will be put in place

entry_call_ready, which means that the server is ready to accept this entry call; otherwise, the barrier condition will be

re-evaluated at sometime later, meanwhile the entry call is suspended temporally. To simplify our model, we ignore

the modeling of re-evaluation for the barrier and assume that the transition barrier_evaluation will not fire until the

barrier condition becomes true. When there is a token in place entry_call_ready, the transition accept_entry_call is

enabled as long as there is a token in write_control place and no token in read_control place. The firing of

accept_entry_call puts a token in place accept of the calling task (not shown in this figure), and the transition

start_rendezvous of the calling task (not shown in this figure) should be enabled at this time. The firing of transition

start_rendezvous of the calling task puts a token back in place rendezvous_ready of module entry_x. The transition

start_rendezvous of module entry_x is now enabled and the firing of start_rendezvous would correspond to the

beginning of the execution of the entry body. After the execution is complete, the transition end_rendezvous fires. The

firing of this transition puts back a token in the write_control place, thus releasing the protected body. Module

procedure_x has exactly the same interface to place read_control and write_control as module entry_x, but the module

procedure_x itself is much simpler because no barrier needs to be evaluated and it can be started as long as there is a

token in place write_control and no token in place read_control. Note that the interface for the protected entry is the

same as the interface for a general server, as illustrated in Figure 1 (b). Thus, the protected object model is

compositional with respect to the various forms of client modules.

To simplify our model, we label our incoming/outgoing arcs of each module by colors. For instance, in the function_x

module, arcs to/from clients are labeled by <f>. This means each function call is represented by a unique color f, so

the result of a particular function call would be returned to the correct place in the calling task by matching to the

same color f. Similarly, arcs to/from clients in entry_x and procedure_x modules are labeled by <e> and <p>,

respectively, for the same reason.

A closed system for this model is shown in Figure 7. In this transformed model, rather than unfold the places and

transitions into several copies, we assume that we have only one color for each entry call, procedure call and function

call. So, all colored tokens in Figure 6 are represented by colorless tokens in Figure 7. This assumption is appropriate

because we are now concerned with the behavior of the protected object x, while the outside world (the calling tasks

that are accessing the protected object x) is outside our scope of consideration.

We further assume that a maximum of k function calls is allowed, where k > 1, thus we can remove the inhibitor arcs

by using the complementary place technique [1]. The initial marking is M0 = [0 0 2 0 0 k k 1 3 0 2 0], which means

19

that currently there are 2 clients trying to make the entry call entry_x, 2 clients trying to make the procedure call

procedure_x, and 3 clients trying to make the function call function_x.

The incidence matrix for the net shown in Figure 7 is as follows:

a b c d e f g h i j k l

t1 -1 1 0 0 0 0 0 0 0 0 0 0

t2 0 -1 1 0 0 0 0 1 0 0 0 0

t3 0 0 -1 1 0 0 0 0 0 0 0 0

t4 1 0 0 -1 0 0 0 -1 0 0 0 0

t5 0 0 0 0 1 -1 -1 0 -1 1 0 0

t6 0 0 0 0 -1 1 1 0 1 -1 0 0

t7 0 0 0 0 0 0 0 -1 0 0 -1 1

t8 0 0 0 0 0 0 0 1 0 0 1 -1

The resulting minimal-support S-invariants are

 a b c d e f g h i j k l

y1 = [0 0 0 0 1 1 0 0 0 0 0 0]

y2 = [0 0 0 0 1 0 1 0 0 0 0 0]

y3 = [1 1 1 1 0 0 0 0 0 0 0 0]

y4 = [0 0 0 0 0 0 0 0 1 1 0 0]

y5 = [0 0 0 0 0 0 0 0 0 0 1 1]

y6 = [1 1 0 0 0 0 0 1 0 0 0 1]

y7 = [0 0 0 0 0 1 0 0 0 1 0 0]

y8 = [0 0 0 0 0 0 1 0 0 1 0 0]

and the minimal-support T-invariants are

 t1 t2 t3 t4 t5 t6 t7 t8

x1 = [1 1 1 1 0 0 0 0]

x1 = [0 0 0 0 1 1 0 0]

x1 = [0 0 0 0 0 0 1 1]

The S-invariant y1 and y2 result from the complementary places f and g introduced by the transformation to remove

the inhibitor arcs. S-invariant y3 indicates that the weighted sum of tokens in places a, b, c and d is a constant, which

can be computed by y3TM0 = 2. This means that each of the two entry calls can only be in one of the following four

states: rendezvous_ready, entry_call_in_execution, entry_call_request and entry_call_ready. Similarly, S-invariant y4

indicates that the weighted sum of tokens in places i and j is a constant, which can be computed by y4TM0 = 3, and it

20

means that each of the three function calls can be in one of two states: function call_ready and

function_call_in_execution, and S-invariant y5 indicates that the weighted sum of tokens in places k and l is a

constant, which can be computed by y5TM0 = 2, and it means that each of the two procedure calls can be in one of

two states: procedure_call_ready and procedure_call_in_execution. S-invariant y6 indicates that the weighted sum of

tokens in places a, b, h and l is a constant, which can be computed by y6TM0 = 1. This means that at any time, there

can be at most one entry call or procedure call being executed. S-invariant y7 indicates that the weighted sum of

tokens in places f and j is a constant, which can be computed by y7TM0 = k. This means that the number of function

calls in execution can not exceed k, otherwise the number of tokens in place f will be negative, which is incorrect. S-

invariant y8 has exactly the same interpretation as S-invariant y7.

Applying Theorem 3, as stated in Section 2.2, we can find the upper bound of place b:

 UB(b) = Min [M0Tyi / yi(p)] = Min [k/0, k/0, 2/1, 3/0, 2/0, 1/1, k/0, k/0] = 1/1 = 1.

Similarly, the upper bound of place j and place l can be computed as follows:

 UB(j) = Min [M0Tyi / yi(p)] = Min [k/0, k/0, 2/0, 3/1, 2/0, 1/0, k/1, k/1] = Min [k, 3].

 UB(l) = Min [M0Tyi / yi(p)] = Min [k/0, k/0, 2/0, 3/0, 2/1, 1/1, k/0, k/0] = 1/1 = 1.

Thus, at most one token can be in place b and l. This conforms to the desired Ada semantics of allowing only one task

to execute a procedure body or an entry body in a protected object. Similarly, Min [k, 3] tokens can be in place j,

which conforms to the Ada semantics of allowing more than one task to execute a function body in a protected object,

recalling that k > 1.

The interpretation for the T-invariants are pretty straightforward; here we list the corresponding firing sequence for T-

invariants x1, x2 and x3 as follows:

Firing sequence 1:

<barrier_evaluation (t3), accept_entry_call (t4), start_rendezvous (t1), end_rendezvous (t2)>

Firing sequence 2:

<start_function_call (t5), end_function_call (t6)>

Firing sequence 3:

<start_procedure_call (t7), end_procedure_call (t8)>

These three firing sequences correspond to the execution of an entry call, function call, and procedure call. Each of

them will reproduce the initial marking M0 = [0 0 2 0 0 k k 1 3 0 2 0]. Also, since all the transitions are covered by

the minimal-support T-invariants, our transformed net model for the protected object is live.

3.2.3 3.2.3 Requeue StatementRequeue Statement

21

A requeue statement is used to complete an accept statement or entry body, while redirecting the corresponding entry

call to a new entry queue. The general syntax for the requeue statement is as follows:

requeue entry_name [with abort];

We simplify the discussion by considering only the basic form of requeue -- without the optional abort clause. We use

the following example to describe our modeling of the requeue statement. The purpose of the example is to

demonstrate the use of the requeuing technique and to show how clients and servers could be connected at the Petri

net model level.

Task body Printer is

...

accept Print_Request do

begin

if (Print_Type = Color) then

requeue Color_Printer.Color_Print_Request;

else

Print_Document; --seq1

end if;

end Print_Request;

Put_Line(“Ready for next print job”); --seq2

...

end Printer;

Task body Color_Printer is

...

accept Color_Print_Request do

Print_Color_Document; --seq3

end Color_Print_Request;

Put_Line(“Ready for next color print job”); --seq4

...

end Color_Printer;

Task body User is

...

Printer.Print_Request;

Put_Line(“Print done ready for next job”); --seq5

...

end User;

22

In this example, the task User provides some print job to the task Printer, by making an entry call Print_Request. The

task Printer accepts the entry call Print_Request and checks if the prints are color. If so, it requeues the entry call to

the entry, Color_Print_Request, in the task Color_Printer. After requeuing the entry call, Print_Request, the task

Printer executes the statement Put_Line(“Ready for next print job”). The task Color_Printer which accepts the entry

call Color_Print_Request replies to the task User after processing the entry call Color_Print_Request. If the prints are

not color then the task Printer prints the document and replies to the task User. Depending on the condition whether

the prints are color or not, the task that replies to the task User is determined. The reason we have chosen this

example is that it provides us the opportunity to discuss all the possible scenarios involving the requeue statement.

The above example can be modeled as shown in Figure 8. When the Printer task accepts the entry call made by the

User task there is a token in place condition. Now, one of the transitions start_seq1 or make_requeued_entry_call

fires, depending on the condition of whether or not the Print_Type is color. Assuming that the condition is true, the

transition make_requeued_entry_call fires and a token is put in both requeued_entry_call and

requeued_entry_call_request places. When the requeued entry is accepted (recall that we have ignored all entry call

queues, so the original semantic of “requeue” is simplified as that the rendezvous on server Color_Printer is available

immediately), the transition transfer_entry_call_control fires, which denotes that the task Printer hands over the sever

role for this entry call to the task Color_Printer. A token is put in each of the places if_statement_complete and

requeued_entry_call_ready, and the transition start_rendezvous3 is enabled and can fire. This denotes that the entry is

successfully “requeued”. Now, the execution of the entry call Color_Print_Request and the task Printer can proceed in

parallel and independent of each other. Since there is a token in place if_statement_complete , the transition

end_if_statement is enabled. So it fires and the statements following the if statement (i.e., code segment seq2) is

executed next.

Now consider the behavior associated with the requeued entry. After the requeued entry call has been serviced by task

Color_Printer, the transition end_rendezvous3 is enabled. Firing of end_rendezvous3 in task Color_Printer puts

tokens in places seq4 (not shown in this figure) and entry_call_complete in module task Printer. The task

Color_Printer continues to execute code segment seq4. The firing of the enabled transition return_entry_call puts a

token in place entry_call_return. The transition end_rendezvous1 is now enabled and puts a token in place

entry_call_complete of module task User when it fires. Finally, the transition end_entry_call fires and continues to

execute the code segment seq5.

In a different situation, if the condition is false (i.e., the request is not for color printing), the entry call is not requeued

and the task Printer has to reply to task User after servicing the call (the standard way of completing an accept of an

entry call). The modeling of this case is quite straightforward. The key observation is that the transition

end_rendezvous2 will fire and the entry call is returned by firing the transition return_entry_call, similar to the

behavior when the entry call was requeued.

23

As was done in the prior evaluations, we derive Figure 9 from Figure 8 to produce a new model of a closed system.

The initial marking M0 is [1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0], which indicates that all three tasks User, Printer

and Color_Printer can be started at the same time.

The incidence matrix of the net shown in Figure 9 is as follows:

a b c d e f g h i j k l m n o p q r s

t1 -1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

t2 0 -1 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

t3 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t4 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t5 0 0 1 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

t6 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0

t7 0 0 0 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 0 0

t8 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

t9 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0

t10 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0

t11 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0

t12 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 1 0 0 0

t13 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0 1 0

t14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 0 0

t15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1

t16 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 -1

The minimal-support S-invariants can be computed as follows:

 a b c d e f g h i j k l m n o p q r s

y1 = [1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1]

y2 = [1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1]

y3 = [1 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 1]

y4 = [1 1 0 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 1]

y5 = [0 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0]

y6 = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1]

and the minimal-support T-invariants are:

 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

x1 = [1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0]

24

x2 = [1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1]

S-invariant y1 indicates that the weighted sum of tokens in places a, f, c, h, k, l, i, p, o, r, s, j, d and e is a constant.

From the initial marking M0 = [1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0], we find that the constant is equal to 1. This

shows that M(l) + M(s) ≤ 1, which means that either seq1 or seq3 can be executed at any time. This is true because, in

our example, the entry call made by task User is the only entry call either to task Printer or requeued to task

Color_Printer, and it can be executed by either of them but never both. Actually, after task Printer executed the

requeue statement, it hands over the control of the entry call to the server Color_Printer, and the code segment seq1

can never be executed. The interpretation of S-invariant y2 is the same, the only difference between S-invariant y1 and

y2 is that the place f and c in the set of places {a, f, c, h, k, l, i, p, o, r, s, j, d, e} are replaced by place b, and it makes

the weighted sum of tokens in places a, b, h, k, l, i, p, o, r, s, j, d and e is still a constant. This is true in our example

because place b is redundant, whenever there is a token in place f or c, there is a token in place b; whenever the token

in place c is removed, the token in place b is also removed. Similarly, S-invariant y3 results from replacing places p

and o with place n, and S-invariant y4 results from making both of the replacements as in S-invariant y2 and y3.

S-invariant y5 indicates that the weighted sum of tokens in places g, c, h, k, l, i, m and n is a constant. This S-

invariant can be interpreted that the token in place g may go around the direct circuit (g, c, h, k, l, i, m) if the requeue

statement is not executed, and if the requeue statement is executed, this token will not be lost because the token which

is temporally in place n will be moved to place m after the task Color_Printer takes over the entry call.

S-invariant y6 indicates that the weighted sum of tokens in places q, o, r and s is a constant. The interpretation is

pretty straightforward because it indicates that the token in place q can go around the only direct circuit (q, o, r, s) in

which place q is located.

The T-invariants, x1 and x2, cover all the transitions in the net, and it indicates that our transformed net model is live.

The corresponding firing sequences are as follows:

Firing sequence 1:

<make_entry_call (t1), accept_entry_call (t5), start_rendezvous1 (t2), start_rendezvous2 (t6), start_seq1 (t9),

end_seq1 (t10), end_rendezvous2 (t7), end_if_statemnt (t11), return_entry_call (t8), end_rendezvous1 (t3),

end_entry_call (t4)>

Firing sequence 2:

<make_entry_call (t1), accept_entry_call (t5), start_rendezvous1 (t2), start_rendezvous2 (t6),

make_rqueued_entry_call (t12), accept_requeued_entry_call (t14), transfer_entry_call_control (t13), end_if_statemnt

(t11), start_rendezvous3 (t15), end_rendzvous3 (t16), return_entry_call (t8), end_rendezvous1 (t3), end_entry_call

(t4)>

25

T-invariant x1 corresponds to the firing sequence when the call is not requeued, whereas T-invariant x2 corresponds

to the firing sequence when the call has been requeued. As with the other models presented, the S-invariants and T-

invariants analysis provide confidence in the correctness of the model.

4. Conclusion4. Conclusion

In general, formal modeling of advanced tasking and real time constructs in Ada is difficult due to the need to

properly capture many behaviors that are interdependent. It is often the case that such models or formal notations are

themselves difficult to understand to a reader who is not already very familiar with the specific notation. In this paper,

we have presented and discussed models for Ada-95 tasking constructs using the Petri net modeling formalism. Petri

nets have been chosen because they tend to provide a simple, easy to understand model, and the underlying

mathematics of the model is very powerful for modeling the attributes of concern, most specifically, concurrency, non-

determinism, synchronization, and mutual exclusion. We have developed compositional models for the advanced

tasking constructs provided by Ada-95, as a complement to existing modeling work for Ada-83. The net models were

subjected to some formal evaluation using Petri net invariants. This showed that net-based properties derived directly

from the calculation of place and transition invariants correspond to the desired Ada-based behaviors of the tasking

primitives.

The basic models provided can be used independently as a way of documenting formal semantics for the various

constructs considered, or as building blocks for a net-based analysis of advanced Ada programs. Hopefully, it will be

possible to enhance previous net-based analysis techniques and tools developed for Ada-83 to support automated

analysis of programs that use the advanced constructs discussed in this paper. This will involve extending current

techniques for program-to-net translation, as well as enhancing analysis methods that operate on the produced net

models. The net translation is likely to be conceptually straightforward, but the impact of the new constructs on the

performance of existing analysis methods (algorithms) is yet to be determined.

ReferencesReferences

[1] S. M. Shatz, Development of Distributed Software: Concepts and Tools, Macmillan Publishing Company,

1993.

[2] Ada Reference Manual - Language and Standard Libraries. United States Department of Defense, Ver 6.0,

December 1994.

[3] J. Corbett, “Timing Analysis of Ada Tasking Programs,” IEEE Transactions on Software Engineering, Vol. 22,

No. 7, July 1996, pp. 461-483.

[4] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE, 77(4):541-580, April

1989.

[5] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc., 1981.

26

[6] Ada-83 Language Reference Manual, United States Department of Defense.

[7] D. Mandrioli, R. Zicari, C. Ghezzi and F. Tisato, “Modeling the Ada Task System by Petri Nets,” Computer

Languages, 10(1):43-61, 1985.

[8] S. M Shatz and W. K. Cheng, “An Approach to Automated Static Analysis of Distributed Software,” Journal of

Systems and Software , 8(5):343-359, December 1988.

[9] S. Duri, U. Buy, R. Devarapalli and S. M. Shatz, “Application and Experimental Evaluation of State Space

Reduction Methods for Deadlock Analysis in Ada,” ACM Transactions on Software Engineering Methodology ,

3(4):340-380, October 1994.

[10] S. M. Shatz, S. Tu, T. Murata and S. Duri, “An Application of Petri Net Reduction for Ada Tasking Deadlock

Analysis,” IEEE Transactions on Parallel and Distributed Systems, 7(12):1307-1322, December 1996.

[11] A. Wellings and A. Burns, “Implementing Atomic Actions in Ada 95,” IEEE Trans. on Software Engineering,

Vol., 23, No. 2, Feb. 1997, pp. 107-123.

[12] R. K. Gadela and S. M. Shatz, “Modeling of Advanced Tasking in Ada-95: A Petri Net Perspective,” Proc. Of

the IEEE 2nd Int. Workshop on Software Eng. For Parallel and Distributed Systems, May 1997, Boston, Mass.,

4-14.

[13] J. Barnes, Programming in Ada 95. Addison-Wesley, Inc., 1996.

[14] R. R. Razouk and C. V. Phelps, “Performance Analysis using Timed Petri Nets,” Proceedings 1984

International Conference on Parallel Processing, 126-129, August 1984.

[15] P. Merlin, “A Methodology for the Design and Implementation of Communication Protocols,” IEEE

Transactions on Communications, Vol. 24, No. 6, June 1976, pp. 614-621.

[16] Changes to Ada - 1987 to 1995 : Language and Standard Libraries, United States Department of Defense, Ver

6.0, December 1994.

[17] A. Burns and A. Wellings, Concurrency in Ada, Cambridge Press, 1995.

27

Client Server

Figure 1. (a) Traditional client-server model for entry call (b) Entry call
model for advanced tasking constructs

accept_entry_call

end_entry_call

 start_rendezvous2 start_ rendezvous1

 end_rendezvous2 end_rendezvous1

entry_call

acceptmake_
entry_call

entry_call_
request

entry_call_ready

 (a)

 (b)

Client Server

 start_rendezvous2 start_rendezvous1

 end_rendezvous2 end_rendezvous1

accept

entry_call_ready

entry_call

entry_call_complete

entry_call_complete

end_entry_call

entry_call_
in_execution

entry_call_
in_execution

 start_server start_client

entry_call_
return

entry_call_
return

28

 delay_in_
 progress

 delay_
 expires

[d,d]

ATC_complete

 end_ATC_select

seq2_complete
_before_delay

Figure 2 ATC model with delay statement

 seq1

 seq2_1 ATC_select

start_delay_and_abortable_part

ignore_
abandon

ignore_complete

seq2_complete

 end_ seq1

 seq2_n

 abandon_seq2_1

 abandon_seq2_n

ignore_
abandon

(atomic)

(atomic)

end_seq2_n

end_seq2_1

 seq2_1_
 complete

 seq2_n_
 complete

start_next

start_next

 abandon_
 seq2

seq2_
abandon

..

..

..

 start_seq2

 complete_seq2

 abandon_seq2

 to seq3

seq2_1_
abandon

seq2_n_
abandon

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

29

[d ,d]

ATC_complete

 end_ATC_select

Figure 3 ATC model with entry call

 seq1

 seq2_1 ATC_select

 make_entry_call
ignore_
abandon

ignore_
abortable_
part

seq2_complete
 end_ seq1

 seq2_n

 abandon_seq2_1

 abandon_seq2_n

ignore_
abandon

(atomic)

(atomic)

end_seq2_n

end_seq2_1

 seq2_1_
 complete

 seq2_n_
 complete

start_next

start_next

 abandon_
 seq2

seq2_
abandon

..

..

..

 start_
 rendezvous

 end_
 rendezvous

abortable_part_
ready

entry_call_
ready

start_
abortable_
part

complete_
before_
rendezvous

complete_
during_
rendezvous

ignore_accept

to server

from server

from server

to server

 start_seq2

 complete_seq2

 abandon_seq2

seq2_1
_

seq2_n
_

accept

to seq3

Task Client

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

[0,0]

30

 (delay_in_
 progress)

 (delay_
 expires)

(ATC_complete)

end

seq2_complete
_before_delay

(seq1)

(

(_delay_and_abortable_part)

ignore

(
complete)

end_ seq1)

atomic)

seq2_1_
complete)

start

(abandon_
seq2)

seq2_

31

(ATC_complete)

 (end_ATC_select)

Figure 5 Transformed model of ATC with entry call

 (seq1)

 (seq2_1)

 (ATC_select)

(seq2_complete)

(atomic)

(seq2_1_
complete)

(start_next)

(abandon_
 seq2)

(seq2_
abandon)

(complete_
before_
rendezvous)

(complete_
during_
rendezvous)

from transition t10

to place k

a

c

b

f

d

g

h

i

j

k

l

m

n

o

p

q

r
t1

t5

t4

t3

t2

t6

t8

t7 t11

t9

t13

t12

t10

t14

t15

 e

32

entry_call_
request

end_
rendezvous

rendezvous_
ready

entry_call_in_
execution

end_
function_call

start_
function_call

start_
rendezvous

write_control

read_control

procedure_call_
in_execution

end_
procedure_call

function_x

Figure 6. Protected object model

procedure_x

entry_x

barrier_
evaluation

entry_
call_
ready

accept_
entry_call

function_call_
ready

function_call_
in_execution

procedure_call_
ready

start_
procedure_call

<p>

<p>

<f>

<f>

<e>

<e>

<e>

<e>

from client

from client

to client

to client

from client

to client

to client

from client

33

(entry_call_
request)

(rendezvous_
ready)

(entry_call_
in_execution)

(write_control)

(read_control)

(procedure_call_
in_execution)

function_x

Figure 7. Transformed model of protected object

procedure_x

entry_x

(entry_
call_
ready)

(accept_
entry_call)

(function_call_
ready)

(function_call_
in_execution)

(procedure_call_
ready)

k

k
k

k

a

b

c

d

e

f

g

h

i

k

j

l

t1

t2

t3

t4

t5

t6

t7

t8

34

Task User (client)

entry_call

entry_call_
complete

end_
rendezvous1

seq1

seq3

condition

accept

to seq4to seq5

Task Printer (server & client) Task Color_Printer (server)

Figure 8. Requeue statement model

start_
rendezvous1

to seq2

make_
entry_
call accept_

entry_call

start_
rendezvous2

end_
rendezvous2

start_
rendezvous3

end_
rendezvous3

requeued_
entry_call_
request

accept_
requeued_
entry_call

entry_call_ready

requeued_
entry_call_
ready

make_
requeued_
entry_call

requeued_
entry_call

start_
seq1

if_statement_complete

accept

entry_call_
request

start_task1 start_task2

start_task3

end_if_statement

transfer_entry_
call_control

end_
entry_call return_

entry_call

entry_call_
complete

end_
seq1

entry_call_
return

35

Task User (client)

(seq1)

(seq3)

Task Printer (server & client) Task Color_Printer (server)

Figure 9. Tranformed model of requeue statement

(accept_
entry_call)

(accept_
requeued_
entry_call)

(make_
requeued_
entry_call)

(if_statement_complete
)

(end_if_statement)

(transfer_entry_
call_control)

(end_
entry_call) (return_

entry_call)

a
f

c

d

b

n

i

h

k

g

m
j

e

p

q

r

s

o

l

t1

t10

t3

t2

t9

t5

t6

t7

t13

t12

t11

t16

t15

t14

t4 t8

to place g

from transition t11

(condition)

