
 1

ADK: An Agent Development Kit Based on a Formal

Design Model for Multi-Agent Systems

Haiping Xu and Sol M. Shatz

Department of Computer Science

The University of Illinois at Chicago

Chicago, IL 60607

Email: { hxu1, shatz} @cs.uic.edu

Abstract

The advent of multi-agent systems has brought us opportunities for the development of complex software

that will serve as the infrastructure for advanced distributed applications. During the past decade, there have

been many agent architectures proposed for implementing agent-based systems, and also a few efforts to

formally specify agent behaviors. However, research on narrowing the gap between agent formal models

and agent implementation is rare. In this paper, we propose a model-based approach to designing and

implementing intelligent agents for multi-agent systems (MAS). Instead of using formal methods for the

purpose of specifying agent behavior, we bring formal methods into the design phase of the agent

development life cycle. Specifically, we use the formalism called agent-oriented G-net model, which is

based on the G-net formalism (a type of high-level Petri net), to serve as the high-level design for intelligent

agents. Based on the high-level design, we further derived the agent architecture and the detailed design for

agent implementation. To demonstrate the feasibility of our approach, we developed the toolkit called ADK

(Agent Development Kit) that supports rapid development of intelligent agents for multi-agent systems and

we discuss the role of inheritance in agent-oriented development. As a potential solution for automated

software development, we summarize the procedure to generate a model-based design of application-

specific agents. Finally, to illustrate an application built on ADK, we present an air-ticket trading example.

Keywords: agent-oriented G-net model, intelligent agent, multi-agent system, agent development kit

(ADK), model-based development.

 2

1. Introduction

The development of agent-based systems offers a new and exciting paradigm for production of

sophisticated programs in dynamic and open environments, particularly in distributed domains such as web-

based systems and electronic commerce. A multi-agent system (MAS) is a distributed and concurrent

system that consists of a number of intelligent agents (Wooldridge, 2002). An intelligent agent is defined as

an agent that at least has the following characteristics: autonomy, reactivity, proactiveness, and sociability.

Agent autonomy is akin to human free-will and enables an agent to choose its own actions, while agent

proactiveness requires an agent to behave in a goal-directed fashion. Agent proactiveness is usually

considered in relation to planning, and is strengthened with agent autonomy. We call an autonomous and

proactive agent a goal-driven agent. A reactive agent is defined as an agent that has the ability to perceive

and to respond to a changing environment. The idea of reactive agents is often based on work in ethology,

the study of animal behavior. We call a reactive agent an event-driven agent, and an event could be any

environment change that may influence an agent’s execution. The sociability of an agent refers to the ability

of an agent to converse with other agents. Though a standalone agent may not need to interact with other

agents, agent communication is a key characteristic for agents in a multi-agent system. The conversations

among agents, normally conducted by sending and receiving messages, provide opportunities for agents to

coordinate their activities and cooperate/compete with each other, if needed. An agent is different from an

object in that agents usually do not use method invocations to communicate with each other. In contrast,

agents distinguish different types of messages and use complex protocols, such as Contract Net protocols

(Smith, 1980; Flores and Kremer, 2001), to collaborate or to negotiate. In addition, agents analyze these

messages and can decide whether to execute the requested action (Wooldridge et al., 2000). To meet this

requirement, the design of agents needs to support asynchronous message passing. We call an agent that

supports asynchronous message passing a message-triggered agent.

Though there have been significant commercial and industrial research and development efforts underway

for some time, developments based on formal agent frameworks are rare. In this paper, we present a

development approach, including design and implementation, for intelligent agents in multi-agent systems.

The approach is based on the formal agent model, called agent-oriented G-net model, introduced in earlier

work (Xu and Shatz, 2001a; Xu and Shatz, 2001b) and subsequently described in more detail, including

examples of model checking for design properties (Xu and Shatz, 2003). To bridge the gap between formal

agent modeling and agent implementation, we extend this earlier work so that formal methods are

integrated into the design phase of the agent development life cycle. Unlike most current research on formal

modeling of agent systems or agent behavior (Wooldridge and Ciancarini, 2001), our agent model

 3

specifically serves as a high-level design for agent implementation, rather than just as a specification for

agent behaviors. In other words, the formal model guides a software engineer by prescribing “how,” rather

than “ what,” to develop in terms of intelligent agents. Our formal agent model supports design

modularization and inheritance. To show the feasibility of our approach, we highlight a system that

provides a full class-library for the domain of intelligent agents for multi-agent systems. We call the

development system ADK (Agent Development Kit). The high-level design, i.e., the agent-oriented G-net

model, is based on the G-net formalism (Perkusich and de Figueiredo, 1997; Deng et al., 1993), which is a

type of high-level Petri net (Murata, 1989). The significance of this model is that it explicitly supports

asynchronous message passing among agents (Xu and Shatz, 2001a), and it supports inheritance for

functional units defined in its internal structure (Xu and Shatz, 2001b). The functional units in this model

not only include methods, as in the case of the object-oriented paradigm, but also include Message

Processing Units (MPU), which are functional units defined for asynchronous message passing. In

addition, the agent-oriented G-net model can be translated into more “standard” forms of a Petri net for

design analysis, such as deadlock detection and model checking (Xu and Shatz, 2003).

The rest of this paper is organized as follows. In Section 2, we describe related work and highlight the

relationships to our research. In Section 3, we first briefly review the agent-oriented G-net model, which

has been previously proposed [Xu and Shatz, 2001b] and subsequently described in more details for design

analysis [Xu and Shatz, 2003]. We then discuss the role of ADK in serving as a bridge between the formal

agent model and the agent implementation platform. In Section 4, we describe the architectural design and

detailed design of intelligent agents, and discuss the role of inheritance in agent development. We also

summarize the procedures to design and implement application-specific agents for multi-agent systems. In

Section 5, we use an air ticket trading example to illustrate the derivation of an application using the ADK

approach. The generality of the example supports the notion that our model-based approach is feasible and

effective. In Section 6, we provide conclusions and our future work.

2. Related Work

There are three main strands of work to which our research is related, i.e., work on formal modeling of

agent systems, work on building practical agent-based systems or developing tool kits for rapid

development of agent systems, and work on narrowing the gap between agent formal models and

implementation of agent-based systems.

 4

Previous work on formal modeling of agent systems has been based on formalisms, such as Z, temporal

logic, and Petri nets, to specify agent systems or agent behaviors. Luck and d’ Inverno tried to use the

formal language Z to provide a framework for describing the agent architecture at different levels of

abstraction. They proposed a four-tiered hierarchy comprising entities, objects, agents and autonomous

agents (Luck and d’ Inverno, 1995). The basic idea for this is that all components of the world are entities

with attributes. Of these entities, objects are entities with capabilities of actions, agents are objects with

goals, and autonomous agents are agents with motivations. Fisher’ work on Concurrent METATEM used

temporal logic to represent dynamic agent behavior (Fisher 1995). Such a temporal logic is more powerful

than the corresponding classic logic and is useful for the description of dynamic behavior in reactive

systems. Fisher took the view that a multi-agent system is simply a system consisting of concurrently

executing objects. Xu and his colleagues used Predicate/Transition (PrT) nets, which is a high-level

formalism of Petri net, to model and verify multi-agent behaviors (Xu et al., 2002). Based on the PrT

model, certain properties, such as parallel execution of multi-plans and plans’ guarantee for the

achievement of the goal, can be verified by analyzing the dependency relations among the transitions. More

recently, PrT nets were used to model logical agent mobility (Xu et al., 2003). The proposed model for

logical agent mobility specifies a mobile agent system that consists of a set of components and a set of

(external) connectors. Pr/T nets were used because in a Pr/T net a token may carry structured data – the

mobility modeling was based on the idea of “agent nets” being able to be routed, as tokens, within “system

nets.” Other efforts on formal modeling of agents focus on the design of modeling languages for conceptual

design and specification of multi-agent systems. For instance, the modeling language DESIRE (framework

for DEsign and Specification of Interacting REasoning component) is based on the philosophy of viewing a

complex software system as a series of interacting components, and it is suited to the specification of multi-

agent systems (Brazier et al., 1997). Similarly, SLABS (formal Specification Language for Agent-Based

Systems) provides a way of specifying agent behaviors to enable software engineers to analyze agent-based

systems before they are implemented (Zhu, 2001).

In summary, formal methods are typically used for specification of agent systems and agent behaviors. In

other words, the primary purpose of the formal agent models is to define what properties are to be realized

by the agent system – behavioral properties. In contrast, the formal agent model that we have proposed in

(Xu and Shatz, 2003) provides a high-level design of multi-agent systems – it not only provides a

conceptual framework for agent development, but it also aids a software engineer in understanding how to

structure and implement an agent system. This is accomplished by explicitly identifying the major

components and mechanisms in the design and showing how to derive a detailed design and corresponding

implementation. A direct benefit of this approach is that it brings formal methods into the design phase,

 5

providing opportunities for formal verification of correctness of an agent design. We have shown ways of

using analysis techniques, including model checking, to verify the correctness and certain properties of the

formal agent model in our previous work (Xu and Shatz, 2003). Ideally, formal methods can be applied in

each phase of the software development life cycle; however, to bring formal methods into the later phases

(e.g., design and implementation) of the software development life cycle is not an easy task. For instance, to

verify that an implemented agent system satisfies its original specification, Rao and Georgeff presented an

algorithm for model checking BDI systems (Rao and Georgeff, 1993). However, how to derive the logical

model for BDI logic from the concrete computational models used to implement the agents is not clarified

(Wooldridge and Ciancarini, 2001). Recent work along this line includes Penczek and Lomuscio’s attempt

to use the semantic model of interpreted systems, and integrate it with the verification technique of bounded

model checking for verification of multi-agent systems (Penczek and Lomuscio, 2003). Thanks to Petri

nets’ graphical modeling approach and its similarity with the UML modeling technique (Saldhana et al.,

2001), we argue that Petri nets provide a reasonable and promising way to bring formal methods into the

design phase. With refinement of our original agent-oriented G-net models (Pan, 2002), our approach

supports formal design of agent-oriented software.

A second strand of related work is the building of practical agent-based systems or tools for rapid

development of agent systems. During recent years, many agent architectures have been proposed. For

instance, JAM (Java Agent Model) is a hybrid intelligent agent architecture that draws upon the theories

and ideas of the Procedural Reasoning System (PRS), Structured Circuit Semantics (SCS), and Act plan

interlingua (Huber 1999). Based on the BDI theories (Kinny et al., 1996), which models the concepts of

beliefs, goals (desires), and intentions of an agent, JAM provides strong goal-achievement syntax and

semantics, with support for homeostatic goals and a much richer, more expressive set of procedural

constructs. The JACK (Jave Agent Kernel) intelligent agent framework proposed by the Agent Oriented

Software Group brings the concept of intelligent agents into the mainstream of commercial software

engineering and Java (Howden et al., 2001). JACK is designed as a set of lightweight components with high

performance and strong data typing. Paradigma has been implemented to support the development of agent-

based systems (Ashri and Luck, 2000). It relies on a formal agent framework, i.e., Luck and d’ Inverno’s

formal agent framework (Luck and d’ Inverno, 1995), and is implemented by using recent advances in Java

technology. Although the above agent architectures use formal agent models as conceptual guidelines, the

formal methods serve as agent specifications rather than formal designs.

Some other efforts had tried to provide a rapid prototyping development environment for the systematic

construction and deployment of agent-oriented applications. A typical example is the Zeus MAS framework

 6

developed by British Telecom Labs (Nwana et al., 1999). The MAS development environment based on

Zeus MAS framework consists of an API, a code generator, agent and society monitoring tools, and

programming documentation. A complete Zeus agent has a coordination engineer enabling functional

behavior organized around conversation protocols, a planner that schedules sub-goal resolution, an engine

for rule-based behavior, and databases to manage resources, abilities, relationships between agents, tasks,

and protocols. More recently, many agent frameworks have been proposed for developing agent

applications in compliance with the FIPA specifications (FIPA 2002) for interoperable intelligent agents in

multi-agent systems. Examples of such efforts are JADE (Java Agent DEvelopment framework)

(Bellifemine et al., 1999), FIPA-OS agent platform (Poslad et al., 2000), and the current Zeus platform

(Nwana et al., 1999). The major difference between the above work and our approach is that most of the

existing agent architectures attempt to provide a comprehensive set of agent-wide services that can be

utilized by application programmers; however, these services are usually made available through an ad-hoc

architecture that is highly coupled. Application programmers must face a steep learning curve for such

systems due to a lack of explicit control flow and modularization. In contrast, our approach provides

programmers a set of loosely coupled modules, an explicit control flow, and a clean interface among agents.

We believe that our approach can significantly flatten a programmer’s learning curve, and ease the work

load for developing application-specific agents. Another difference between the above work and our

approach is that most of the agent architectures that originated from industry aim to provide practical

platforms or toolkits for agent development; therefore, unlike our approach there is not the direct motivation

for an agent design that supports formal analysis and verification. We have discussed the use of some

analysis techniques including model checking in our previous work (Xu and Shatz, 2003). Meanwhile, most

of the existing systems use object-oriented languages, such as Java, but without considering how to use

object-oriented mechanisms effectively in developing agent-oriented software. In contrast, our approach

carefully considers the role of inheritance in agent-oriented development, and discusses which components

of an agent could be reused in a subclass agent. This treatment of inheritance in agent-oriented software

engineering is based on previous work (Crnogorac et al., 1997), but our approach emphasizes on reuse of

functional components rather than mental states. Finally, although our current version of ADK does not

strictly follow the FIPA specifications, we have designed our agent model with standardization in mind.

Further work (Pan, 2002) on this prototype has shown that it is fairly straightforward to extend our agent

design and development kit to a level of detail that is compliant with the FIPA specifications (FIPA, 2002).

Previous efforts on narrowing the sizable gap between agent formal models and agent-based practical

systems can be summarized as follows. Some researchers aim at constructing directly executable formal

agent models. For instance, Fisher’s work on Concurrent METATEM has attempted to use temporal logic to

 7

represent individual agent behaviors where the representations can be executed directly, verified with

respect to logical requirement, or transformed into some refined representation (Fisher, 1995). Vasconcelos

and his colleagues have tried to provide a design pattern for skeleton-based agent development

(Vasconcelos et al., 2002), which can be automatically extracted from a given electronic institution. The

electronic institutions have been proposed as a formalism with which one can specify open agent

organizations (Rodriguez-Aguilar et al., 1999). These types of work seem to be an ideal way for seaming

the gap between theories and implemented systems; however, an implementation automatically derived

from a formal model tends to be not practical. This is because a formal model is an abstraction of a real

system, and thus an executable formal model ignores most of the components and behaviors of a specific

agent. Therefore, as stated in (D’ Inverno et al., 1997), executable models based on formalisms, such as

temporal logic, are quite distant from agents that have actually been implemented; and at least for the time

being, the gap between an executable formal model and a practical agent implementation is still very large.

Other efforts have attempted to start with specific deployed systems and provide formal analyses of them.

For instance, d’ Inverno and Luck tried to move backwards to link the system specification based on a

simplified version of dMARS (distributed Multi-Agent Reasoning System) to the conceptual formal agent

framework in Z, and also to provide a means of comparing and evaluating implemented and deployed agent

systems (D’ Inverno and Luck, 2001).

In contrast to the above approaches, we have tried to bring formal methods directly into the design phase,

and to let the formal agent model serve as the high-level design for agent implementation. In particular, we

use the agent-oriented G-net model to define the agent structure, agent behavior, and agent functionality for

intelligent agents. A key concept in our work is that the agent-oriented G-net model itself serves as a design

model for an agent implementation. We will see that our architectural design of intelligent agents closely

follows the agent-oriented G-net model. By supporting design reuse, our approach follows the basic

philosophy of Model Driven Architecture (MDA) (Siegel et al., 2001) that is gaining popularity in many

communities, for example UML.

3. A Framework for Agent-Oriented Software

3.1 G-Net Model Background

Many researchers have suggested object-based formal methods using high-level Petri nets. Formalisms such

as LOOPN++ (Lakos and Keen, 1994), CO-OPN/2 (Buchs and Guelfi, 2000), and G-nets (Perkusich and

Figueiredo, 1997; Deng et al., 1993) were proposed to extend the Petri net formalism into so-called object

 8

Petri nets. Among these models, G-nets have been proposed with the motivation of integrating Petri net

theory with the software engineering approach for system design (Deng et al., 1993). A notable benefit of

using G-nets is its modular and object-based approach for the specification and prototyping of complex

software system. We assume that the reader is familiar with the basic concepts of Petri nets (Murata, 1989).

But, as a general reminder, we note that Petri nets include three basic entities: place nodes (represented

graphically by circles), transition nodes (represented graphically by solid bars), and directed arcs that can

connect places to transitions or transitions to places. Furthermore, places can contain markers, called

tokens, and tokens may move between place nodes by the “ firing” of the associated transitions. The state of

a Petri net refers to the distribution of tokens to place nodes at any particular point in time (this is

sometimes called the marking of the net). We now proceed to discuss the basics of G-net models. G-nets

serve as the foundation for our agent-oriented model, which is highlighted in the next subsection.

A G-net system is composed of a number of G-nets, each of them representing a self-contained module or

object (Perkusich and Figueiredo, 1997; Deng et al., 1993). A G-net is composed of two parts: a special

place called Generic Switch Place (GSP) and an Internal Structure (IS). The GSP provides the abstraction

of the module, and serves as the only interface between the G-net and other modules. The IS, a modified

Petri net, represents the design of the module. Formally, a G-net is a tuple G = (GSP, IS), where

1. GSP ∈ G is defined by (NID, MS, AS), where G.NID is a unique identification of G-net G, G.MS is

a set of methods specifying the functions, operations or services defined by the net, and G.AS is a

set of attributes specifying the state variables of the model.

2. IS ∈ G is the internal structure of G-net G. In G.IS, Petri net places represent primitives, while

transitions, together with arcs, represent connections or relations among those primitives. The

primitives may define local actions or method calls.

Method calls are represented by special places called Instantiated Switch Places (ISP). A primitive becomes

enabled if it receives a token, and an enabled primitive can be executed. Given a G-net G, an ISP of G is a

2-tuple (G’ .Nid, mtd), where G’ could be the same G-net G or some other G-net, Nid is a unique identifier

of G-net G’ , and mtd ∈ G’.MS. Each ISP(G’.Nid, mtd) denotes a method call mtd() to G-net G’ .

G-nets were initially proposed to represent a module or an object rather than an abstraction of a set of

similar objects, i.e., class. In a recent paper (Xu and Shatz, 2000), we defined an approach to extend the G-

net model to support class modeling. The idea of this extension is to generate a unique object identifier,

G.Oid, and initialize the state variables when a G-net object is instantiated from a G-net G. An ISP method

 9

invocation is no longer represented as the 2-tuple (G’ .Nid, mtd), instead it is the 2-tuple (G’ .Oid, mtd),

where different object identifiers could be associated with the same G-net class model.

The token movement in a G-net object is similar to that of original G-nets (Perkusich and Figueiredo, 1997;

Deng et al., 1993). A token tkn is a triple (seq, sc, mtd), where seq is the propagation sequence of the token,

sc ∈ { before, after } is the status color of the token and mtd is a triple (mtd_name, para_list, result). For

ordinary places, tokens are removed from input places and deposited into output places by firing transitions.

However, for the special ISP places, the output transitions do not fire in the usual way. Recall that marking

an ISP place corresponds to making a method call. So, whenever a method call is made to a G-net object,

the token deposited in the ISP has the status of before. This prevents the enabling of associated output

transitions. Instead the token is “processed” (by attaching information for the method call), and then

removed from the ISP. Then an identical token is deposited into the GSP of the called G-net object.

Through the GSP of the called G-net object, the token is then dispatched into an entry place of the

appropriate called method, for the token contains the information to identify the called method. During

“execution” of the method, the token will reach a return place with the result attached to the token. As soon

as this happens, the token will return to the ISP of the caller, and have the status changed from before to

after . The information related to this completed method call is then detached. At this time, output

transitions can become enabled and fire. Examples and further details about G-net models can be found in

references (Perkusich and Figueiredo, 1997; Deng et al., 1993; Xu and Shatz, 2000).

3.2 Review of Agent-Or iented G-Net Model

Although the G-net model works well in object-based design, it is not sufficient for agent-oriented design

for the following reasons. First, agents that form a multi-agent system may be developed by different

vendors independently, and those agents may be widely distributed across large-scale networks such as the

Internet. To make it possible for those agents to communicate with each other, it is desirable for them to

have a common communication language and to follow common protocols. However the G-net model does

not directly support protocol-based language communication between agents. Second, the underlying agent

communication model is usually asynchronous, and an agent may decide whether to perform actions

requested by some other agents. The G-net model does not directly support asynchronous message passing

and decision-making, but only supports synchronous method invocations in the form of ISP places. Third,

agents are commonly designed to determine their behavior based on individual goals, their knowledge and

the environment. They may autonomously and spontaneously initiate internal or external behavior at any

time. The G-net models can only directly support a predefined flow of control.

 10

GSP(G)

message_
processing

incoming message

Goal

 outgoing message

action_1 action_m

Knowledge-base

 Planner

MSP(self) MSP(self) MSP(G’.Aid) MSP(G’.Aid)

action_1 action_n

message_
processing

message_
processing

message_
processing

 return return

 util ity method

utility_1 utility_p

…

…

…

…

…

…

utility_1 uti lity_p

Plan Environment

Figure 1. Agent-oriented G-net model – from (Xu and Shatz, 2003)

To support agent-oriented design, we extended G-nets to support modeling an agent class1 (Xu and Shatz,

2003). This extension is made in three steps. First, we introduce five special modules to a G-net to make an

agent autonomous and internally motivated. As shown in Figure 1, the five special modules are the Goal

module, the Plan module, the Knowledge-base module, the Environment module and the Planner module.

The Goal, Plan and Knowledge-base module are based on the BDI agent model proposed by Kinny and his

colleagues (Kinny et al., 1996). The Goal module consists of a goal set that specifies the goal domain and

goal states. The Plan module consists of a set of plans that are associated with a goal or a subgoal. Each

goal or subgoal may associate with more than one plan, and the most suitable one will be selected to

achieve that goal or subgoal. A Knowledge-base module describes the information about the agent’s

internal state, its environment, and interaction protocols. The Environment module is an abstract model of

the environment, i.e., the model of the outside world of an agent. Finally, the Planner module represents the

heart of an agent that may decide to ignore an incoming message, to start a new conversation, or to continue

with the current conversation. In the Planner module, committed goals are achieved, and the Goal, Plan

and Knowledge-base modules of an agent are updated after the processing of each communicative act that

defines the type and the content of a message (Finin et al., 1997; Huber et al., 2001), or if the environment

changes. Second, different from the semantic of a G-net as an object or a module, we view the extended G-

net, we call it an agent-oriented G-net, as a class model, i.e., the abstract of a set of similar agent objects.

1 We view the abstract of a set of similar agents as an agent class, and we call an instance of an agent class an agent or
an agent object.

 11

Third, we define the instantiation of the agent-oriented G-net as follows: when an agent-oriented G-net A is

instantiated, we generate an agent identifier A.Aid for the resulting agent object AO; meanwhile, the state of

AO, i.e., any state variables defined in A, is initialized.

The Internal Structure (IS) of an agent-oriented G-net consists of three sections: incoming message,

outgoing message, and utility method. The incoming/outgoing message section defines a set of Message

Processing Units (MPU), which corresponds to a set of communicative acts. Each MPU, labeled as action_i

in Figure 1, is used to process incoming/outgoing messages and execute any necessary actions before or

after the message being processed. Finally, the utility method section defines a set of methods that can only

be called by the agent itself.

Although both objects (passive objects) and agents use message-passing to communicate with each other,

message-passing for objects is a unique form of method invocation, while agents distinguish different types

of messages and model these messages frequently as speech-acts and use complex protocols to negotiate

(Wooldridge et al., 2000; Iglesias et al., 1998). In particular, these messages must satisfy the format of the

standardized communicative (speech) acts, e.g., the format of communicative acts defined in the FIPA

agent communication language (FIPA, 2002) or KQML (Odell et al., 2001; Finin et al., 1997; Huber et al.,

2001). Note that in Figure 1, each named MPU action_i refers to a communicative act, and the agent-

oriented G-net model supports an agent communication interface through the GSP place. In addition, agents

analyze these messages and can decide whether to execute the requested action. As stated before, agent

communications are typically based on asynchronous message passing. Since asynchronous message

passing is more fundamental than synchronous message passing, it is useful for us to introduce a new

mechanism, called Message-passing Switch Place (MSP), to directly support asynchronous message

passing (Xu and Shatz, 2001a). When a token reaches an MSP (represented as an ellipsis in Figure 1), the

token is removed and deposited into the GSP of the called agent. But, unlike with the G-net ISP

mechanism, the calling agent need not wait for the token to return before it can continue to execute its next

step.

The Planner module has the functionality of message dispatching and decision-making. In addition, the

Planner module also includes a sensor, which may capture internal or external events, and invoke certain

plans correspondingly. To support agent-oriented design, the Planner module has been designed in such a

way that it supports inheritance for MPUs and utility methods defined in the internal structure of an agent-

oriented G-net model. Further details on the design and operation of the Planner module are outside the

scope of focus for this paper. A detailed description for this module can be found in earlier work (Xu and

 12

Shatz, 2001a; Xu and Shatz, 2001b; Xu and Shatz, 2003). It is worth noting that G-nets can be used to

model the Knowledge-base module and the decision-making units in the Planner module as demonstrated

in other research that focuses on the issues of knowledge representation and reasoning (Deng and Chang,

1990).

3.3 From Formal Agent Model to Agent Implementation

We now turn to the fundamental contribution of this paper – the principles and practice of a proposed Agent

Development Kit (ADK). ADK is intended to provide the necessary facilities for agent implementation

based on the formal agent model described previously. Thus, the development of ADK is not ad hoc, but

results from a model-based development process. The agent-oriented G-net model, as an operational model,

provides the high-level design for intelligent agents. Specifically, the key components or mechanisms

defined in the agent-oriented model serve as building blocks of our agent development kit.

M odular ization
GSP (interface)
Goal, Plan, Knowledge-base,
Planner, Internal Structure
Environment

M essage Passing M echanism
Asynchronous: MSP
Synchronous: ISP

Functional Units (Inheritable)
DMU* (decision-making unit)
MPU (message processing unit)
U-Method (utility method)

Formal Agent Model Implementation Platform

M iddleware
Jini/JavaSpaces/RMI

Java Vir tual Machine
Java: OO Language
JVM: Thread, Java
Swing etc.

Network
Communication
TCP/IP, UDP

Modular ization
Interface Definition: GSP
Class Definition: Goal, Plan,
Knowledge, Agent (Planner,
Internal Structure)
Jini Community: Environment

Message Passing M echanism
MSP: new thread
ISP: method invocation

Functional Units (Inheritable)
DMU: protected method
MPU: protected method
U-Method: protected method

ADK Agent Architecture

* DMUs are not inheritable in agent-oriented G-net model

Figure 2. The role of ADK between formal agent model and implementation platform

As Figure 2 shows, the role of ADK is to serve as a bridge between the formal agent model and the agent

implementation platform. Between the formal agent model and the ADK agent design architecture, there is

a clear mapping of agent components and mechanisms. Thus we claim that the formal agent model can be

interpreted as an agent design model; thus the model reveals to the software engineers not only the agent

properties and behaviors, but more importantly, the agent architecture.

 13

The key components and mechanisms defined in the formal agent model and their mappings to the

components and implementation strategies in the ADK agent architecture are listed as follows: First, the

modularization of the agent design provides the formal agent architecture that makes an agent autonomous,

reactive, proactive and sociable. The GSP place in the formal model is defined as the only interface for

agent communication, and this is carried forward in the ADK agent design architecture. The Goal, Plan,

and Knowledge-base modules are based on the BDI agent model (Kinny et al., 1996) that is a conceptual

model for intelligent agents. These modules are mapped to the class definitions of Goal, Plan and

Knowledge in the ADK agent architecture. The Planner module is used for decision-making, message

dispatching and event capturing. And the Internal Structure is a container for methods and MPUs, where

methods are defined for method invocation, and MPUs support asynchronous message passing. These two

modules are defined as two sections in the definition of the Agent class. Finally, the Environment module in

the formal agent model will be implemented as the Jini community in ADK.

Second, the message passing mechanisms are defined in two cases: synchronous message passing and

asynchronous message passing. Synchronous message passing is usually used for method invocation, and it

is realized through the ISP mechanism; while asynchronous message passing is vital for agent

communication, and it is achieved by the MSP mechanism (Xu and Shatz, 2001a). Recall that in the case of

asynchronous message passing, when a MSP is called, the agent does not need to wait for the result to come

back, and it may proceed to execute other functionality. Straightforwardly, the ISP mechanism maps to

method invocation in ADK, and MSP maps to a new thread on platforms such as JVM.

Third, the formal agent model defines the functional units as inheritable components. As methods are

defined as inherited units in object-oriented design, all U-Methods (Utility Methods) and MPUs (Message

Processing Units) could be inherited from an agent superclass to an agent subclass. In ADK, the functional

units, including DMUs (Decision-Making Units), which are defined in a superclass, are implemented as

protected methods that can be reused by their subclasses.

As shown on the right hand side of Figure 2, the implementation platform provides the standard computer

technologies, such as the Jini middleware (Edwards, 1999; Arnold et al., 1999) and the Java Virtual

Machine (JVM), for agent implementation. We choose Java as our programming language because

applications developed on JVM are platform independent, and they are suitable for web-based applications

such as electronic commerce. In addition, we use the Jini middleware to simplify our development process

for agent communication. In this case, we do not need to take care of the low-level communication

protocols, such as the TCP/IP and UDP protocols, which can be automatically handled by the Jini

 14

middleware, and therefore, we can concentrate on high-level communication protocols, such as price-

negotiation protocol. In summary, ADK represents the design and implementation of intelligent agents for

multi-agent systems, and it refines the formal agent model and derives the detailed design as will be

discussed in Section 4.

4. Design of Intelligent Agents

4.1 Middleware Suppor t for Agent Communication

As we mentioned before, the Jini middleware can be used to simplify the development process for agent

communication. The Jini architecture is intended to resolve the problem of network administration by

providing an interface where different components of the network can join or leave the network at any time

(Edwards, 1999; Arnold et al., 1999). Such a collection of services is called a Jini community as shown in

Figure 3, and the services within the Jini community represent service providers or service consumers. The

heart of the Jini system is a trio of protocols called discovery, join, and lookup. Discovery occurs when a

service is looking for a lookup service with which to register. Join occurs when a service has located a

lookup service and wishes to join it. And lookup occurs when a client or user needs to locate and invoke a

service described by its interface type and possibly, other attributes.

 Discovery Service Lookup Service Join Manager

Air Ticket
Seller

Air Ticket
Seller

Air Ticket
Buyer

Air Ticket
Buyer

Jini Community

 GSP
 GSP

 GSP GSP

…
 …

Figure 3. The Jini community with agents of AirTicketSeller and AirTicketBuyer

In designing the ADK, we use Jini as a middleware for agents to find each other and to communicate with

each other. Each agent is designed as both a service provider and a service consumer. Since agents only

interact with each other through asynchronous message passing, the service provided by an agent through

 15

Jini is designed as an interface to let other agents send asynchronous messages to that agent, and the agent

who sends out the messages becomes the service consumer. This approach is consistent with the agent-

oriented G-net model, in which the GSP (Generic Switch Place) is defined as the only interface among

agents (Xu and Shatz, 2003). Thus, we design the schema for an agent interface as in Table 1.

Table 1

SCHEMA FOR AN AGENT INTERFACE

1 publ i c i nt er f ace GSP ext ends Remot e {
2 publ i c voi d asynMessagePassi ng(Message message) t hr ows Remot eExcept i on;
3 }
4
5 publ i c c l ass Mi ddl ewar eSuppor t i mpl ement s GSP {
6 / / agent i nt er f ace
7 publ i c voi d asynMessagePassi ng(Message message) {
8 Syst em. er r . pr i nt l n(" Thi s met hod shoul d be over r i dden by an agent "
9 + " cl ass! ") ;
10 }
11
12 / / f i nd l ookup ser vi ces and j oi n t he J i ni communi t y
13 publ i c voi d set up(St r i ng[] gr oupsToJoi n) { …}
14 …
15 }

The class MiddlewareSupport implements the GSP interface, where an abstract method

asynMessagePassing() is defined. However, in class MiddlewareSupport, the implementation of this

method is again deferred to subclasses of the MiddlewareSupport class because we want that the class

MiddlewareSupport only defines the functionality to deal with the Jini community, such as discovering

lookup service on the network, registering with the Jini community, and searching for other agents in the

Jini community. Here the method setup() is defined to let the GSP find a lookup service and joins the Jini

community. As we will see in Section 4.2, the Agent class, which is defined as a subclass of the

MiddlewareSupport class, actually implements the method asynMessagePassing(), and inherits all the

functionality defined in class MiddlewareSupport.

As an example, consider the design of an electronic marketplace in which seller agents and buyer agents

may find each other and communicate with each other asynchronously through the Jini community. The

design is illustrated in Figure 3, where both air ticket seller agents and air ticket buyer agents register their

GSP interfaces with the Jini community, and they may find each other by the agent attribute, for instance,

an agent name called “Seller” .

 16

4.2 A Pattern for I ntelligent Agents

Figure 4 shows the ADK architectural design for intelligent agents. By comparing this figure to the agent-

oriented G-net model in Figure 1, one can observe how the agent model drives the agent design. One

obvious variation is that the GSP place of an agent model becomes a part of the environment module, which

is the Jini community, in the ADK agent design architecture. In the design architecture, each agent is

composed of its GSP component, which serves as the agent’s interface element, and its action component

(consisting of the following major elements: Goal, Plan, Knowledge-base, Planner, and Internal Structure).

Note that Figure 4 explicitly shows only the action component for one agent, agent B. The environment

module contains the interface element for agent B, as well as some other interface elements (e.g., for agent

A). The directed arcs shown in Figure 4 represent only a sample of the logical connections between the

various elements – for example we explicitly see the connection from agent B’s interface to its planner

module, and from agent B’s outgoing message processing unit to agent A’s interface (under the assumption

that agent B does send messages to agent A).

 Goal Plan Knowledge

message
from GSP

SellerGSP
 (agent B)

BuyerGSP
 (agent A)

BuyerGSP SellerGSP

…
 …

Action Component (agent B)

 Jini Community
 (Environment)

message
to GSP

internal
event

external
event

decision-
making units

message
dispatcher sensor

Planner

incoming message
(MPUs)

outgoing message
(MPUs)

utility method
(methods)

Internal Structure

Figure 4. The ADK architectural design of intelligent agents

 17

Currently, we use a simplified version of the environment module in ADK, in which case the only external

events of concern are those related to agents entering and/or leaving the Jini community. In future design

versions, we can extend the environment module to include other events, such as network topology changes

and user interventions. Similarly, data changes in Goal, Plan and Knowledge-base modules may act as

internal events and trigger the sensor in the Planner module. To simplify matters, in ADK the sensor in the

Planner module is implemented to only capture external events.

Referring again to Figure 4, we can observe that when agent A wants to converse with agent B, it sends a

message to the GSP of agent B in the Jini community (but, this connection is not explicitly shown in Figure

4 since agent A’s action component is not shown). Then the message will be sent to the Planner module of

agent B. After the message is dispatched into a MPU in the incoming message section, the message will be

processed, e.g., decoded, and sent back to the Planner module. Now the message goes to the decision-

making units, where decisions may be made to ignore the message, or to continue with the conversation. If

the conversation is to be continued, a new outgoing message is generated, and dispatched into a MPU

defined in the outgoing message section. The outgoing message will be processed and certain actions may

be executed before the message is sent to the GSP of agent A.

In addition, the MPUs and the U-Methods (defined in the incoming/outgoing message section and utility

method section, respectively) can be inherited by agent subclasses, and can only be accessed or called by

the agent itself. Unlike the agent-oriented G-net model, methods defined in the planner module can also be

inherited optionally if a subclass agent chooses to reuse or refine the reasoning mechanisms defined in its

superclass. This treatment is practical if we need to derive a subclass agent with similar behavior to its

superclass – for instance, to derive a domestic air ticket seller agent class from a general air ticket seller

agent class.

The goal of the above architectural design is to derive an architectural rendering of a system, which serves

as a framework from which more detailed design activities are conducted. Based on the architectural design

illustrated in Figure 4, we now proceed to describe the detailed design of intelligent agents for multi-agent

systems. This design is expressed in the form of a pattern or class template.

Since the agent-oriented G-net model supports inheritance, we will follow this design schema and present

first the pattern for the Agent class, which is a superclass for application-specific agents. The design schema

for application-specific agents will be introduced in Sections 4.3 and 4.4. In an object-oriented system,

design patterns can be used with either inheritance or composition. Using inheritance, an existing design

 18

pattern becomes a template for a new subclass, and the attributes and operations that exist in the pattern

become part of the subclass (Pressman, 2001). Similarly, in an agent-oriented system, a pattern of an agent

superclass can serve as a template for an agent subclass, and a specific agent subclass, such as an air ticket

seller agent class, can be derived from an agent superclass by augmenting the template to meet system

requirements.

The Agent class defined in ADK provides such a pattern for agent implementation. The pattern is shown in

Table 2 in a form of Java pseudocode. As shown in Table 2, the Agent class is defined as a subclass of

MiddlewareSupport (defined in Section 4.1) to reuse the functionality of discovering a lookup service,

registering with the Jini community, and searching for other agents. More importantly, an agent object may

communicate with other agent objects asynchronously through the GSP interface. This functionality makes

an agent sociable. To simulate the asynchronous message passing, we have used the thread technique to

generate a new thread called messageProcessThread. Upon receiving an incoming message, the method

asynMessagePassing() of the message receiver (the callee) generates the messageProcessThread thread,

which will dispatch the message to a MPU that is defined in the callee’s incoming message section. Once

the new thread is created, the asynMessagePassing() method can immediately return control to its caller, so

that the message sender (the caller) does not need to wait for the message to be processed. The caller can

proceed to execute other tasks.

Table 2

A PATTERN FOR INTELLIGENT AGENTS

1 publ i c c l ass Agent ext ends Mi ddl ewar eSuppor t {
2 pr i vat e st at i c f i nal St r i ng PRODUCT = " Agent " ;
3 pr i vat e st at i c f i nal St r i ng VERSI ON = " ADK 1. 0" ;
4 …
5
6 / *
7 * Agent I nt er f ace - - GSP *
8 * /
9 publ i c voi d asynMessagePassi ng(Message message) {
10 Thr ead messagePr ocessThr ead = new Thr ead(new Runnabl e() {
11 publ i c voi d r un() {
12 di spat chMessage(message) ; / / - - message- t r i gger ed
13 }
14 }) ;
15 messagePr ocessThr ead. st ar t () ;
16 }
17
18 / *
19 * Cl ass Var i abl es f or Knowl edge, Goal and Pl an *
20 / * /
21 Goal myGoal s; / / a l i st of commi t t ed goal s
22 Pl an myPl ans; / / a set of pl ans
23 Knowl edge myKnowl edge; / / a knowl edge- base
24 …

 19

25
26 / * * * * * * * * * * *
27 * Pl anner *
28 * * * * * * * * * * * /
29 pr i vat e c l ass Sensor ext ends Li st ener {
30 …
31 publ i c voi d not i f y(Remot eEvent ev) {
32 i f (! (ev i nst anceof Ser vi ceEvent)) r et ur n;
33 updat eSer vi ces() ;
34 i nvokePl an(ev) ; / / - - event - dr i ven
35 }
36 }
37 pr ot ect ed voi d di spat chMessage(Message message) { …}
38 pr ot ect ed Message makeDeci s i on(Message message) { …}
39 pr ot ect ed voi d updat eMent al St at e() { …)
40 …
41
42 / *
43 * I nt er nal St r uct ur e *
44 * /
45 / / i ncomi ng message sect i on – a set of message pr ocessi ng uni t s
46 pr ot ect ed voi d MPU_I n_Hel l o(Message message) { …}
47 …
48 / / out goi ng message sect i on – a set of message pr ocessi ng uni t s
49 pr ot ect ed voi d MPU_Out _Hel l o(Message out goi ngMessage) { …}
50 …
51 / / ut i l i t y met hod sect i on – a set of pr i vat e ut i l i t y met hods
52 i ni t Agent (St r i ng[] ar gs) { …}
53 pr ot ect ed voi d aut onomousRun() { …}
54 pr ot ect ed voi d ot her _Met hod_1() { …}
55 …
56
57 publ i c st at i c voi d mai n(St r i ng[] ar gs) {
58 i ni t Agent (ar gs) ;
59 aut onomousRun() ; / / - - goal - dr i ven
60 }
61 }

Corresponding to the three modules (Goal, Plan and Knowledge) in the architectural design of intelligent

agents (Figure 4), the Agent class defines a list of committed goals myGoals, a set of plans myPlans, each of

which is associated with a goal or a subgoal, and a knowledge-base myKnowledge. The Goal, Plan and

Knowledge class define the basic properties and behaviors for an intelligent agent, and may be refined or

redefined if an application-specific agent requires further functionality. Refer to Figure 7 for the definitions

of the Goal, Plan and Knowledge class. For brevity, other class variables, such as theGoalSet – a set of

goals from which the goal list myGoals is generated – are omitted in Table 2.

The reactivity of an agent can be designed through the Jini’s notification facility. In the Jini community,

whenever a new event occurs, an agent should be automatically notified by the system. For instance, when a

seller agent joins or leaves the Jini community, the buyer agents need to be notified; thus, the buyer agents

 20

can always keep an up-to-date list of the seller agents that are currently in the community (by keeping a list

of interested agents locally, it can also decrease the network traffic). In Table 2, we can see that the Sensor

class is defined as a private inner class in the Agent class, and is derived as a subclass from the Listener

class, which is defined by the Jini. Thus, an application class, such as a seller agent class or a buyer agent

class, which will be defined as a subclass of the Agent class, can be notified by the Jini community

whenever an event occurs, as long as the corresponding agent object has instantiated a Sensor object and

has registered it with the Jini community.

Based on the architectural design of intelligent agents in Figure 4, the Planner module in the Agent pattern

defines a method called dispatchMessage(), which is used to dispatch messages to the appropriate MPU

defined in the incoming/outgoing message section. Examples of methods defined as decision-making units

in the Planner module are the methods makeDecision() and updateMentalState(). In method

makeDecision(), decisions are made to ignore an incoming message, to start a new conversation, or to

continue with the current conversation. In method updateMentalState(), the mental state of the agent, i.e.,

the goal, plan, and knowledge-base are updated whenever a decision is made or a new event occurs. The

Internal Structure module includes three sections, i.e., the incoming message section, outgoing message

section, and utility method section. Each section defines a set of MPUs or methods, which are depicted as

MPU_In_x(), MPU_Out_y() or Method_k() in Table 2. We only implemented the MPU_In_Hello() and

MPU_Out_Hello() in the Agent class, which allows instances of the Agent class or any of its subclasses to

greet with each other. Further protocol related MPUs shall be defined in agent subclasses. The autonomy

and proactiveness of an agent are related with the Goal, Plan, Knowledge-base, Planner and Internal

Structure modules of an agent. To connect them together, we define the control as the method

autonomousRun(), which includes a list of committed goals to be achieved based on the agent’s mental

state. Each goal is defined as a goal tree that is traversed in depth-first order, and selected plans associated

with each goal or subgoal are invoked accordingly. The method autonomousRun() is invoked in the method

main(), as shown in Table 2, and is executed after the agent is initialized with the method initAgent().

4.3 Inher itance in Agent-Or iented Development

Inheritance in agent-oriented programming has been studied in terms of reusing mental states such as goal,

plan and knowledge (Crnogorac et al., 1997). We argue that since an agent maintains a dynamic list of

goals and plans, and acquires most of its knowledge during its lifetime, to inherit mental states is not

appropriate. Furthermore, agents are autonomous with different goal-directed behavior. For instance, in the

class hierarchy of Figure 5, an air ticket seller agent and a book seller agent shall have different goals and

 21

plans, and more practically, they may have different negotiation strategies and reasoning mechanisms.

Thus, the class hierarchy in Figure 5 shall only imply the reuse of superclass’ functional mechanisms, for

instance, the communication mechanism. Since inheritance happens at the class level, new knowledge

acquired, new plans made, and new goals generated in an agent object (e.g., an air ticket seller), cannot be

inherited by a subclass agent object (e.g., a domestic air ticket seller). In contrast, most of the functional

mechanisms, for instance the function of comparing prices or selecting the ticket with shortest travel time,

can be reused. Optionally, the domestic air ticket seller may also reuse the negotiation strategies adopted by

an air ticket seller, but practically it may have its own specific strategies. As a result, we need to allow a

subclass agent to inherit any reasoning mechanisms defined in its superclass agent, but also allow such a

subclass agent to redefine or refine these mechanisms.

 Domestic
Air Ticket Seller

Agent

Book Seller Air Ticket Buyer Book Buyer Air Ticket Seller

 International
Air Ticket Seller

Textbook Buyer Literature Book Buyer … …

Figure 5. The class hierarchy diagram of agents in an electronic marketplace

Figure 6 shows the inheritance relationship between the classes defined in ADK and classes derived from

the Agent class. In this figure, all the classes above the dashed line are provided as an agent framework or a

class library – these classes define the ADK environment, which supports developing intelligent agents for

multi-agent systems. The classes below the dashed line are derived classes that represent specific intelligent

agents in a multi-agent system. This figure shows that both the air ticket seller agent and the air ticket buyer

agent may reuse the functional mechanisms and reasoning mechanisms defined in the superclass Agent.

Especially, air ticket seller agents and air ticket buyer agents may communicate with each other through

Jini. We do not need to deal with this issue again in the design of these two classes, since all needed

functionality for communication through Jini has been implemented in the Agent class and can be reused by

its subclasses. The event-driven feature is also inherited by the air ticket seller agents and the air ticket

buyer agents. In other words, a designer of subclasses of the Agent class does not need to be concerned with

 22

this feature, since subclasses automatically have this feature inherited from their superclass, i.e., the Agent

class. In addition, the air ticket seller agent and air ticket buyer agent may reuse the default reasoning

mechanisms defined in the Agent class. The default reasoning mechanism is defined as a search through a

goal tree that achieves each subgoal, with associated plans, in a depth-first search order.

 MiddlewareSupport

Agent

Plan

Air Ticket Buyer

 GSP (interface)

Air Ticket Seller

Class Library (ADK)

Derived Classes

Knowledge Goal
Message

Send / Receive

 *
 * * *

Protocol
 *

Figure 6. Classes defined in ADK and derived classes of the Agent class

Though most of the features defined in the Agent class can be reused, each subclass of the Agent class shall

associate with the Goal, Plan and Knowledge class directly. This implies that any goal, plan or knowledge

defined in a superclass cannot be inherited by its subclasses. This design is consistent with the high-level

design of agent-oriented G-net models, in which the Goal, Plan and Knowledge-base modules of the

superclass are disabled when the inheritance mechanism is invoked. The Goal, Plan, and Knowledge

classes define the basic (default) structure for their corresponding modules. Subclasses of the Agent class

may either reuse these structures or define their own. Obviously, if these classes are redefined, the

reasoning mechanisms shall also be redefined in the agent subclasses.

This approach derives the template (pattern) for application-specific agent design, which is defined as a

subclass of the Agent class in ADK. The template is shown in Table 3. In this template, we use the

definitions of the Goal, Plan, and Knowledge classes that are defined in ADK, but it is worth noting that

designers can also define their own classes for these modules. Alternatively, they may refine these classes

(defined in ADK) by subclassing them and inheriting their default structures.

 23

Table 3

DESIGN OF APPLICATION-SPECFIC AGENTS

1 publ i c c l ass Appl i cat i onSpeci f i cAgent ext ends Agent {
2
3 / *
4 * Cl ass Var i abl es f or Knowl edge, Goal and Pl an *
5 / * /
6 Goal myGoal s; / / commi t t ed goal s, r edef i ni t i on of Goal cl ass i s opt i onal
7 Pl an myPl ans; / / pl ans, r edef i ni t i on of Plan cl ass i s opt i onal
8 Knowl edge myKnowl edge; / / knowl edge- base, r edef i ni t i on of Knowledge
9 / / cl ass i s opt i onal
10 …
11
12 / * * * * * * * * * * *
13 * Pl anner *
14 * * * * * * * * * * * /
15 pr ot ect ed voi d di spat chMessage(Message message) { …} / / r ef i nement
16 / / or r edef i ni t i on
17 pr ot ect ed Message makeDeci si on(Message message) { …} / / r ef i nement
18 / / or r edef i ni t i on
19 pr ot ect ed voi d updat eMent al St at e() { …) / / r ef i nement
20 / / or r edef i ni t i on
21 …
22
23 / *
24 * I nt er nal St r uct ur e *
25 * /
26 / / i ncomi ng message sect i on – a set of message pr ocessi ng uni t s
27 pr ot ect ed voi d MPU_I n_1(Message message) { …} / / new def i ni t i on
28 …
29
30 / / out goi ng message sect i on – a set of message pr ocessi ng uni t s
31 pr ot ect ed voi d MPU_Out _1(Message out goi ngMessage) { …} / / new def i ni t i on
32 …
33
34 / / ut i l i t y met hod sect i on – a set of pr i vat e ut i l i t y met hods
35 pr ot ect ed voi d i ni t Agent (St r i ng[] ar gs) { …} / / r ef i nement
36 / / or r edef i ni t i on
37 pr ot ect ed voi d aut onomousRun() { …} / / r ef i nement
38 / / or r edef i ni t i on
39 pr ot ect ed voi d ot her _I nher i t ed_Met hod_1() { …} / / r ef i nement
40 / / or r edef i ni t i on
41 …
42 pr ot ect ed voi d ot her _New_Met hod_1() { …} / / new def i ni t i on
43 …
44
45 publ i c s t at i c voi d mai n(St r i ng[] ar gs) {
46 i ni t Agent (ar gs) ;
47 aut onomousRun() ;
48 }
49 }

In the Planner section of the ApplicationSpecificAgent class, all the decision-making units (e.g.,

makeDecision and updateMentalState) inherited from those defined in the Agent class can be refined or

redefined. In an extreme case, this section can be left blank, if the default reasoning mechanisms defined in

 24

the Agent class are reused. In the Internal Structure section, sets of MPUs are defined corresponding to a set

of protocols. For instance, from a price-negotiation protocol, we can derive a set of MPUs, such as request-

price, propose, accept-proposal. A description of how to derive MPUs from interaction protocols has been

developed (Xu and Shatz, 2003), but this level of detail is outside the scope of this paper.

In the utility method section, methods (i.e., U-Methods) are defined as “protected” so that they can be

further inherited by their subclasses. In addition to refining or redefining the two outstanding methods,

initAgents() and autonomousRun(), we can refine or redefine any inherited methods defined in the utility

method section of the Agent class. Furthermore, new application-specific functions shall be added here.

One advantage of our model-based approach is its support for the principle of “separation of concerns,” in

particular the separation of agent mental states and agent communication capabilities. Therefore, it is

possible for us to choose some existing implementation schema of intelligent agents (agent with or without

communication capabilities) to design and implement intelligent agents for multi-agent systems. For

instance, we can choose the Task Representation Language (TRL) to support knowledge representation and

agent reasoning (Ioerger et al., 2000), or we can use Petri nets to model the mental state of agents for multi-

agent simulation (Yen et al., 2001). Alternatively, we can, and do, use a more commonly used intelligent

agent model – the Belief-Desire-Intention (BDI) model (Kinny et al., 1996). A BDI architecture includes

and uses an explicit representation for an agent’s beliefs, desires and intentions. The BDI implementations,

such as the Procedural Reasoning System (PRS), the University of Michigan PRS, and JAM, all define a

new programming language and implement an interpreter for it (Vidal et al., 2001). The advantage of this

approach is that the interpreter can stop the program at any time, save state, and execute some other plan, or

intention, if it needs to. In this paper, we use a simplified implementation of the BDI agent model based on

previous work, and the relationships between the key classes defined for communication capabilities and

agent mental states are illustrated in Figure 7.

As Figure 7 shows, two key classes for communication capabilities are the Agent class and the Message

class, and an Agent object may send or receive Message objects through its GSP interface. Meanwhile, the

three key classes for an intelligent BDI agent are the Goal, Plan and Knowledge class. A Goal object is

defined as a goal tree, and a goal or a subgoal associates with a set of plans. When a goal or a subgoal is to

be achieved, the most appropriate plan, for instance the plan with the highest priority, is selected and

executed. As a result of the execution of a plan, a Knowledge object may be updated. Both a Goal object or

a Plan object may use the Knowledge object for its own purpose, e.g., to select the appropriate plan to

 25

achieve a goal or a subgoal. Figure 8 provides a visual example of these objects. Protocol instances are

defined inside the Knowledge class. Therefore, the Knowledge class may use/update protocols.

Agent Message

Goal Knowledge

Plan

Goal: myGoals
Plan: myPlans
Knowledge: myKnowledge

initAgent()
autonousmousRun()

ServiceID: senderID
ServiceID: receiverID
String: protocolName
String: content

String: goalName
Goal: subGoal
Plan: associatedPlans

String: planName
Int: priority
Boolean: conditions
String: associatedGoalName

AgentInfo: thisAgent
AgentInfo[]: remoteAgents
Protocol[]: protocols

achieveGoal()

send/receive

achieve

use/update

use/update

execute

initialize

 communication capabilities

mental states

initKnowledge()
update()

startPlan()
stopPlan()

toString()

Protocol

use/update

String: protocolName
DataStore: protocolSequence
Int: statusID

initProtocol()
callForProposal()

Figure 7. Relationship between classes defined for communication capabilities and mental states

The Agent class or any subclasses of the Agent class, e.g., an air ticket buyer agent class, defines a list of

committed goals myGoals, a set of plans myPlans that associate with a goal or a subgoal, and a knowledge-

base myKnowledge. For instance, an air ticket buyer agent may have a committed goal to buy a number of

air tickets from “Chicago” to “Dayton” on a certain date from some air ticket seller agents. The air ticket

buyer agent may choose a plan with the highest priority, i.e., the most suitable one, to achieve this goal.

Based on the knowledge about the air ticket information, the existence of air ticket seller agents in the Jini

community, and the interaction protocols needed for query and negotiation with those air ticket seller

agents, the air ticket buyer agent can proceed to purchase its needed air tickets. The list of committed goals

and the set of plans may be updated at run time. When a goal is achieved, it may be deleted from the goal

list, and new goals may be added into the goal list if needed. In addition, the myKnowledge object is

initialized by the Agent object or an ApplicationSpecificAgent object, and may be updated at run time by a

 26

Goal or Plan object. The intelligent agent is so-called goal-driven, because in the method automousRun(),

goals defined in the goal list are achieved one by one through a loop. When all the goals are achieved, the

Agent object waits for new committed goals to be added into the goal list.

4.4 An Agent Development Process

The purpose of the proposed agent design architecture and agent design patterns is to ease the

programmer’s effort to develop applications of intelligent agents for multi-agent systems. As we mentioned

before, an application-specific agent, such as an air ticket seller agent, could be defined as an agent subclass

of the Agent class. Since the Agent class shown in Table 2 provides the basic functionality of intelligent

agents as well as the agent implementation framework, what we need to do for developing an application-

specific agent is to inherit the functional units and the behaviors of the Agent superclass and fill out certain

sections in the pattern for application-specific agent, as shown in Table 3. In addition, we need to redefine

or define subclasses of the Goal, Plan, and Knowledge classes that are defined in ADK to meet certain

behavioral requirements of agent intelligence.

As a summary, we now briefly describe the generic procedure to develop an application-specific agent for

multi-agent systems. In Section 5, we cast the procedure into more specific terms by way of an example.

The 6-step procedure is defined as follows:

1. Define a set of goals Φ as the class variable theGoalSet, where each goal is defined as a goal tree Γ. A

goal tree could consist of just a root, which means a goal may or may not have a number of subgoals.

2. Define a goal list Ω as the class variable myGoals (Table 3) and initialize the goal list Ω with any

committed goal gc ∈ Φ. The goal list Ω is dynamic, which means achieved goals may be deleted from

Ω and newly committed goals could be added into Ω at run time.

3. Define a set of plans P as the class variable myPlans (Table 3). Each plan p ∈ P has a priority and a set

of conditions, and is associated with a particular goal or subgoal. The plan php ∈ P, which has the

highest priority and whose conditions are evaluated to true, will be executed to achieve the associated

goal or a subgoal.

4. Refine the Knowledge class, including the Protocol class, if the application-specific agent requires

additional types of knowledge beyond the basic properties and behaviors predefined in Figure 7, and

initialize the knowledge-base myKnowledge (Table 3) for that agent.

 27

5. An interaction protocol ρ serves as a template for agent conversation. Based on ρ, we define a set of

MPUs Ψ, where each MPU corresponds to a method MPU_In_i() or MPU_Out_j() as shown in Table

3. Refer to (Xu and Shatz, 2001a; Xu and Shatz, 2001b) for a detailed description for transforming from

ρ to ψ.

6. Refine the decision-making units defined in the ApplicationSpecificAgent class, if needed. Examples of

decision-making units include functions like makeDecision() and updateMentalState().

The decision-making units serve as the reasoning engine for the agent. The major functionality of the

decision-making units includes the following tasks:

• For each goal or subgoal, choose the most appropriate plan to execute.

• Create outgoing messages and send them out through MPUs.

• Upon receiving incoming messages, decide to ignore or continue with the conversations.

• Decide when to update the agent’s mental state.

• Upon capturing new events, update the goal list and invoke certain plans.

It should be mentioned that the above procedures could be automated, or partially automated by providing a

development environment, to ease the programmers’ work. This is also one of the major motivations of our

ADK project. An Agent Development Environment (ADE), which encompasses the ADK, is envisioned as a

future, and more ambitious research direction.

5. A Case Study: Air-Ticket Trading

We can now discuss an example that shows how to develop intelligent agents upon the ADK platform.

Suppose we wish to design and implement a multi-agent system for air ticket trading. The multi-agent

system will include two types of agents, air ticket seller agents and air ticket buyer agents. According to the

procedures described previously, a set of goals will be identified for both the air ticket sellers and the air

ticket buyers. For instance, the goal list for a simplified air ticket buyer may include the goal “buy air

ticket,” and the goal “buy air ticket” may have subgoals of “ find seller,” “check price,” “buy ticket,” and

“wait for receipt,” as shown on the right hand side of Figure 8. The air ticket seller has a similar goal list for

the purpose of selling air tickets. For each goal or subgoal, we define a set of plans. For instance, for the

subgoal “ find seller” , we have two plans, which are plan_FindSeller and plan_BeFoundBySeller. The plan

plan_FindSeller can be executed to search for air ticket sellers in the Jini community, while the plan

 28

plan_BeFoundBySeller is executed to wait to be found by air ticket sellers. Which plan will be executed to

achieve the subgoal “ find seller” is determined by actual situations. For instance, the buyer may want to

wait and be contacted by air ticket sellers initially. However, if the subgoal cannot be achieved in a period

of time, the buyer can change its mind to search for air ticket sellers by itself.

The protocols used for the above two plans are fairly simple. For the plan plan_FindSeller, the buyer asks

the sellers in the Jini community if they sell air tickets, then the sellers may reply with “Yes” or “No”, or

simply ignore the conversation. If a seller replies with “Yes,” the buyer may ask further questions to check

if the air ticket seller has enough of certain types of air tickets. For instance, the buyer may ask if the seller

has tickets from “Chicago” to “Dayton.” If the seller has the type of air tickets that the buyer wants, the

subgoal may be achieved or partially achieved (if the seller has the type of tickets but not enough). Then, in

the next step, the seller continues to achieve the subgoal “check price.”

Figure 8. User Interface of the Knowledge-base, Goal and Plan module

The following pseudo-code gives some examples of how to “ fill out” certain sections of the implementation

pattern provided by the ApplicationSpecificAgent class. Now we list a few MPUs that correspond to the

above two plans:

/ / i ncomi ng message sect i on

/ / pl an_Fi ndSel l er
pr ot ect ed voi d MPU_I n_Sel l er YesOr No(Message message) { …}

…

/ / pl an_BeFoundBySel l er

pr ot ect ed voi d MPU_I n_BeFoundBySel l er (Message message) { …}

 29

/ / out goi ng message sect i on

/ / pl an_Fi ndSel l er
pr ot ect ed voi d MPU_Out _Fi ndSel l er (Message out goi ngMessage) { …}

…

/ / pl an_BeFoundBySel l er

pr ot ect ed voi d MPU_Out _Buyer YesOr No(Message out goi ngMessage) { …}

…

The Knowledge-base of a seller or buyer agent includes two parts, which provides information about the

agent itself and information about other agents. For instance, the Knowledge-base of the buyer agent

should include ticket information for the type of tickets that the buyer agent wants to buy (as shown on the

left hand side of Figure 8), and ticket information for the type of tickets that other seller agents may hold.

Other information, such as the interaction protocols and agent states, may also be stored in the Knowledge-

base of that agent. We do not show these types of knowledge in our illustrated figures. Finally, for the

decision-making units for this air ticket trading application, we simply reuse those that are predefined in

ADK.

Figure 9. User interface of the seller agent SA_16fb

The user interface of a seller agent is designed as a console window as shown in Figure 9. In the agent

console window, the content for the agent communication is displayed. Meanwhile, a list of agents,

including the agent itself and those agents with which that agent communicates, is displayed on the left

 30

hand side of the window. The user interface also provides a set of tools, such as those to lookup existing

services, to test message sending/receiving, and to edit agent properties. Figure 9 shows an example of air

ticket trading process. In Figure 9, a buyer agent, with an agent ID of BA_3b19, first asks if the seller agent

SA_16fb sells air tickets. After the seller agent SA_16fb confirms with “Yes”, the buyer agent BA_3b19

continues to ask if the seller agent SA_16fb has the type of air tickets it wants. After the seller agent

SA_16fb confirms with “Yes” again (although it does not have enough tickets), the buyer agent BA_3b19

begins to bargain price with the seller. Finally, the conversation between agent SA_16fb and agent BA_3b19

ends up with a confirmation message that the buyer agent BA_3b19 buys all the 5 tickets from the seller

agent SA_16fb with the price of $180.0 for each ticket. It is worth noting that although we have used natural

language in this example, agents do not talk with each other in natural language. The sentences in natural

language have been generated based on the values carried with messages and the semantic of their

corresponding interaction protocols.

Figure 10. User interface of the buyer agent BA_3b19

In this example, the agent ID for the seller agent or the buyer agent is defined by a prefix of SA (seller

agent) or BA (buyer agent) with the last four digits of the service ID of that agent, where the service ID is a

32 digits hexadecimal number provided by the Jini community when the agent is registered (Edwards,

1999; Arnold et al., 1999).

 31

In Figure 10, we show the user interface for the air ticket buyer agent. In this figure, we can see that the

buyer agent BA_3b19 concurrently communicates with two seller agents: SA_bf8f and SA_16fb, and buys 5

tickets from the seller SA_16fb and 3 tickets from the seller SA_bf8f with the lowest fare criteria.

6. Conclusions and Future Work

Although a number of agent-oriented systems have been built in the past few years, there is very little work

on bridging the gap between theory, systems, and application. The contribution of this paper is to use the

agent-oriented G-net model, which is a formal agent model, as a high-level design for agent development,

thus we bring formal methods directly into the design phase of the agent development life cycle. Also the

role of inheritance in agent development has been carefully discussed. Based on the architectural design and

the detailed design of a generic intelligent agent, we developed the ADK as a class library that supports

designing and implementing applications of intelligent agents for multi-agent systems. An air ticket trading

example was presented to illustrate the derivation of a multi-agent application using the ADK approach.

The generality of the example supports the notion that our model-based approach is feasible and effective.

For future work, we will formalize the design procedure for developing application-specific intelligent

agents, and based on the ADK class library, we will partially automate the implementation process to

reduce the programming-level tasks. In future versions of this project, we plan to develop an Agent

Development Environment (ADE) to support the development process.

Acknowledgments: This material is based upon work supported by the U.S. Army Research Office under

grant number DAAD19-01-1-0672, and the U.S. National Science Foundation under grant number CCR-

9988168. We thank Zhaoxiao Hu and Yan Pan for proof-reading our paper and providing very valuable

comments. We also thank all anonymous referees for the careful review of this paper and the many

suggestions for improvements they provided.

References

Arnold, K., O'Sullivan, B., Scheifler, R. W., Waldo, J., and Wollrath, A. 1999. The Jini Specification,

Addison-Wesley.

Ashri, R. and Luck, M. 2000. Paradigma: Agent implementation through Jini. In Proceedings of the

Eleventh International Workshop on Database and Expert Systems Applications, A. M. Tjoa and R. R.

Wagner and A. Al-Zobaidie, eds., IEEE Computer Society, pp. 453-457.

 32

Bellifemine, F., Poggi, A., and Rimassa, G. 1999. JADE - A FIPA-compliant agent framework. In

Proceedings of the 4th International Conference on the Practical Application of Intelligent Agent and

Multi Agent Technology (PAAM99), London, U.K., pp. 97-108.

Brazier, F.M.T., Dunin Keplicz, N., Jennings, N., and Treur, J. 1997. DESIRE: Modelling multi-agent

systems in a compositional formal framework. In: International Journal of Cooperative Information

Systems (M. Huhns, M. Singh Ed.), Volume 6, pp. 67-94, Special Issue on Formal Methods in

Cooperative Information Systems: Multi-Agent Systems.

Buchs, D. and Guelfi, N. 2000. A formal specification framework for object-oriented distributed systems.

IEEE Transactions on Software Engineering (TSE), Vol. 26, No. 7, pp. 635-652.

Crnogorac, L., Rao, A. S., and Ramamohanarao, K. 1997. Analysis of inheritance mechanisms in agent-

oriented programming. In Proceedings of the 15th International Joint Conference on Artificial

Intelligence (IJCAI), pp. 647-654.

Deng, Y. and Chang, S. K. 1990. A G-net model for knowledge representation and reasoning. IEEE

Transactions on Knowledge and Data Engineering, Vol. 2, No. 3, pp. 295-310.

Deng, Y., Chang, S. K., Perkusich, A., and de Figueredo, J. 1993. Integrating software engineering methods

and Petri nets for the specification and analysis of complex information systems. In Proceedings of the

14th International Conference on Application and Theory of Petri Nets, Chicago, pp. 206-223.

D’ Inverno, M., Fisher, M., Lomuscio, A., Luck, M., De Rijke, M., Ryan, M., and Wooldridge, M. 1997.

Formalisms for multi-agent systems. The Knowledge Engineering Review, Vol. 12, No. 3.

D’ Inverno, M. and Luck, M. 2001. Formal agent development: framework to system. In Formal

Approaches to Agent-Based Systems: First International Workshop, FAABS 2000, Rash, J.L., Rouff,

C.A., Truszkowski, W., Gordon, D., Hinchey, M.G., (eds.), Lecture Notes in Artificial Intelligence,

1871, Berlin, Springer-Verlag, 2001, pp. 133-147.

Edwards, W. K. 1999. Core Jini, The Sun Microsystems Press, Prentice Hall PTR, Upper Saddle River, NJ.

Finin, T., Labrou, Y., and Mayfield, J. 1997. KQML as an agent communication language. Software Agents,

Jeff Bradshaw, ed., MIT Press, Cambridge.

FIPA 2002. The foundation for intelligent physical agents. FIPA 2000 Specifications. Http://www.fipa.org.

Fisher, M. 1995. Representing and executing agent-based systems. Intelligent Agents -- Proceedings of the

International Workshop on Agent Theories, Architectures, and Languages, M. Wooldridge, and N.

Jennings, eds., Lecture Notes in Computer Science, Vol. 890, Springer-Verlag, pp. 307-323.

 33

Flores, R. A. and Kremer, R. C. 2001. Formal conversations for the Contract Net protocol. Multi-Agent

Systems and Applications II, V. Marik, M. Luck & O. Stepankova, eds., Lecture Notes in Computer

Science, Springer-Verlag.

Howden, N., Rönnquist, R., Hodgson, A., and Lucas, A. 2001. JACK intelligent agents – summary of an

agent infrastructure. In Proceedings of the 5th International Conference on Autonomous Agents.

Huber, M. 1999. JAM: a BDI-theoretic mobile agent architecture. In Proceedings of International

Conference on Autonomous Agents, pp. 236-243.

Huber, M. J., Kumar, S., Cohen, P. R., and McGee, D. R. 2001. A formal semantics for proxy

communicative acts. In Proceedings of the Eighth International Workshop on Agent Theories,

Architectures, and Languages (ATAL-2001), Seattle, Washington, USA.

Iglesias, C. A., Garrijo, M., and Centeno-González, J. 1998. A survey of agent-oriented methodologies. In

Proceedings of the Fifth International Workshop on Agent Theories, Architectures, and Language

(ATAL-98), pp. 317-330.

Ioerger, T. R., Volz, R. A., and Yen, J. 2000. Modeling cooperative, reactive behaviors on the battlefield

using intelligent agents. In Proceedings of the Ninth Conference on Computer Generated Forces (9th

CGF), pp. 13-23.

Kinny, D., Georgeff, M., and Rao, A. 1996. A methodology and modeling technique for systems of BDI

agents. Agents Breaking Away: Proceedings of the Seventh European Workshop on Modeling

Autonomous Agents in a Multi-Agent World, W. Van de Velde and J. W. Perram, eds., LNAI, Vol. 1038,

Springer-Verlag: Berlin, Germany, pp. 56-71.

Lakos, C. A. and Keen, C. 1994. LOOPN++: A new language for object-oriented Petri nets. In Proceedings

of Modelling and Simulation (European Simulation Multi-Conference), Barcelona, Society for Computer

Simulation, pp. 369-374.

Luck, M. and d’ Inverno, M. 1995. A formal framework for agency and autonomy. In Proceedings of the

First International Conference on Multi-Agent Systems, AAAI Press / MIT Press, pp. 254-260.

Murata, T. 1989. Petri nets: Properties, analysis and applications. In Proceedings of the IEEE, Vol. 77, No.

44, pp. 541-580.

Nwana, H., Ndumu, D., Lee, L., and Collins, J. 1999. ZEUS: A toolkit for building distributed multi-agent

systems. Applied Artificial Intelligence Journal, Vol. 13, No. 1, pp. 129-186.

 34

Odell, J., Van Dyke Parunak, H., and Bauer, B. 2001. Representing agent interaction protocols in UML.

Agent-Oriented Software Engineering, Paolo Ciancarini and Michael Wooldridge, eds., Springer-Verlag,

Berlin, pp. 121–140.

Pan, Y. 2002. Refinement of an Agent-Based Model to support Decision Making and Standard Agent

Communication Languages, Masters Thesis, University of Illinois at Chicago.

Penczek, W. and Lomuscio, A. 2003. Verifying epistemic properties of multi-agent systems via bounded

model checking. In Proceedings of the Second International Conference on Autonomous Agents and

Multi-Agent Systems (AAMAS’03), Melbourne.

Perkusich, A. and de Figueiredo, J. 1997. G-Nets: A Petri net based approach for logical and timing

analysis of complex software systems. Journal of Systems and Software, Vol. 39, No. 1, pp. 39-59.

Poslad, S., Buckle, P., and Hadingham, R. 2000. The FIPA-OS agent platform: Open source for open

standards. In Proceedings of the 5th International Conference on the Practical Application of Intelligent

Agent and Multi Agent Technology (PAAM2000), Manchester, UK.

Pressman, R. S. 2001. Software Engineering: A Practitioner’s Approach, 5th Edition, McGraw-Hill.

Rao, A. S. and Georgeff, M. P. 1993. A model-theoretic approach to the verification of situated reasoning

systems. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence

(IJCAI-93), Chambery, France, pp. 318-324.

Rodriguez-Aguilar, J. A., Martin, F. K., Garcia, P., Noriega, P., and Sierra, C. 1999. Towards a formal

specification of complex social structures in multi-agent systems. Collaboration between Human and

Artificial Societies, J. Padget, ed., LNAI, Vol. 1624, Springer-Verlag, pp. 284-300.

Saldhana, J., Shatz, S. M., and Hu, Z. 2001. Formalization of object behavior and interactions from UML

models. International Journal of Software Engineering and Knowledge Engineering (IJSEKE), Vol. 11,

No. 6, pp. 643-673.

Siegel, J. and the OMG Staff Strategy Group 2001. Developing in OMG's model driven architecture

(MDA). OMG White Paper, Object Management Group.

Smith, R. G. 1980. The Contract Net protocol: high-level communication and control in a distributed

problem solver. IEEE Transactions on Computer, Vol. C-29, pp. 1104-1113.

Vasconcelos, W., Sabater, J., Sierra, C., and Querol, J. 2002. Skeleton-based agent development for

electronic institutions. In Proceedings of the First International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), Italy.

 35

Vidal, J. M., Buhler, P. A., and Huhns, M. N. 2001. Inside an agent. IEEE Internet Computing, Vol. 5, No.

1, pp. 82-86.

Wooldridge, M., Jennings, N. R., and Kinny, D. 2000. The Gaia methodology for agent-oriented Analysis

and design. Journal of Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 3, pp. 285-312.

Wooldridge, M. and Ciancarini, P. 2001. Agent-oriented software engineering: the state of the art. In P.

Ciancarini and M. Wooldridge, editors, Agent-Oriented Software Engineering, Springer-Verlag Lecture

Notes in AI, Volume 1957.

Wooldridge, M. 2002. An Introduction to Multiagent Systems, John Wiley and Sons, Ltd.

Xu, D., Volz, R. A., Ioerger, T. R., and Yen, J. 2002. Modeling and verifying multi-agent behaviors using

Predicate/Transition nets. In Proceedings of the 14th International Conference on Software Engineering

and Knowledge Engineering (SEKE’02), Italy, pp. 193-200.

Xu, D., Yin, J., Deng, Y., and Ding, J. 2003. A formal architectural model for logical agent mobility. IEEE

Transactions on Software Engineering, Vol. 29, No.1, pp. 31-45.

Xu, H. and Shatz, S. M. 2000. Extending G-nets to support inheritance modeling in concurrent object-

oriented design. In Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics (SMC 2000), Nashville, Tennessee, USA, pp. 3128-3133.

Xu, H. and Shatz, S. M. (2001a). An agent-based Petri net model with application to seller/buyer design in

electronic commerce. In Proceedings of the Fifth International Symposium on Autonomous

Decentralized Systems (ISADS 2001), Dallas, Texas, USA, pp. 11-18.

Xu, H. and Shatz, S. M. (2001b). A framework for modeling agent-oriented software. In Proceedings of the

21st International Conference on Distributed Computing Systems (ICDCS-21), Phoenix, Arizona, USA,

pp. 57-64.

Xu, H. and Shatz, S. M. 2003. A framework for model-based design of agent-oriented software. IEEE

Transactions on Software Engineering, Vol. 29, No. 1, pp. 15-30.

Yen, J., Yin, J., Ioerger, T. R., Miller, M., Xu, D., and Volz, R. A. 2001. CAST: Collaborative agents for

simulating teamwork. In Proceedings of the Seventeenth International Joint Conference on Artificial

Intelligence (IJCAI-01), Seattle, WA, pp. 1135-1142.

Zhu, H. 2001. SLABS: A formal specification language for agent-based systems. International Journal of

Software Engineering and Knowledge Engineering, Vol. 11, No. 5, pp. 529-558.

